1
|
Yoo E, Jo Y, Park J, Hong SW. Immune tolerance to foreign antigens in the intestine: mechanisms mediated by CD4+ T cells. BMB Rep 2025; 58:158-168. [PMID: 40176601 PMCID: PMC12041928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
The immune system encounters a diverse array of antigens, both self and foreign, necessitating mechanisms to maintain tolerance and prevent harmful inflammatory responses. CD4+ T cells, crucial in orchestrating immune responses, play a critical role in mediating tolerance to both self and foreign antigens. While the mechanisms of CD4+ T cell-mediated tolerance to self-antigens are well-documented, the understanding of tolerance to foreign antigens, including those from commensal microbes and food, remains incomplete. This review discusses recent progress in the mechanisms underlying immune tolerance to foreign antigens, with a focus on the role of CD4+ T cells. We explore how inflammatory and tolerogenic CD4+ T cell subsets are developed and maintained. Moreover, we delve into the complexities of immune responses to commensal microbes and food antigens by reviewing recent findings, highlighting the immunological contexts that shape immune tolerance. Understanding these mechanisms enhances our comprehension of how immune tolerance is established and sustained, providing insights into potential therapeutic approaches for managing chronic inflammatory diseases resulting from a loss of immune tolerance to foreign antigens. [BMB Reports 2025; 58(4): 158-168].
Collapse
Affiliation(s)
- Eunbi Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yeleen Jo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jooyoun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sung-Wook Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
2
|
Hornikova T, Jelinkova A, Jiraskova Zakostelska Z, Thon T, Coufal S, Polouckova A, Kopelentova E, Kverka M, Makovicky P, Tlaskalova-Hogenova H, Sediva A, Schwarzer M, Srutkova D. Genetic background and microbiome drive susceptibility to epicutaneous sensitization and food allergy in adjuvant-free mouse model. Front Immunol 2025; 15:1509691. [PMID: 39944558 PMCID: PMC11814220 DOI: 10.3389/fimmu.2024.1509691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/31/2024] [Indexed: 05/09/2025] Open
Abstract
Background The dual allergen exposure hypothesis states that sensitization to food antigens occurs through a damaged skin barrier in individuals with no previous oral tolerance to certain foods. However, the resulting allergic reaction could depend on factors such as the host's genetic predisposition as well as the skin and gut microbiota. Methods Specific-pathogen-free BALB/c and C57BL/6 and germ-free (GF) BALB/c mice were epicutaneously sensitized with ovalbumin (OVA) via dorsal tape-stripped skin and challenged with OVA by intragastric gavage. The development of food allergy (FA) symptoms, the Th2 and mast cell immune response and differences in the skin and gut microbiota were investigated. Results BALB/c mice, but not C57BL/6 mice, showed severe clinical signs of FA (hypothermia, diarrhea) as well as a stronger serum antibody response and Th2 cytokine secretion in the spleen and jejunum after OVA-treatment. The increased mast cell count correlated with higher MCPT-1 production and histidine decarboxylase mRNA expression in the jejunum of these mice. The 16S rRNA sequencing analysis revealed lower abundance of short-chain fatty acids producing bacteria in the gut microbiome of OVA-treated BALB/c mice. Changes in the β-diversity of the gut microbiome reflect both the genetic background as well as the OVA treatment of experimental mice. Compared to SPF mice, GF mice developed more severe anaphylactic hypothermia but no diarrhea, although they had a higher mast cell count, increased MCPT-1 production in the jejunum and serum, and increased arachidonate 5-lipoxygenase mRNA expression. Conclusions We show that the BALB/c mice are a mouse strain of choice for model of adjuvant-free epicutaneous sensitization through the disrupted skin barrier and following food allergy development. Our results highlight the significant influence of genetic background and microbiota on food allergy susceptibility, emphasizing the complex interplay between these factors in the allergic response.
Collapse
Affiliation(s)
- Tereza Hornikova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Polouckova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Eliska Kopelentova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
3
|
Koenig JFE. T follicular helper and memory B cells in IgE recall responses. Allergol Int 2025; 74:4-12. [PMID: 39562254 DOI: 10.1016/j.alit.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
IgE antibodies raised against innocuous environmental antigens cause allergic diseases like allergic rhinitis, food allergy, and allergic asthma. While some allergies are often outgrown, others (peanut, shellfish, tree nut) are lifelong in the majority of individuals. Lifelong allergies are the result of persistent production of allergen-specific IgE. However, IgE antibodies and the plasma cells that secrete them tend to be short-lived. Persistent allergen-specific IgE titres are thought to be derived from the continued renewal of IgE plasma cells from memory B cells in response to allergen encounters. The initial generation of allergen-specific IgE is driven by B cell activation by IL-4 producing Tfh cells, but the cellular and molecular mechanisms of the long-term production of IgE are poorly characterized. This review investigates the mechanisms governing IgE production and Tfh activation in the primary and recall responses, towards the objective of identifying molecular targets for therapeutic intervention that durably inactivate the IgE recall response.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Chen JS, Lee D, Gowthaman U. T follicular helper cells in food allergy. Curr Opin Immunol 2024; 91:102461. [PMID: 39276414 DOI: 10.1016/j.coi.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
T follicular helper (Tfh) cells help direct the production of antibodies by B cells. In addition to promoting antibody responses to vaccination and infection, Tfh cells have been found to mediate antibody production to food antigens. Work over the past decade has delineated the specific phenotypes of Tfh cells that induce antibodies to food while also clarifying the divergent Tfh cell requirement for different food-specific antibody isotypes. Furthermore, Tfh and antibody responses to food can occur at multiple barrier sites - namely, skin, airway, and gut. Depending on the context of food antigen exposure, the immune response to food at these sites can be protective, as in the case of tolerance or immunotherapy, or pathogenic, as in the case of allergy. This review will highlight recent advances in our understanding of how Tfh cells promote antibodies to food as well as future avenues for continued discovery.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Donguk Lee
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Uthaman Gowthaman
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Sasaki T, Ota Y, Takikawa Y, Terrooatea T, Kanaya T, Takahashi M, Taguchi-Atarashi N, Tachibana N, Yabukami H, Surh CD, Minoda A, Kim KS, Ohno H. Food antigens suppress small intestinal tumorigenesis. Front Immunol 2024; 15:1373766. [PMID: 39359724 PMCID: PMC11445177 DOI: 10.3389/fimmu.2024.1373766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Food components suppressing small intestinal tumorigenesis are not well-defined partly because of the rarity of this tumor type compared to colorectal tumors. Using Apcmin/+ mice, a mouse model for intestinal tumorigenesis, and antigen-free diet, we report here that food antigens serve this function in the small intestine. By depleting Peyer's patches (PPs), immune inductive sites in the small intestine, we found that PPs have a role in the suppression of small intestinal tumors and are important for the induction of small intestinal T cells by food antigens. On the follicle-associated epithelium (FAE) of PPs, microfold (M) cells pass food antigens from lumen to the dendritic cells to induce T cells. Single-cell RNA-seq (scRNA-seq) analysis of immune cells in PPs revealed a significant impact of food antigens on the induction of the PP T cells and the antigen presentation capacity of dendritic cells. These data demonstrate the role of food antigens in the suppression of small intestinal tumorigenesis by PP-mediated immune cell induction.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuna Ota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yui Takikawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tommy Terrooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Charles D. Surh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Cao S, Maulloo CD, Raczy MM, Sabados M, Slezak AJ, Nguyen M, Solanki A, Wallace RP, Shim HN, Wilson DS, Hubbell JA. Glycosylation-modified antigens as a tolerance-inducing vaccine platform prevent anaphylaxis in a pre-clinical model of food allergy. Cell Rep Med 2024; 5:101346. [PMID: 38128531 PMCID: PMC10829738 DOI: 10.1016/j.xcrm.2023.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | - Chitavi D Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Jordan-Paiz A, Martrus G, Steinert FL, Kaufmann M, Sagebiel AF, Schreurs RRCE, Rechtien A, Baumdick ME, Jung JM, Möller KJ, Wegner L, Grüttner C, Richert L, Thünauer R, Schroeder-Schwarz J, van Goudoever JB, Geijtenbeek TBH, Altfeld M, Pals ST, Perez D, Klarenbeek PL, Tomuschat C, Sauter G, Königs I, Schumacher U, Friese MA, Melling N, Reinshagen K, Bunders MJ. CXCR5 +PD-1 ++ CD4 + T cells colonize infant intestines early in life and promote B cell maturation. Cell Mol Immunol 2023; 20:201-213. [PMID: 36600048 PMCID: PMC9886971 DOI: 10.1038/s41423-022-00944-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2023] Open
Abstract
Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Glòria Martrus
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Fenja L Steinert
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
- University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Max Kaufmann
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Adrian F Sagebiel
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Renée R C E Schreurs
- Department of Experimental Immunology; Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Anne Rechtien
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Hamburg, 20246, Germany
| | - Martin E Baumdick
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Johannes M Jung
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Kimberly J Möller
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
- University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Lucy Wegner
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
- University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Cordula Grüttner
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Laura Richert
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center UMR1219 and INRIA SISTM Team, Bordeaux, 33000, France
| | - Roland Thünauer
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Jennifer Schroeder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes B van Goudoever
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology; Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Steven T Pals
- Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul L Klarenbeek
- Department of Rheumatology and Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1007 MB, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Christian Tomuschat
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, Altona Children's Hospital, Hamburg, 22763, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, 20251, Germany.
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| |
Collapse
|
8
|
Lim J, Lin EV, Hong JY, Vaidyanathan B, Erickson SA, Annicelli C, Medzhitov R. Induction of natural IgE by glucocorticoids. J Exp Med 2022; 219:213459. [PMID: 36098746 PMCID: PMC9475297 DOI: 10.1084/jem.20220903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
IgE mediates allergic responses by coating mast cell or basophil surfaces and inducing degranulation upon binding a specific allergen. IgE can also be spontaneously produced in the absence of foreign allergens; yet the origin, regulation, and functions of such "natural" IgE still remain largely unknown. Here, we find that glucocorticoids enhance the production of IgE in B cells both in vivo and ex vivo without antigenic challenge. Such IgE production is promoted by B cell-intrinsic glucocorticoid receptor signaling that reinforces CD40 signaling and synergizes with the IL-4/STAT6 pathway. In addition, we found that rare B cells in the mesenteric lymph nodes are responsible for the production of glucocorticoid-inducible IgE. Furthermore, locally produced glucocorticoids in the gut may induce natural IgE during perturbations of gut homeostasis, such as dysbiosis. Notably, mice preemptively treated with glucocorticoids were protected from subsequent pathogenic anaphylaxis. Together, our results suggest that glucocorticoids, classically considered to be broadly immunosuppressive, have a selective immunostimulatory role in B cells.
Collapse
Affiliation(s)
- Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Erica V. Lin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jun Young Hong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea,Jun Young Hong:
| | - Bharat Vaidyanathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Steven A. Erickson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Charles Annicelli
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT,Correspondence to Ruslan Medzhitov:
| |
Collapse
|
9
|
Hu Y, Zhu Q, Wang Y, Liao C, Jiang G. A short review of human exposure to antibiotics based on urinary biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154775. [PMID: 35339554 DOI: 10.1016/j.scitotenv.2022.154775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics play a role in preventing and treating infectious diseases and also contribute to other health risks for humans. With the overuse of antibiotics, they are widely distributed in the environment. Long-term exposure to multiple antibiotics may occur in humans through medication and dietary intake. Therefore, it is critical to estimate daily intake and health risk of antibiotics based on urinary biomonitoring. This review compares the strengths and weaknesses of current analytical methods to determine antibiotics in urine samples, discusses the urinary concentration profiles and hazard quotients of individual antibiotics, and overviews correlations of antibiotic exposure with the risk of diseases. Liquid chromatography-tandem mass spectrometry is most applied to simultaneously determine multiple types of antibiotics at trace levels. Solid-phase extraction with a hydrophilic-lipophilic balance adsorbent is commonly used to extract antibiotics in urine samples. Fifteen major antibiotics with relatively higher detection frequencies and concentrations include sulfaclozine, trimethoprim, erythromycin, azithromycin, penicillin V, amoxicillin, oxytetracycline, chlortetracycline, tetracycline, doxycycline, ofloxacin, enrofloxacin, ciprofloxacin, norfloxacin, and florfenicol. Humans can be easily at microbiological effect-based risk induced by florfenicol, ciprofloxacin, azithromycin, and amoxicillin. Positive associations were observed between specific antibiotic exposure and obesity, allergic diseases, and mental disorders. Overall, the accessible, automated, and environmentally friendly methods are prospected for simultaneous determinations of antibiotics at trace level in urine. To estimate human exposure to antibiotics more accurately, knowledge gaps need to be filled up, including the transformation between parent and metabolic antibiotics, urinary excretion proportions of antibiotics at low-dose exposure and pharmacokinetic data of antibiotics in humans, and the repeated sampling over a long period in future research is needed. Longitudinal studies about antibiotic exposure and the risk of diseases in different developmental windows as well as in-depth research on the pathogenic mechanism of long-term, low-dose, and joint antibiotic exposure are warranted.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
11
|
Thomson CA, Morgan SC, Ohland C, McCoy KD. From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunol 2022; 15:1085-1094. [PMID: 36065057 DOI: 10.1038/s41385-022-00562-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiota influences host responses at practically every level, and as research into host-microbe interactions expands, it is not surprising that we are uncovering similar roles for the microbiota at other barrier sites, such as the lung and skin. Using standard laboratory mice to assess host-microbe interactions, or even host intrinsic responses, can be challenging, as slight variations in the microbiota can affect experimental outcomes. When it comes to designing and selecting an appropriate level of microbial diversity and community structure for colonization of our laboratory rodents, we have more choices available to us than ever before. Here we will discuss the different approaches used to modulate microbial complexity that are available to study host-microbe interactions. We will describe how different models have been used to answer distinct biological questions, covering the entire microbial spectrum, from germ-free to wild.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sydney C Morgan
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christina Ohland
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
12
|
Dietary antigens suppress the proliferation of type 2 innate lymphoid cells by restraining homeostatic IL-25 production. Sci Rep 2022; 12:7443. [PMID: 35523930 PMCID: PMC9076687 DOI: 10.1038/s41598-022-11466-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary antigens affect the adaptive immunity of the host by inducing regulatory T cells and IgE-producing B cells. However, their roles in innate immune compartments such as innate lymphoid cells (ILCs) and intestinal epithelial cells (IECs) are unclear. Here, using antigen-free (AF) mice, which are germ-free (GF) mice fed with amino-acid-based diet, we found dietary proteins suppress the development of GATA-3-expressing ILC2s independent of the adaptive immune cells. These cells produce more type 2 cytokines and upregulated proliferation and activation markers such as Ki-67, CD69, and CD25. With this, AF mice had increased expressions of tuft cell-specific transcripts such as Il25, Il33, Dclk1, Trpm5, and Pou2f3 in IECs. Accordingly, expanded ILC2s upregulated IL-17RB, a receptor of IL-25, and their proliferation was blocked by IL-25 neutralizing or IL-17RB blocking antibodies. These results suggest a new dialogue between dietary antigens, IECs, and ILCs in which dietary antigens suppress ILC2 activation and proliferation by restraining homeostatic IL-25 production, potentially limiting type 2 immunity by food antigens.
Collapse
|
13
|
Abstract
The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ashwin N Skelly
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan;
| |
Collapse
|
14
|
Abstract
The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ashwin N Skelly
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan;
| |
Collapse
|
15
|
Homeostatic serum IgE is secreted by plasma cells in the thymus and enhances mast cell survival. Nat Commun 2022; 13:1418. [PMID: 35301301 PMCID: PMC8930980 DOI: 10.1038/s41467-022-29032-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Increased serum levels of immunoglobulin E (IgE) is a risk factor for various diseases, including allergy and anaphylaxis. However, the source and ontogeny of B cells producing IgE under steady state conditions are not well defined. Here, we show plasma cells that develop in the thymus and potently secrete IgE and other immunoglobulins, including IgM, IgA, and IgG. The development of these IgE-secreting plasma cells are induced by IL-4 produced by invariant Natural Killer T cells, independent of CD1d-mediated interaction. Single-cell transcriptomics suggest the developmental landscape of thymic B cells, and the thymus supports development of transitional, mature, and memory B cells in addition to plasma cells. Furthermore, thymic plasma cells produce polyclonal antibodies without somatic hypermutation, indicating they develop via the extra-follicular pathway. Physiologically, thymic-derived IgEs increase the number of mast cells in the gut and skin, which correlates with the severity of anaphylaxis. Collectively, we define the ontogeny of thymic plasma cells and show that steady state thymus-derived IgEs regulate mast cell homeostasis, opening up new avenues for studying the genetic causes of allergic disorders. Elevated levels of IgE is associated with a range of allergic pathology but the source of such IgE producing B cells during the steady state is poorly understood. Here, Kwon et al. show that homeostatic IgE is secreted by plasma cells in the thymus and link this to mast cell survival.
Collapse
|
16
|
Yang W, Wang P, Cao P, Wang S, Yang Y, Su H, Nashun B. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14:57. [PMID: 34930415 PMCID: PMC8691063 DOI: 10.1186/s13072-021-00431-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dynamic changes of histone posttranslational modifications are important contexts of epigenetic reprograming after fertilization in pre-implantation embryos. Recently, lactylation has been reported as a novel epigenetic modification that regulates various cellular processes, but its role during early embryogenesis has not been elucidated. RESULTS We examined nuclear accumulation of H3K23la, H3K18la and pan histone lactylation in mouse oocytes and pre-implantation embryos by immunofluorescence with specific antibodies. All of the three modifications were abundant in GV stage oocytes, and both H3K23la and pan histone lactylation could be detected on the condensed chromosomes of the MII oocytes, while H3K18la were not detected. After fertilization, the nuclear staining of H3K23la, H3K18la and pan histone lactylation was faint in zygotes but homogeneously stained both of the parental pronuclei. The signal remained weak in the early cleavage stage embryos and increased remarkably in the blastocyst stage embryos. Comparison of the embryos cultured in four different conditions with varying concentrations of oxygen found that H3K23la, H3K18la and pan histone lactylation showed similar and comparable staining pattern in embryos cultured in atmospheric oxygen concentration (20% O2), gradient oxygen concentration (5% O2 to 2% O2) and embryos obtained from in vivo, but the modifications were greatly reduced in embryos cultured in hypoxic condition (2% O2). In contrast, nuclear accumulation of H3K18ac or H3K23ac was not significantly affected under hypoxic condition. Moreover, the developmental rate of in vitro cultured embryo was significantly reduced by low oxygen concentration and small molecule inhibition of LDHA activity led to decreased lactate production, as well as reduced histone lactylation and compromised developmental rate. CONCLUSIONS We provided for the first time the dynamic landscape of H3K23la, H3K18la and pan histone lactylation in oocytes and pre-implantation embryos in mice. Our data suggested that histone lactylation is subjected to oxygen concentration in the culture environment and hypoxic in vitro culture reduces histone lactylation, which in turn compromises developmental potential of pre-implantation embryos in mice.
Collapse
Affiliation(s)
- Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shuang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuxiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Huimin Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
17
|
Liu R, Peng C, Jing D, Xiao Y, Zhu W, Zhao S, Zhang J, Chen X, Li J. Biomarkers of Gut Microbiota in Chronic Spontaneous Urticaria and Symptomatic Dermographism. Front Cell Infect Microbiol 2021; 11:703126. [PMID: 34858864 PMCID: PMC8630658 DOI: 10.3389/fcimb.2021.703126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background Chronic urticaria (CU) is a chronic inflammatory skin disease associated with Th2 immune response. The two most common subtypes of CU, i.e., chronic spontaneous urticaria and symptomatic dermographism (CSD), often coexist. However, the pathogenesis of CSD is still unclear. Gut microbiota plays an important role in immune-related inflammatory diseases. The purpose of this study was to explore the correlation between gut microbiota and CSD. Methods A case-control study was conducted on CSD patients as well as gender- and age-matched normal controls (NCs). The 16S ribosomal DNA sequencing of fecal samples was used to detect the gut microbiota of all subjects. QPCR was used to further verify the species with differences between the two groups. Results The alpha diversity of gut microbiota decreased in CSD patients, accompanied by significant changes of the structure of gut microbiota. Subdoligranulum and Ruminococcus bromii decreased significantly in CSD patients and had a potential diagnostic value for CSD according to receiver operating characteristic curve (ROC) analysis. Enterobacteriaceae and Klebsiella were found to be positively correlated with the duration of CSD, while Clostridium disporicum was positively correlated with the dermatology life quality index (DLQI). Conclusions The gut microbiota of CSD patients is imbalanced. Subdoligranulum and Ruminococcus bromii are the gut microbiota biomarkers in CSD.
Collapse
Affiliation(s)
- Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, The First People's Hospital of Yancheng, Yancheng, China.,Department of Dermatology, The Fourth Affiliated Hospital of Nantong University, Nantong, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yangjian Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
18
|
Geng M, Tang Y, Liu K, Huang K, Yan S, Ding P, Zhang J, Wang B, Wang S, Li S, Wu X, Cao Y, Tao F. Prenatal low-dose antibiotic exposure and children allergic diseases at 4 years of age: A prospective birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112736. [PMID: 34481356 DOI: 10.1016/j.ecoenv.2021.112736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Based on a medical record or questionnaire survey approach, previous epidemiological studies have investigated associations between maternal antibiotic exposure during pregnancy and childhood allergic diseases. However, biomonitoring studies on the prenatal low-dose antibiotic exposure, mainly from the environment and contaminated food, and in relation to children allergic diseases, are missing. OBJECTIVES This research aimed to examine the associations between prenatal low-dose antibiotic exposure measured at multiple time points and children current allergic diseases at 4 years of age. METHODS The current study including 2453 mother-child pairs was based on the Ma'anshan Birth Cohort study. Selected 41 antibiotics and their two metabolites, which including human antibiotics (HAs), preferred as human antibiotics (PHAs), veterinary antibiotics (VAs) and preferred as veterinary antibiotics (PVAs), in urine samples from 2453 pregnant women were biomonitored through liquid chromatography-triple quadrupole tandem mass spectrometry. Information on children current allergic diseases were collected via validated questionnaires. Generalized estimating equation were used to explore the associations between the repeated measurements of maternal urinary antibiotic over three trimesters and current allergic diseases in children. RESULTS The detection rates of nine individual antibiotics in the three trimester during pregnancy are greater than 10%, and the 90th percentile concentration of the detected antibiotics ranges from 0.07 to 22.34 µg/g, and the 95th percentile concentration ranges from 0.17 to 59.57 µg/g. Among the participants, each one-unit concentration increment of sulfamethazine (adjusted OR=1.28, 95% CI: 1.10, 1.49, P-FDR=0.014) in the first trimester and ciprofloxacin (adjusted OR=1.17, 95% CI: 1.07, 1.28, P-FDR=0.008) in the second trimester were associated with an increased risk of current eczema in children. In the third trimester, each one-unit concentration increment of oxytetracycline (adjusted OR=1.90, 95% CI: 1.30, 2.78, P-FDR=0.014) was associated with an increased risk of current asthma in children. Gender-stratified analyses demonstrated that no gender differences were observed in the associations between prenatal antibiotic exposure and current allergic diseases in children. CONCLUSIONS Maternal exposure to certain specific VAs or PVAs (sulfamethazine, ciprofloxacin and oxytetracycline) in different trimesters was associated with an increased risk of current asthma and current eczema in 4-year-old children. No gender differences were found in these associations. Further studies are warranted to confirm our findings and explore the potential mechanisms.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Tang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jingjing Zhang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shulong Li
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
19
|
Darnaud M, De Vadder F, Bogeat P, Boucinha L, Bulteau AL, Bunescu A, Couturier C, Delgado A, Dugua H, Elie C, Mathieu A, Novotná T, Ouattara DA, Planel S, Saliou A, Šrůtková D, Yansouni J, Stecher B, Schwarzer M, Leulier F, Tamellini A. A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nat Commun 2021; 12:6686. [PMID: 34795236 PMCID: PMC8602333 DOI: 10.1038/s41467-021-26963-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Mus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.
Collapse
Affiliation(s)
- Marion Darnaud
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France.
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 46 Allée d'Italie, 69364, Lyon, Cedex, 07, France
| | - Pascaline Bogeat
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Lilia Boucinha
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 46 Allée d'Italie, 69364, Lyon, Cedex, 07, France
| | - Andrei Bunescu
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Céline Couturier
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Ana Delgado
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Hélène Dugua
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Céline Elie
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Alban Mathieu
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Tereza Novotná
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922, Nový Hrádek, Czech Republic
| | | | - Séverine Planel
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Adrien Saliou
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922, Nový Hrádek, Czech Republic
| | - Jennifer Yansouni
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922, Nový Hrádek, Czech Republic
| | - François Leulier
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 46 Allée d'Italie, 69364, Lyon, Cedex, 07, France
| | - Andrea Tamellini
- BIOASTER, Institut de Recherche Technologique, 40 avenue Tony Garnier, 69007, Lyon, France
| |
Collapse
|
20
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
21
|
Laursen MF. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. ANNALS OF NUTRITION & METABOLISM 2021; 77:1-14. [PMID: 34461613 DOI: 10.1159/000517912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Early life is a critical period as our gut microbiota establishes here and may impact both current and future health. Thus, it is of importance to understand how different factors govern the complex microbial colonization patterns in this period. The gut microbiota changes substantially during infancy and toddlerhood in terms of both taxonomic composition and diversity. This developmental trajectory differs by a variety of factors, including term of birth, mode of birth, intake of antibiotics, presence of furred pets, siblings and family members, host genetics, local environment, geographical location, and maternal and infant/toddler diet. The type of milk feeding and complementary feeding is particularly important in early and late infancy/toddlerhood, respectively. Breastfeeding, due to the supply of human milk oligosaccharide into the gut, promotes the growth of specific human milk oligosaccharide (HMO)-utilizing Bifidobacterium species that dominate the ecosystem as long as the infant is primarily breastfed. These species perform saccharolytic fermentation in the gut and produce metabolites with physiological effects that may contribute to protection against infectious and immune-related diseases. Formula feeding, due to its lack of HMOs and higher protein content, give rise to a more diverse gut microbiota that contains more opportunistic pathogens and results in a more proteolytic metabolism in the gut. Complementary feeding, due to the introduction of dietary fibers and new protein sources, induces a shift in the gut microbiota and metabolism away from the milk-adapted and toward a more mature and diverse adult-like community with increased abundances of short chain fatty acid-producing bacterial taxa. While the physiological implication of these complementary diet-induced changes remains to be established, a few recent studies indicate that an inadequately matured gut microbiota may be causally related to poor growth and development. Further studies are required to expand our knowledge on interactions between diet, gut microbiota, and health in the early life setting.
Collapse
|
22
|
Schwarzer M, Tlaskalova-Hogenova H, Leulier F, Schabussova I. Editorial: Employing Experimental Gnotobiotic Models to Decipher the Host-Microbiota Cross-Talk in Health and Disease. Front Immunol 2021; 12:729052. [PMID: 34413863 PMCID: PMC8369756 DOI: 10.3389/fimmu.2021.729052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | | | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, France
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Rachid R, Stephen-Victor E, Chatila TA. The microbial origins of food allergy. J Allergy Clin Immunol 2021; 147:808-813. [PMID: 33347905 PMCID: PMC8096615 DOI: 10.1016/j.jaci.2020.12.624] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA.
Collapse
Affiliation(s)
- Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
26
|
Yao Y, Chen C, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy 2021; 76:456-470. [PMID: 33098663 DOI: 10.1111/all.14639] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Allergic diseases are characterized by overactive type 2 immune responses to allergens and immunoglobulin E (IgE)-mediated hypersensitivity. Emerging evidence suggests that follicular helper T (TFH ) cells, rather than type 2 T-helper (TH 2) cells, play a crucial role in controlling IgE production. However, follicular regulatory T (TFR ) cells, a specialized subset of regulatory T (TREG ) cells resident in B-cell follicles, restricts TFH cell-mediated help in extrafollicular antibody production, germinal center (GC) formation, immunoglobulin affinity maturation, and long-lived, high-affinity plasma and memory B-cell differentiation. In mouse models of allergic asthma and food allergy, CXCR5+ TFH cells, not CXCR5- conventional TH 2 cells, are needed to support IgE production, otherwise exacerbated by CXCR5+ TFR cell deletion. Upregulation of TFH cell activities, including a skewing toward type 2 TFH (TFH 2) and IL-13 producing TFH (TFH 13) phenotypes, and defects in TFR cells have been identified in patients with allergic diseases. Allergen immunotherapy (AIT) reinstates the balance between TFH and TFR cells in patients with allergic diseases, resulting in clinical benefits. Collectively, further understanding of TFH and TFR cells and their role in the immunopathogenesis of allergic diseases creates opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane Qld Australia
| | - Cai‐Ling Chen
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Di Yu
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane Qld Australia
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
27
|
Campbell E, Hesser LA, Nagler CR. B cells and the microbiota: a missing connection in food allergy. Mucosal Immunol 2021; 14:4-13. [PMID: 33106585 DOI: 10.1038/s41385-020-00350-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
Food allergies are a major public health concern due to their widespread and rising prevalence. The increase in food allergy is partially due to Western lifestyle habits which deplete protective commensal microbiota. These microbial perturbations can result in adverse host-microbe interactions, altering the phenotype of various immune cells and instigating allergic sensitization. Although B cells are critical to allergic pathology, microbial influences on B cells have been somewhat overlooked. Here, we focus on direct and indirect interactions between bacteria and B cells and how such interactions regulate B-cell phenotype, namely antibody production (IgA, IgE, IgG1, and IgG4) and regulatory B-cell (Breg) function. Understanding how microbes modulate B-cell activity in the context of food allergies is critical to both tracing the development of disease and assessing future treatment options.
Collapse
Affiliation(s)
- Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA.,Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, USA. .,Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy 2020; 75:3100-3111. [PMID: 33068299 DOI: 10.1111/all.14632] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
In the past decade, research in the molecular and cellular underpinnings of basic and clinical immunology has significantly advanced our understanding of allergic disorders, allowing scientists and clinicians to diagnose and treat disorders such as asthma, allergic and nonallergic rhinitis, and food allergy. In this review, we discuss several significant recent developments in basic and clinical research as well as important future research directions in allergic inflammation. Certain key regulatory cytokines, genes and molecules have recently been shown to play key roles in allergic disorders. For example, interleukin-33 (IL-33) plays an important role in refractory disorders such as asthma, allergic rhinitis and food allergy, mainly by inducing T helper (Th) 2 immune responses and clinical trials with IL-33 inhibitors are underway in food allergy. We discuss interleukin 4 receptor pathways, which recently have been shown to play a critical role among the allergic inflammatory pathways that drive allergic disorders and pathogenesis. Further, the cytokine thymic stromal lymphopoietin (TSLP) has recently been shown as a factor in maintaining immune homeostasis and regulating type 2 inflammatory responses at mucosal barriers in allergic inflammation and targeting TSLP-mediated signalling is considered an attractive therapeutic strategy. In addition, new findings establish an important T cell-intrinsic role of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) proteolytic activity in the suppression of autoimmune responses. We have seen how mutations in the filaggrin gene are a significant risk factor for allergic diseases such as atopic dermatitis, asthma, allergic rhinitis, food allergy, contact allergy, and hand eczema. We are only beginning to understand the mechanisms by which the human microbiota may be regulating the immune system, and how sudden changes in the composition of the microbiota may have profound effects, linked with an increased risk of developing chronic inflammatory disorders, including allergies. New research has shown the important but complex role monocytes play in disorders such as food allergies. Finally, we discuss some of the new directions of research in this area, particularly the important use of biologicals in oral immunotherapy, advances in gene therapy, multifood therapy, novel diagnostics in diagnosing allergic disorders and the central role that omics play in creating molecular signatures and biomarkers of allergic disorders such as food allergy. Such exciting new developments and advances have significantly moved forth our ability to understand the mechanisms underlying allergic diseases for improved patient care.
Collapse
Affiliation(s)
- Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| | - James W. Krempski
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| |
Collapse
|
29
|
Yao Y, Wang N, Chen C, Pan L, Wang Z, Yunis J, Chen Z, Zhang Y, Hu S, Xu X, Zhu R, Yu D, Liu Z. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy 2020; 75:2599-2612. [PMID: 32198890 DOI: 10.1111/all.14288] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The contribution of B-cell subsets and T-B cell interaction to the pathogenesis of allergic rhinitis (AR) and mechanisms of allergen immunotherapy (AIT) remain poorly understood. This study aimed to outline circulating B-cell signature, the underlying mechanism, and its association with clinical response to AIT in patients with AR. METHODS IgD/CD27 and CD24/CD38 core gating systems were used to determine frequencies and phenotypes of B cells. Correlations between B cells, T cells, antigen-specific IgE, and disease severity in AR patients were investigated. Switched memory B cells were co-cultured with type 2 follicular helper T (Tfh2) cells and follicular regulatory T (Tfr) cells. Associations between B-cell subsets and clinical benefits of AIT were analyzed. RESULTS Frequencies and absolute numbers of circulating memory B cells were increased in AR patients. CD23 expression on CD19+ CD20+ CD27+ IgD- switched memory B cells was significantly enhanced and positively correlated with antigen-specific IgE levels, symptom scores, and Tfh2/Tfr cell ratio in AR patients. Compared with those from healthy controls, Tfh2 cells from AR patients had a greater capacity to induce CD23 expression on switched memory B cells via IL-4, which was unable to be sufficiently suppressed by AR-associated Tfr cells with defective IL-10 expression. CD23 expression on switched memory B cells was downregulated after 12-month AIT, which positively associated with disease remission in AR patients. CONCLUSION T-B cell interaction, bridged by CD23 expression particularly on switched memory B cells, may be involved in the disease pathogenesis and mechanism of AIT in patients with AR.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Nan Wang
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Cai‐Ling Chen
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Li Pan
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Zhi‐Chao Wang
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Joseph Yunis
- Faculty of Medicine The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Zhi‐An Chen
- Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Yu Zhang
- Laboratory of Immunology for Environment and Health Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Si‐Tao Hu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Xiao‐Yan Xu
- Department of Otolaryngology‐Head and Neck Surgery China Resources & Wisco General Hospital Wuhan China
| | - Rong‐Fei Zhu
- Department of Allergy Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Di Yu
- Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Laboratory of Immunology for Environment and Health Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
30
|
Kreft L, Hoffmann C, Ohnmacht C. Therapeutic Potential of the Intestinal Microbiota for Immunomodulation of Food Allergies. Front Immunol 2020; 11:1853. [PMID: 32922400 PMCID: PMC7456891 DOI: 10.3389/fimmu.2020.01853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Food allergy is an atopic disease that is caused by the immune system targeting harmless food antigens that can result in life-threatening anaphylaxis. As humans and microbes have co-evolved, inevitably commensal microbes have a tremendous impact on our health. As such, the gut with its enormous microbial richness reflects a highly tolerogenic environment at steady state, in which immune cells are educated to react in a well-calibrated manner to food and microbial antigens. Recent evidence indicates that the susceptibility to food allergy is critically linked to microbial dysbiosis and can be transmitted by microbial transfer from humans to mice. Experimental work and epidemiological studies further point toward a critical time window in early childhood during which the immune system is imprinted by microbial colonization. Particularly, Foxp3-expressing regulatory T cells turn out to be key players, acting as rheostats for controlling the magnitude of food allergic reactions. An increasing number of bacterial metabolites has recently been shown to regulate directly or indirectly the differentiation of peripherally induced Tregs, most of which co-express the RAR-related orphan receptor gamma t (RORγt). Genetic ablation provided additional direct evidence for the importance of RORγt+ Tregs in food allergy. Future strategies for the stratification of food allergic patients with the aim to manipulate the intestinal microbiota by means of fecal transplantation efforts, pre- or probiotic regimens or for boosting oral immunotherapy may improve diagnosis and therapy. In this review some of the key underlying mechanisms are summarized and future directions for potential microbial therapy are explored.
Collapse
Affiliation(s)
- Luisa Kreft
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christian Hoffmann
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany.,Department of Food Science and Experimental Nutrition, Food Research Center (FoRC), School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
31
|
Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol 2020; 42:75-93. [PMID: 32072252 PMCID: PMC7066092 DOI: 10.1007/s00281-019-00775-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Worldwide 300 million children and adults are affected by asthma. The development of asthma is influenced by environmental and other exogenous factors synergizing with genetic predisposition, and shaping the lung microbiome especially during birth and in very early life. The healthy lung microbial composition is characterized by a prevalence of bacteria belonging to the phyla Bacteroidetes, Actinobacteria, and Firmicutes. However, viral respiratory infections are associated with an abundance of Proteobacteria with genera Haemophilus and Moraxella in young children and adult asthmatics. This dysbiosis supports the activation of inflammatory pathways and contributes to bronchoconstriction and bronchial hyperresponsiveness. Exogenous factors can affect the natural lung microbiota composition positively (farming environment) or negatively (allergens, air pollutants). It is evident that also gut microbiota dysbiosis has a high influence on asthma pathogenesis. Antibiotics, antiulcer medications, and other drugs severely impair gut as well as lung microbiota. Resulting dysbiosis and reduced microbial diversity dysregulate the bidirectional crosstalk across the gut-lung axis, resulting in hypersensitivity and hyperreactivity to respiratory and food allergens. Efforts are undertaken to reconstitute the microbiota and immune balance by probiotics and engineered bacteria, but results from human studies do not yet support their efficacy in asthma prevention or treatment. Overall, dysbiosis of gut and lung seem to be critical causes of the increased emergence of asthma.
Collapse
Affiliation(s)
- Karin Hufnagl
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria.
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Währinger G. 18-20, 1090, Vienna, Austria.
| |
Collapse
|
32
|
Wyss M, Brown K, Thomson CA, Koegler M, Terra F, Fan V, Ronchi F, Bihan D, Lewis I, Geuking MB, McCoy KD. Using Precisely Defined in vivo Microbiotas to Understand Microbial Regulation of IgE. Front Immunol 2020; 10:3107. [PMID: 32010146 PMCID: PMC6974480 DOI: 10.3389/fimmu.2019.03107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Early life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE. However, whether this inhibition is dependent solely on certain microbial species, or is an additive effect of microbial richness, remains to be determined. Here we report that mice colonized with a combination of bacterial species with specific characteristics is required to inhibit IgE levels. These defined characteristics include the presence in early life, acetate production and immunogenicity reflected by induction of IgA. Suppression of IgE did not correlate with production of the short chain fatty acids propionate and butyrate, or induction of peripherally induced Tregs in mucosal tissues. Thus, inhibition of IgE induction can be mediated by specific microbes and their associated metabolic pathways and immunogenic properties.
Collapse
Affiliation(s)
- Madeleine Wyss
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kirsty Brown
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mia Koegler
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Fernanda Terra
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Vina Fan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Francesca Ronchi
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Dominique Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Schmiechen ZC, Weissler KA, Frischmeyer-Guerrerio PA. Recent developments in understanding the mechanisms of food allergy. Curr Opin Pediatr 2019; 31:807-814. [PMID: 31693591 PMCID: PMC6993896 DOI: 10.1097/mop.0000000000000806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW The prevalence of food allergy is rising globally. This review will discuss recent discoveries regarding the immunologic mechanisms that drive the initial sensitization and allergic response to food antigens, which may inform prevention and treatment strategies. RECENT FINDINGS Tolerance to food antigens is antigen-specific and promoted by oral exposure early in life and maternal transfer of immune complexes via breast milk. IgG can inhibit both the initiation and effector phases of allergic responses to food antigens in mice, and high levels of food-specific IgG4 are associated with acquisition of tolerance in humans. Disruption of the skin barrier provides a route for food sensitization through the actions of mast cells, type 2 innate lymphoid cells, and IL-33 signaling. Regulatory T cells (Tregs) promote acquisition of oral tolerance, although defects in circulating allergen-specific Tregs are not evident in children with established food allergy. Certain microbes can offer protection against the development of IgE and food allergic responses, while dysbiosis increases susceptibility to food allergy. SUMMARY Tolerance to food antigens is antigen-specific and is promoted by oral exposure early in life, maternal transfer of immune complexes, food-specific IgG, Tregs, an intact skin barrier, and a healthy microbiome.
Collapse
Affiliation(s)
- Zoe C Schmiechen
- Laboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | |
Collapse
|