1
|
Kuno M, Miyamoto A, Takano H, Homma M, Shiotani N, Uchida K, Takikawa H, Nakajima M, Mizutani M, Wakabayashi T, Sugimoto Y. CYP722A1-mediated 16-hydroxylation of carlactonoic acid regulates the floral transition in Arabidopsis. PLANT & CELL PHYSIOLOGY 2025; 66:645-657. [PMID: 40098498 DOI: 10.1093/pcp/pcaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Strigolactones (SLs) are multifunctional plant hormones and rhizosphere signals with diverse structures, roughly classified into two categories: canonical and noncanonical SLs. In Arabidopsis thaliana, SL biosynthesis mutants exhibit increased shoot branching and early flowering, underscoring their roles in developmental regulation. Shoot branching inhibition in Arabidopsis is associated with the methylation of a noncanonical SL, carlactonoic acid (CLA), catalyzed by CLA methyltransferase (CLAMT). Canonical SLs primarily function as rhizosphere signals, with their biosynthesis in dicots mediated by CYP722C enzymes. It is hypothesized that Arabidopsis does not produce canonical SL because of the lack of the CYP722C genes in its genome. Instead, Arabidopsis possesses CYP722A1, a member of the previously uncharacterized CYP722A subfamily, distinct from the CYP722C subfamily. This study demonstrates that Arabidopsis cyp722a1 mutants exhibit an earlier floral transition without excessive shoot branching. Biochemical analysis revealed that CYP722A1 catalyzes the hydroxylation of CLA to produce 16-hydroxy-CLA (16-HO-CLA), which is subsequently methylated by CLAMT to form 16-HO-MeCLA. 16-HO-CLA and 16-HO-MeCLA were detected in the wildtype; however, these compounds were absent in max1-4 mutant, deficient in CLA synthesis, and in cyp722a1 mutant. These findings show CYP722A1-dependent 16-hydroxylation activity of CLA in Arabidopsis. Moreover, they suggest that hydroxylated CLA specifically regulates floral transition, distinct from branching inhibition. Through the identification of CYP722A1 affecting floral transition, which is the distinct role of the CYP722A subfamily, this work provides insights into the structural diversification of SLs for specialized biological functions in plant development.
Collapse
Affiliation(s)
- Masaki Kuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ayumi Miyamoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hinako Takano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X, Li J, Wang B. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. Innovation (N Y) 2025; 6:100815. [PMID: 40098680 PMCID: PMC11910882 DOI: 10.1016/j.xinn.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified SlABCG45 as a key gene that mediates host resistance to Phelipanche aegyptiaca by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to Phelipanche and Orobanche, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced SlABCG45 expression and weakly induced SlABCG44 expression via the transcription factors SlNSP1 and SlNSP2. Knockout of SlABCG45 in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different Phelipanche and Orobanche species, resulting in an ∼30% yield increase in a Phelipanche-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Xinwei Ban
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianjin Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Yanrong Hao
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Hu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liquan Kou
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongyun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqin Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Hong Yu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Qi Xie
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Chen
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiayang Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Bing Wang
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mizutori Y, Nishiyama K, Seto Y. Inhibition of shoot branching in Arabidopsis by the artificially biosynthesized canonical strigolactone. Biosci Biotechnol Biochem 2025; 89:406-412. [PMID: 39719363 DOI: 10.1093/bbb/zbae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Strigolactones (SLs) are apocarotenoid plant hormones that regulate shoot branching. The natural SLs can be divided into 2 groups, canonical and noncanonical SLs, according to those chemical structures. In a model plant, Arabidopsis thaliana, it has been thought to produce only noncanonical SLs. Moreover, in rice, it was suggested that canonical-SL such as 4-deoxyorobanchol (4DO) does not have a critical role in shoot branching inhibition. In this report, to understand the potential of canonical-SL in the shoot branching inhibition pathway in Arabidopsis, SL biosynthetic genes involved in canonical-SL production in other plant species were individually expressed in Arabidopsis. Our data clearly demonstrate that 5-deoxystrigol, but not 4DO, can inhibit shoot branching in Arabidopsis. Moreover, the results confirmed the important role of CLA methyltransferase in the shoot branching inhibition pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Mizutori
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Kotaro Nishiyama
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
4
|
Landau OA, Jamison BV, Riechers DE. Transcriptomic analysis reveals cloquintocet-mexyl-inducible genes in hexaploid wheat (Triticum aestivum L.). PLoS One 2025; 20:e0319151. [PMID: 39965030 PMCID: PMC11835315 DOI: 10.1371/journal.pone.0319151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Identification and characterization of genes encoding herbicide-detoxifying enzymes is lacking in allohexaploid wheat (Triticum aestivum L.). Gene expression is frequently induced by herbicide safeners and implies the encoded enzymes serve a role in herbicide metabolism and detoxification. Cloquintocet-mexyl (CM) is a safener commonly utilized with halauxifen-methyl (HM), a synthetic auxin herbicide whose phytotoxic form is halauxifen acid (HA). Our first objective was to identify candidate HA-detoxifying genes via RNA-Seq by comparing untreated and CM-treated leaf tissue. On average, 81% of RNA-Seq library reads mapped uniquely to the reference genome and 76.4% of reads were mapped to a gene. Among the 103 significant differentially expressed genes (DEGs), functional annotations indicate the majority of DEGs encode proteins associated with herbicide or xenobiotic metabolism. This finding was further corroborated by gene ontology (GO) enrichment analysis, where several genes were assigned GO terms indicating oxidoreductase activity (34 genes) and transferase activity (45 genes). One of the significant DEGs is a member of the CYP81A subfamily of cytochrome P450s (CYPs; denoted as CYP81A-5A), which are of interest due to their ability to catalyze synthetic auxin detoxification. To investigate CYP expression induced by HM and/or CM, our second objective was to measure gene-specific expression of CYP81A-5A and its homoeologs (CYP81A-5B and CYP81A-5D) in untreated leaf tissue and leaf tissue treated with CM and HM over time using RT-qPCR. Relative to the reference gene (β-tubulin), basal CYP expression is high, expression among these CYPs varies over time, and expression for all CYPs is CM-inducible but not HM-inducible. Further analysis of CYP81A-5A, such as gene knock-out, overexpression experiments, or in vitro activity assays with purified enzyme are necessary to test the hypotheses that the encoded CYP detoxifies HA and that CM upregulates this reaction.
Collapse
Affiliation(s)
- Olivia A. Landau
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Brendan V. Jamison
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
5
|
Zhou A, Kane A, Wu S, Wang K, Santiago M, Ishiguro Y, Yoneyama K, Palayam M, Shabek N, Xie X, Nelson DC, Li Y. Evolution of interorganismal strigolactone biosynthesis in seed plants. Science 2025; 387:eadp0779. [PMID: 39818909 DOI: 10.1126/science.adp0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025]
Abstract
Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms. Using synthetic biology, we investigated the function of CYP722A, an evolutionary predecessor of CYP722C. CYP722A converts CLA into 16-hydroxy-CLA (16-OH-CLA), a noncanonical SL detected exclusively in the shoots of various flowering plants. 16-OH-CLA application restores control of shoot branching to SL-deficient mutants in Arabidopsis thaliana and is perceived by the SL signaling pathway. We hypothesize that biosynthesis of 16-OH-CLA by CYP722A was a metabolic stepping stone in the evolution of canonical SLs that mediate rhizospheric signaling in many flowering plants.
Collapse
Affiliation(s)
- Anqi Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Annalise Kane
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sheng Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaibiao Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Michell Santiago
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yui Ishiguro
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Kaori Yoneyama
- Department Research and Development Bureau, Saitama University, Saitama-shi, Japan
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
6
|
Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B, Li J. Regulatory mechanisms of strigolactone perception in rice. Cell 2024; 187:7551-7567.e17. [PMID: 39500324 DOI: 10.1016/j.cell.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024]
Abstract
Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.
Collapse
Affiliation(s)
- Qingliang Hu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huihui Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yajun He
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanrong Hao
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Simao Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zongyun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dahan Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinwei Ban
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianqian Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingkun Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanhui Jing
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liquan Kou
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajun Sang
- Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Yonghong Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, 271018 Shandong, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangdong Fu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Jiayang Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| |
Collapse
|
7
|
Inoue M, Xie X, Yoneyama K. Barley is a potential trap crop for root parasitic broomrape weeds. JOURNAL OF PESTICIDE SCIENCE 2024; 49:255-261. [PMID: 39877875 PMCID: PMC11770136 DOI: 10.1584/jpestics.d24-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
Root parasitic broomrape (Phelipanche and Orobanche spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants. Therefore, monocots can be trap crops for broomrapes, as they induce seed germination but are not parasitized. In this study, we examined two European and one Japanese barley cultivar for their potential as trap crops for broomrapes. We found that the European cultivars, Sebastian and Golden Promise, are good potential trap crops, as they produce more SLs and exhibit higher mycorrhizal colonization rates as compared to the Japanese cultivar Shunrai.
Collapse
Affiliation(s)
- Maiko Inoue
- Department of Biochemistry and Molecular Biology, Saitama University
| | - Xiaonan Xie
- Center for Bioscience Research & Education, Utsunomiya University
| | - Kaori Yoneyama
- Department of Biochemistry and Molecular Biology, Saitama University
| |
Collapse
|
8
|
Alhusayni S, Kersten N, Huisman R, Geurts R, Klein J. Ectopic expression of the GRAS-type transcriptional regulator NSP2 in Parasponia triggers contrasting effects on symbioses. FRONTIERS IN PLANT SCIENCE 2024; 15:1468812. [PMID: 39539299 PMCID: PMC11557437 DOI: 10.3389/fpls.2024.1468812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Introduction Plants strictly control root endosymbioses with nutrient-scavenging arbuscular endomycorrhizal fungi or nodule inducing diazotrophic bacteria. The GRAS-type transcriptional regulator NODULATION SIGNALING PATHWAY 2 (NSP2) is a conserved hub in this process. The NSP2-regulated transcriptional network is instrumental in balancing nutrient homeostasis with symbiotic interactions. NSP2 activity is modulated post-transcriptionally by a specific microRNA. Overriding this control mechanism by ectopic expression of a miRNA-resistant NSP2 transgene enhances the symbiotic permissiveness to arbuscular endomycorrhizal fungi. Such engineered plants may possess enhanced capacities for nutrient uptake. However, the trade-off of this strategy on plant development or other symbiotic interactions, like nodulation, is yet to be fully understood. Method We used the nodulating Cannabaceae species Parasponia andersonii as an experimental system to study the effect of ectopic NSP2 expression. Parasponia and legumes (Fabaceae) diverged 100 million years ago, providing a unique comparative system to dissect the nodulation trait. Results Six independent transgenic Parasponia lines were generated that differed in the level of NSP2 expression in the root from 6 to 95-fold higher when compared to the empty vector control plants. Analysis of these plants revealed a positive correlation between mycorrhization and the NSP2 expression level, as well as with the expression of the symbiosis transcription factor CYCLOPS and the rate-limiting enzyme in the carotenoid biosynthetic pathway PHYTOENE SYNTHASE1 (PSY1). Yet ectopic expression of NSP2 affected plant architecture and root nodule organogenesis. Discussion This indicates a significant trade-off when leveraging NSP2 over-expression to enhance endomycorrhization.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nick Kersten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Suzawa S, Yamauchi M, Homma M, Yamauchi Y, Mizutani M, Wakabayashi T, Sugimoto Y. Stereospecific reduction of 2'S-configured strigolactones by cowpea OPR3 enzymes. Biosci Biotechnol Biochem 2024; 88:1172-1179. [PMID: 38970383 DOI: 10.1093/bbb/zbae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Strigolactones (SLs), plant-derived apocarotenoids, serve dual roles as phytohormones and rhizosphere signaling molecules. While exogenous administration of SLs to plants aids in studying their functions, the metabolic destiny of these administered SLs remains poorly elucidated. Our previous research demonstrated that among synthetic SL GR24 stereoisomers administered to cowpea (Vigna unguiculata), 2'-epi-GR24 undergoes selective reduction at the C-3',4' double bond in its D-ring. In this investigation, we isolated proteins from cowpea roots based on SL reducing activity and identified 12-oxophytodienoate reductase 3 homologs (VuOPR3s) as contributors to this reduction. Enzymatic assays conducted with recombinant proteins revealed that VuOPR3s exhibited a preference for reducing activity toward 2'S-configured SLs, including 2'-epi-GR24. This specificity for 2'S-configured SLs was congruent with that observed for orobanchol produced by cowpea and its stereoisomers. These findings suggest that exogenously administered SLs undergo enzymatic stereoselective reduction, underscoring the importance of considering stereospecificity when interpreting data obtained from SL usage.
Collapse
Affiliation(s)
- Shota Suzawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Misa Yamauchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Yasuo Yamauchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
10
|
Li C, Haider I, Wang JY, Quinodoz P, Suarez Duran HG, Méndez LR, Horber R, Fiorilli V, Votta C, Lanfranco L, Correia de Lemos SM, Jouffroy L, Moegle B, Miesch L, De Mesmaeker A, Medema MH, Al-Babili S, Dong L, Bouwmeester HJ. OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. SCIENCE ADVANCES 2024; 10:eadq3942. [PMID: 39196928 PMCID: PMC11352842 DOI: 10.1126/sciadv.adq3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.
Collapse
Affiliation(s)
- Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Yuelushan Laboratory, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, 410082, Changsha, P. R. China
| | - Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jian You Wang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Pierre Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Lucía Reyes Méndez
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Robin Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Samara M. Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Lucile Jouffroy
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
11
|
Al-Babili S. A dirigent of the ring for strigolactone stereochemistry. Proc Natl Acad Sci U S A 2024; 121:e2410953121. [PMID: 39133862 PMCID: PMC11348329 DOI: 10.1073/pnas.2410953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Affiliation(s)
- Salim Al-Babili
- The BioActives Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Kuijer HNJ, Wang JY, Bougouffa S, Abrouk M, Jamil M, Incitti R, Alam I, Balakrishna A, Alvarez D, Votta C, Chen GTE, Martínez C, Zuccolo A, Berqdar L, Sioud S, Fiorilli V, de Lera AR, Lanfranco L, Gojobori T, Wing RA, Krattinger SG, Gao X, Al-Babili S. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility. Nat Commun 2024; 15:6906. [PMID: 39134551 PMCID: PMC11319436 DOI: 10.1038/s41467-024-51189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.
Collapse
Affiliation(s)
- Hendrik N J Kuijer
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Michael Abrouk
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Roberto Incitti
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derry Alvarez
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Guan-Ting Erica Chen
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Andrea Zuccolo
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institute of Crop Science, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy
| | - Lamis Berqdar
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Takashi Gojobori
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Homma M, Wakabayashi T, Moriwaki Y, Shiotani N, Shigeta T, Isobe K, Okazawa A, Ohta D, Terada T, Shimizu K, Mizutani M, Takikawa H, Sugimoto Y. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis. Proc Natl Acad Sci U S A 2024; 121:e2313683121. [PMID: 38905237 PMCID: PMC11214005 DOI: 10.1073/pnas.2313683121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Takumi Shigeta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Kazuki Isobe
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
| | - Atsushi Okazawa
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Daisaku Ohta
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
15
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Karniel U, Koch A, Bar Nun N, Zamir D, Hirschberg J. Tomato Mutants Reveal Root and Shoot Strigolactone Involvement in Branching and Broomrape Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1554. [PMID: 38891362 PMCID: PMC11174905 DOI: 10.3390/plants13111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The phytohormones strigolactones (SLs) control root and shoot branching and are exuded from roots into the rhizosphere to stimulate interaction with mycorrhizal fungi. The exuded SLs serve as signaling molecules for the germination of parasitic plants. The broomrape Phelipanche aegyptiaca is a widespread noxious weed in various crop plants, including tomato (Solanum lycopersicum). We have isolated three mutants that impair SL functioning in the tomato variety M82: SHOOT BRANCHING 1 (sb1) and SHOOT BRANCHING 2 (sb2), which abolish SL biosynthesis, and SHOOT BRANCHING 3 (sb3), which impairs SL perception. The over-branching phenotype of the sb mutants resulted in a severe yield loss. The isogenic property of the mutations in a determinate growth variety enabled the quantitative evaluation of the contribution of SL to yield under field conditions. As expected, the mutants sb1 and sb2 were completely resistant to infection by P. aegyptiaca due to the lack of SL in the roots. In contrast, sb3 was more susceptible to P. aegyptiaca than the wild-type M82. The SL concentration in roots of the sb3 was two-fold higher than in the wild type due to the upregulation of the transcription of SL biosynthesis genes. This phenomenon suggests that the steady-state level of root SLs is regulated by a feedback mechanism that involves the SL signaling pathway. Surprisingly, grafting wild-type varieties on sb1 and sb2 rootstocks eliminated the branching phenotype and yield loss, indicating that SL synthesized in the shoots is sufficient to control shoot branching. Moreover, commercial tomato varieties grafted on sb1 were protected from P. aegyptiaca infection without significant yield loss, offering a practical solution to the broomrape crisis.
Collapse
Affiliation(s)
- Uri Karniel
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Amit Koch
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Nurit Bar Nun
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| |
Collapse
|
17
|
Homma M, Uchida K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1392212. [PMID: 38699535 PMCID: PMC11063326 DOI: 10.3389/fpls.2024.1392212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Strigolactones (SLs), a class of plant apocarotenoids, serve dual roles as rhizosphere-signaling molecules and plant hormones. Orobanchol, a major naturally occurring SL, along with its various derivatives, has been detected in the root exudates of plants of the Fabaceae family. Medicaol, fabacyl acetate, and orobanchyl acetate were identified in the root exudates of barrel medic (Medicago truncatula), pea (Pisum sativum), and cowpea (Vigna unguiculata), respectively. Although the biosynthetic pathway leading to orobanchol production has been elucidated, the biosynthetic pathways of the orobanchol derivatives have not yet been fully elucidated. Here, we report the identification of 2-oxoglutarate-dependent dioxygenases (DOXs) and BAHD acyltransferases responsible for converting orobanchol to these derivatives in Fabaceae plants. First, the metabolic pathways downstream of orobanchol were analyzed using substrate feeding experiments. Prohexadione, an inhibitor of DOX inhibits the conversion of orobanchol to medicaol in barrel medic. The DOX inhibitor also reduced the formation of fabacyl acetate and fabacol, a precursor of fabacyl acetate, in pea. Subsequently, we utilized a dataset based on comparative transcriptome analysis to select a candidate gene encoding DOX for medicaol synthase in barrel medic. Recombinant proteins of the gene converted orobanchol to medicaol. The candidate genes encoding DOX and BAHD acyltransferase for fabacol synthase and fabacol acetyltransferase, respectively, were selected by co-expression analysis in pea. The recombinant proteins of the candidate genes converted orobanchol to fabacol and acetylated fabacol. Furthermore, fabacol acetyltransferase and its homolog in cowpea acetylated orobanchol. The kinetics and substrate specificity analyses revealed high affinity and strict recognition of the substrates of the identified enzymes. These findings shed light on the molecular mechanisms underlying the structural diversity of SLs.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
18
|
Boukteb A, Sato K, Gan P, Kharrat M, Sakouhi H, Shibata A, Shirasu K, Ichihashi Y, Bouhadida M. Global changes in gene expression during compatible and incompatible interactions of faba bean (Vicia faba L.) during Orobanche foetida parasitism. PLoS One 2024; 19:e0301981. [PMID: 38626155 PMCID: PMC11020376 DOI: 10.1371/journal.pone.0301981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Orobanche foetida Poiret is the main constraint facing faba bean crop in Tunisia. Indeed, in heavily infested fields with this parasitic plant, yield losses may reach 90%, and the recent estimation of the infested area is around 80,000 ha. Identifying genes involved in the Vicia faba/O. foetida interaction is crucial for the development of effective faba bean breeding programs. However, there is currently no available information on the transcriptome of faba bean responding to O. foetida parasitism. In this study, we employed RNA sequencing to explore the global gene expression changes associated with compatible and incompatible V. faba/O. foetida interactions. In this perspective, two faba bean varieties (susceptible and resistant) were examined at the root level across three stages of O. foetida development (Before Germination (BG), After Germination (AG) and Tubercule Stage (TS)). Our analyses presented an exploration of the transcriptomic profile, including comprehensive assessments of differential gene expression and Gene Ontology (GO) enrichment analyses. Specifically, we investigated key pathways revealing the complexity of molecular responses to O. foetida attack. In this study, we detected differential gene expression of pathways associated with secondary metabolites: flavonoids, auxin, thiamine, and jasmonic acid. To enhance our understanding of the global changes in V. faba response to O. foetida, we specifically examined WRKY genes known to play a role in plant host-parasitic plant interactions. Furthermore, considering the pivotal role of parasitic plant seed germination in this interaction, we investigated genes involved in the orobanchol biosynthesis pathway. Interestingly, we detected the gene expression of VuCYP722C homolog, coding for a key enzyme involved in orobanchol biosynthesis, exclusively in the susceptible host. Clearly, this study enriches our understanding of the V. faba/O. foetida interaction, shedding light on the main differences between susceptible and resistant faba bean varieties during O. foetida infestation at the gene expression level.
Collapse
Affiliation(s)
- Amal Boukteb
- Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Kazuki Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mohamed Kharrat
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Hanen Sakouhi
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Mariem Bouhadida
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
19
|
Wang JY, Chen GTE, Balakrishna A, Jamil M, Berqdar L, Al-Babili S. Strigolactone biosynthesis in rice can occur via a 9-cis-3-OH-10'-apo-β-carotenal intermediate. FEBS Lett 2024; 598:571-578. [PMID: 38373744 DOI: 10.1002/1873-3468.14828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
Strigolactones (SLs) play a crucial role in regulating plant architecture and mediating rhizosphere interactions. They are synthesized from all-trans-β-carotene converted into the intermediate carlactone (CL) via the intermediate 9-cis-β-apo-10'-carotenal. Recent studies indicate that plants can also synthesize 3-OH-CL from all-trans-β-zeaxanthin via the intermediate 9-cis-3-OH-β-apo-10'-carotenal. However, the question of whether plants can form bioactive SLs from 9-cis-3-OH-β-apo-10'-carotenal remains elusive. In this study, we supplied the 13 C-labeled 9-cis-3-OH-β-apo-10'-carotenal to rice seedlings and monitored the synthesis of SLs using liquid chromatography-mass spectrometry (LC-MS) and Striga bioassay. We further validated the biological activity of 9-cis-3-OH-β-apo-10'-carotenal-derived SLs using the ccd7/d17 SL-deficient mutant, which demonstrated increased Striga seed-germinating activity and partial rescue of tiller numbers and plant height. Our results establish 9-cis-3-OH-β-apo-10'-carotenal as a significant SL biosynthetic intermediate with implications for understanding plant hormonal functions and potential applications in agriculture.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Nomura T, Seto Y, Kyozuka J. Unveiling the complexity of strigolactones: exploring structural diversity, biosynthesis pathways, and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1134-1147. [PMID: 37877933 DOI: 10.1093/jxb/erad412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Strigolactone is the collective name for compounds containing a butenolide as a part of their structure, first discovered as compounds that induce seed germination of root parasitic plants. They were later found to be rhizosphere signaling molecules that induce hyphal branching of arbuscular mycorrhizal fungi, and, finally, they emerged as a class of plant hormones. Strigolactones are found in root exudates, where they display a great variability in their chemical structure. Their structure varies among plant species, and multiple strigolactones can exist in one species. Over 30 strigolactones have been identified, yet the chemical structure of the strigolactone that functions as an endogenous hormone and is found in the above-ground parts of plants remains unknown. We discuss our current knowledge of the synthetic pathways of diverse strigolactones and their regulation, as well as recent progress in identifying strigolactones as plant hormones. Strigolactone is perceived by the DWARF14 (D14), receptor, an α/β hydrolase which originated by gene duplication of KARRIKIN INSENSITIVE 2 (KAI2). D14 and KAI2 signaling pathways are partially overlapping paralogous pathways. Progress in understanding the signaling mechanisms mediated by two α/β hydrolase receptors as well as remaining challenges in the field of strigolactone research are reviewed.
Collapse
Affiliation(s)
- Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Yoshiya Seto
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Clark J, Bennett T. Cracking the enigma: understanding strigolactone signalling in the rhizosphere. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1159-1173. [PMID: 37623748 PMCID: PMC10860530 DOI: 10.1093/jxb/erad335] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The rhizosphere is a complex physical and chemical interface between plants and their underground environment, both biotic and abiotic. Plants exude a large number of chemicals into the rhizosphere in order to manipulate these biotic and abiotic components. Among such chemicals are strigolactones, ancient signalling molecules that in flowering plants act as both internal hormones and external rhizosphere signals. Plants exude strigolactones to communicate with their preferred symbiotic partners and neighbouring plants, but at least some classes of parasitic organisms are able to 'crack' these private messages and eavesdrop on the signals. In this review, we examine the intentional consequences of strigolactone exudation, and also the unintentional consequences caused by eavesdroppers. We examine the molecular mechanisms by which strigolactones act within the rhizosphere, and attempt to understand the enigma of the strigolactone molecular diversity synthesized and exuded into the rhizosphere by plants. We conclude by looking at the prospects of using improved understanding of strigolactones in agricultural contexts.
Collapse
Affiliation(s)
- Jed Clark
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Yoneyama K, Bennett T. Whispers in the dark: Signals regulating underground plant-plant interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102456. [PMID: 37741801 DOI: 10.1016/j.pbi.2023.102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Plants are able to actively detect and respond to the presence in neighboring plants, in order to optimize their physiology to promote survival and reproduction despite the presence of competing organisms. A key but still poorly understood mechanism for neighbor detection is through the perception of root exudates. In this review, we explore recent findings on the role of root exudates in plant-plant interactions, focusing both on general interactions and also the highly specialized example of root parasite-host plant interactions.
Collapse
Affiliation(s)
- Kaori Yoneyama
- Research and Development Bureau, Saitama University, Japan.
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
23
|
Wang JY, Braguy J, Al-Babili S. Does zaxinone counteract strigolactones in shaping rice architecture? PLANT SIGNALING & BEHAVIOR 2023; 18:2184127. [PMID: 36855265 PMCID: PMC9980470 DOI: 10.1080/15592324.2023.2184127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The cleavage of plant carotenoids leads to apocarotenoids, a group of metabolites including precursors of the hormones strigolactones (SLs) and abscisic acid, regulatory and signaling molecules. Zaxinone is a recently discovered apocarotenoid growth regulator that improves growth and suppress SL biosynthesis in rice (Oryza sativa). To test if zaxinone also counteracts the growth regulatory effects of SLs in rice, we co-supplied zaxinone and the synthetic SL analog rac-GR24 to the rice SL-deficient DWARF17 (d17) mutant. Results showed that co-application of GR24 and zaxinone still rescued d17 phenotype, indicating that zaxinone and GR24 act independently in regulating root and shoot growth and development in rice.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Justine Braguy
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Salim Al-Babili
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| |
Collapse
|
24
|
Seto Y. Latest knowledge on strigolactone biosynthesis and perception. Biosci Biotechnol Biochem 2023; 88:1-7. [PMID: 37881025 DOI: 10.1093/bbb/zbad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Strigolactones (SLs) are a class of terpenoid lactones initially identified as seed germination stimulants for root parasitic plants more than 50 years ago. Long after this initial discovery, SLs were re-characterized as the symbiotic signals for arbuscular mycorrhizal fungi that supply inorganic nutrients, such as phosphate, to their host plants. In 2008, SLs were found to be endogenous plant hormones that regulate shoot branching in plants. The discovery of SLs as a new class of plant hormones has significantly advanced research in this field. Studies over the past 15 years have elucidated almost the entire pathway of SL biosynthesis and the overall mechanism of its signaling. This review summarizes research on the SL biosynthetic pathway, and the current state of knowledge of the SL perception mechanism.
Collapse
Affiliation(s)
- Yoshiya Seto
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
25
|
Li X, Lu J, Zhu X, Dong Y, Liu Y, Chu S, Xiong E, Zheng X, Jiao Y. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100675. [PMID: 37608548 PMCID: PMC10721535 DOI: 10.1016/j.xplc.2023.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Heat stress caused by global warming requires the development of thermotolerant crops to sustain yield. It is necessary to understand the molecular mechanisms that underlie heat tolerance in plants. Strigolactones (SLs) are a class of carotenoid-derived phytohormones that regulate plant development and responses to abiotic or biotic stresses. Although SL biosynthesis and signaling processes are well established, genes that directly regulate SL biosynthesis have rarely been reported. Here, we report that the MYB-like transcription factor AtMYBS1/AtMYBL, whose gene expression is repressed by heat stress, functions as a negative regulator of heat tolerance by directly inhibiting SL biosynthesis in Arabidopsis. Overexpression of AtMYBS1 led to heat hypersensitivity, whereas atmybs1 mutants displayed increased heat tolerance. Expression of MAX1, a critical enzyme in SL biosynthesis, was induced by heat stress and downregulated in AtMYBS1-overexpression (OE) plants but upregulated in atmybs1 mutants. Overexpression of MAX1 in the AtMYBS1-OE background reversed the heat hypersensitivity of AtMYBS1-OE plants. Loss of MAX1 function in the atmyb1 background reversed the heat-tolerant phenotypes of atmyb1 mutants. Yeast one-hybrid assays, chromatin immunoprecipitation‒qPCR, and transgenic analyses demonstrated that AtMYBS1 directly represses MAX1 expression through the MYB binding site in the MAX1 promoter in vivo. The atmybs1d14 double mutant, like d14 mutants, exhibited hypersensitivity to heat stress, indicating the necessary role of SL signaling in AtMYBS1-regulated heat tolerance. Our findings provide new insights into the regulatory network of SL biosynthesis, facilitating the breeding of heat-tolerant crops to improve crop production in a warming world.
Collapse
Affiliation(s)
- Xiang Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Jianhua Lu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanqi Dong
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Yanli Liu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xu Zheng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
26
|
Lailheugue V, Merlin I, Boutet S, Perreau F, Pouvreau JB, Delgrange S, Ducrot PH, Cottyn-Boitte B, Mouille G, Lauvergeat V. Vitislactone, a non-canonical strigolactone exudated by grapevine rootstocks in response to nitrogen starvation. PHYTOCHEMISTRY 2023; 215:113837. [PMID: 37640279 DOI: 10.1016/j.phytochem.2023.113837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Strigolactones are compounds produced by plant roots in response to nutrient deficiency, acting both as local and systemic signals to control development and nutrition. Strigolactones are exuded in the rhizosphere to positively influence interactions with beneficial microbes. LC-MS/MS analysis shows that two genetically distinct grapevine rootstocks exudate one or two non-canonical strigolactones when subjected to low nitrogen conditions. Gene expression profiles and orobanche seed germination assays confirm that the biosynthesis and exudation of non-canonical compounds is the preferred pathway. The first compound, corresponding to heliolactone or 6-epi-heliolactone, is only exuded by the rootstock showing lower shoot branching and a higher level of mycorrhization with arbuscular mycorrhizal fungi. The structure of the second compound exuded by both rootstocks was identified by NMR and LC-MS/MS analysis. It is a non-canonical strigolactone, which has never been identified in another species. This first identification of a natural compound with the potential to stimulate beneficial root-microbe interactions in grapevines opens new perspectives in viticulture.
Collapse
Affiliation(s)
- Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France.
| | - Isabelle Merlin
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France.
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - François Perreau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | | | - Sabine Delgrange
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France.
| | - Paul-Henri Ducrot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Betty Cottyn-Boitte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Gregory Mouille
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France.
| |
Collapse
|
27
|
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E. Genome editing for healthy crops: traits, tools and impacts. FRONTIERS IN PLANT SCIENCE 2023; 14:1231013. [PMID: 37965029 PMCID: PMC10641503 DOI: 10.3389/fpls.2023.1231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Crop cultivars in commercial use have often been selected because they show high levels of resistance to pathogens. However, widespread cultivation of these crops for many years in the environments favorable to a pathogen requires durable forms of resistance to maintain "healthy crops". Breeding of new varieties tolerant/resistant to biotic stresses by incorporating genetic components related to durable resistance, developing new breeding methods and new active molecules, and improving the Integrated Pest Management strategies have been of great value, but their effectiveness is being challenged by the newly emerging diseases and the rapid change of pathogens due to climatic changes. Genome editing has provided new tools and methods to characterize defense-related genes in crops and improve crop resilience to disease pathogens providing improved food security and future sustainable agricultural systems. In this review, we discuss the principal traits, tools and impacts of utilizing genome editing techniques for achieving of durable resilience and a "healthy plants" concept.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jeremy Sweet
- Sweet Environmental Consultants, Cambridge, United Kingdom
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır, Türkiye
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Eugenia de Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
28
|
Chen GTE, Wang JY, Votta C, Braguy J, Jamil M, Kirschner GK, Fiorilli V, Berqdar L, Balakrishna A, Blilou I, Lanfranco L, Al-Babili S. Disruption of the rice 4-DEOXYOROBANCHOL HYDROXYLASE unravels specific functions of canonical strigolactones. Proc Natl Acad Sci U S A 2023; 120:e2306263120. [PMID: 37819983 PMCID: PMC10589652 DOI: 10.1073/pnas.2306263120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.
Collapse
Affiliation(s)
- Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Gwendolyn K. Kirschner
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Yoda A, Xie X, Yoneyama K, Miura K, McErlean CSP, Nomura T. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum. PLANT & CELL PHYSIOLOGY 2023; 64:1034-1045. [PMID: 37307421 PMCID: PMC10504574 DOI: 10.1093/pcp/pcad060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
Seeds of root parasitic plants, Striga, Orobanche and Phelipanche spp., are induced to germinate by strigolactones (SLs) exudated from host roots. In Striga-resistant cultivars of Sorghum bicolor, the loss-of-function of the Low Germination Stimulant 1 (LGS1) gene changes the major SL from 5-deoxystrigol (5DS) to orobanchol, which has an opposite C-ring stereochemistry. The biosynthetic pathway of 5DS catalyzed by LGS1 has not been fully elucidated. Since other unknown regulators, in addition to LGS1 encoding a sulfotransferase, appear to be necessary for the stereoselective biosynthesis of 5DS, we examined Sobic.005G213500 (Sb3500), encoding a 2-oxoglutarate-dependent dioxygenase, as a candidate regulator, which is co-expressed with LGS1 and located 5'-upstream of LGS1 in the sorghum genome. When LGS1 was expressed with known SL biosynthetic enzyme genes including the cytochrome P450 SbMAX1a in Nicotiana benthamiana leaves, 5DS and its diastereomer 4-deoxyorobanchol (4DO) were produced in approximately equal amounts, while the production of 5DS was significantly larger than that of 4DO when Sb3500 was also co-expressed. We also confirmed the stereoselective 5DS production in an in vitro feeding experiment using synthetic chemicals with recombinant proteins expressed in Escherichia coli and yeast. This finding demonstrates that Sb3500 is a stereoselective regulator in the conversion of the SL precursor carlactone to 5DS, catalyzed by LGS1 and SbMAX1a, providing a detailed understanding of how different SLs are produced to combat parasitic weed infestations.
Collapse
Affiliation(s)
- Akiyoshi Yoda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Research and Development Bureau, Saitama University, Saitama-shi, Saitama, 338-8570 Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | | | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| |
Collapse
|
30
|
Mashiguchi K, Morita R, Tanaka K, Kodama K, Kameoka H, Kyozuka J, Seto Y, Yamaguchi S. Activation of Strigolactone Biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 Pathway in Mycorrhizal Angiosperms, but Not in Arabidopsis, a Non-mycorrhizal Plant. PLANT & CELL PHYSIOLOGY 2023; 64:1066-1078. [PMID: 37494415 PMCID: PMC10504576 DOI: 10.1093/pcp/pcad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that regulate many aspects of plant growth and development. SLs also improve symbiosis with arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Recent studies have shown that the DWARF14-LIKE (D14L)/KARRIKIN-INSENSITIVE2 (KAI2) family, paralogs of the SL receptor D14, are required for AMF colonization in several flowering plants, including rice. In this study, we found that (-)-GR5, a 2'S-configured enantiomer of a synthetic SL analog (+)-GR5, significantly activated SL biosynthesis in rice roots via D14L. This result is consistent with a recent report, showing that the D14L pathway positively regulates SL biosynthesis in rice. In fact, the SL levels tended to be lower in the roots of the d14l mutant under both inorganic nutrient-deficient and -sufficient conditions. We also show that the increase in SL levels by (-)-GR5 was observed in other mycorrhizal plant species. In contrast, the KAI2 pathway did not upregulate the SL level and the expression of SL biosynthetic genes in Arabidopsis, a non-mycorrhizal plant. We also examined whether the KAI2 pathway enhances SL biosynthesis in the liverwort Marchantia paleacea, where SL functions as a rhizosphere signaling molecule for AMF. However, the SL level and SL biosynthetic genes were not positively regulated by the KAI2 pathway. These results imply that the activation of SL biosynthesis by the D14L/KAI2 pathway has been evolutionarily acquired after the divergence of bryophytes to efficiently promote symbiosis with AMF, although we cannot exclude the possibility that liverworts have specifically lost this regulatory system.
Collapse
Affiliation(s)
- Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Ryo Morita
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Kai Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Hiromu Kameoka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
- School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
31
|
Kee YJ, Ogawa S, Ichihashi Y, Shirasu K, Yoshida S. Strigolactones in Rhizosphere Communication: Multiple Molecules With Diverse Functions. PLANT & CELL PHYSIOLOGY 2023; 64:955-966. [PMID: 37279572 DOI: 10.1093/pcp/pcad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are root-secreted small molecules that influence organisms living in the rhizosphere. While SLs are known as germination stimulants for root parasitic plants and as hyphal branching factors for arbuscular mycorrhizal fungi, recent studies have also identified them as chemoattractants for parasitic plants, sensors of neighboring plants and key players in shaping the microbiome community. Furthermore, the discovery of structurally diverged SLs, including so-called canonical and non-canonical SLs in various plant species, raises the question of whether the same SLs are responsible for their diverse functions 'in planta' and the rhizosphere or whether different molecules play different roles. Emerging evidence supports the latter, with each SL exhibiting different activities as rhizosphere signals and plant hormones. The evolution of D14/KAI2 receptors has enabled the perception of various SLs or SL-like compounds to control downstream signaling, highlighting the complex interplay between plants and their rhizosphere environment. This review summarizes the recent advances in our understanding of the diverse functions of SLs in the rhizosphere.
Collapse
Affiliation(s)
- Yee Jia Kee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92507, USA
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
32
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
33
|
Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, Wang Y, Dong L, Lisón P, López-Gresa MP, Bouwmeester HJ, Rodríguez-Concepción M. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. THE NEW PHYTOLOGIST 2023; 239:2292-2306. [PMID: 37381102 DOI: 10.1111/nph.19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.
Collapse
Affiliation(s)
- Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Changsheng Li
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Julia Pérez-Pérez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Esteban Burbano-Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Yanting Wang
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Purificación Lisón
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Pilar López-Gresa
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
34
|
Wang JY, Chen GTE, Braguy J, Jamil M, Berqdar L, Al-Babili S. Disruption of the cytochrome CYP711A5 gene reveals MAX1 redundancy in rice strigolactone biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154057. [PMID: 37531662 DOI: 10.1016/j.jplph.2023.154057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Strigolactones (SLs) inhibit shoot branching/tillering and are secreted by plant roots as a signal to attract symbiotic mycorrhizal fungi in the rhizosphere, particularly under phosphate starvation. However, SLs are also hijacked by root parasitic weeds as inducer for the germination of their seeds. There are around 35 natural SLs divided, based on their structures, into canonical and non-canonical SLs. Cytochrome P450 enzymes of the 711 clade, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis, are a major driver of SL structural diversity. Monocots, such as rice, contain several MAX1 homologs that participate in SL biosynthesis. To investigate the function of OsMAX1-1900 in planta, we generated CRISPR/Cas9 mutants disrupted in the corresponding gene. Characterizing of the generated mutants at metabolite and phenotype level suggests that OsMAX1-1900 loss-of-function does neither affect the SL pattern nor rice architecture, indicating functional redundancy among rice MAX1 homologs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
35
|
Delvento C, Arcieri F, Marcotrigiano AR, Guerriero M, Fanelli V, Dellino M, Curci PL, Bouwmeester H, Lotti C, Ricciardi L, Pavan S. High-density linkage mapping and genetic dissection of resistance to broomrape ( Orobanche crenata Forsk.) in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1216297. [PMID: 37492777 PMCID: PMC10364127 DOI: 10.3389/fpls.2023.1216297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Pea (Pisum sativum L.) is a widely cultivated legume of major importance for global food security and agricultural sustainability. Crenate broomrape (Orobanche crenata Forsk.) (Oc) is a parasitic weed severely affecting legumes, including pea, in the Mediterranean Basin and the Middle East. Previously, the identification of the pea line "ROR12", displaying resistance to Oc, was reported. Two-year field trials on a segregant population of 148 F7 recombinant inbred lines (RILs), originating from a cross between "ROR12" and the susceptible cultivar "Sprinter", revealed high heritability (0.84) of the "ROR12" resistance source. Genotyping-by-sequencing (GBS) on the same RIL population allowed the construction of a high-density pea linkage map, which was compared with the pea reference genome and used for quantitative trait locus (QTL) mapping. Three QTLs associated with the response to Oc infection, named PsOcr-1, PsOcr-2, and PsOcr-3, were identified, with PsOcr-1 explaining 69.3% of the genotypic variance. Evaluation of the effects of different genotypic combinations indicated additivity between PsOcr-1 and PsOcr-2, and between PsOcr-1 and PsOcr-3, and epistasis between PsOcr-2 and PsOcr-3. Finally, three Kompetitive Allele Specific PCR (KASP) marker assays were designed on the single-nucleotide polymorphisms (SNPs) associated with the QTL significance peaks. Besides contributing to the development of pea genomic resources, this work lays the foundation for the obtainment of pea cultivars resistant to Oc and the identification of genes involved in resistance to parasitic Orobanchaceae.
Collapse
Affiliation(s)
- Chiara Delvento
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Arcieri
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Raffaele Marcotrigiano
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Marzia Guerriero
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Maria Dellino
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
36
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
37
|
Cui J, Nishide N, Mashiguchi K, Kuroha K, Miya M, Sugimoto K, Itoh JI, Yamaguchi S, Izawa T. Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation. Nat Commun 2023; 14:3191. [PMID: 37291104 PMCID: PMC10250342 DOI: 10.1038/s41467-023-38670-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Fertilization controls various aspects of cereal growth such as tiller number, leaf size, and panicle size. However, despite such benefits, global chemical fertilizer use must be reduced to achieve sustainable agriculture. Here, based on field transcriptome data from leaf samples collected during rice cultivation, we identify fertilizer responsive genes and focus on Os1900, a gene orthologous to Arabidopsis thaliana MAX1, which is involved in strigolactone biosynthesis. Elaborate genetic and biochemical analyses using CRISPR/Cas9 mutants reveal that Os1900 together with another MAX1-like gene, Os5100, play a critical role in controlling the conversion of carlactone into carlactonoic acid during strigolactone biosynthesis and tillering in rice. Detailed analyses of a series of Os1900 promoter deletion mutations suggest that fertilization controls tiller number in rice through transcriptional regulation of Os1900, and that a few promoter mutations alone can increase tiller numbers and grain yields even under minor-fertilizer conditions, whereas a single defective os1900 mutation does not increase tillers under normal fertilizer condition. Such Os1900 promoter mutations have potential uses in breeding programs for sustainable rice production.
Collapse
Affiliation(s)
- Jinying Cui
- Lab. of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Noriko Nishide
- Lab. of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Mashiguchi
- Chemistry of Molecular Biocatalysts Lab, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kana Kuroha
- Breeding Material Development Unit, Basic Research Division, National Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Masayuki Miya
- Lab. of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Sugimoto
- Breeding Material Development Unit, Basic Research Division, National Institute of Crop Science, Tsukuba, Ibaraki, Japan
- Division of Crop Design Research, Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Itoh
- Lab. of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Shinjiro Yamaguchi
- Chemistry of Molecular Biocatalysts Lab, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Takeshi Izawa
- Lab. of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
Kawada K, Saito T, Onoda S, Inayama T, Takahashi I, Seto Y, Nomura T, Sasaki Y, Asami T, Yajima S, Ito S. Synthesis of Carlactone Derivatives to Develop a Novel Inhibitor of Strigolactone Biosynthesis. ACS OMEGA 2023; 8:13855-13862. [PMID: 37091382 PMCID: PMC10116532 DOI: 10.1021/acsomega.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.
Collapse
Affiliation(s)
- Kojiro Kawada
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuo Saito
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoshi Onoda
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Inayama
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ikuo Takahashi
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department
of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1
Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takahito Nomura
- Center
for Bioscience Research and Education, Utsunomiya
University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yasuyuki Sasaki
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tadao Asami
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shunsuke Yajima
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- . Phone: +81-3-5477-2460
| |
Collapse
|
39
|
Guercio AM, Palayam M, Shabek N. Strigolactones: diversity, perception, and hydrolysis. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:339-360. [PMID: 37201177 PMCID: PMC10191409 DOI: 10.1007/s11101-023-09853-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/03/2023] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
40
|
Ito S. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Biosci Biotechnol Biochem 2023; 87:247-255. [PMID: 36610999 DOI: 10.1093/bbb/zbac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Root parasitic weeds such as Striga spp. and Orobanche spp. dramatically reduce the yields of important agricultural crops and cause economic losses of over billions of US dollars worldwide. One reason for the damage by root parasitic weeds is that they germinate after specifically recognizing the host cues, strigolactones (SLs). SLs were identified ˃50 years ago as germination stimulants for root parasitic weeds, and various studies have been conducted to control parasitic weeds using SLs and related chemicals. Recently, biochemical and molecular biological approaches have revealed the SL biosynthesis and SL receptors; using these findings, various SL-related chemicals have been developed. This review summarizes recent research on SLs and their related chemicals for controlling root parasitic weeds.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, Japan
| |
Collapse
|
41
|
Rani V, Sengar RS, Garg SK, Mishra P, Shukla PK. RETRACTED ARTICLE: Physiological and Molecular Role of Strigolactones as Plant Growth Regulators: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00694-2. [PMID: 36802323 DOI: 10.1007/s12033-023-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Varsha Rani
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - R S Sengar
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - Sanjay Kumar Garg
- M. J. P. Rohilkhand University, Bareilly, Uttar Pradesh, 243006, India
| | - Pragati Mishra
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Pradeep Kumar Shukla
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
42
|
Casey A, Dolan L. Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One 2023; 18:e0273594. [PMID: 36800395 PMCID: PMC9937507 DOI: 10.1371/journal.pone.0273594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that catalyse chemical modifications of a range of organic compounds. Herbicide resistance has been associated with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations compared to sensitive populations of the same species. By comparing the protein sequences of 9 representative species of the Archaeplastida-the lineage which includes red algae, glaucophyte algae, chlorophyte algae, and streptophytes-and generating phylogenetic trees, we identified the CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and all but one land plant GST classes present in land plants evolved before the divergence of streptophyte algae and land plants from their last common ancestor. We also demonstrate that there are more genes encoding CYP and GST proteins in land plants than in algae. The larger numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 85 and in the GST phi and tau classes [1,2]. Enzymes that either metabolise herbicides or confer herbicide resistance belong to CYP clans 71 and 72 and the GST phi and tau classes. Most CYP proteins that have been shown to confer herbicide resistance are members of the CYP81 family from clan 71. These results demonstrate that the clan and class diversity in extant plant CYP and GST proteins had evolved before the divergence of land plants and streptophyte algae from a last common ancestor estimated to be between 515 and 474 million years ago. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST classes phi and tau that alleles conferring herbicide resistance evolved in the last fifty years.
Collapse
Affiliation(s)
- Alexandra Casey
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Li C, Dong L, Durairaj J, Guan JC, Yoshimura M, Quinodoz P, Horber R, Gaus K, Li J, Setotaw YB, Qi J, De Groote H, Wang Y, Thiombiano B, Floková K, Walmsley A, Charnikhova TV, Chojnacka A, Correia de Lemos S, Ding Y, Skibbe D, Hermann K, Screpanti C, De Mesmaeker A, Schmelz EA, Menkir A, Medema M, Van Dijk ADJ, Wu J, Koch KE, Bouwmeester HJ. Maize resistance to witchweed through changes in strigolactone biosynthesis. Science 2023; 379:94-99. [PMID: 36603079 DOI: 10.1126/science.abq4775] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone. We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in the pathway, ZmMAX1b and ZmCLAMT1, can change strigolactone composition and reduce Striga germination and infection. These results offer prospects for breeding Striga-resistant maize.
Collapse
Affiliation(s)
- C Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - L Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - J Durairaj
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - J-C Guan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - M Yoshimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.,Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland.,Kyoto University, iCeMS, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - P Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - R Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - K Gaus
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - J Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Y B Setotaw
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - J Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - H De Groote
- International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041-00621, Nairobi, Kenya
| | - Y Wang
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - B Thiombiano
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - K Floková
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.,Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - A Walmsley
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - T V Charnikhova
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - A Chojnacka
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - S Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands.,Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Y Ding
- Section of Cell and Developmental Biology, University of California at San Diego; La Jolla, CA 92093, USA
| | - D Skibbe
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC 27709, USA
| | - K Hermann
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - C Screpanti
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - A De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - E A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego; La Jolla, CA 92093, USA
| | - A Menkir
- International Institute of Tropical Agriculture, PMB 5320 Oyo Road, Ibadan, Nigeria
| | - M Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - A D J Van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - J Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - K E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - H J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
44
|
Wakabayashi T, Moriyama D, Miyamoto A, Okamura H, Shiotani N, Shimizu N, Mizutani M, Takikawa H, Sugimoto Y. Identification of novel canonical strigolactones produced by tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1064378. [PMID: 36589093 PMCID: PMC9794758 DOI: 10.3389/fpls.2022.1064378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Canonical strigolactones (SLs), such as orobanchol, consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Tomato plants have been reported to produce not only orobanchol but also various canonical SLs related to the orobanchol structure, including orobanchyl acetate, 7-hydroxyorobanchol isomers, 7-oxoorobanchol, and solanacol. In addition to these, structurally unidentified SL-like compounds known as didehydroorobanchol isomers (DDHs), whose molecular mass is 2 Da smaller than that of orobanchol, have been found. Although the SL biosynthetic pathway in tomato is partially characterized, structural elucidation of DDHs is required for a better understanding of the entire biosynthetic pathway. In this study, three novel canonical SLs with the same molecular mass as DDHs were identified in tomato root exudates. The first was 6,7-didehydroorobanchol, while the other two were not in the DDH category. These two SLs were designated phelipanchol and epiphelipanchol because they induced the germination of Phelipanche ramosa, a noxious root parasitic weed of tomato. We also proposed a putative biosynthetic pathway incorporating these novel SLs from orobanchol to solanacol.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daisuke Moriyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
| | - Ayumi Miyamoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hironori Okamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Shimizu
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
45
|
Faizan M, Cheng SH, Tonny SH, Robab MI. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:186-195. [PMID: 36244191 DOI: 10.1016/j.plaphy.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Shi Hui Cheng
- School of Biosciences, University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agriculture University, Mymensingh, 2202, Bangladesh
| | - Merajul Islam Robab
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| |
Collapse
|
46
|
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. PLANT, CELL & ENVIRONMENT 2022; 45:3611-3630. [PMID: 36207810 PMCID: PMC9828678 DOI: 10.1111/pce.14461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.
Collapse
Affiliation(s)
| | | | - Eva Campo
- DISAFA, PlantStressLabTurin UniversityTurinItaly
| | | | | |
Collapse
|
47
|
Wang JY, Braguy J, Chen GTE, Jamil M, Balakrishna A, Berqdar L, Al-Babili S. Perspectives on the metabolism of strigolactone rhizospheric signals. FRONTIERS IN PLANT SCIENCE 2022; 13:1062107. [PMID: 36507392 PMCID: PMC9729874 DOI: 10.3389/fpls.2022.1062107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Strigolactones (SLs) are a plant hormone regulating different processes in plant development and adjusting plant's architecture to nutrition availability. Moreover, SLs are released by plants to communicate with beneficial fungi in the rhizosphere where they are, however, abused as chemical cues inducing seed germination of root parasitic weeds, e.g. Striga spp., and guiding them towards host plants in their vicinity. Based on their structure, SLs are divided into canonical and non-canonical SLs. In this perspective, we describe the metabolism of root-released SLs and SL pattern in rice max1-900 mutants, which are affected in the biosynthesis of canonical SLs, and show the accumulation of two putative non-canonical SLs, CL+30 and CL+14. Using max1-900 and SL-deficient d17 rice mutants, we further investigated the metabolism of non-canonical SLs and their possible biological roles. Our results show that the presence and further metabolism of canonical and non-canonical SLs are particularly important for their role in rhizospheric interactions, such as that with root parasitic plants. Hence, we proposed that the root-released SLs are mainly responsible for rhizospheric communications and have low impact on plant architecture, which makes targeted manipulation of root-released SLs an option for rhizospheric engineering.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
48
|
Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, Chen GTE, Shinozawa A, Balakrishna A, Berqdar L, Rajan C, Ali S, Haider I, Sasaki Y, Yajima S, Akiyama K, Lanfranco L, Zurbriggen MD, Nomura T, Asami T, Al-Babili S. Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. SCIENCE ADVANCES 2022; 8:eadd1278. [PMID: 36322663 PMCID: PMC9629705 DOI: 10.1126/sciadv.add1278] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 05/09/2023]
Abstract
Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Justine Braguy
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akiyoshi Yoda
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad Jamil
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abrar Felemban
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sho Miyazaki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Guan-Ting Erica Chen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
- Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamis Berqdar
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chakravarty Rajan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| | - Imran Haider
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kohki Akiyama
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Takahito Nomura
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
49
|
Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA. Arbuscular Mycorrhizal Symbiosis: A Strategy for Mitigating the Impacts of Climate Change on Tropical Legume Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:2875. [PMID: 36365329 PMCID: PMC9657156 DOI: 10.3390/plants11212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
Collapse
Affiliation(s)
- Wan Teng Loo
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Acga Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
50
|
Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192604. [PMID: 36235470 PMCID: PMC9571818 DOI: 10.3390/plants11192604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
Improving plant resilience to changing environmental conditions is the primary focus of today's scientific research globally. It is essential to find various strategies for the better survival of plants with higher resistance potential to climate change. Strigolactones (SLs) are multifunctional β-carotene derivative molecules that determine a range of plant growth and development aspects, such as root architecture, shoot branching, chlorophyll synthesis, and senescence. SLs facilitate strong defense responses against drought, salinity, heavy metal, nutrient starvation, and heat stress. The SLs trigger other hormonal-responsive pathways and determine plant resilience against stressful environments. This review focuses on the mechanisms regulated by SLs and interaction with other plant hormones to regulate plant developmental processes and SLs' influence on the mitigation of plant damage under abiotic stresses. A better understanding of the signaling and perception of SLs may lead to the path for the sustainability of plants in the changing environmental scenario. The SLs may be considered as an opening door toward sustainable agriculture.
Collapse
|