1
|
White MJV, Ozkan M, Medellin JEG, Solanki A, Hubbell JA. Inhibition of Talin2 dedifferentiates myofibroblasts and reverses lung and kidney fibrosis. Sci Rep 2025; 15:18010. [PMID: 40410300 PMCID: PMC12102334 DOI: 10.1038/s41598-025-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
Fibrosis is involved in 45% of deaths in the United States, and no treatment exists to reverse progression of the disease. To find novel targets for fibrosis therapeutics, we developed a model for the differentiation of monocytes to myofibroblasts that allowed us to screen for proteins involved in myofibroblast differentiation. Inhibition of a novel protein target generated by our model, talin2, reduces myofibroblast-specific morphology, α-smooth muscle actin content, and collagen I content and lowers the pro-fibrotic secretome of myofibroblasts. We find that knockdown of talin2 de-differentiates myofibroblasts and reverses bleomycin-induced lung fibrosis in mice, and further that Tln2-/- mice are resistant to bleomycin-induced lung fibrosis and resistant to unilateral ureteral obstruction-induced kidney fibrosis. Talin2 inhibition is thus a potential treatment for reversing lung and kidney fibroses.
Collapse
Affiliation(s)
- Michael J V White
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Melis Ozkan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | | | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, 11201, New York, United States.
- Departments of Biology and Chemistry, Faculty of Arts and Sciences, New York University, New York, 10012, New York, United States.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, 10016, New York, United States.
| |
Collapse
|
2
|
White MJV, Raczy MM, Budina E, Yuba E, Solanki A, Shim HN, Zhang ZJ, Gray LT, Cao S, Alpar AT, Hubbell JA. Engineering IL-10 and rapamycin to bind collagen leads to improved anti fibrotic efficacy in lung and kidney fibrosis. Sci Rep 2025; 15:13279. [PMID: 40246931 PMCID: PMC12006466 DOI: 10.1038/s41598-025-94073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Fibrotic diseases are involved in 45% of deaths in the United States. In particular, fibrosis of the kidney and lung are major public health concerns due to their high prevalence and lack of existing treatment options. Here, we harness the pathophysiological features of fibrotic diseases, namely leaky vasculature and aberrant extracellular matrix (ECM) protein deposition (i.e. collagen), to target an anti-fibrotic biologic and a small molecule drug to disease sites of fibrosis, thus improving the therapeutic potential of both the biologic and small molecule in mouse models of both lung and kidney fibrosis. First, we identify and validate two collagen-targeting drug delivery systems that preferentially accumulate in fibrotic organs: von Willebrand Factor's A3 domain (VWF-A3) and decorin-derived collagen-binding peptide-conjugated micelles (CBP-micelles). We then engineer and recombinantly express novel candidate biologic therapies based on the anti-inflammatory cytokine IL-10: A3-IL-10 and A3-Serum Albumin-IL-10 (A3-SA-IL-10). Simultaneously, we stably encapsulate the potential anti-fibrotic water-insoluble drug, rapamycin, in CBP-micelles. We show that these novel formulations of therapeutics bind to collagen in vitro and that their efficacy in mouse models of lung and kidney fibrosis is improved, compared to free, untargeted drugs. Our results demonstrate that collagen-targeted anti-fibrotic drugs may be next generation therapies of high clinical potential.
Collapse
Affiliation(s)
- Michael J V White
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Eiji Yuba
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center & Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Laura T Gray
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
4
|
Wang Z, Wei J, Sun J, Li N, Liu J, Huang Y, Nie G, Li Y. Halting Pancreatic Ductal Adenocarcinoma Progression and Metastasis by Neuron-Inhibitory Liposomes. NANO LETTERS 2025; 25:1964-1973. [PMID: 39873284 DOI: 10.1021/acs.nanolett.4c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive malignancy. The occurrence of perineural invasion is associated with neuropathic pain and poor prognosis of PDAC, underscoring the active participation of nerves and their potential as therapeutic targets. Lidocaine is a local anesthetic with antitumor properties in some tumors in the clinic. Nevertheless, its clinical application in PDAC is constrained by the insufficient tumor accumulation and potential neurovirulence associated with a high-dose regimen. Here, a tumor microenvironment-targeted and -responsive liposome was constructed to deliver lidocaine for restraining PDAC growth through single nerve regulation. By conjugation of a collagen binding peptide, the pH-responsive liposomes accumulate in the extracellular matrix. The released lidocaine selectively reduces neurite length and density, thereby indirectly halting the progression and metastasis of PDAC in an orthotopic mouse model without noticeable adverse effects. This study highlights the potential of anesthetic-based nanomodulation of crosstalk between nerve and tumor cells for PDAC treatment.
Collapse
Affiliation(s)
- Zhiqin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jingyan Wei
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Jingyi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Naishi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jingyuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yang Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
White MJV, Ozkan M, Gomez-Medellin JE, Rączy MM, Koss KM, Solanki A, Zhang ZJ, Alpar AT, Naved BA, Wertheim J, Hubbell JA. Blocking antibodies against integrin-α3, -αM, and -αMβ2 de-differentiate myofibroblasts, and improve lung fibrosis and kidney fibrosis. Sci Rep 2024; 14:21623. [PMID: 39284829 PMCID: PMC11405753 DOI: 10.1038/s41598-024-70737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Fibrosis is involved in 45% of deaths in the United States, and no treatment exists to reverse the progression of lung or kidney fibrosis. Myofibroblasts are key to the progression and maintenance of fibrosis. We investigated features of cell adhesion necessary for monocytes to differentiate into myofibroblasts, seeking to identify pathways key to myofibroblast differentiation. Blocking antibodies against integrins α3, αM, and αMβ2 de-differentiate myofibroblasts in vitro, lower the pro-fibrotic secretome of myofibroblasts, and treat lung fibrosis and inhibit kidney fibrosis in vivo. Decorin's collagen-binding peptide can be used to direct functionalized blocking antibodies (against integrins-α3, -αM, -αMβ2) to both fibrotic lungs and fibrotic kidneys, reducing the dose of antibody necessary to treat fibrosis. This targeted immunotherapy blocking key integrins may be an effective therapeutic for the treatment of fibrosis.
Collapse
Affiliation(s)
- Michael J V White
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Melis Ozkan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | | | - Michal M Rączy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Koss
- College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, 60637, USA
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center & Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Bilal A Naved
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason Wertheim
- College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
7
|
Ding DY, Jiang SY, Zu YX, Yang Y, Gan XJ, Yuan SX, Zhou WP. Collagen in hepatocellular carcinoma: A novel biomarker and therapeutic target. Hepatol Commun 2024; 8:e0489. [PMID: 38967581 PMCID: PMC11227359 DOI: 10.1097/hc9.0000000000000489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
HCC is globally recognized as a major health threat. Despite significant progress in the development of treatment strategies for liver cancer, recurrence, metastasis, and drug resistance remain key factors leading to a poor prognosis for the majority of liver cancer patients. Thus, there is an urgent need to develop effective biomarkers and therapeutic targets for HCC. Collagen, the most abundant and diverse protein in the tumor microenvironment, is highly expressed in various solid tumors and plays a crucial role in the initiation and progression of tumors. Recent studies have shown that abnormal expression of collagen in the tumor microenvironment is closely related to the occurrence, development, invasion, metastasis, drug resistance, and treatment of liver cancer, making it a potential therapeutic target and a possible diagnostic and prognostic biomarker for HCC. This article provides a comprehensive review of the structure, classification, and origin of collagen, as well as its role in the progression and treatment of HCC and its potential clinical value, offering new insights into the diagnosis, treatment, and prognosis assessment of liver cancer.
Collapse
Affiliation(s)
- Dong-yang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Shu-ya Jiang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yun-xi Zu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Xiao-jie Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Sheng-xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| | - Wei-ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
8
|
Ma J, Ding L, Peng X, Jiang L, Liu G. Recent Advances of Engineered Cell Membrane-Based Nanotherapeutics to Combat Inflammatory Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308646. [PMID: 38334202 DOI: 10.1002/smll.202308646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
An immune reaction known as inflammation serves as a shield from external danger signals, but an overactive immune system may additionally lead to tissue damage and even a variety of inflammatory disorders. By inheriting biological functionalities and serving as both a therapeutic medication and a drug carrier, cell membrane-based nanotherapeutics offer the potential to treat inflammatory disorders. To further strengthen the anti-inflammatory benefits of natural cell membranes, researchers alter and optimize the membranes using engineering methods. This review focuses on engineered cell membrane-based nanotherapeutics (ECMNs) and their application in treating inflammation-related diseases. Specifically, this article discusses the methods of engineering cell membranes for inflammatory diseases and examines the progress of ECMNs in inflammation-targeted therapy, inflammation-neutralizing therapy, and inflammation-immunomodulatory therapy. Additionally, the article looks into the perspectives and challenges of ECMNs in inflammatory treatment and offers suggestions as well as guidance to encourage further investigations and implementations in this area.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Zhuo X, Wu Y, Fu X, Li J, Xiang Y, Liang X, Mao C, Jiang Y. Genome editing of PAR2 through targeted delivery of CRISPR-Cas9 system for alleviating acute lung inflammation via ERK/NLRP3/IL-1 β and NO/iNOS signalling. Acta Pharm Sin B 2024; 14:1441-1456. [PMID: 38487002 PMCID: PMC10935474 DOI: 10.1016/j.apsb.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 03/17/2024] Open
Abstract
Excessive and uncontrollable inflammatory responses in alveoli can dramatically exacerbate pulmonary disease progressions through vigorous cytokine releases, immune cell infiltration and protease-driven tissue damages. It is an urgent need to explore potential drug strategies for mitigating lung inflammation. Protease-activated receptor 2 (PAR2) as a vital molecular target principally participates in various inflammatory diseases via intracellular signal transduction. However, it has been rarely reported about the role of PAR2 in lung inflammation. This study applied CRISPR-Cas9 system encoding Cas9 and sgRNA (pCas9-PAR2) for PAR2 knockout and fabricated an anionic human serum albumin-based nanoparticles to deliver pCas9-PAR2 with superior inflammation-targeting efficiency and stability (TAP/pCas9-PAR2). TAP/pCas9-PAR2 robustly facilitated pCas9-PAR2 to enter and transfect inflammatory cells, eliciting precise gene editing of PAR2 in vitro and in vivo. Importantly, PAR2 deficiency by TAP/pCas9-PAR2 effectively and safely promoted macrophage polarization, suppressed pro-inflammatory cytokine releases and alleviated acute lung inflammation, uncovering a novel value of PAR2. It also revealed that PAR2-mediated pulmonary inflammation prevented by TAP/pCas9-PAR2 was mainly dependent on ERK-mediated NLRP3/IL-1β and NO/iNOS signalling. Therefore, this work indicated PAR2 as a novel target for lung inflammation and provided a potential nanodrug strategy for PAR2 deficiency in treating inflammatory diseases.
Collapse
Affiliation(s)
- Xin Zhuo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianbin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuxin Xiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoyu Liang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Yang MY, Lin YJ, Han MM, Bi YY, He XY, Xing L, Jeong JH, Zhou TJ, Jiang HL. Response letter to Sun et al, re: Pathological collagen targeting and penetrating liposomes for idiopathic pulmonary fibrosis therapy. J Control Release 2024; 366:880-881. [PMID: 36642251 DOI: 10.1016/j.jconrel.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Affiliation(s)
- Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Jun Lin
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Garhwal A, Kendya P, Soni S, Kori S, Soni V, Kashaw SK. Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. Mini Rev Med Chem 2024; 24:704-720. [PMID: 37711105 DOI: 10.2174/1389557523666230913105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Anushka Garhwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyadarshi Kendya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
13
|
Luo S, Luo R, Lu H, Zhang R, Deng G, Luo H, Yu X, Wang C, Zhang H, Zhang Y, Huang W, Sun J, Liu Y, Huang F, Lei Z. Activation of cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis. Int Immunopharmacol 2023; 125:111132. [PMID: 37951190 DOI: 10.1016/j.intimp.2023.111132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Inflammation plays an essential role in the development liver fibrosis.The Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is a central cytoplasmic DNA sensor which can recognize cytoplasmic DNA, known to trigger stimulator of interferon genes (STING) and downstream proinflammatory factors. Here, we investigated the role of cGAS-STING signaling pathway in the pathogenesis of liver fibrosis.Differentially expressed genes (DEGs) in human liver tissue were identified using RNA-Seq analysis. As models of liver fibrosis, chronic Carbon tetrachloride (CCl4) exposure were applied in cGAS-knockout mice. LX-2 cells were co-cultured with human liver sinusoidal endothelial cells (LSECs) to explore the underlying mechanisms of hepatic sinusoidal microthrombosis in an inflammatory microenvironment. The endoscopic ultrasound-guided portal vein pressure gradient (EUS-PPG) method was used to analyze the associations between hepatic sinusoidal microthrombosis and PPG in patients with liver fibrosis and portal hypertension (PTH). The RNA-seq analysis results showed that DEGs were enriched in inflammation and endothelial cell activation. The upregulation of the cGAS-STING signaling exacerbated liver fibrosis and intrahepatic inflammation. It also exacerbated LSECs impairment and increased the contribution of hepatic sinusoidal microthrombosis to liver fibrosis in vivo and in vitro. Prothrombotic mediators and proinflammatory factors were associated with PPG in patients with liver fibrosis and portal hypertension. Therefore, activating cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis, which may lead to increased portal vein pressure.
Collapse
Affiliation(s)
- Shaobin Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Rongkun Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Huanyuan Lu
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Rui Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Gang Deng
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Hongwu Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Xiao Yu
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Changfa Wang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Hui Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Yuping Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Wei Huang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Jichun Sun
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Yinghong Liu
- The Third Xiangya Hospital of Central South University, Surgery Center, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Feizhou Huang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Zhao Lei
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China.
| |
Collapse
|
14
|
Togami K, Kanehira Y, Yumita Y, Ozaki H, Wang R, Tada H, Chono S. Heterogenous Intrapulmonary Distribution of Aerosolized Model Compounds in Mice with Bleomycin-Induced Pulmonary Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:289-299. [PMID: 37843890 DOI: 10.1089/jamp.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background: A distinctive pathological feature of idiopathic pulmonary fibrosis (IPF) is the aberrant accumulation of extracellular matrix components in the alveoli in abnormal remodeling and reconstruction following scarring of the alveolar structure. The current antifibrotic agents used for IPF therapy frequently result in systemic side effects because these agents are distributed, through the blood, to many different tissues after oral administration. In contrast to oral administration, the intrapulmonary administration of aerosolized drugs is believed to be an efficient method for their direct delivery to the focus sites in the lungs. However, how fibrotic lesions alter the distribution of aerosolized drugs following intrapulmonary administration remains largely unknown. In this study, we evaluate the intrapulmonary distribution characteristics of aerosolized model compounds in mice with bleomycin-induced pulmonary fibrosis through imaging the organs and alveoli. Methods: Aerosolized model compounds were administered to mice with bleomycin-induced pulmonary fibrosis using a Liquid MicroSprayer®. The intrapulmonary distribution characteristics of aerosolized model compounds were evaluated through several imaging techniques, including noninvasive lung imaging using X-ray computed tomography, ex vivo imaging using zoom fluorescence microscopy, frozen tissue section observation, and three-dimensional imaging with tissue-clearing treatment using confocal laser microscopy. Results: In fibrotic lungs, the aerosolized model compounds were heterogeneously distributed. In observations of frozen tissue sections, model compounds were observed only in the fibrotic foci near airless spaces called honeycombs. In three-dimensional imaging of cleared tissue from fibrotic lungs, the area of the model compound in the alveolar space was smaller than in healthy lungs. Conclusion: The intrapulmonary deposition of extracellular matrix associated with pulmonary fibrosis limits the intrapulmonary distribution of aerosolized drugs. The development of delivery systems for antifibrotic agents to improve the distribution characteristics in fibrotic foci is necessary for effective IPF therapy.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yukimune Kanehira
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yuki Yumita
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hiroaki Ozaki
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Rui Wang
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| |
Collapse
|
15
|
Zhang Y, Liu L, Wang T, Mao C, Shan P, Lau CS, Li Z, Guo W, Wang W. Reactive Oxygen Species-Responsive Polymeric Prodrug Nanoparticles for Selective and Effective Treatment of Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2301394. [PMID: 37540810 PMCID: PMC11468797 DOI: 10.1002/adhm.202301394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Indexed: 08/06/2023]
Abstract
It is challenging to manage inflammatory diseases using traditional anti-inflammatory drugs due to their limited efficacy and systemic side effects, which are a result of their lack of selectivity, poor stability, and low solubility. Herein, it reports the development of a novel nanoparticle system, called ROS-CA-NPs, which is formed using polymer-cinnamaldehyde (CA) conjugates and is responsive to reactive oxygen species (ROS). ROS-CA-NPs exhibit excellent drug stability, tissue selectivity, and controlled drug release upon oxidative stress activation. Using mouse models of chronic rheumatoid arthritis and acute ulcerative colitis, this study demonstrates that the systemic administration of ROS-CA-NPs results in their accumulation at inflamed lesions and leads to greater therapeutic efficacy compared to traditional drugs. Furthermore, ROS-CA-NPs present excellent biocompatibility. The findings suggest that ROS-CA-NPs have the potential to be developed as safe and effective nanotherapeutic agents for a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology & Dr. Li Dak-Sum Research Centre & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lu Liu
- State Key Laboratory of Pharmaceutical Biotechnology & Dr. Li Dak-Sum Research Centre & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology & Dr. Li Dak-Sum Research Centre & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cong Mao
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Pengfei Shan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology & Dr. Li Dak-Sum Research Centre & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
17
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
18
|
Li X, Huang X, Feng Y, Wang Y, Guan J, Deng B, Chen Q, Wang Y, Chen Y, Wang J, Yeong J, Hao J. Cylindrin from Imperata cylindrica inhibits M2 macrophage formation and attenuates renal fibrosis by downregulating the LXR-α/PI3K/AKT pathway. Eur J Pharmacol 2023; 950:175771. [PMID: 37146709 DOI: 10.1016/j.ejphar.2023.175771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Imperata cylindrica, a medicinal plant used in Traditional Chinese Medicine, has been used to treat chronic kidney disease. Extracts of I. cylindrica display anti-inflammatory, immunomodulatory, and anti-fibrotic properties. However, the active components of the extracts and their protective mechanisms have not been fully elucidated. In this study, we explored the ability of cylindrin, the main active compound extracted from I. cylindrica, to protect against renal fibrosis and to investigate the potential mechanisms involved. At high doses, cylindrin exerted protective effects against folic acid-induced kidney fibrosis in mice. Bioinformatic analysis predicted the LXR-α/PI3K/AKT pathway as a target of regulation by cylindrin. This was supported by our in vitro and in vivo results showing that cylindrin significantly downregulated the expression of LXR-α and phosphorylated PI3K/AKT in M2 macrophages and mouse renal tissues. Furthermore, high-dose cylindrin inhibited M2 polarization of IL-4-stimulated macrophages in vitro. Our results suggest that cylindrin alleviates renal fibrosis by attenuating M2 macrophage polarization through inhibition of the PI3K/AKT pathway via downregulation of LXR-α.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xin Huang
- Department of General Practice Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yongmin Feng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yaqing Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Jibin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, 55455, USA
| | - Botian Deng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiuping Chen
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanjing Wang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiahe Wang
- Department of General Practice Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| | - Joe Yeong
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, 169856, Singapore.
| | - Junfeng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
19
|
Bohmer M, Xue Y, Jankovic K, Dong Y. Advances in engineering and delivery strategies for cytokine immunotherapy. Expert Opin Drug Deliv 2023; 20:579-595. [PMID: 37104673 PMCID: PMC10330431 DOI: 10.1080/17425247.2023.2208344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Cytokine immunotherapy is a growing field for the treatment of cancer, infectious disease, autoimmunity, and other ailments. Therapeutic cytokines are a class of secreted, small proteins that play a pivotal role in regulating the innate and adaptive immune system by provoking or mitigating immune responses. In the clinic, cytokines are frequently combined with other treatments, such as small molecules and monoclonal antibodies. However, the clinical translation of cytokine therapies is hindered by their short half-life, pleiotropic nature, and off-target effects, which cause diminished efficacy and severe systemic toxicity. Such toxicity limits dosage, thus resulting in suboptimal doses. Accordingly, numerous efforts have been devoted to exploring strategies to promote cytokine therapies by improving their tissue specificity and pharmacokinetics. AREAS COVERED Preclinical and clinical research into bioengineering and delivery strategies for cytokines, consisting of bioconjugation, fusion proteins, nanoparticles, and scaffold-based systems. EXPERT OPINION These approaches pave the way for the development of next-generation cytokine treatments with greater clinical benefit and reduced toxicity, circumventing such issues currently associated with cytokine therapy.
Collapse
Affiliation(s)
- Margaret Bohmer
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Katarina Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
20
|
Huang Z, Hu B, Xiang B, Fang H, Zhang B, Wang Y, Zhuo Y, Deng D, Wang X. Biomimetic Biomembrane Encapsulation and Targeted Delivery of a Nitric Oxide Release Platform for Therapy of Parkinson's Disease. ACS Biomater Sci Eng 2023; 9:2545-2557. [PMID: 37040524 DOI: 10.1021/acsbiomaterials.3c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The existence of the blood-brain barrier (BBB) and the complex inflammatory environment in the brain are two major obstacles in the treatment of Parkinson's disease (PD). As a target group, we modified the red blood cell membrane (RBCM) on the surface of upconversion nanoparticles (UCNPs) in this study to effectively target the brain. Mesoporous silicon, coated with UCNPs (UCM), was loaded with S-nitrosoglutathione (GSNO) as the nitric oxide (NO) donor. Then, UCNPs were excited to emit green light (540 nm) by 980 nm near-infrared (NIR). In addition, it produced a light-responsive anti-inflammatory effect by promoting the release of NO from GSNO and lowering the brain's level of proinflammatory factors. A series of experiments demonstrated that this strategy could effectively mitigate the inflammatory response damage of neurons in the brain.
Collapse
Affiliation(s)
- Zhixin Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The Department of Internal Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Bohan Xiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Huaqiang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Bingzhen Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Ying Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Yi Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Dan Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| |
Collapse
|
21
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
22
|
Qi L, Han H, Han MM, Sun Y, Xing L, Jiang HL, Pandol SJ, Li L. Remodeling of imbalanced extracellular matrix homeostasis for reversal of pancreatic fibrosis. Biomaterials 2023; 292:121945. [PMID: 36508773 DOI: 10.1016/j.biomaterials.2022.121945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic fibrosis is mainly manifested by imbalance in extracellular matrix (ECM) homeostasis due to excessive deposition of collagen in pancreas by activated pancreatic stellate cells (PSCs). Recently, some drugs have exhibited therapeutic potentials for the treatment of pancreatic fibrosis; however, currently, no effective clinical strategy is available to remodel imbalanced ECM homeostasis because of inferior targeting abilities of drugs and collagen barriers that hinder the efficient delivery of drugs. Herein, we design and prepare collagen-binding peptide (CBP) and collagenase I co-decorated dual drug-loaded lipid nanoparticles (named AT-CC) for pancreatic fibrosis therapy. Specifically, AT-CC can target fibrotic pancreas via the CBP and degrade excess collagen by the grafted collagenase I, thereby effectively delivering all-trans-retinoic acid (ATRA) and ammonium tetrathiomolybdate (TM) into pancreas. The released ATRA can reduce collagen overproduction by inhibiting the activation of PSCs. Moreover, the released TM can restrain lysyloxidase activation, consequently reducing collagen cross-linking. The combination of ATRA and TM represses collagen synthesis and reduces collagen cross linkages to restore ECM homeostasis. The results of this research suggest that AT-CC is a safe and efficient collagen-targeted degradation drug-delivery system for reversing pancreatic fibrosis. Furthermore, the strategy proposed herein will offer an innovative platform for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Basic and Translational Pancreatic Research, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, 210009, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
24
|
Yang MY, Lin YJ, Han MM, Bi YY, He XY, Xing L, Jeong JH, Zhou TJ, Jiang HL. Pathological collagen targeting and penetrating liposomes for idiopathic pulmonary fibrosis therapy. J Control Release 2022; 351:623-637. [PMID: 36191673 DOI: 10.1016/j.jconrel.2022.09.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease in which collagen progressively deposits in the supporting framework of the lungs. The pathological collagen creates a recalcitrant barrier in mesenchyme for drug penetration, thus greatly restricting the therapeutical efficacy. On the other hand, this overloaded collagen is gradually exposed to the bloodstream at fibrotic sites because of the vascular hyperpermeability, thus serving as a potential target. Herein, pathological collagen targeting and penetrating liposomes (DP-CC) were constructed to deliver anti-fibrotic dual drugs including pirfenidone (PFD) and dexamethasone (DEX) deep into injured alveoli. The liposomes were co-decorated with collagen binding peptide (CBP) and collagenase (COL). CBP could help vehicle recognize the pathological collagen and target the fibrotic lungs efficiently because of its high affinity to collagen, and COL assisted in breaking through the collagen barrier and delivering vehicle to the center of injured sites. Then, the released dual drugs developed a synergistic anti-fibrotic effect to repair the damaged epithelium and remodel the extracellular matrix (ECM), thus rebuilding the lung architecture. This study provides a promising strategy to deliver drugs deep into pathological collagen accumulated sites for the enhanced treatment of IPF.
Collapse
Affiliation(s)
- Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Jun Lin
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
27
|
Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G. A Review: Current Status and Emerging Developments on Natural Polymer‐Based Electrospun Fibers. Macromol Rapid Commun 2022; 43:e2200456. [DOI: 10.1002/marc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Weisen Han
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Xuefeng Guo
- Changzhou Vocational Institute of Textile and Garment School of Textile 53 Gehu Middle Road Changzhou Jiangsu 213164 P.R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
28
|
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis: Cause of Inflammation and Treatment. Bioengineering (Basel) 2022; 9:bioengineering9070321. [PMID: 35877372 PMCID: PMC9311863 DOI: 10.3390/bioengineering9070321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.
Collapse
|
29
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Bin Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| |
Collapse
|
30
|
Hou M, Wei Y, Zhao Z, Han W, Zhou R, Zhou Y, Zheng Y, Yin L. Immuno-Engineered Nanodecoys for the Multi-Target Anti-Inflammatory Treatment of Autoimmune Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108817. [PMID: 35044010 DOI: 10.1002/adma.202108817] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Indexed: 05/24/2023]
Abstract
Overactivated T cells and overproduced pro-inflammatory cytokines form a self-amplified signaling loop to continuously exacerbate the dysregulated inflammatory response and propel the progression of autoimmune diseases (AIDs). Herein, immuno-engineered nanodecoys (NDs) based on poly(lactic-co-glycolic acid) nanoparticles coated with programmed death-ligand 1 (PD-L1)-expressing macrophage membrane (PRM) are developed to mediate multi-target interruption of the self-promoted inflammatory cascade in AIDs. The PRM collected from IFN-γ-treated RAW 264.7 cells possesses elevated surface levels of adhesion molecule receptors and pro-inflammatory cytokine receptors, and, thus, systemically administered PRM NDs afford higher accumulation level in inflamed tissues and stronger scavenging efficiency toward multiple pro-inflammatory cytokines. More importantly, IFN-γ treatment induces remarkable PD-L1 expression on PRM, thereby allowing PRM NDs to bind membrane-bound programmed death-1 (PD-1) on CD4+ T cell surfaces or neutralize free soluble PD-1, which reconstructs the PD-1/PD-L1 inhibitory axis to suppress CD4+ T cell activation and restore immune tolerance. As such, PRM NDs provoke potent and cooperative anti-inflammatory and immune-suppressive efficacies to alleviate autoimmune damages in Zymosan A-induced arthritis mice and dextran sulfate sodium-induced ulcerative colitis mice. This study provides an enlightened example for the immuno-engineering of cell-membrane-based NDs, rendering promising implications into the treatment of AIDs via multi-target immune-modulation.
Collapse
Affiliation(s)
- Mengying Hou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Wenqing Han
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
31
|
Fang H, Sha Y, Yang L, Jiang J, Yin L, Li J, Li B, Klumperman B, Zhong Z, Meng F. Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8824-8837. [PMID: 35156814 DOI: 10.1021/acsami.1c23429] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with unclear pathogenesis. Hydroxychloroquine (HCQ), despite its moderate anti-RA efficacy, is among the few clinical drugs used for RA therapy. Macrophages reportedly play a vital role in RA. Here, we designed and explored macrophage-targeted HCQ nanotherapeutics based on mannose-functionalized polymersomes (MP-HCQ) for RA therapy. Notably, MP-HCQ exhibited favorable properties of less than 50 nm size, glutathione-accelerated HCQ release, and M1 phenotype macrophage (M1M) targetability, leading to repolarization of macrophages to anti-inflammatory M2 phenotype (M2M), reduced secretion of pro-inflammatory cytokines (IL-6), and upregulation of anti-inflammatory cytokines (IL-10). The therapeutic studies in the zymosan-induced RA (ZIA) mouse model showed marked accumulation of MP-HCQ in the inflammation sites, ameliorated symptoms of RA joints, significantly reduced IL-6, TNF-α, and IL-1β, and increased IL-10 and TGF-β compared with free HCQ. The analyses of RA joints disclosed greatly amplified M2M and declined mature DCs, CD4+ T cells, and CD8+ T cells. In accordance, MP-HCQ significantly reduced the damage of RA joints, cartilages, and bones compared to free HCQ and non-targeted controls. Macrophage-targeted HCQ nanotherapeutics therefore appears as a highly potent treatment for RA.
Collapse
Affiliation(s)
- Hanghang Fang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Jingjing Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bin Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
32
|
Kandell R, Kudryashev JA, Kwon EJ. Targeting the Extracellular Matrix in Traumatic Brain Injury Increases Signal Generation from an Activity-Based Nanosensor. ACS NANO 2021; 15:20504-20516. [PMID: 34870408 PMCID: PMC8716428 DOI: 10.1021/acsnano.1c09064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a critical public health concern and major contributor to death and long-term disability. After the initial trauma, a sustained secondary injury involving a complex continuum of pathophysiology unfolds, ultimately leading to the destruction of nervous tissue. One disease hallmark of TBI is ectopic protease activity, which can mediate cell death, extracellular matrix breakdown, and inflammation. We previously engineered a fluorogenic activity-based nanosensor for TBI (TBI-ABN) that passively accumulates in the injured brain across the disrupted vasculature and generates fluorescent signal in response to calpain-1 cleavage, thus enabling in situ visualization of TBI-associated calpain-1 protease activity. In this work, we hypothesized that actively targeting the extracellular matrix (ECM) of the injured brain would improve nanosensor accumulation in the injured brain beyond passive delivery alone and lead to increased nanosensor activation. We evaluated several peptides that bind exposed/enriched ECM constituents in the brain and discovered that nanomaterials modified with peptides that target hyaluronic acid (HA) displayed widespread distribution across the injury lesion, in particular colocalizing with perilesional and hippocampal neurons. Modifying TBI-ABN with HA-targeting peptide led to increases in activation in a ligand-valency-dependent manner, up to 6.6-fold in the injured cortex compared to a nontargeted nanosensor. This robust nanosensor activation enabled 3D visualization of injury-specific protease activity in a cleared and intact brain. In our work, we establish that targeting brain ECM with peptide ligands can be leveraged to improve the distribution and function of a bioresponsive imaging nanomaterial.
Collapse
Affiliation(s)
| | | | - Ester J. Kwon
- Department of Bioengineering, University of California−San Diego, La Jolla, California 92093, United States
| |
Collapse
|
33
|
Kolasa M, Galita G, Majsterek I, Kucharska E, Czerczak K, Wasko J, Becht A, Fraczyk J, Gajda A, Pietrzak L, Szymanski L, Krakowiak A, Draczynski Z, Kolesinska B. Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. Int J Mol Sci 2021; 22:13584. [PMID: 34948383 PMCID: PMC8708666 DOI: 10.3390/ijms222413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1β1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.
Collapse
Affiliation(s)
- Marcin Kolasa
- General Command of the Polish Armed Forces, Medical Division, Zwirki i Wigury 103/105, 00-912 Warsaw, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Angelika Becht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| |
Collapse
|
34
|
Yu SS, Hubbell JA, Swartz MA. Overcoming transport barriers to immunotherapy. Drug Deliv Transl Res 2021; 11:2273-2275. [PMID: 34718959 PMCID: PMC10994393 DOI: 10.1007/s13346-021-01084-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Immunotherapies are designed to treat disease by modulating the activity of immune cells. Here, we consider how anatomy and microphysiology create transport barriers to immunotherapeutic delivery and retention at diseased sites, and summarize recent developments to overcome these barriers by exploiting immunobiology to engineer molecular and cellular engineering approaches. Creating impactful and practical solutions across these diseases requires the integration of the collective expertise of pathologists, clinicians, immunologists, biophysicists, immunoengineers, and more.
Collapse
Affiliation(s)
- Shann S Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021; 9:739161. [PMID: 34733848 PMCID: PMC8558531 DOI: 10.3389/fcell.2021.739161] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It’s known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying He
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
38
|
Mancipe Castro LM, García AJ, Guldberg RE. Biomaterial strategies for improved intra-articular drug delivery. J Biomed Mater Res A 2021; 109:426-436. [PMID: 32780515 PMCID: PMC8906235 DOI: 10.1002/jbm.a.37074] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a joint degenerative disease that has become one of the leading causes of disability in the world. It is estimated that OA affects 50 million adults in the United States. Currently, there are no FDA-approved treatments that slow OA progression and its treatment is limited to pain management strategies and life style changes. Despite the discovery of several disease-modifying OA drugs (DMOADs) and promising results in preclinical studies, their clinical translation has been significantly limited because of poor intra-articular (IA) bioavailability and challenges in delivering these compounds to tissues of interest within the joint. Here, we review current OA treatments and their effectiveness at reducing joint pain, as well as novel targets for OA treatment and the challenges related to their clinical translation. Moreover, we discuss intra-articular (IA) drug delivery as a promising route of administration, describe its inherent challenges, and review recent advances in biomaterial-based IA drug delivery for OA treatment. Finally, we highlight the potential of tissue targeting in the development of effective IA drug delivery systems.
Collapse
Affiliation(s)
- Lina María Mancipe Castro
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, OR 97403, U.S.A
| |
Collapse
|
39
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
40
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Liang Y, Xu X, Xu L, Prasadam I, Duan L, Xiao Y, Xia J. Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications. J Drug Target 2021; 29:609-616. [PMID: 33356642 DOI: 10.1080/1061186x.2020.1870231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA)is a common orthopaedic disease in middle-aged and aged people. To date, no disease-modifying drug is available to prevent the progression of OA. Surgical treatment of OA has complications such as pain and high costs with increased risk of post-operative infections. An intra-articular drug delivery is a conservative treatment method to apply therapeutic composites directly into the OA joint cavity. This method has an advantage to improve the bioavailability of therapeutics and hence is a widely preferred choice to test novel disease-modifying drug targets for OA. Herein, we summarised and discussed the current status of intra-articular therapy for OA treatment as well as outlined drug delivery of small molecular, protein and gene delivery for OA therapy. Currently, new targeted nano-based drug delivery systems, including nanoparticles, exosomes and hydrogel formulations under investigation for OA treatment via intra-articular injection are also addressed. The emerging trend demonstrates that intra-articular drug delivery has vast prospects for the clinical selective treatment of OA. The rational application of intra-articular injection of drugs and biological agents will be of great significance for alleviating the patients with OA, improving their quality of life, delaying surgery, and reducing the disease burden of OA.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, China.,Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Limei Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
42
|
Cai X, Wei W, Liu Z, Bai Z, Lei J, Xiao J. In Situ Imaging of Pathological Collagen by Electrostatic Repulsion-Destabilized Peptide Probes. ACS APPLIED BIO MATERIALS 2020; 3:7492-7499. [DOI: 10.1021/acsabm.0c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenyu Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhao Liu
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhongtian Bai
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
43
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
44
|
Arlotta KJ, San BH, Mu HH, Yu SM, Owen SC. Localization of Therapeutic Fab-CHP Conjugates to Sites of Denatured Collagen for the Treatment of Rheumatoid Arthritis. Bioconjug Chem 2020; 31:1960-1970. [PMID: 32609496 DOI: 10.1021/acs.bioconjchem.0c00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in synovial joints and protease-induced cartilage degradation. Current biologic treatments for RA can effectively reduce symptoms, primarily by neutralizing the proinflammatory cytokine TNFα; however, continued, indiscriminate overinhibition of inflammatory factors can significantly weaken the host immune system, leading to opportunistic infections and interrupting treatment. We hypothesize that localizing anti-TNFα therapeutics to denatured collagen (dCol) present at arthritic joints, via conjugation with collagen-hybridizing peptides (CHPs), will reduce off-site antigen binding and maintain local immunosuppression. We isolated the antigen-binding fragment of the clinically approved anti-TNFα therapeutic infliximab (iFab) and prepared iFab-CHP conjugates via lysine-based conjugation with an SMCC linker. After successful conjugation, confirmed by LC-MS, the binding affinity of iFab-CHP was characterized by ELISA-like assays, which showed comparable antigen binding relative to infliximab, comparable dCol binding relative to CHP, and the hybrid ability to bind both dCol and TNFα simultaneously. We further demonstrated localization of Fab-CHP to areas of high dCol in vivo and promising therapeutic efficacy, assessed by histological staining (Safranin-O and H&E), in a pilot mouse study.
Collapse
Affiliation(s)
- Keith J Arlotta
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Boi Hoa San
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hong-Hua Mu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shawn C Owen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
45
|
Pemmari T, Ivanova L, May U, Lingasamy P, Tobi A, Pasternack A, Prince S, Ritvos O, Makkapati S, Teesalu T, Cairo MS, Järvinen TAH, Liao Y. Exposed CendR Domain in Homing Peptide Yields Skin-Targeted Therapeutic in Epidermolysis Bullosa. Mol Ther 2020; 28:1833-1845. [PMID: 32497513 PMCID: PMC7403337 DOI: 10.1016/j.ymthe.2020.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Systemic skin-selective therapeutics would be a major advancement in the treatment of diseases affecting the entire skin, such as recessive dystrophic epidermolysis bullosa (RDEB), which is caused by mutations in the COL7A1 gene and manifests in transforming growth factor-β (TGF-β)-driven fibrosis and malignant transformation. Homing peptides containing a C-terminal R/KXXR/K motif (C-end rule [CendR] sequence) activate an extravasation and tissue penetration pathway for tumor-specific drug delivery. We have previously described a homing peptide CRKDKC (CRK) that contains a cryptic CendR motif and homes to angiogenic blood vessels in wounds and tumors, but it cannot penetrate cells or tissues. In this study, we demonstrate that removal of the cysteine from CRK to expose the CendR sequence confers the peptide novel ability to home to normal skin. Fusion of the truncated CRK (tCRK) peptide to the C terminus of an extracellular matrix protein decorin (DCN), a natural TGF-β inhibitor, resulted in a skin-homing therapeutic molecule (DCN-tCRK). Systemic DCN-tCRK administration in RDEB mice led to inhibition of TGF-β signaling in the skin and significant improvement in the survival of RDEB mice. These results suggest that DCN-tCRK has the potential to be utilized as a novel therapeutic compound for the treatment of dermatological diseases such as RDEB.
Collapse
Affiliation(s)
- Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, 33520 Tampere, Finland
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, 33520 Tampere, Finland
| | - Prakash Lingasamy
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, 33520 Tampere, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Shreya Makkapati
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA; Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; Department of Pathology, New York Medical College, Valhalla, NY 10595, USA; Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; Deparmtent of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, 33520 Tampere, Finland.
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
46
|
Griffin JD, Song JY, Sestak JO, DeKosky BJ, Berkland CJ. Linking autoantigen properties to mechanisms of immunity. Adv Drug Deliv Rev 2020; 165-166:105-116. [PMID: 32325104 PMCID: PMC7572523 DOI: 10.1016/j.addr.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Antigen-specific immunotherapies (ASIT) present compelling potential for introducing precision to the treatment of autoimmune diseases where nonspecific, global immunosuppression is currently the only treatment option. Central to ASIT design is the delivery of autoantigen, which parallels allergy desensitization approaches. Clinical success in tolerizing allergen-specific responses spans longer than a century, but autoimmune ASITs have yet to see an FDA-approved breakthrough. Allergens and autoantigens differ substantially in physicochemical properties, and these discrepancies influence the nature of their interactions with the immune system. Approved allergen-specific immunotherapies are typically administered as water soluble, neutrally charged protein fractions from 10 to 70 kDa. Conversely, autoantigens are native proteins that exhibit wide-ranging sizes, solubilities, and charges that render them susceptible to immunogenicity. To translate the success of allergen hyposensitization to ASIT, delivery strategies may be necessary to effectively format autoantigens, guide biodistribution, and engage appropriate immune mechanisms.
Collapse
Affiliation(s)
- J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America
| | - Joshua O Sestak
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Orion BioScience, Inc, Omaha, NE, United States of America
| | - Brandon J DeKosky
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States of America
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States of America.
| |
Collapse
|
47
|
Targeting Tumors Using Peptides. Molecules 2020; 25:molecules25040808. [PMID: 32069856 PMCID: PMC7070747 DOI: 10.3390/molecules25040808] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
To penetrate solid tumors, low molecular weight (Mw < 10 KDa) compounds have an edge over antibodies: their higher penetration because of their small size. Because of the dense stroma and high interstitial fluid pressure of solid tumors, the penetration of higher Mw compounds is unfavored and being small thus becomes an advantage. This review covers a wide range of peptidic ligands—linear, cyclic, macrocyclic and cyclotidic peptides—to target tumors: We describe the main tools to identify peptides experimentally, such as phage display, and the possible chemical modifications to enhance the properties of the identified peptides. We also review in silico identification of peptides and the most salient non-peptidic ligands in clinical stages. We later focus the attention on the current validated ligands available to target different tumor compartments: blood vessels, extracelullar matrix, and tumor associated macrophages. The clinical advances and failures of these ligands and their therapeutic conjugates will be discussed. We aim to present the reader with the state-of-the-art in targeting tumors, by using low Mw molecules, and the tools to identify new ligands.
Collapse
|
48
|
Järvinen TA, Pemmari T. Systemically Administered, Target-Specific, Multi-Functional Therapeutic Recombinant Proteins in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E226. [PMID: 32013041 PMCID: PMC7075297 DOI: 10.3390/nano10020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system ("vascular zip codes") within the vasculature. These target-specific "vascular zip codes" can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique "vascular zip codes" after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be "packaged" together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine.
Collapse
Affiliation(s)
- Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, FI-33014 Tampere, Finland & Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
49
|
Targeting inflammation with collagen-binding antibodies. Nat Rev Rheumatol 2019; 16:1. [PMID: 31784724 DOI: 10.1038/s41584-019-0350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|