1
|
Lumpuy-Castillo J, Fu Y, Avila Ramirez AE, Solodka K, Li J, Lorenzo O, Zeglio E, Garma LD. Inkjet-Printed Graphene Multielectrode Arrays: An Accessible Platform for In Vitro Cardiac Electrophysiology. ACS APPLIED BIO MATERIALS 2025; 8:3708-3716. [PMID: 40285727 DOI: 10.1021/acsabm.4c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
In vitro models have now become a realistic alternative to animal models for cardiotoxicity assessment. However, the cost and expertise required to implement in vitro electrophysiology systems to study cardiac cells pose a strong obstacle to their widespread use. This study presents a cost-effective approach forin vitro cardiac electrophysiology using fully printed graphene-based microelectrode arrays (pGMEAs) coupled to an open-source signal acquisition system. We characterized the pGMEAs' electrical properties and biocompatibility, observing low impedance values and cell viability. We demonstrated the platform's capability to record spontaneous electrophysiological activity from HL-1 cell cultures, and we monitored and quantified their responses to chemical stimulation with noradrenaline. This study demonstrates the feasibility of producing fully printed graphene-based devices for in vitro electrophysiology. The accessible and versatile platform we present here represents a step further in the development of alternative methods for cardiac safety screening.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz (CIBERDEM), Universidad Autónoma, 28040 Madrid, Spain
| | - Yujie Fu
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, Kista 16440, Sweden
| | - Alan Eduardo Avila Ramirez
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna 171 65, Sweden
| | - Kateryna Solodka
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solna 171 65, Sweden
| | - Jiantong Li
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, Kista 16440, Sweden
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz (CIBERDEM), Universidad Autónoma, 28040 Madrid, Spain
| | - Erica Zeglio
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solna 171 65, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Stockholm University, Stockholm 114 18, Sweden
- Digital Futures, Stockholm SE-100 44, Sweden
| | - Leonardo D Garma
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas─CNIO, 28029 Madrid, Spain
| |
Collapse
|
2
|
Shi K, Hu L, Cai D, Liu X, Zheng J, Xu D, Yuan Q, Xiong Q, Gong H, Zhu X, Hu N, Qin C. Three-Dimensional-Printed Flexible Nanosilver Electrode Array for Parallel and Robust Intracellular Electrophysiological Recording. ACS NANO 2025. [PMID: 40365958 DOI: 10.1021/acsnano.5c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cardiac electrophysiology, particularly intracellular action potential (iAP) recordings, is vital for advancing the understanding and treatment of cardiovascular diseases. In this work, we present a 3D-printed flexible nanosilver electrode array (FlexNEA) that enables simple and efficient circuit fabrication within several minutes using a multimaterial electric-field-driven (EFD) micro-jet 3D printing strategy and achieves over 99% success rates in intracellular access through electroporation. The NEA with flexible property creates an enhanced cell-electrode coupling, with the cardiomyocyte membrane wrapping tightly around the nanosilver electrode, leading to superior signal quality in contrast to the conventional planar electrodes. The 3D-printed FlexNEA enables stable, high-fidelity intracellular recordings by multiple consecutive biosafe electroporations over a short or long period of time. Moreover, the platform exhibits a powerful drug screening function by accurately detecting drug-induced iAP alterations, providing a precise and quantitative assessment of ion-channel drug effects. In summary, the 3D-printed FlexNEA device and integrated biosensing-regulating platform present a significant advance in the high-fidelity intracellular recording technology of cardiac electrophysiology. The platform advances the development of low-cost, biocompatible NEA systems for preclinical research in the cardiology and pharmacology fields.
Collapse
Affiliation(s)
- Keda Shi
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Duote Cai
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xing Liu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Jilin Zheng
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Qunchen Yuan
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Qianwen Xiong
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Haoran Gong
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Ning Hu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
3
|
Xu X, Liu Z, Liu J, Yao C, Chen X, Huang X, Huang S, Shi P, Li M, Wang L, Tao Y, Chen HJ, Xie X. Multi-sized microelectrode array coupled with micro-electroporation for effective recording of intracellular action potential. MICROSYSTEMS & NANOENGINEERING 2025; 11:85. [PMID: 40360468 PMCID: PMC12075571 DOI: 10.1038/s41378-025-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 05/15/2025]
Abstract
Microelectrode arrays (MEAs) are essential tools for studying the extracellular electrophysiology of cardiomyocytes in a multi-channel format. However, they typically lack the capability to record intracellular action potentials (APs). Recent studies have relied on costly fabrication of high-resolution microelectrodes combined with electroporation for intracellular recordings, but the impact of microelectrode size on micro-electroporation and the quality of intracellular signal acquisition has yet to be explored. Understanding these effects could facilitate the design of microelectrodes of various sizes to enable lower-cost manufacturing processes. In this study, we investigated the influence of microelectrode size on intracellular AP parameters and recording metrics post-micro-electroporation through simulations and experiments. We fabricated microelectrodes of different sizes using standard photolithography techniques to record cardiomyocyte APs from various culture environments with coupled micro-electroporation. Our findings indicate that larger microelectrodes generally recorded electrophysiological signals with higher amplitude and better signal-to-noise ratios, while smaller electrodes exhibited higher perforation efficiency, AP duration, and single-cell signal ratios. This work demonstrates that the micro-electroporation technique can be applied to larger microelectrodes for intracellular recordings, rather than being limited to high-resolution designs. This approach may provide new opportunities for fabricating microelectrodes using alternative low-cost manufacturing techniques for high-quality intracellular AP recordings.
Collapse
Affiliation(s)
- Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Chen
- Shanghai Namin Core Technology Co., Shanghai, 201210, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Centre for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Centre for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Hou F, Yang H, Dong J, Wang X, Wang R, Yu T, Deng Q, Dong M, Crabbe MJC, Wang Z. Light-Induced Electrode Scanning Microscopy. Anal Chem 2025; 97:8747-8754. [PMID: 40232738 DOI: 10.1021/acs.analchem.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Patch clamps and microelectrode arrays have been widely used to detect the electrical properties of cells in biomedicine. Yet, both technologies can record signals only in an invasive manner or at fixed positions. Based on the resolution (LAPS) and optically induced dielectrophoretic, we present a novel light-induced electrode scanning microscopy. It works like a "radar", scans the whole area with living cells in culture, and detects the electrical signals of single cells on a photosensitive chip. In the system, a light pattern projected onto the chip is used to form the corresponding light-induced electrode, and the electrode scanning mode is implemented by moving the light pattern or the chip position for the measurement of the electrical characteristics of biological cells and cell localizations. It provides a new tool for the detection of cell electrical properties and is expected to become the next generation of electrophysiological detection technology.
Collapse
Affiliation(s)
- Fengyan Hou
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Huanzhou Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Rui Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianzhu Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Qiuyang Deng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus DK-8000, Denmark
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, U.K
- iBEST & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- iBEST & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| |
Collapse
|
5
|
Shi K, He C, Pan H, Liu D, Zhang J, Han W, Xiang Y, Hu N. Advanced passive 3D bioelectronics: powerful tool for the cardiac electrophysiology investigation. MICROSYSTEMS & NANOENGINEERING 2025; 11:50. [PMID: 40097396 PMCID: PMC11914486 DOI: 10.1038/s41378-025-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Cardiovascular diseases (CVDs) are the first cause of death globally, posing a significant threat to human health. Cardiac electrophysiology is pivotal for the understanding and management of CVDs, particularly for addressing arrhythmias. A significant proliferation of micro-nano bioelectric devices and systems has occurred in the field of cardiomyocyte electrophysiology. These bioelectronic platforms feature distinctive electrode geometries that improve the fidelity of native electrophysiological signals. Despite the prevalence of planar microelectrode arrays (MEAs) for simultaneous multichannel recording of cellular electrophysiological signals, extracellular recordings often yield suboptimal signal quality. In contrast, three-dimensional (3D) MEAs and advanced penetration strategies allow high-fidelity intracellular signal detection. 3D nanodevices are categorized into the active and the passive. Active devices rely on external power sources to work, while passive devices operate without external power. Passive devices possess simplicity, biocompatibility, stability, and lower power consumption compared to active ones, making them ideal for sensors and implantable applications. This review comprehensively discusses the fabrication, geometric configuration, and penetration strategies of passive 3D micro/nanodevices, emphasizing their application in drug screening and disease modeling. Moreover, we summarize existing challenges and future opportunities to develop passive micro/nanobioelectronic devices from cardiac electrophysiological research to cardiovascular clinical practice.
Collapse
Affiliation(s)
- Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengwen He
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Hui Pan
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dong Liu
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ji Zhang
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Weili Han
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yuting Xiang
- Department of Obstetrics, the Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
6
|
Yuan Q, Qin C, Xu D, Qiu Y, Hu J, Wan H, Hu N, Wang P. PEDOT: PSS-Modified Organic Flexible and Implantable Microelectrode for Internal Bi-Directional Electrophysiology of Three-Dimensional Cardiomyocyte Spheroid. ACS Sens 2025; 10:460-469. [PMID: 39725861 DOI: 10.1021/acssensors.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Three-dimensional (3D) cardiomyocyte spheroids are essential models to replicate cardiac structural and functional features in vitro. However, conventional planar and rigid microelectrode arrays (MEAs) suffer from low-quality electrophysiological recording of 3D cultures, due to limited contact areas and weak coupling between cells and MEA chips. Herein, we developed a PEDOT: PSS-modified organic flexible and implantable MEA (OFI-MEA) coupled with a self-developed integrated biosensing platform to achieve high-throughput, long-term, and stable bidirectional internal electrophysiology in 3D cardiomyocyte spheroids. Electrostimulation enhanced the functional performance of the 3D cardiomyocytes, causing a remarkable 2.69-fold increase in frequency. Furthermore, time-frequency analysis of the multisite electrophysiological signals to highlight diverse cell activity patterns in the spheroids. It provides a powerful tool to record electrophysiological signals of 3D cardiomyocyte spheroids, allowing continuing evaluation of cardiac dynamics and regulation of electrical signals, providing a novel evaluation strategy for cardiac disease model construction, drug screening, and cardiological research.
Collapse
Affiliation(s)
- Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Jiahao Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Ning Hu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
7
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
8
|
Kanade PP, Oyunbaatar NE, Kim J, Lee BK, Kim ES, Lee DW. Cardiotoxicity Assessment through a Polymer-Based Cantilever Platform: An Integrated Electro-Mechanical Screening Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311274. [PMID: 38511575 DOI: 10.1002/smll.202311274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Preclinical drug screening for cardiac toxicity has traditionally relied on observing changes in cardiomyocytes' electrical activity, primarily through invasive patch clamp techniques or non-invasive microelectrode arrays (MEA). However, relying solely on field potential duration (FPD) measurements for electrophysiological assessment can miss the full spectrum of drug-induced toxicity, as different drugs affect cardiomyocytes through various mechanisms. A more comprehensive approach, combining field potential and contractility measurements, is essential for accurate toxicity profiling, particularly for drugs targeting contractile proteins without affecting electrophysiology. However, previously proposed platform has significant limitations in terms of simultaneous measurement. The novel platform addresses these issues, offering enhanced, non-invasive evaluation of drug-induced cardiotoxicity. It features eight cantilevers with patterned strain sensors and MEA, enabling real-time monitoring of both cardiomyocyte contraction force and field potential. This system can detect minimum cardiac contraction force of ≈2 µN and field potential signals with 50 µm MEA diameter, using the same cardiomyocytes in measurements of two parameters. Testing with six drugs of varied mechanisms of action, the platform successfully identifies these mechanisms and accurately assesses toxicity profiles, including drugs not inhibiting potassium channels. This innovative approach presents a comprehensive, non-invasive method for cardiac function assessment, poised to revolutionize preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Pooja P Kanade
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jongyun Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong-Weon Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
9
|
Lee SH, Lee J, Oh J, Hwang JT, Lee HJ, Byun HK, Kim HJ, Suh D, Yoon HG, Park SW, Kang SM, Kwon C, Lee SH, Choi HK. Inhibition of TBL1 cleavage alleviates doxorubicin-induced cardiomyocytes death by regulating the Wnt/β-catenin signal pathway. Cardiovasc Res 2024; 120:1037-1050. [PMID: 38722811 PMCID: PMC11288742 DOI: 10.1093/cvr/cvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Doxorubicin (DOX) is a widely used anthracycline anticancer agent; however, its irreversible effects on the heart can result in DOX-induced cardiotoxicity (DICT) after cancer treatment. Unfortunately, the pathophysiology of DICT has not yet been fully elucidated, and there are no effective strategies for its prevention or treatment. In this investigation, the novel role of transducin beta-like protein 1 (TBL1) in developing and regulating DICT was explored. METHODS AND RESULTS We observed a reduction in TBL1 protein expression levels as well as cleavage events in the transplanted cardiac tissues of patients diagnosed with Dilated Cardiomyopathy and DICT. It was revealed that DOX selectively induces TBL1 cleavage at caspase-3 preferred sites-D125, D136, and D215. Interestingly, overexpression of the uncleaved TBL1 mutant (TBL1uclv) variant reduced apoptosis, effectively preventing DOX-induced cell death. We confirmed that cleaved TBL1 cannot form a complex with β-catenin. As a result, Wnt reporter activity and Wnt target gene expression collectively indicate a decrease in Wnt/β-catenin signalling, leading to DICT progression. Furthermore, the cleaved TBL1 triggered DOX-induced abnormal electrophysiological features and disrupted calcium homeostasis. However, these effects were improved in TBL1uclv-overexpressing human-induced pluripotent stem cell-derived cardiomyocytes. Finally, in a DICT mouse model, TBL1uclv overexpression inhibited the DICT-induced reduction of cardiac contractility and collagen accumulation, ultimately protecting cardiomyocytes from cell death. CONCLUSION Our findings reveal that the inhibition of TBL1 cleavage not only mitigates apoptosis but also enhances cardiomyocyte function, even in the context of DOX administration. Consequently, this study's results suggest that inhibiting TBL1 cleavage may be a novel strategy to ameliorate DICT.
Collapse
MESH Headings
- Doxorubicin/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Wnt Signaling Pathway/drug effects
- Humans
- Animals
- Cardiotoxicity
- Apoptosis/drug effects
- beta Catenin/metabolism
- beta Catenin/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/chemically induced
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/physiopathology
- Male
- Transducin/metabolism
- Transducin/genetics
- Disease Models, Animal
- Mice, Inbred C57BL
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/enzymology
- Induced Pluripotent Stem Cells/pathology
- Female
- Case-Control Studies
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
Collapse
Affiliation(s)
- Sun-Ho Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jangho Lee
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Jaewon Oh
- Division of Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - David Suh
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seok-Min Kang
- Division of Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
10
|
Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology. ACS NANO 2024; 18:15332-15357. [PMID: 38837178 DOI: 10.1021/acsnano.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.
Collapse
Affiliation(s)
- Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
11
|
Li X, Zhu H, Gu B, Yao C, Gu Y, Xu W, Zhang J, He J, Liu X, Li D. Advancing Intelligent Organ-on-a-Chip Systems with Comprehensive In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305268. [PMID: 37688520 DOI: 10.1002/adma.202305268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 09/11/2023]
Abstract
In vitro models are essential to a broad range of biomedical research, such as pathological studies, drug development, and personalized medicine. As a potentially transformative paradigm for 3D in vitro models, organ-on-a-chip (OOC) technology has been extensively developed to recapitulate sophisticated architectures and dynamic microenvironments of human organs by applying the principles of life sciences and leveraging micro- and nanoscale engineering capabilities. A pivotal function of OOC devices is to support multifaceted and timely characterization of cultured cells and their microenvironments. However, in-depth analysis of OOC models typically requires biomedical assay procedures that are labor-intensive and interruptive. Herein, the latest advances toward intelligent OOC (iOOC) systems, where sensors integrated with OOC devices continuously report cellular and microenvironmental information for comprehensive in situ bioanalysis, are examined. It is proposed that the multimodal data in iOOC systems can support closed-loop control of the in vitro models and offer holistic biomedical insights for diverse applications. Essential techniques for establishing iOOC systems are surveyed, encompassing in situ sensing, data processing, and dynamic modulation. Eventually, the future development of iOOC systems featuring cross-disciplinary strategies is discussed.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuyang Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangkai Xu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Yang Z, Yu Q, Wu J, Deng H, Zhang Y, Wang W, Xian T, Huang L, Zhang J, Yuan S, Leng J, Zhan L, Jiang Z, Wang J, Zhang K, Zhou P. Ultrafast laser state active controlling based on anisotropic quasi-1D material. LIGHT, SCIENCE & APPLICATIONS 2024; 13:81. [PMID: 38584173 PMCID: PMC11251271 DOI: 10.1038/s41377-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.
Collapse
Affiliation(s)
- Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yan Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenchao Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyi Huang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junrong Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shuai Yuan
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyong Leng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Li Zhan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongfu Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Junyong Wang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Kai Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
13
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
14
|
Park W, Kim EM, Jeon Y, Lee J, Yi J, Jeong J, Kim B, Jeong BG, Kim DR, Kong H, Lee CH. Transparent Intracellular Sensing Platform with Si Needles for Simultaneous Live Imaging. ACS NANO 2023; 17:25014-25026. [PMID: 38059775 DOI: 10.1021/acsnano.3c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junsang Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong Guk Jeong
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Bartlett M, He M, Ranke D, Wang Y, Cohen-Karni T. A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS ADVANCES 2023; 8:1047-1060. [PMID: 38283671 PMCID: PMC10812139 DOI: 10.1557/s43580-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024]
Abstract
Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.
Collapse
Affiliation(s)
- Mabel Bartlett
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mengdi He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Ranke
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Savchenko A, Kireev D, Yin RT, Efimov IR, Molokanova E. Graphene-based cardiac sensors and actuators. Front Bioeng Biotechnol 2023; 11:1168667. [PMID: 37256116 PMCID: PMC10225741 DOI: 10.3389/fbioe.2023.1168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Graphene, a 2D carbon allotrope, is revolutionizing many biomedical applications due to its unique mechanical, electrical, thermal, and optical properties. When bioengineers realized that these properties could dramatically enhance the performance of cardiac sensors and actuators and may offer fundamentally novel technological capabilities, the field exploded with numerous studies developing new graphene-based systems and testing their limits. Here we will review the link between specific properties of graphene and mechanisms of action of cardiac sensors and actuators, analyze the performance of these systems from inaugural studies to the present, and offer future perspectives.
Collapse
Affiliation(s)
| | - Dmitry Kireev
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Igor R. Efimov
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States
| | - Elena Molokanova
- Nanotools Bioscience, La Jolla, CA, United States
- NeurANO Bioscience, La Jolla, CA,United States
| |
Collapse
|
17
|
Moreddu R, Boschi A, d’Amora M, Hubarevich A, Dipalo M, De Angelis F. Passive Recording of Bioelectrical Signals from Non-Excitable Cells by Fluorescent Mirroring. NANO LETTERS 2023; 23:3217-3223. [PMID: 37019439 PMCID: PMC10141418 DOI: 10.1021/acs.nanolett.2c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioelectrical variations trigger different cell responses, including migration, mitosis, and mutation. At the tissue level, these actions result in phenomena such as wound healing, proliferation, and pathogenesis. Monitoring these mechanisms dynamically is highly desirable in diagnostics and drug testing. However, existing technologies are invasive: either they require physical access to the intracellular compartments, or they imply direct contact with the cellular medium. Here, we present a novel approach for the passive recording of electrical signals from non-excitable cells adhering to 3D microelectrodes, based on optical mirroring. Preliminary results yielded a fluorescence intensity output increase of the 5,8% in the presence of a HEK-293 cell on the electrode compared to bare microelectrodes. At present, this technology may be employed to evaluate cell-substrate adhesion and monitor cell proliferation. Further refinements could allow extrapolating quantitative data on surface charges and resting potential to investigate the electrical phenomena involved in cell migration and cancer progression.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
| | - Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | | | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Email
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano
di Tecnologia, 16163 Genoa, Italy
- Email
| |
Collapse
|
18
|
Castagnola V, Deleye L, Podestà A, Jaho E, Loiacono F, Debellis D, Trevisani M, Ciobanu DZ, Armirotti A, Pisani F, Flahaut E, Vazquez E, Bramini M, Cesca F, Benfenati F. Interactions of Graphene Oxide and Few-Layer Graphene with the Blood-Brain Barrier. NANO LETTERS 2023; 23:2981-2990. [PMID: 36917703 PMCID: PMC10103300 DOI: 10.1021/acs.nanolett.3c00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Lieselot Deleye
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alice Podestà
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Edra Jaho
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabrizio Loiacono
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Martina Trevisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Experimental Medicine, Università
degli Studi di Genova, 16132 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Pisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
UMR 5085, CNRS-INP-UPS, Université
Toulouse 3 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Ester Vazquez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Mattia Bramini
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Cell Biology, Universidad de Granada, C. Fuentenueva s/n, 18071 Granada, Spain
| | - Fabrizia Cesca
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
19
|
Wang Y, Garg R, Cohen-Karni D, Cohen-Karni T. Neural modulation with photothermally active nanomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:193-207. [PMID: 39221032 PMCID: PMC11364367 DOI: 10.1038/s44222-023-00022-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 09/04/2024]
Abstract
Modulating neural electrophysiology with high precision is essential for understanding neural communication and for the diagnosis and treatment of neural disorders. Photothermal modulation offers a remote and non-genetic method for neural modulation with high spatiotemporal resolution and specificity. This technique induces highly localized and transient temperature changes at the cell membrane interfaced with photothermally active nanomaterials. This rapid temperature change affects the electrical properties of the cell membrane or temperature-sensitive ion channels. In this Review, we discuss the fundamental material properties and illumination conditions that are necessary for nanomaterial-assisted photothermal neural excitation and inhibition. We examine how this versatile technique allows direct investigation of neural electrophysiology and signalling pathways in two-dimensional and three-dimensional cell cultures and tissues, and highlight the scientific and technological challenges in terms of cellular specificity, light delivery and biointerface stability on the road to clinical translation.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- These authors contributed equally: Yingqiao Wang, Raghav Garg
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- These authors contributed equally: Yingqiao Wang, Raghav Garg
| | - Devora Cohen-Karni
- Preclinical education biochemistry, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Ott C, Jung T. The MyoPulser field stimulator, a do it yourself programmable electronic pacemaker for contracting cells and tissues. Sci Rep 2023; 13:2461. [PMID: 36774394 PMCID: PMC9922332 DOI: 10.1038/s41598-023-29145-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
After providing the free software MYOCYTER that analyzes a large amount of data from videos of contracting cells, tissues or organs, we now present an "Arduino"-based programmable, customizable and cost-effective electronic pacemaker ("MyoPulser") that triggers contraction by electric stimulation of the sample at arbitrary frequencies. In this work, construction, functions and application of the MyoPulser are explained in detail, the electronic pacemaker is also tested on isolated cardiomyocytes and HT22-cells to quantify biological effects of pacing. The device enables the user to select between different pulse types (monophasic, alternating, bi- and polyphasic) adjust the length of an applied pulse (1-200 ms), the gap between two consecutive pulses (20-2000 ms), application of irregular pulses with random length and gaps (simulation of arrhythmia) in a user-defined range, as well as manual pulsing, while extensive data are recorded for every single pulse during the experiment. Electrostimulation of isolated B6 cardiomyocytes showed very little deviation of the observed cellular contraction from the applied pulse settings of the device, while the carbon electrodes used proved to be biologically inert in long-term experiments. Due to the open source code and the expandable setup, the MyoPulser can be easily adapted to even highly specific requirements and together with the software MYOCYTER it represents a complete cardiomyophysiological measuring station.
Collapse
Affiliation(s)
- Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany.
| |
Collapse
|
21
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
22
|
Yang Y, Liu A, Tsai CT, Liu C, Wu JC, Cui B. Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens Bioelectron 2022; 216:114617. [PMID: 36027802 PMCID: PMC9930661 DOI: 10.1016/j.bios.2022.114617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 01/11/2023]
Abstract
Unintended binding of small-molecule drugs to ion channels affects electrophysiological properties of cardiomyocytes and potentially leads to arrhythmia and heart failure. The waveforms of intracellular action potentials reflect the coordinated activities of cardiac ion channels and serve as a reliable means for assessing drug toxicity, but the implementation is limited by the low throughput of patch clamp for intracellular recording measurements. In the last decade, several new technologies are being developed to address this challenge. We recently developed the nanocrown electrode array (NcEA) technology that allows robust, parallel, and long-duration recording of intracellular action potentials (iAPs). Here, we demonstrate that NcEAs allow comparison of iAP waveforms before and after drug treatment from the same cell. This self-referencing comparison not only shows distinct drug effects of sodium, potassium, and calcium blockers, but also reveals subtle differences among three subclasses of sodium channel blockers with sub-millisecond accuracy. Furthermore, self-referencing comparison unveils heterogeneous drug responses among different cells. In our study, whole-panel simultaneous intracellular recording can be reliably achieved with ∼94% success rate. The average duration of intracellular recording is ∼30 min and some last longer than 2 h. With its high reliability, long recording duration, and easy-to-use nature, NcEA would be useful for iAP-based preclinical drug screening.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA,Department of Medicine, Stanford University, Stanford, CA, USA,Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA; Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Matino L, Mariano A, Ausilio C, Garg R, Cohen-Karni T, Santoro F. Modulation of Early Stage Neuronal Outgrowth through Out-of-Plane Graphene. NANO LETTERS 2022; 22:8633-8640. [PMID: 36301701 DOI: 10.1021/acs.nanolett.2c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.
Collapse
Affiliation(s)
- Laura Matino
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e delle Produzioni Industriali, DICMAPI, Università "Federico II", Naples 80125, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich 52428, Germany
| |
Collapse
|
24
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Xu D, Fang J, Wang H, Wei X, Yang J, Li H, Yang T, Li Y, Liu C, Hu N. Scalable Nanotrap Matrix Enhanced Electroporation for Intracellular Recording of Action Potential. NANO LETTERS 2022; 22:7467-7476. [PMID: 36069674 DOI: 10.1021/acs.nanolett.2c02398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording, as a long-sought objective, plays a crucial role in fundamental biomedical research and practical clinical applications. The challenge in developing electrophysiological detection platforms is to combine simplicity, stability, and sensitivity in the same device. In this study, we develop a nanotrapped microelectrode based on a porous PET membrane, which is compatible with large-scale microtechnologies. The nanotraps can promote the protrusion of the local cell membrane in the hollow center and offer a unique nanoedge structure for tight sealing and effective electroporation. We demonstrate that scalable nanotraps can enhance cell-electrode coupling and perform high-quality intracellular recording. Further, the nanoedge-enhanced electroporation and minimally invasive nanotrapped recordings afford much longer intracellular access of over 100 min and permit consecutive electroporation events in a short period of time. This study suggests that the geometry-regulating strategy of the cell-electrode nanointerface could significantly improve the intracellular recording performance of a nanopatterned electrode.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xinwei Wei
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
| | - Jinhu Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ying Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
26
|
Huang Y, Cui Y, Deng H, Wang J, Hong R, Hu S, Hou H, Dong Y, Wang H, Chen J, Li L, Xie Y, Sun P, Fu X, Yin L, Xiong W, Shi SH, Luo M, Wang S, Li X, Sheng X. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2022; 7:486-498. [PMID: 36065014 DOI: 10.1038/s41551-022-00931-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.
Collapse
Affiliation(s)
- Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yuting Cui
- Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Hanjie Deng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jingjing Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Rongqi Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuhan Hu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing Hou
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanrui Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Xin Fu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Xiaojian Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Jahed Z, Yang Y, Tsai CT, Foster EP, McGuire AF, Yang H, Liu A, Forro C, Yan Z, Jiang X, Zhao MT, Zhang W, Li X, Li T, Pawlosky A, Wu JC, Cui B. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat Commun 2022; 13:2253. [PMID: 35474069 PMCID: PMC9042818 DOI: 10.1038/s41467-022-29726-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 01/11/2023] Open
Abstract
Drug-induced cardiotoxicity arises primarily when a compound alters the electrophysiological properties of cardiomyocytes. Features of intracellular action potentials (iAPs) are powerful biomarkers that predict proarrhythmic risks. In the last decade, a number of vertical nanoelectrodes have been demonstrated to achieve parallel and minimally-invasive iAP recordings. However, the large variability in success rate and signal strength have hindered nanoelectrodes from being broadly adopted for proarrhythmia drug assessment. In this work, we develop vertically-aligned nanocrown electrodes that are mechanically robust and achieve > 99% success rates in obtaining intracellular access through electroporation. We validate the accuracy of nanocrown electrode recordings by simultaneous patch clamp recording from the same cell. Finally, we demonstrate that nanocrown electrodes enable prolonged iAP recording for continual monitoring of the same cells upon the sequential addition of four incremental drug doses. Our technology development provides an advancement towards establishing an iAP screening assay for preclinical evaluation of drug-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Nanoengineering, Jacobs school of Engineering, University of California, San Diego, CA, 92039, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ethan P Foster
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Allister F McGuire
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Aofei Liu
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Csaba Forro
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Zen Yan
- Cyion Technologies, LLC, Pleasanton, CA, 94566, USA
| | - Xin Jiang
- Cyion Technologies, LLC, Pleasanton, CA, 94566, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Wei Zhang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiao Li
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Li
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Annalisa Pawlosky
- Google Accelerated Sciences, Google LLC, Mountain View, 94043, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Zhang M, Xu D, Fang J, Li H, Li Y, Liu C, Cao N, Hu N. A dynamic and quantitative biosensing assessment for electroporated membrane evolution of cardiomyocytes. Biosens Bioelectron 2022; 202:114016. [DOI: 10.1016/j.bios.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
|
29
|
Liu R, Lee J, Tchoe Y, Pre D, Bourhis AM, D'Antonio-Chronowska A, Robin G, Lee SH, Ro YG, Vatsyayan R, Tonsfeldt KJ, Hossain LA, Phipps ML, Yoo J, Nogan J, Martinez JS, Frazer KA, Bang AG, Dayeh SA. Ultra-Sharp Nanowire Arrays Natively Permeate, Record, and Stimulate Intracellular Activity in Neuronal and Cardiac Networks. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2108378. [PMID: 35603230 PMCID: PMC9122115 DOI: 10.1002/adfm.202108378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 05/25/2023]
Abstract
We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.
Collapse
Affiliation(s)
- Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Deborah Pre
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Gaelle Robin
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sang Heon Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Reproductive Science and Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lorraine A Hossain
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - John Nogan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jennifer S Martinez
- Center for Materials Interfaces in Research and Applications and Department of Applied Physics and Materials Science, Northern Arizona University, 624 S. Knoles Dr. Flagstaff, AZ 86011
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Zhang S, Pang J, Li Y, Ibarlucea B, Liu Y, Wang T, Liu X, Peng S, Gemming T, Cheng Q, Liu H, Yang J, Cuniberti G, Zhou W, Rümmeli MH. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. NANOTECHNOLOGY 2022; 33:185702. [PMID: 35078155 DOI: 10.1088/1361-6528/ac4eb4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies-non-treatment, oxygen plasma, and etching in HNO3solution-for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.
Collapse
Affiliation(s)
- Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
| | - Yu Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, No.3501 Daxue Road, Jinan 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, People's Republic of China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | - Thomas Gemming
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, People's Republic of China
| | - Jiali Yang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden D-01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden D-01062, Germany
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Mark H Rümmeli
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
31
|
Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. NANOSCALE HORIZONS 2022; 7:94-111. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioelectrical interfaces that bridge biotic and abiotic systems have heightened the ability to monitor, understand, and manipulate biological systems and are catalyzing profound progress in neuroscience research, treatments for heart failure, and microbial energy systems. With advances in nanotechnology, bifunctional and high-density devices with tailored structural designs are being developed to enable multiplexed recording or stimulation across multiple spatial and temporal scales with resolution down to millisecond-nanometer interfaces, enabling efficient and effective communication with intracellular electrical activities in a relatively noninvasive and biocompatible manner. This review provides an overview of how biological systems guide the design, engineering, and implementation of bioelectrical interfaces for biomedical applications. We investigate recent advances in bioelectrical interfaces for applications in nervous, cardiac, and microbial systems, and we also discuss the outlook of state-of-the-art biology-guided bioelectrical interfaces with high biocompatibility, extended long-term stability, and integrated system functionality for potential clinical usage.
Collapse
Affiliation(s)
- Bernadette A Miao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Tchoe Y, Lee J, Liu R, Bourhis AM, Vatsyayan R, Tonsfeldt KJ, Dayeh SA. Considerations and recent advances in nanoscale interfaces with neuronal and cardiac networks. APPLIED PHYSICS REVIEWS 2021; 8:041317. [PMID: 34868443 PMCID: PMC8596389 DOI: 10.1063/5.0052666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/07/2021] [Indexed: 05/21/2023]
Abstract
Nanoscale interfaces with biological tissue, principally made with nanowires (NWs), are envisioned as minimally destructive to the tissue and as scalable tools to directly transduce the electrochemical activity of a neuron at its finest resolution. This review lays the foundations for understanding the material and device considerations required to interrogate neuronal activity at the nanoscale. We first discuss the electrochemical nanoelectrode-neuron interfaces and then present new results concerning the electrochemical impedance and charge injection capacities of millimeter, micrometer, and nanometer scale wires with Pt, PEDOT:PSS, Si, Ti, ITO, IrO x , Ag, and AgCl materials. Using established circuit models for NW-neuron interfaces, we discuss the impact of having multiple NWs interfacing with a single neuron on the amplitude and temporal characteristics of the recorded potentials. We review state of the art advances in nanoelectrode-neuron interfaces, the standard control experiments to investigate their electrophysiological behavior, and present recent high fidelity recordings of intracellular potentials obtained with ultrasharp NWs developed in our laboratory that naturally permeate neuronal cell bodies. Recordings from arrays and individually addressable electrically shorted NWs are presented, and the long-term stability of intracellular recording is discussed and put in the context of established techniques. Finally, a perspective on future research directions and applications is presented.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
33
|
Garg R, Roman DS, Wang Y, Cohen-Karni D, Cohen-Karni T. Graphene nanostructures for input-output bioelectronics. BIOPHYSICS REVIEWS 2021; 2:041304. [PMID: 35005709 PMCID: PMC8717360 DOI: 10.1063/5.0073870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023]
Abstract
The ability to manipulate the electrophysiology of electrically active cells and tissues has enabled a deeper understanding of healthy and diseased tissue states. This has primarily been achieved via input/output (I/O) bioelectronics that interface engineered materials with biological entities. Stable long-term application of conventional I/O bioelectronics advances as materials and processing techniques develop. Recent advancements have facilitated the development of graphene-based I/O bioelectronics with a wide variety of functional characteristics. Engineering the structural, physical, and chemical properties of graphene nanostructures and integration with modern microelectronics have enabled breakthrough high-density electrophysiological investigations. Here, we review recent advancements in 2D and 3D graphene-based I/O bioelectronics and highlight electrophysiological studies facilitated by these emerging platforms. Challenges and present potential breakthroughs that can be addressed via graphene bioelectronics are discussed. We emphasize the need for a multidisciplinary approach across materials science, micro-fabrication, and bioengineering to develop the next generation of I/O bioelectronics.
Collapse
Affiliation(s)
- Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Daniel San Roman
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Devora Cohen-Karni
- Preclinical education biochemistry, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, USA
| | | |
Collapse
|
34
|
Prominski A, Li P, Miao BA, Tian B. Nanoenabled Bioelectrical Modulation. ACCOUNTS OF MATERIALS RESEARCH 2021; 2:895-906. [PMID: 34723193 PMCID: PMC8547132 DOI: 10.1021/accountsmr.1c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Indexed: 06/01/2023]
Abstract
Studying the formation and interactions between biological systems and artificial materials is significant for probing complex biophysical behaviors and addressing challenging biomedical problems. Bioelectrical interfaces, especially nanostructure-based, have improved compatibility with cells and tissues and enabled new approaches to biological modulation. In particular, free-standing and remotely activated bioelectrical devices demonstrate potential for precise biophysical investigation and efficient clinical therapies. Interacting with single cells or organelles requires devices of sufficiently small size for high resolution probing. Nanoscale semiconductors, given their diverse functionalities, are promising device platforms for subcellular modulation. Tissue-level modulation requires additional consideration regarding the device's mechanical compliance for either conformal contact with the tissue surface or seamless three-dimensional (3D) biointegration. Flexible or even open-framework designs are essential in such methods. For chronic organ integration, the highest level of biocompatibility is required for both the materials and device configurations. Additionally, a scalable and high-throughput design is necessary to simultaneously interact with many individual cells in the organ. The physical, chemical, and mechanical stabilities of devices for organ implantation may be improved by ensuring matching of mechanical behavior at biointerfaces, including passivation or resistance designs to mitigate physiological impacts, or incorporating self-healing or adaptative properties. Recent research demonstrates principles of nanostructured material designs that can be used to improve biointerfaces. Nanoenabled extracellular interfaces were frequently used for either electrical or remote optical modulation of cells and tissues. In particular, methods are now available for designing and screening nanostructured silicon, especially chemical vapor deposition (CVD)-derived nanowires and two-dimensional (2D) nanostructured membranes, for biological modulation in vitro and in vivo. For intra- and intercellular biological modulation, semiconductor/cell composites have been created through the internalization of nanowires, and such cellular composites can even integrate with living tissues. This approach was demonstrated for both neuronal and cardiac modulation. At a different front, laser-derived nanocrystalline semiconductors showed electrochemical and photoelectrochemical activities, and they were used to modulate cells and organs. Recently, self-assembly of nanoscale building blocks enabled fabrication of efficient monolithic carbon-based electrodes for in vitro stimulation of cardiomyocytes, ex vivo stimulation of retinas and hearts, and in vivo stimulation of sciatic nerves. Future studies on nanoenabled bioelectrical modulation should focus on improving efficiency and stability of current and emerging technologies. New materials and devices can access new interrogation targets, such as subcellular structures, and possess more adaptable and responsive properties enabling seamless integration. Drawing inspiration from energy science and catalysis can help in such progress and open new avenues for biological modulation. The fundamental study of living bioelectronics could yield new cellular composites for diverse biological signaling control. In situ self-assembled biointerfaces are of special interest in this area as cell type targeting can be achieved.
Collapse
Affiliation(s)
- Aleksander Prominski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of
Chicago, Chicago, Illinois 60637, United
States
- The
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Pengju Li
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United
States
| | - Bernadette A. Miao
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of
Chicago, Chicago, Illinois 60637, United
States
- The
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|