1
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Zhang S, Xia C, Wang J, Chen S, Wang Y, Zhang S, Geng Z, Tang K, Erdem A, Zhu B. Ready-to-Use OECT Biosensor toward Rapid and Real-Time Protein Detection in Complex Biological Environments. ACS Sens 2025; 10:3369-3380. [PMID: 40289497 DOI: 10.1021/acssensors.4c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Organic electrochemical transistor (OECT) sensors are a promising approach for point-of-care testing (POCT) thanks to their high sensitivity and ability to operate in an aqueous environment. However, OECTs suffer from biological fouling at the gate and channel interfaces when exposed to complex biological samples. These nonspecific interactions can often obscure the weak signal from the trace biomarker, compromising the accuracy and sensitivity of measurements and even leading to false detection outcomes. In this study, we developed an intrinsically antifouling OECT by modifying both the gate and channel with phosphorylcholine-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-PC). This modification notably enhances the OECT performance by leveraging the material's inherent mixed electron-ion conductivity, which increases transconductance and decreases gate voltage. Additionally, the zwitterionic nature of the device enables its ultrasensitive detection of C-reactive protein (CRP) with a limit of detection of 0.11 pg/mL, mediated by calcium ions. This exceptional sensitivity arises from the device's enhanced transconductance and ability to sense through the gate and channel interfaces simultaneously. Furthermore, the zwitterionic OECT sensor has demonstrated the fastest sample-to-result time for protein detection (≤60 s), making it highly suitable for real-time CRP monitoring. Importantly, it provides precise real-time detection of CRP without interference from nonspecific proteins such as bovine serum albumin, fibrinogen, lysozyme, and fetal bovine serum. We envision this intrinsically antifouling OECT device offering a robust biosensing platform for the rapid and convenient detection of biomarkers in complex biological environments, providing a reliable and efficient solution for POCT diagnostics.
Collapse
Affiliation(s)
- Shouyan Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Chunyang Xia
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Jun Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shixiong Chen
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - YiXuan Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Ke Tang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Arzum Erdem
- Department of Analytical Chemistry, Ege UniversityFaculty of Pharmacy, Bornova Izmir35100, Turkey
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| |
Collapse
|
3
|
Yang X, Chen X, Gu P, Hu Z, Zhang X, Sun Z, Lu L, Zu G, Huang J. Stretchable semiconducting polymer aerogel transistors for high-performance biosensors and artificial synapses. Biomaterials 2025; 322:123416. [PMID: 40383088 DOI: 10.1016/j.biomaterials.2025.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/24/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Stretchable organic electrochemical transistors (OECTs) are attractive for high-performance flexible electronics. Poly(3-hexylthiophene) (P3HT) and poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT) are commonly used for OECTs because of their excellent semiconducting properties. However, it is challenging to achieve stretchable and high-performance OECTs based on hydrophobic P3HT and DPPDTT because of their limited ion penetration. Here, unprecedented stretchable high-performance OECTs based on P3HT and DPPDTT aerogels with crimpled porous structures are developed. They are achieved by a pre-stretching strategy combined with sol-gel and template methods. The porous structures of the aerogels with high porosities facilitate ion penetration and transport, leading to the enhanced transconductance of the aerogel-based OECTs compared with those of the dense counterparts. The crimpled porous structures endow the aerogels and OECTs with good stretchability and stretching stability. The stretchable OECT-based biosensors can detect trace amounts of ascorbic acid in complex samples such as sweat, saliva, serum, and fruit juice in real time. Besides, the OECTs can be applied as stretchable artificial synapses for neuromorphic simulation. This work provides a powerful strategy toward stretchable high-performance transistors and flexible electronics.
Collapse
Affiliation(s)
- Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xu Chen
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| |
Collapse
|
4
|
Tan P, Shen S, Zheng Y, Tang Y, Luo Y, Zhang Z, Men D, Duan G. Ni/Fe-MOF Electrochemical Transistor Biosensors with 3D Debye Space for Ultrasensitive Detection of Coronavirus Nucleocapsid Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407709. [PMID: 40143748 DOI: 10.1002/smll.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Electrochemical transistor (ECT) biosensors can achieve ultrahigh sensitivity, while keeping challenges for large biomolecules due to their sizes over the thickness of the electric double layer (EDL) causing a failure of sensing reaction. Here, wafer-level Ni/Fe-metal-organic framework (MOF) films and corresponding ECT biosensors are fabricated for the detection of coronavirus nucleocapsid protein, which realize an ultralow detection limit of 1 fg mL-1 and a wide detection range of 1 fg mL-1 to 100 pg mL-1. A 3D Debye space, originating from the unique stacking structure of nanosheets and nanoparticles in Ni/Fe-MOF film, is proposed to explain such ultrahigh sensitivity, which ensures the immune-binding and sensing process of the nucleocapsid protein large molecules located in the effective EDL space. Moreover, an appropriate Ni/Fe molar ratio is optimized to enhance the transmission of carriers, thus improving the signal-to-noise ratio and the sensing response. The Ni/Fe-MOF-ECT biosensors will find applications in highly sensitive detection for large biomolecules, and the 3D Debye space may be a design model for constructing other biosensors.
Collapse
Affiliation(s)
- Pengwei Tan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuyang Shen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Yushu Tang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Luo
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zheng Zhang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Guotao Duan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Wu R, Wu C, Zhou J, Feng LW, Chen J, Zhao D, Huang W. Effect of channel patterning precision on the performances of vertical OECTs. NANOSCALE 2025; 17:8634-8641. [PMID: 40095510 DOI: 10.1039/d4nr05239k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Precise patterning of electronic functional layers is vital for integrated electronics, where high integration density is required. Similarly, for organic electrochemical transistors (OECTs), the patterning precision of the channel layer is essential for device miniaturization, parasitic capacitance reduction, and accurate performance evaluation. In particular, for an emerging OECT architecture, vertical OECT (vOECT), the effect of patterning precision on key device parameters (such as transconductance (gm) and transient time (τ)) remains unclear. Here, controllable patterning of vOECT channel regions is realized by direct laser etching, where 2-100 μm margin lengths (lM) are left beyond the vertical channel area. By quantitatively analyzing the impact of margin areas on device performance (including drain currents (ID), gm, and τ), it has been found that a larger lM leads to significantly increased ID and gm in both n- and p-type OECTs (106.94% and 61.46% enhancement of ID and 102.92% and 92.59% enhancement of gm in n- and p-type OECTs, respectively, are observed as lM increases), which saturate under an lM of ∼60 μm. Nevertheless, linearly increasing τ (from hundreds of microseconds to a few milliseconds) is observed with increasing lM, revealing that parasitic capacitance outside the channel would result in a longer redox reaction time but not always higher ID and gm. It is revealed that the patterning precision of active layers alters the OECT performances tremendously and can be designed to meet different application requirements (either high amplification capability, high integrating density, or fast response time) in OECT-based electronics.
Collapse
Affiliation(s)
- Ruhua Wu
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), 611731, Chengdu, China.
| | - Chufeng Wu
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), 611731, Chengdu, China.
| | - Jinhao Zhou
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), 611731, Chengdu, China.
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Jianhua Chen
- Department of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Dan Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), 611731, Chengdu, China.
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), 611731, Chengdu, China.
| |
Collapse
|
8
|
Meng X, Yi Z, Liu X, Wu Y, Fang C, Ge Z, He Y, Li S, Xie X, Zhang L, Xie Z. Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing. Biosens Bioelectron 2025; 273:117170. [PMID: 39826271 DOI: 10.1016/j.bios.2025.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate. A 3D microtip-shaped and Au nanoparticle-decorated multiscale gate interface facilitates the sub-fM-level sensing of female hormones (e.g., progesterone) and oligonucleotide cancer biomarkers by aptamers and DNA probes, respectively. Compared to a planar gate, the micro-engineered interface endows the OECT biosensor with significantly lower detection limit by 10-100 times down to <0.1 fM and faster response of <5 min, accomplishing unprecedentedly high sensitivity while maintaining outstanding mechanical flexibility. Consequently, such microtip-gate all-polymer OECT (MAOECT) enables POCT directly in 1000-fold diluted human saliva samples without centrifugation or redox probes, benefiting female fertility monitoring and oral cancer diagnosis as proof-of-concept demonstrations. This straightforward approach presents great potentials in low-cost wearable health management, at-home monitoring and personalized medicine.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhenkai Yi
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanxuan Liu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yaoyao Wu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuyao Fang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhaolin Ge
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yifei He
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sina Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
9
|
Ali SA, Chen YL, Tseng HS, Ayalew H, She JW, Gautam B, Tu HL, Hsiao YS, Yu HH. Poly(3,4-ethylenedioxythiophene) Nanorod Arrays-Based Organic Electrochemical Transistor for SARS-CoV-2 Spike Protein Detection in Artificial Saliva. ACS Sens 2025; 10:2007-2018. [PMID: 40080450 PMCID: PMC11959606 DOI: 10.1021/acssensors.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The outbreak and continued spread of coronavirus disease 2019 (COVID-19) have significantly threatened public health. Antibody testing is essential for infection diagnosis, seroepidemiological analysis, and vaccine evaluation. However, achieving convenient, fast, and accurate detection remains challenging in this prolonged battle. This study reports a highly sensitive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein detection platform based on organic electrochemical transistors (OECTs) for biosensing applications. We developed a nanostructured poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer with the carboxylic acid functional group (PEDOTAc) for modifying specific antibodies on an OECT channel for the detection of the COVID-19 spike protein. The OECT device features a channel composed of a PEDOT:polystyrenesulfonate (PEDOT:PSS) bottom layer, with the upper layer decorated with PEDOTAc nanorod arrays via the oxidative polymerization and a trans-printing method. Our novel PEDOTAc nanorod array-based OECT device exhibits promising potential for future healthcare and point-of-care sensing due to its rapid response, high sensitivity, and high accuracy. Through optimization, we achieved specific detection of the SARS-CoV-2 spike protein within minutes, with a detectable region from 10 fM to 100 nM. These biosensors hold significant promise for use in the diagnosis and prognosis of COVID-19.
Collapse
Affiliation(s)
- Syed Atif Ali
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science & Technology, Taiwan International Graduate Program
(TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ying-Lin Chen
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hsueh-Sheng Tseng
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hailemichael Ayalew
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei She
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30010, Taiwan
| | - Bhaskarchand Gautam
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiung-Lin Tu
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yu-Sheng Hsiao
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hsiao-hua Yu
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science & Technology, Taiwan International Graduate Program
(TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Qiu J, Sheng Q, Qian X, Yao J, Zhao Y, Zhang X, Han C, Wu Z, Ye H, Peng B, Shan G, Zheng Q, Li H, Du M. Vertically Phase-Separated PEDOT:PSS Film via Solid-Liquid Interface Doping for Flexible Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17202-17216. [PMID: 40066734 DOI: 10.1021/acsami.5c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Organic electrochemical transistors (OECTs) are seen as some of the most promising devices in organic bioelectronics. Recent interest in OECTs is sparked by the high performance of an organic semiconductor channel material, i.e., poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The capability of ion penetration and charge transport of the channel determines the performance of the OECTs. However, the uniform structure of the PEDOT:PSS channel always makes it difficult to achieve a well-balanced between the two functions. Here, we report a novel PEDOT:PSS film with a vertical phase separation structure (VPSS-P), where PSS accumulates at the surface, and PEDOT enriches at the bottom of the film. Such a unique structure improves the electrochemical stability and reduces the contact resistance, significantly enhancing OECT performance with high transconductance (70.5 mS), product of mobility (μ) and volumetric capacitance (C*) (μC* ∼ 479 F cm-1 V-1 s-1), and ultralow contact resistance (∼0.79 Ω cm). Flexible OECT devices with VPSS-P show robust performance against deformation. Our findings highlight a new class of high-performance transistors and provide guidelines for designing state-of-the-art channel materials.
Collapse
Affiliation(s)
- Jiahuan Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Qiuyue Sheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Xinyuan Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Junxian Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Yujie Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Xinyue Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Chengcan Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Hui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
11
|
Boaventura RVA, Pereira CL, Junqueira C, Gonçalves KB, Rezende NP, Borges IA, Barcelos RC, Oréfice FB, Bagno FF, Fonseca FG, Corrêa A, Gomes LS, Lacerda RG. Detection of IgG Antibodies Against COVID-19 N-Protein by Hybrid Graphene-Nanorod Sensor. BIOSENSORS 2025; 15:164. [PMID: 40136961 PMCID: PMC11940001 DOI: 10.3390/bios15030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
The COVID-19 pandemic highlighted the global necessity to develop fast, affordable, and user-friendly diagnostic alternatives. Alongside recognized tests such as ELISA, nanotechnologies have since been explored for direct and indirect diagnosis of SARS-CoV-2, the etiological agent of COVID-19. Accordingly, in this work, we report a method to detect anti-SARS-CoV-2 antibodies based on graphene-based field-effect transistors (GFETs), using a nanostructured platform of graphene with added gold nanorods (GNRs) and a specific viral protein. To detect anti-N-protein IgG antibodies for COVID-19 in human sera, gold nanorods were functionalized with the nucleocapsid (N) protein of SARS-CoV-2, and subsequently deposited onto graphene devices. Our test results demonstrate that the sensor is highly sensitive and can detect antibody concentrations as low as 100 pg/mL. Using the sensor to test human sera that were previously diagnosed with ELISA showed a 90% accuracy rate compared to the ELISA results, with the test completed in under 15 min. Integrating graphene and nanorods eliminates the need for a blocker, simplifying sensor fabrication. This hybrid sensor holds robust potential to serve as a simple and efficient point-of-care platform.
Collapse
Affiliation(s)
- R. V. A. Boaventura
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - C. L. Pereira
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
| | - C. Junqueira
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - K. B. Gonçalves
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - N. P. Rezende
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
| | - I. A. Borges
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - R. C. Barcelos
- Chemistry Department, Federal University of São João del-Rei (UFSJ), Divinópolis 35500-008, MG, Brazil;
| | - F. B. Oréfice
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - F. F. Bagno
- Vaccine Technology Center (CT Vacinas), BH-Tec, UFMG, Belo Horizonte 31270, MG, Brazil;
| | - F. G. Fonseca
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - A. Corrêa
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
- Microbiology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil;
| | - L. S. Gomes
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| | - R. G. Lacerda
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (R.V.A.B.); (C.L.P.); (K.B.G.); (N.P.R.); (F.B.O.); (L.S.G.)
- CTNano, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270, MG, Brazil; (C.J.); (I.A.B.)
| |
Collapse
|
12
|
Wang X, Xiong S, Liu Y, Chen JH, Chen J, Shi P, Li X, Zhou H. Organic photoelectrochemical transistor biosensor based on BiVO 4-ZnIn 2S 4 material for efficient and sensitive detection of MCF-7 cells. Biosens Bioelectron 2025; 271:117011. [PMID: 39626346 DOI: 10.1016/j.bios.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025]
Abstract
Recently, organic photoelectrochemical transistor (OPECT) has become a very interesting biological measurement method in photoelectrochemical (PEC) bioanalysis and future bio-related applications. OPECT is expected to be a powerful tool for disease detection and early warning. Circulating tumor cells (CTCs) are generally deemed to be the dominant factor of tumor metastasis, and 90 % of cancer patients die from this metastatic disease. Therefore, there is an imminent need to develop a highly sensitive CTCs detection sensing system to improve the survival rate of cancer patients. Here, we use a DNA tetrahedrons (DNA NTH) with an aptamer at the top to immobilize on the surface of the photoelectric material to capture cells (MCF-7). Specifically, the BiVO4-ZnIn2S4 hybrid was synthesized by a simple hydrothermal method, which can effectively modulated devices with high current gain. Au NPs were directly integrated on the electrode surface to construct an OPECT photoelectric sensing platform. Subsequently, the aptamer which is thiol-functionalized (SH-Apt) was immobilized on the electrode surface. Because of the overexpression of MUC1 protein on the cell membrane, it can specifically capture MCF-7 cells. The introduction of MCF-7 cells resulted in a significant decrease in the current signal. There is a relationship between the change of photocurrent and the logarithm of MCF-7 cell concentration, which is a good linear relationship ranging from 50 to 5 × 105 cell mL-1. The obtained detection limit is 43 cell mL-1. The biosensor has high selectivity and sensitivity, and achieves sensitive detection of MCF-7.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shibo Xiong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yue Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jia-Hao Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiahe Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pengfei Shi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi, 276005, China.
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi, 276005, China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
13
|
Piscitelli M, Franco CD, Bianco GV, Bruno G, Macchia E, Torsi L, Scamarcio G. Graphene-Based Opto-Electronic Platform for Ultra-Sensitive Biomarker Detection at Zeptomolar Concentrations. SMALL METHODS 2025:e2402026. [PMID: 39838731 DOI: 10.1002/smtd.202402026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10-19 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈1012 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface. The SP shift, mediated by electrolyte capacitive coupling, induces a corresponding shift in the Fermi level of graphene. This shifts the graphene phonon frequencies, which are measured by Raman spectroscopy. Decoupling the sensing interface from the transducing graphene layer provides flexibility in surface chemistry modifications, while preserving the graphene integrity. A key aspect of this biosensor is its ability to precisely determine the graphene charge neutrality point from the voltage dependence of phonon frequency shifts, enabling detections of biomarker at unprecedented low concentrations. The integration of graphene with optical probing demonstrates a proof-of-concept and establishes a ground-breaking approach to in situ biomarker detection, setting the stage for a future generation of portable opto-electronic high-performance diagnostic tools for single-marker detection.
Collapse
Affiliation(s)
- Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy and CNR IFN, Bari, 70125, Italy
| | - Cinzia Di Franco
- Consiglio Nazionale delle Ricerche - Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, CNR-IFN, Bari, 70125, Italy
| | - Giuseppe Valerio Bianco
- Consiglio Nazionale delle Ricerche -Istituto di Nanotecnologia, CNR-Nanotech, Bari, 70125, Italy
| | - Giovanni Bruno
- Consiglio Nazionale delle Ricerche -Istituto di Nanotecnologia, CNR-Nanotech, Bari, 70125, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Gaetano Scamarcio
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| |
Collapse
|
14
|
Dai S, Zhang X, Liu X, Tian X, Cui B, Pang I, Luo H, Liu D, He X, Chen X, Zhang J, Wang Z, Huang J, Zhang S. Vertical-Structure Overcomes the Strain Limit of Stretchable Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413951. [PMID: 39582297 DOI: 10.1002/adma.202413951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Intrinsically stretchable organic electrochemical transistors (IS-OECTs), utilizing organic mixed ionic-electronic conductors (OMIECs) as their channel materials, have drawn great attention recently because of their potential to enable seamless integration between bioelectronic devices and living systems. However, the fabrication of IS-OECTs presents challenges due to the limited availability of OMIEC materials that possess the desired combination of mechanical and electrical properties. In this work, 1) we report the first successful fabrication of a vertical intrinsically stretchable OECT (VIS-OECT), achieved by using elastoadhesive electrodes; 2) we experimentally proved that vertical architecture can push the strain limit of an IS-OECT from 20% to 50%; and 3) the above finding introduces an unconventional design concept: the strain limit of an IS-OECT can surpass the intrinsic stretchability of the constituent OMIECs by employing vertical structure.
Collapse
Affiliation(s)
- Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xinran Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ivo Pang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Haixuan Luo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuecheng He
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xiaonan Chen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
15
|
Chen Y, Wang P, Zhang FN, Dai H, Jiao XY, Wang XY, Yu QW, Kang M, Su S, Wang D. Sensors for surveillance of RNA viruses: a One Health perspective. THE LANCET. MICROBE 2024:101029. [PMID: 39681124 DOI: 10.1016/j.lanmic.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
RNA viruses, especially those capable of cross-species transmission, pose a serious threat to human, animal, and environmental health, as exemplified by the 2024 outbreak of the highly pathogenic avian influenza H5N1 virus in cattle, unpasteurised milk, and workers on dairy farms in the USA. This escalating risk of a new RNA virus pandemic highlights the urgent need to implement One Health strategies. However, the centralised virus detection systems currently in use fall short of meeting the required level of virus surveillance and infection diagnosis, particularly in resource-limited regions. In this context, the latest advancements in RNA virus-sensing technologies offer promising solutions. Through interdisciplinary collaboration, these sensors can achieve sensitivity and reliability similar to that of standard laboratory equipment and offer several advantages, such as compact size, affordability, and operational simplicity. In this Review, we highlight the latest advances in sensing technologies for detecting different biomarkers of viral infections (RNA, antigens, and antibodies). We further compare the sensing principles and performances of these technologies and discuss the possibility of deployment of these sensors in the One Health approach and the challenges expected in this pursuit. In conclusion, the widespread use of RNA virus sensors is expected to enhance the effectiveness of surveillance systems for infectious diseases.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
| | - Fen-Ni Zhang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin-Yi Jiao
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xin-Yu Wang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qi-Wen Yu
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China
| | - Mei Kang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Su
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Di Wang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
16
|
Liu H, Chen J, Hu J, Song J, Lin P. High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing. Bioelectrochemistry 2024; 160:108794. [PMID: 39142024 DOI: 10.1016/j.bioelechem.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 106 and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.
Collapse
Affiliation(s)
- Hong Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junxin Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jin Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiajun Song
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Lin
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
17
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Wen X, Li H, Chen H, Wang K, Ding Y, Wang G, Xu H, Hong X. Tri-signal CdS@SiO 2 nanoprobes for accurate and sensitive detection of human immunoglobulin G with enhanced flexibility and internal validation. Talanta 2024; 278:126495. [PMID: 38955105 DOI: 10.1016/j.talanta.2024.126495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Accurate and sensitive determination of human immunoglobulin G (HIgG) level is critical for diagnosis and treatment of various diseases, including rheumatoid arthritis, humoral immunodeficiencies, and infectious disease. In this study, versatile tri-signal probes were developed by preparing CdS@SiO2 nanorods that integrate photoluminescence (PL), multi-phonon resonant Raman scattering (MRRS) and infrared absorption (IRA) properties. Through the coating of multiple CdS nanoparticles as cores within SiO2 shells, the PL and MRRS properties of CdS were improved, resulting in a significantly lowered limit of detection (LOD), with the lowest LOD of 12.37 ag mL-1. Integration with the distinctive IRA property of SiO2 shells widened the detection range towards higher concentrations, establishing a final linear range of 50 ag mL-1 to 10 μg mL-1. The remarkable consistency among the three signals highlighted the robust internal verification capability for accurate detection. This approach enhances flexibility in selecting detection methodologies to suit diverse scenarios, facilitating HIgG detection. The tri-signal nanoprobes also exhibited excellent detection selectivity, specificity and repeatability. This study presents a fresh idea for developing high-performance detection strategies.
Collapse
Affiliation(s)
- Xiaokun Wen
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongyi Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hong Chen
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Kexin Wang
- College of Physics, Liaoning University, Shenyang, 110036, China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Guorui Wang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
19
|
Hu J, Jing MJ, Huang YT, Kou BH, Li Z, Xu YT, Yu SY, Zeng X, Jiang J, Lin P, Zhao WW. A Photoelectrochemical Retinomorphic Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405887. [PMID: 39054924 DOI: 10.1002/adma.202405887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Reproducing human visual functions with artificial devices is a long-standing goal of the neuromorphic domain. However, emulating the chemical language communication of the visual system in fluids remains a grand challenge. Here, a "multi-color" hydrogel-based photoelectrochemical retinomorphic synapse is reported with unique chemical-ionic-electrical signaling in an aqueous electrolyte that enables, e.g., color perception and biomolecule-mediated synaptic plasticity. Based on the specific enzyme-catalyzed chromogenic reactions, three multifunctional colored hydrogels are developed, which can not only synergize with the Bi2S3 photogate to recognize the primary colors but also synergize with a given polymeric channel to promote the long-term memory of the system. A synaptic array is further constructed for sensing color images and biomolecule-coded information communication. Taking advantage of the versatile biochemistry, the biochemical-driven reversible photoelectric response of the cone cell is further mimicked. This work introduces rich chemical designs into retinomorphic devices, providing a perspective for replicating the human visual system in fluids.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xierong Zeng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Peng Lin
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
20
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
21
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
22
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
23
|
Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306191. [PMID: 38148583 PMCID: PMC11251567 DOI: 10.1002/advs.202306191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities. This review provides an overview of OMIECs in various aspects covering mechanisms of charge transport including electronic transport, ionic transport, and ionic-electronic coupling, as well as conducting/semiconducting conjugated polymers and their applications in organic bioelectronics, including (multi)sensors, neuromorphic devices, and electrochromic devices. OMIECs show promise in organic bioelectronics due to their compatibility with biological systems and the ability to modulate electronic conduction and ionic transport, resembling the principles of biological systems. Organic electrochemical transistors (OECTs) based on OMIECs offer significant potential for bioelectronic applications, responding to external stimuli through modulation of ionic transport. An in-depth review of recent research achievements in organic bioelectronic applications using OMIECs, categorized based on physical and chemical stimuli as well as neuromorphic devices and circuit applications, is presented.
Collapse
Affiliation(s)
- Hyunwook Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Hyun Woo Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
24
|
Guo K, Grünberg R, Ren Y, Chang T, Wustoni S, Strnad O, Koklu A, Díaz‐Galicia E, Agudelo JP, Druet V, Castillo TCH, Moser M, Ohayon D, Hama A, Dada A, McCulloch I, Viola I, Arold ST, Inal S. SpyDirect: A Novel Biofunctionalization Method for High Stability and Longevity of Electronic Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306716. [PMID: 38161228 PMCID: PMC11251562 DOI: 10.1002/advs.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Collapse
Affiliation(s)
- Keying Guo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yuxiang Ren
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tianrui Chang
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Shofarul Wustoni
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ondrej Strnad
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Anil Koklu
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Escarlet Díaz‐Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jessica Parrado Agudelo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Victor Druet
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - David Ohayon
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Adel Hama
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ashraf Dada
- King Faisal Specialist Hospital & Research Centre (KFSH‐RC)Jeddah21499Saudi Arabia
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Ivan Viola
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierF‐34090France
| | - Sahika Inal
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
25
|
Liu X, Sun Y, Song H, Zhang W, Liu T, Chu Z, Gu X, Ma Z, Jin W. Nanomaterials-based electrochemical biosensors for diagnosis of COVID-19. Talanta 2024; 274:125994. [PMID: 38547841 DOI: 10.1016/j.talanta.2024.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Yifan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Huaiyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Wei Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| |
Collapse
|
26
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
27
|
Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun 2024; 15:4035. [PMID: 38740742 PMCID: PMC11091083 DOI: 10.1038/s41467-024-48294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
28
|
Hu X, Zhang M, Liu Y, Li YT, Li W, Li T, Li J, Xiao X, He Q, Zhang ZY, Zhang GJ. A portable transistor immunosensor for fast identification of porcine epidemic diarrhea virus. J Nanobiotechnology 2024; 22:239. [PMID: 38735951 PMCID: PMC11089749 DOI: 10.1186/s12951-024-02440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.
Collapse
Affiliation(s)
- Xiao Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Yiwei Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, P. R. China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China.
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China.
| |
Collapse
|
29
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
30
|
Algarín Pérez A, Acedo P. An Organic Electrochemical Transistor-Based Sensor for IgG Levels Detection of Relevance in SARS-CoV-2 Infections. BIOSENSORS 2024; 14:207. [PMID: 38667200 PMCID: PMC11048065 DOI: 10.3390/bios14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Organic electrochemical transistors appear as an alternative for relatively low-cost, easy-to-operate biosensors due to their intrinsic amplification. Herein, we present the fabrication, characterization, and validation of an immuno-detection system based on commercial sensors using gold electrodes where no additional surface treatment is performed on the gate electrode. The steady-state response of these sensors has been studied by analyzing different semiconductor organic channels in order to optimize the biomolecular detection process and its the application to monitoring human IgG levels due to SARS-CoV-2 infections. Detection levels of up to tens of μgmL-1 with sensitivities up to 13.75% [μg/mL]-1, concentration ranges of medical relevance in seroprevalence studies, have been achieved.
Collapse
Affiliation(s)
- Antonio Algarín Pérez
- Electronic Technology Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
| | | |
Collapse
|
31
|
Bai J, Liu D, Tian X, Wang Y, Cui B, Yang Y, Dai S, Lin W, Zhu J, Wang J, Xu A, Gu Z, Zhang S. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. SCIENCE ADVANCES 2024; 10:eadl1856. [PMID: 38640241 PMCID: PMC11029813 DOI: 10.1126/sciadv.adl1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.
Collapse
Affiliation(s)
- Jing Bai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yilin Yang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wensheng Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
32
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Wallace A, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicles-based point-of-care testing for the diagnosis and monitoring of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587511. [PMID: 38617279 PMCID: PMC11014472 DOI: 10.1101/2024.03.31.587511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a debilitating condition that affects millions of people worldwide. One promising strategy for detecting and monitoring AD early on is using extracellular vesicles (EVs)-based point-of-care testing; however, diagnosing AD using EVs poses a challenge due to the low abundance of EV-biomarkers. Here, we present a fully integrated organic electrochemical transistor (OECT) that enables high accuracy, speed, and convenience in the detection of EVs from AD patients. We incorporated self-aligned acoustoelectric enhancement of EVs on a chip that rapidly propels, enriches, and specifically binds EVs to the OECT detection area. With our enhancement of pre-concentration, we increased the sensitivity to a limit of detection of 500 EV particles/μL and reduced the required detection time to just two minutes. We also tested the sensor on an AD mouse model to monitor AD progression, examined mouse Aβ EVs at different time courses, and compared them with intraneuronal Aβ cumulation using MRI. This innovative technology has the potential to diagnose Alzheimer's and other neurodegenerative diseases accurately and quickly, enabling monitoring of disease progression and treatment response.
Collapse
|
33
|
Gao Y, Zhou Y, Ji X, Graham AJ, Dundas CM, Miniel Mahfoud IE, Tibbett BM, Tan B, Partipilo G, Dodabalapur A, Rivnay J, Keitz BK. A hybrid transistor with transcriptionally controlled computation and plasticity. Nat Commun 2024; 15:1598. [PMID: 38383505 PMCID: PMC10881478 DOI: 10.1038/s41467-024-45759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.
Collapse
Affiliation(s)
- Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuchen Zhou
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ismar E Miniel Mahfoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Bailey M Tibbett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin Tan
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ananth Dodabalapur
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Microelectronics Research Center, University of Texas at Austin, Austin, TX, 78758, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
34
|
Song Q, Liu H, Wang W, Chen C, Cao Y, Chen B, Cai B, He R. Carboxyl graphene modified PEDOT:PSS organic electrochemical transistor for in situ detection of cancer cell morphology. NANOSCALE 2024; 16:3631-3640. [PMID: 38276969 DOI: 10.1039/d3nr06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Circulating tumor cells in human peripheral blood play an important role in cancer metastasis. In addition to the size-based and antibody-based capture and separation of cancer cells, their electrical characterization is important for rare cell detection, which can prove fatal in point-of-care testing. Herein, an organic electrochemical transistor (OECT) biosensor made of solution-gated carboxyl graphene mixed with PEDOT:PSS for the detection of cancer cells in situ is reported. Carboxyl graphene was used in this work to modulate cancer cell morphology, which differs significantly from normal blood cells, to achieve rare cancer cell detection. When the concentration of carboxyl graphene mixed in PEDOT:PSS was increased from 0 to 5 mg mL-1, the cancer cell surface area increased from 218 μm2 to 530 μm2, respectively. A change in cell morphology was also detected by the OECT. Negative charges in the cancer cells induced a positive shift in gate voltage, which was approximately 40 mV for spherical-shaped cells. When the cell surface area increased, transfer curves of transistor revealed a negative shift in gate voltage. Therefore, the sensor can be used for in situ detection of cancer cell morphology during the cell capture process, which can be used to identify whether the captured cells are deformable.
Collapse
Affiliation(s)
- Qingyuan Song
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Hongni Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weiyi Wang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Chaohui Chen
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Yiping Cao
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
35
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
36
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
37
|
de Araujo WR, Lukas H, Torres MDT, Gao W, de la Fuente-Nunez C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS NANO 2024; 18:1757-1777. [PMID: 38189684 PMCID: PMC11537281 DOI: 10.1021/acsnano.3c01629] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.
Collapse
Affiliation(s)
- William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP 13083-970, Brazil
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Deng M, Yang H, Zhang H, Li C, Chen J, Tang W, Wang X, Chen Z, Li J. Portable and Rapid Dual-Biomarker Detection Using Solution-Gated Graphene Field Transistors in the Accurate Diagnosis of Prostate Cancer. Adv Healthc Mater 2024; 13:e2302117. [PMID: 37922499 DOI: 10.1002/adhm.202302117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Indexed: 11/05/2023]
Abstract
Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaoqian Li
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Jingqiu Chen
- School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Tang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
39
|
Hao L, Li X, Liang H, Lei W, Yang W, Zhang B. Biosensors based on potent miniprotein binder for sensitive testing of SARS-CoV‑2 variants of concern. Mikrochim Acta 2023; 191:38. [PMID: 38110824 DOI: 10.1007/s00604-023-06113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The miniprotein binder TRI2-2 was employed as an antibody alternative to build a single antibody-coupled TRI2-2 based gold nanoparticle-based lateral flow immunoassay (AT-GLFIA) biosensor. The biosensor provides high specificity and affinity binding between TRI2-2 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) spike antigen receptor binding domain (S-RBD). It also enables rapid testing of wild-type (WT), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) SARS-CoV-2 S-RBD and is at least ~ 16-fold more sensitive than conventional antibody pair-based GLFIA (AP-GLFIA). Besides, we developed a wireless micro-electrochemical assay (WMECA) biosensor based on the TRI2-2, which demonstrates an excellent VOCs testing capability at the pg mL-1 level. Overall, our results demonstrate that integrating miniprotein binders into conventional immunoassay systems is a promising design for improving the testing capabilities of such systems without hard-to-obtain antibody pair, complex reporter design, laborious signal amplification strategies, or specific instrumentation.
Collapse
Affiliation(s)
- Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xue Li
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hongying Liang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenjing Lei
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
40
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
41
|
Mazzaracchio V, Rios Maciel M, Porto Santos T, Toda-Peters K, Shen AQ. Duplex Electrochemical Microfluidic Sensor for COVID-19 Antibody Detection: Natural versus Vaccine-Induced Humoral Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207731. [PMID: 36916701 DOI: 10.1002/smll.202207731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Vincenzo Mazzaracchio
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauricio Rios Maciel
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Tatiana Porto Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
42
|
Li H, Gong H, Wong TH, Zhou J, Wang Y, Lin L, Dou Y, Jia H, Huang X, Gao Z, Shi R, Huang Y, Chen Z, Park W, Li JY, Chu H, Jia S, Wu H, Wu M, Liu Y, Li D, Li J, Xu G, Chang T, Zhang B, Gao Y, Su J, Bai H, Hu J, Yiu CK, Xu C, Hu W, Huang J, Chang L, Yu X. Wireless, battery-free, multifunctional integrated bioelectronics for respiratory pathogens monitoring and severity evaluation. Nat Commun 2023; 14:7539. [PMID: 37985765 PMCID: PMC10661182 DOI: 10.1038/s41467-023-43189-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.
Collapse
Affiliation(s)
- Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Huarui Gong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Long Lin
- College of Engineering, Peking University, 100871, Beijing, China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ji Yu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Hongwei Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Guoqiang Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianrui Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hao Bai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Hu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenchuang Hu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jiandong Huang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China.
- Clinical Oncology Center, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China.
| |
Collapse
|
43
|
Huang Z, Wang W, Wang Y, Wang H, Pang Y, Yuan Q, Tan J, Tan W. Electrochemical Detection of Viral Nucleic Acids by DNA Nanolock-Based Porous Electrode Device. Anal Chem 2023; 95:16668-16676. [PMID: 37910393 DOI: 10.1021/acs.analchem.3c03168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Developing rapid, sensitive, and facile nucleic acid detection technologies is of paramount importance for preventing and controlling infectious diseases. Benefiting from the advantages such as rapid response, low cost, and simple operation, electrochemical impedance spectroscopy holds great promise for point-of-care nucleic acid detection. However, the sensitivity of electrochemical impedance spectroscopy for low molecular weight nucleic acids testing is still limited. This work presents a DNA nanolock-based porous electrode to improve the sensitivity of electrochemical impedance spectroscopy. Once the target nucleic acids are recognized by the DNA probes, the pore-attached DNA nanolock caused remarkable impedance amplification by blocking the nanopores. Taking SARS-CoV-2 nucleic acid as a model analyte, the detection limit of the porous electrode was as low as 0.03 fM for both SARS-CoV-2 RNA and DNA. The integration of a porous electrode with a wireless communicating unit generates a portable detection device that could be applied to direct SARS-CoV-2 nucleic acid testing in saliva samples. The portable device could effectively distinguish the COVID-19 positive and negative samples, showing a sensitivity of 100% and a specificity of 93%. Owing to its rapid, ultrasensitive, specific, and portable features, the as-designed DNA nanolock and porous electrode-based portable device holds great promise as a point-of-care platform for real-time screening of COVID-19 and other epidemics.
Collapse
Affiliation(s)
- Zhongnan Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenjie Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingfei Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Han Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yimin Pang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
44
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
45
|
Song Y, Song JY, Shim JE, Kim DH, Na HK, You EA, Ha YG. Highly Effective and Efficient Self-Assembled Multilayer-Based Electrode Passivation for Operationally Stable and Reproducible Electrolyte-Gated Transistor Biosensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46527-46537. [PMID: 37713500 DOI: 10.1021/acsami.3c09976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
To ensure the operational stability of transistor-based biosensors in aqueous electrolytes during multiple measurements, effective electrode passivation is crucially important for reliable and reproducible device performances. This paper presents a highly effective and efficient electrode passivation method using a facile solution-processed self-assembled multilayer (SAML) with excellent insulation property to achieve operational stability and reproducibility of electrolyte-gated transistor (EGT) biosensors. The SAML is created by the consecutive self-assembly of three different molecular layers of 1,10-decanedithiol, vinyl-polyhedral oligomeric silsesquioxane, and 1-octadecanethiol. This passivation enables EGT to operate stably in phosphate-buffered saline (PBS) during repeated measurements over multiple cycles without short-circuiting. The SAML-passivated EGT biosensor is fabricated with a solution-processed In2O3 thin film as an amorphous oxide semiconductor working both as a semiconducting channel in the transistor and as a functionalizable biological interface for a bioreceptor. The SAML-passivated EGT including In2O3 thin film is demonstrated for the detection of Tau protein as a biomarker of Alzheimer's disease while employing a Tau-specific DNA aptamer as a bioreceptor and a PBS solution with a low ionic strength to diminish the charge-screening (Debye length) effect. The SAML-passivated EGT biosensor functionalized with the Tau-specific DNA aptamer exhibits ultrasensitive, quantitative, and reliable detection of Tau protein from 1 × 10-15 to 1 × 10-10 M, covering a much larger range than clinical needs, via changes in different transistor parameters. Therefore, the SAML-based passivation method can be effectively and efficiently utilized for operationally stable and reproducible transistor-based biosensors. Furthermore, this presented strategy can be extensively adapted for advanced biomedical devices and bioelectronics in aqueous or physiological environments.
Collapse
Affiliation(s)
- Youngmin Song
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jong Yu Song
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jae-Eul Shim
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Dong Hyung Kim
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Hee-Kyung Na
- Bioimaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Eun-Ah You
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Young-Geun Ha
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
46
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
47
|
Ma J, Du Z, Lei Z, Wang L, Yu Y, Ye X, Ou W, Wei X, Ai B, Zhou Y. Intermolecular 3D-MoRSE Descriptors for Fast and Accurate Prediction of Electronic Couplings in Organic Semiconductors. J Chem Inf Model 2023; 63:5089-5096. [PMID: 37566518 DOI: 10.1021/acs.jcim.3c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The theoretical rational design of organic semiconductors faces an obstacle in that the performance of organic semiconductors depends very much on their stacking and local morphology (for example, phase domains), which involves numerous molecules. Simulation becomes computationally expensive as intermolecular electronic couplings have to be calculated from density functional theory. Therefore, developing fast and accurate methods for intermolecular electronic coupling estimation is essential. In this work, by developing a series of new intermolecular 3D descriptors, we achieved fast and accurate prediction of electronic couplings in both crystalline and amorphous thin films. Three groups of developed descriptors could perform faster and higher accuracy prediction on electronic couplings than the most advanced state-of-the-art descriptors. This work paves the way for large-scale simulations, high-throughput calculations, and screening of organic semiconductors.
Collapse
Affiliation(s)
- Jiacheng Ma
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenya Du
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangzhou Xinhua University, Guangzhou 510520, China
| | - Zhanpeng Lei
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lewen Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinye Yu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Micro-Nano Manufacturing and System Integration Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ye
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingzhan Wei
- Micro-Nano Manufacturing and System Integration Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Bin Ai
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yecheng Zhou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
48
|
Lu SH, Li Y, Wang X. Soft, flexible conductivity sensors for ocean salinity monitoring. J Mater Chem B 2023; 11:7334-7343. [PMID: 37337831 DOI: 10.1039/d3tb01167d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Flexible electrochemical sensors that measure the concentrations of specific analytes (e.g., ions, molecules, and microorganisms) provide valuable information for medical diagnosis, personal health care, and environmental monitoring. However, the conductive electrodes of such sensors need to be exposed to the surrounding environments like chloride-containing aqueous solutions during their operation, where chloride ions (Cl-) can potentially cause corrosion and dissolution of the sensors, negatively impacting their performance and durability. In this work, we develop soft, flexible conductivity sensors made of gold (Au) electrodes and systematically study their electrochemical behaviors in sodium chloride (NaCl) solutions to prevent chloride-induced corrosion and enhance their sensitivity for marine environmental monitoring. The causes of gold chlorination reactions and polarization effects are identified and effectively prevented by analyzing the effects of direct current (DC) and alternating current (AC) voltages, AC frequencies, and exposed sensing areas of the conductivity (salinity) sensors. Accordingly, a performance diagram is constructed to provide guidance for the selection of operation parameters for the salinity sensor. We also convert the varying impedance values of salinity sensors at different salinity levels into output voltage signals using a voltage divider circuit with an AC voltage (0.6 V) source. The results offer an assessment of the accuracy and response time of the salinity sensors, as well as their potential for integration with data transmission components for real-time ocean monitoring. This study has important implications for the development of soft, flexible, Au-based electrochemical sensors that can operate efficiently in diverse biological fluids and marine environments.
Collapse
Affiliation(s)
- Shao-Hao Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
49
|
Wu X, Li Z, Hu J, Wang S, Wang Y, Lin P, Zhou H, Zhao WW. Metallointercalated-DNA Nanotubes as Functional Light Antenna for Organic Photoelectrochemical Transistor Biosensor with Minimum Background. Anal Chem 2023; 95:11800-11806. [PMID: 37506318 DOI: 10.1021/acs.analchem.3c02258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) biosensor with a removed background is desired but remains challenging. So far, scientists still lack a solution to this issue. The light-matter interplay is expected to achieve an advanced OPECT with unknown possibilities. Here, we address this challenge by tailoring a unique heterogeneous light antenna as the functional gating module and its cascade interaction with a proper channel, which is exemplified by bioinduced [Ru(bpy)2dppz]2+-intercalated DNA nanotubes (NTs)/NiO heterojunction and its modulation against a diethylenetriamine-treated poly(ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel. Light stimulation of the antenna can generate the obvious cathodic photocurrent and, hence, modulate the channel, accomplishing OPECT with a minimal background and the hitherto highest current gain of 19 000. Linking with nucleic acid hybridization using microRNA-155 as the representative target, the device achieves sensitive biosensing down to 5.0 fM.
Collapse
Affiliation(s)
- Xiaodi Wu
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shumin Wang
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hong Zhou
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Qing R, Xue M, Zhao J, Wu L, Breitwieser A, Smorodina E, Schubert T, Azzellino G, Jin D, Kong J, Palacios T, Sleytr UB, Zhang S. Scalable biomimetic sensing system with membrane receptor dual-monolayer probe and graphene transistor arrays. SCIENCE ADVANCES 2023; 9:eadf1402. [PMID: 37478177 PMCID: PMC10361598 DOI: 10.1126/sciadv.adf1402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.
Collapse
Affiliation(s)
- Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mantian Xue
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jiayuan Zhao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Andreas Breitwieser
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Giovanni Azzellino
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Jin
- Avalon GloboCare Corp., Freehold, NJ 07728, USA
| | - Jing Kong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Uwe B. Sleytr
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shuguang Zhang
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|