1
|
Zhang X, Wen X, Zhou D, Zhou Z, Chen G, Li W, Gao H, Li N. Lycibarbarspermidine L from Goji Berry Promotes Intestinal Restoration in an Antibiotic-Induced Rat Model through Targeting uc.141A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12723-12733. [PMID: 40356196 DOI: 10.1021/acs.jafc.5c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Oral antibiotics damage gut epithelium while treating infections. Goji berry derives from Lycium barbarum L., which is employed as a dietary and tonic herb with the effect of promoting intestinal health. The spermidine compound lycibarbarspermidine L (LBS L) in it can promote intestinal epithelial growth. The purpose of the research is to examine the reparative effects of LBS L against antibiotic-stimulated gut epithelial damage, as well as the processes associated with T-UCR. Intestinal epithelial cells were stimulated with antibiotics to induce injury. The impact of LBS L and T-UCR-related mechanisms was evaluated through cell assays. Ultimately, a rat model of intestinal injury was developed by administering antibiotics. We found that LBS L reversed the intestinal damage caused by antibiotics through modulating uc.141A/miR195-3p. A reduction in intestinal damage was observed in rat models. In conclusion, LBS L ameliorates antibiotic-induced intestinal epithelial cell damage in rats by modulating uc.141A.
Collapse
Affiliation(s)
- Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoyan Wen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541000, P. R. China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, P. R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, P. R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
2
|
de Mendoza A. Genome synteny reveals hidden enhancer conservation. Nat Genet 2025:10.1038/s41588-025-02194-2. [PMID: 40425825 DOI: 10.1038/s41588-025-02194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Affiliation(s)
- Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Kosicki M, Laboy Cintrón D, Keukeleire P, Schubach M, Page NF, Georgakopoulos-Soares I, Akiyama JA, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Barton S, Godfrey P, Beckman E, Sanders SJ, Kircher M, Pennacchio LA, Ahituv N. Massively parallel reporter assays and mouse transgenic assays provide correlated and complementary information about neuronal enhancer activity. Nat Commun 2025; 16:4786. [PMID: 40404660 PMCID: PMC12098896 DOI: 10.1038/s41467-025-60064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
High-throughput massively parallel reporter assays (MPRAs) and phenotype-rich in vivo transgenic mouse assays are two potentially complementary ways to study the impact of noncoding variants associated with psychiatric diseases. Here, we investigate the utility of combining these assays. Specifically, we carry out an MPRA in induced human neurons on over 50,000 sequences derived from fetal neuronal ATAC-seq datasets and enhancers validated in mouse assays. We also test the impact of over 20,000 variants, including synthetic mutations and 167 common variants associated with psychiatric disorders. We find a strong and specific correlation between MPRA and mouse neuronal enhancer activity. Four out of five tested variants with significant MPRA effects affected neuronal enhancer activity in mouse embryos. Mouse assays also reveal pleiotropic variant effects that could not be observed in MPRA. Our work provides a catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dianne Laboy Cintrón
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pia Keukeleire
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562, Lübeck, Germany
| | - Max Schubach
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Nicholas F Page
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jennifer A Akiyama
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sarah Barton
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick Godfrey
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Erik Beckman
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephan J Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 16 7TY, UK
| | - Martin Kircher
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562, Lübeck, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
4
|
Zhao S, Yang Q, Yu Z, Chu C, Dai S, Li H, Diao M, Feng L, Ke J, Xue Y, Zhou Q, Liu Y, Ma H, Lin CP, Yao YG, Zhong G. Deciphering enhancers of hearing loss genes for efficient and targeted gene therapy of hereditary deafness. Neuron 2025; 113:1579-1596.e5. [PMID: 40262614 DOI: 10.1016/j.neuron.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Hereditary hearing loss accounts for about 60% of congenital deafness. Although adeno-associated virus (AAV)-mediated gene therapy shows substantial potential for treating genetic hearing impairments, there remain significant concerns regarding the specificity and safety of AAV vectors. The sophisticated nature of the cochlea further complicates the challenge of precisely targeting gene delivery. Here, we introduced an AAV-reporter-based in vivo transcriptional enhancer reconstruction (ARBITER) workflow, enabling efficient and reliable dissection of enhancers. With ARBITER, we successfully demonstrated that the conserved non-coding elements (CNEs) within the gene locus collaboratively regulate the expression of Slc26a5, which was further validated using knockout mouse models. We also assessed the potential of identified enhancers to treat hereditary hearing loss by conducting gene therapy in Slc26a5 mutant mice. Based on the original Slc26a5 enhancer with limited efficiency, we engineered a highly efficient and outer hair cell (OHC)-specific enhancer, B8, which successfully restored hearing of Slc26a5 knockout mice.
Collapse
Affiliation(s)
- Simeng Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Qiuxiang Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shengqi Dai
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongli Li
- State Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Yunnan Engineering Center on Brain Disease Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, Yunnan, China
| | - Min Diao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lingyue Feng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Xue
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qifang Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Yunnan Engineering Center on Brain Disease Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Gene Editing and Cell Therapy for Rare Diseases, Fudan University, Shanghai 20031, China.
| |
Collapse
|
5
|
Toh H, Au Yeung WK, Unoki M, Matsumoto Y, Miki Y, Matsumura Y, Baba Y, Sado T, Nakamura Y, Matsuda M, Sasaki H. A deletion at the X-linked ARHGAP36 gene locus is associated with the orange coloration of tortoiseshell and calico cats. Curr Biol 2025:S0960-9822(25)00391-4. [PMID: 40378840 DOI: 10.1016/j.cub.2025.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/28/2025] [Indexed: 05/19/2025]
Abstract
The X-linked orange (O) locus in domestic cats controls an unknown molecular mechanism that causes the suppression of black-brownish pigmentation in favor of orange coloration. The alternating black-brownish and orange patches seen in tortoiseshell and calico cats are considered classic examples of the phenotypic expression of random X chromosome inactivation (XCI) occurring in female mammals. However, the O gene in the cat genome has not been identified, and the genetic variation responsible for the orange coloration remains unknown. We report here that a 5.1-kilobase (kb) deletion within an intron of the X-linked ARHGAP36 gene, encoding a Rho GTPase-activating protein, is closely and exclusively associated with orange coloration. The deleted region contains a highly conserved putative regulatory element, whose removal is presumed to alter ARHGAP36 expression. Notably, ARHGAP36 expression in cat skin tissues is linked to the suppression of many melanogenesis genes, potentially shifting pigment synthesis from eumelanin to pheomelanin. Furthermore, we find evidence that the gene undergoes XCI in female human and mouse cells and XCI-dependent CpG island methylation consistent with random XCI in female domestic cats. The 5.1-kb deletion seems widespread in domestic cats with orange coat coloration, suggesting a single origin of this coat color phenotype.
Collapse
Affiliation(s)
- Hidehiro Toh
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan
| | - Wan Kin Au Yeung
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; College of Liberal Arts, International Christian University, Mitaka 181-8585, Japan
| | - Motoko Unoki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; School of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Matsumoto
- Data Science Center, Azabu University, Sagamihara 252-5201, Japan; Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama 231-0033, Japan
| | - Yuka Miki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | | | - Yoshihiro Baba
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Sado
- Graduate School of Agriculture and Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan
| | - Miho Matsuda
- Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. Curr Biol 2025:S0960-9822(25)00552-4. [PMID: 40378841 DOI: 10.1016/j.cub.2025.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/23/2025] [Indexed: 05/19/2025]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that Sex-linked orange is caused by a 5-kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 (Arhgap36) gene. Single-cell RNA sequencing (RNA-seq) studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but Mc1r and its ability to stimulate cAMP accumulation is intact. Instead, we show that expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKAC); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r. Our findings resolve a longstanding comparative genetic puzzle, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
Affiliation(s)
- Christopher B Kaelin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kelly A McGowan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Joshaya C Trotman
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Donald C Koroma
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Victor A David
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21701, USA
| | | | - Emily C Graff
- Department of Pathobiology and Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Anne Schmidt-Küntzel
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21701, USA; Cheetah Conservation Fund, Otjiwarongo, Namibia
| | - Elena Oancea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Gregory S Barsh
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
7
|
Patsakis M, Provatas K, Baltoumas FA, Chantzi N, Mouratidis I, Pavlopoulos GA, Georgakopoulos-Soares I. MAFin: motif detection in multiple alignment files. Bioinformatics 2025; 41:btaf125. [PMID: 40106711 PMCID: PMC11978385 DOI: 10.1093/bioinformatics/btaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
MOTIVATION Whole Genome and Proteome Alignments, represented by the multiple alignment file format, have become a standard approach in comparative genomics and proteomics. These often require identifying conserved motifs, which is crucial for understanding functional and evolutionary relationships. However, current approaches lack a direct method for motif detection within MAF files. We present MAFin, a novel tool that enables efficient motif detection and conservation analysis in MAF files to address this gap, streamlining genomic and proteomic research. RESULTS We developed MAFin, the first motif detection tool for Multiple Alignment Format files. MAFin enables the multithreaded search of conserved motifs using three approaches: (i) using user-specified k-mers to search the sequences. (ii) with regular expressions, in which case one or more patterns are searched, and (iii) with predefined Position Weight Matrices. Once the motif has been found, MAFin detects the motif instances and calculates the conservation across the aligned sequences. MAFin also calculates a conservation percentage, which provides information about the conservation levels of each motif across the aligned sequences, based on the number of matches relative to the length of the motif. A set of statistics enables the interpretation of each motif's conservation level, and the detected motifs are exported in JSON and CSV files for downstream analyses. AVAILABILITY AND IMPLEMENTATION MAFin is offered as a Python package under the GPL license as a multi-platform application and is available at: https://github.com/Georgakopoulos-Soares-lab/MAFin.
Collapse
Affiliation(s)
- Michail Patsakis
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kimonas Provatas
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- Division of Basic Sciences, University of Crete Medical School, Heraklion 71110, Greece
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
8
|
Wang G, Zhang D, He Z, Mao B, Hu X, Chen L, Yang Q, Zhou Z, Zhang Y, Linghu K, Tang C, Xu Z, Liu D, Song J, Wang H, Lin Y, Li R, Lin JW, Chen L. Machine learning-based prediction reveals kinase MAP4K4 regulates neutrophil differentiation through phosphorylating apoptosis-related proteins. PLoS Comput Biol 2025; 21:e1012877. [PMID: 40096134 PMCID: PMC11957395 DOI: 10.1371/journal.pcbi.1012877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/31/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, an essential innate immune cell type with a short lifespan, rely on continuous replenishment from bone marrow (BM) precursors. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the molecular regulators involved in the differentiation process remain poorly understood. Here we developed a random forest-based machine-learning pipeline, NeuRGI (Neutrophil Regulatory Gene Identifier), which utilized Positive-Unlabeled Learning (PU-learning) and neural network-based in silico gene knockout to identify neutrophil regulators. We interrogated features including gene expression dynamics, physiological characteristics, pathological relatedness, and gene conservation for the model training. Our identified pipeline leads to identifying Mitogen-Activated Protein Kinase-4 (MAP4K4) as a novel neutrophil differentiation regulator. The loss of MAP4K4 in hematopoietic stem cells and progenitors in mice induced neutropenia and impeded the differentiation of neutrophils in the bone marrow. By modulating the phosphorylation level of proteins involved in cell apoptosis, such as STAT5A, MAP4K4 delicately regulates cell apoptosis during the process of neutrophil differentiation. Our work presents a novel regulatory mechanism in neutrophil differentiation and provides a robust prediction model that can be applied to other cellular differentiation processes.
Collapse
Affiliation(s)
- Guihua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhifeng He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingxin Yang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yating Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kepan Linghu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zijie Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Defu Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiying Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yishan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruihan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Wen Lin
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Cornelissen FMG, He Z, Ciputra E, de Haas RR, Beumer‐Chuwonpad A, Noske D, Vandertop WP, Piersma SR, Jiménez CR, Murre C, Westerman BA. The translatome of glioblastoma. Mol Oncol 2025; 19:716-740. [PMID: 39417309 PMCID: PMC11887679 DOI: 10.1002/1878-0261.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
Collapse
Affiliation(s)
- Fleur M. G. Cornelissen
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Zhaoren He
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Edward Ciputra
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Richard R. de Haas
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | | | - David Noske
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - W. Peter Vandertop
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Cornelis Murre
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Bart A. Westerman
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| |
Collapse
|
10
|
Bayraktar R, Tang Y, Dragomir MP, Ivan C, Peng X, Fabris L, Zhang J, Carugo A, Aneli S, Liu J, Chen MJM, Srinivasan S, Sahnoune I, Bayraktar E, Akdemir KC, Chen M, Narayanan P, Huang W, Ott LF, Eterovic AK, Villarreal OE, Mohammad MM, Peoples MD, Walsh DM, Hernandez JA, Morgan MB, Shaw KR, Davis JS, Menter D, Tam CS, Yeh P, Dawson SJ, Rassenti LZ, Kipps TJ, Kunej T, Estrov Z, Joosse SA, Pagani L, Alix-Panabières C, Pantel K, Ferajoli A, Futreal A, Wistuba II, Radovich M, Kopetz S, Keating MJ, Draetta GF, Mattick JS, Liang H, Calin GA. The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers. SCIENCE ADVANCES 2025; 11:eado2830. [PMID: 39970212 PMCID: PMC11837999 DOI: 10.1126/sciadv.ado2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The mutational landscape of phylogenetically ultraconserved elements (UCEs), especially those in noncoding DNAs (ncUCEs), and their functional relevance in cancers remain poorly characterized. Here, we perform a systematic analysis of whole-genome and in-house targeted UCE sequencing datasets from more than 3000 patients with cancer of 13,736 UCEs and demonstrate that ncUCE somatic alterations are common. Using a multiplexed CRISPR knockout screen in colorectal cancer cells, we show that the loss of several altered ncUCEs significantly affects cell proliferation. In-depth functional studies in vitro and in vivo further reveal that specific ncUCEs can be enhancers of tumor suppressors (such as ARID1B) and silencers of oncogenic proteins (such as RPS13). Moreover, several miRNAs located in ncUCEs are recurrently mutated. Mutations in miR-142 locus can affect the Drosha-mediated processing of precursor miRNAs, resulting in the down-regulation of the mature transcript. These results provide systematic evidence that specific ncUCEs play diverse regulatory roles in cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
| | - Yitao Tang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Pathology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, CCM, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, 69210 Heidelberg, Germany
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Caris Life Science, Irving, TX 75039, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Serena Aneli
- Department of Biology, University of Padova, Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Jintan Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M. Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iman Sahnoune
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C. Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranav Narayanan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Johns Hopkins Physical Science– Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Leonie Florence Ott
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agda Karina Eterovic
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Viracor Eurofins, Oncology Diagnostics, Lee's Summit, MO 64086, USA
| | - Oscar Eduardo Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohammad Moustaf Mohammad
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael D. Peoples
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle M. Walsh
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon Andrew Hernandez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret B. Morgan
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Constantine S. Tam
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Yeh
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Laura Z. Rassenti
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domzale, Slovenia
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
| | - Catherine Alix-Panabières
- The Laboratory Rare Human Circulating Cells and Liquid Biopsy, The University Medical Center of Montpellier, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Ferajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Caris Life Science, Irving, TX 75039, USA
- Department of Surgery, Division of General Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F. Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John S. Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Marderstein AR, Kundu S, Padhi EM, Deshpande S, Wang A, Robb E, Sun Y, Yun CM, Pomales-Matos D, Xie Y, Nachun D, Jessa S, Kundaje A, Montgomery SB. Mapping the regulatory effects of common and rare non-coding variants across cellular and developmental contexts in the brain and heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638922. [PMID: 40027628 PMCID: PMC11870466 DOI: 10.1101/2025.02.18.638922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Whole genome sequencing has identified over a billion non-coding variants in humans, while GWAS has revealed the non-coding genome as a significant contributor to disease. However, prioritizing causal common and rare non-coding variants in human disease, and understanding how selective pressures have shaped the non-coding genome, remains a significant challenge. Here, we predicted the effects of 15 million variants with deep learning models trained on single-cell ATAC-seq across 132 cellular contexts in adult and fetal brain and heart, producing nearly two billion context-specific predictions. Using these predictions, we distinguish candidate causal variants underlying human traits and diseases and their context-specific effects. While common variant effects are more cell-type-specific, rare variants exert more cell-type-shared regulatory effects, with selective pressures particularly targeting variants affecting fetal brain neurons. To prioritize de novo mutations with extreme regulatory effects, we developed FLARE, a context-specific functional genomic model of constraint. FLARE outperformed other methods in prioritizing case mutations from autism-affected families near syndromic autism-associated genes; for example, identifying mutation outliers near CNTNAP2 that would be missed by alternative approaches. Overall, our findings demonstrate the potential of integrating single-cell maps with population genetics and deep learning-based variant effect prediction to elucidate mechanisms of development and disease-ultimately, supporting the notion that genetic contributions to neurodevelopmental disorders are predominantly rare.
Collapse
Affiliation(s)
- Andrew R. Marderstein
- Department of Pathology, Stanford University, Stanford, CA, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M. Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Salil Deshpande
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Austin Wang
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Esther Robb
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ying Sun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Chang M. Yun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Selin Jessa
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Tajima Y, Vargas CDM, Ito K, Wang W, Luo JD, Xing J, Kuru N, Machado LC, Siepel A, Carroll TS, Jarvis ED, Darnell RB. A humanized NOVA1 splicing factor alters mouse vocal communications. Nat Commun 2025; 16:1542. [PMID: 39966351 PMCID: PMC11836289 DOI: 10.1038/s41467-025-56579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
NOVA1, a neuronal RNA-binding protein expressed in the central nervous system, is essential for survival in mice and normal development in humans. A single amino acid change (I197V) in NOVA1's second RNA binding domain is unique to modern humans. To study its physiological effects, we generated mice carrying the human-specific I197V variant (Nova1hu/hu) and analyzed the molecular and behavioral consequences. While the I197V substitution had minimal impact on NOVA1's RNA binding capacity, it led to specific effects on alternative splicing, and CLIP revealed multiple binding peaks in mouse brain transcripts involved in vocalization. These molecular findings were associated with behavioral differences in vocalization patterns in Nova1hu/hu mice as pups and adults. Our findings suggest that this human-specific NOVA1 substitution may have been part of an ancient evolutionary selective sweep in a common ancestral population of Homo sapiens, possibly contributing to the development of spoken language through differential RNA regulation during brain development.
Collapse
Affiliation(s)
- Yoko Tajima
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
| | - César D M Vargas
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Keiichi Ito
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jiawei Xing
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Nurdan Kuru
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Luiz Carlos Machado
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Robert B Darnell
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Ren H, Wong TKF, Minh BQ, Lanfear R. MixtureFinder: Estimating DNA Mixture Models for Phylogenetic Analyses. Mol Biol Evol 2025; 42:msae264. [PMID: 39715360 PMCID: PMC11704958 DOI: 10.1093/molbev/msae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
In phylogenetic studies, both partitioned models and mixture models are used to account for heterogeneity in molecular evolution among the sites of DNA sequence alignments. Partitioned models require the user to specify the grouping of sites into subsets, and then assume that each subset of sites can be modeled by a single common process. Mixture models do not require users to prespecify subsets of sites, and instead calculate the likelihood of every site under every model, while co-estimating the model weights and parameters. While much research has gone into the optimization of partitioned models by merging user-specified subsets, there has been less attention paid to the optimization of mixture models for DNA sequence alignments. In this study, we first ask whether a key assumption of partitioned models-that each user-specified subset can be modeled by a single common process-is supported by the data. Having shown that this is not the case, we then design, implement, test, and apply an algorithm, MixtureFinder, to select the optimum number of classes for a mixture model of Q-matrices for the standard models of DNA sequence evolution. We show this algorithm performs well on simulated and empirical datasets and suggest that it may be useful for future empirical studies. MixtureFinder is available in IQ-TREE2, and a tutorial for using MixtureFinder can be found here: http://www.iqtree.org/doc/Complex-Models#mixture-models.
Collapse
Affiliation(s)
- Huaiyan Ren
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
- Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia
| | - Thomas K F Wong
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
- Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia
| | - Bui Quang Minh
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Robert Lanfear
- Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
14
|
Cherezov RO, Vorontsova JE, Kuvaeva EE, Akishina AA, Zavoloka EL, Simonova OB. The lawc gene emerged de novo from conserved genomic elements and acquired a broad expression pattern in Drosophila. J Genet Genomics 2024:S1673-8527(24)00367-9. [PMID: 39733859 DOI: 10.1016/j.jgg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster. We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region (UTR) of Trf2 and displays an extensive spatiotemporal expression pattern. One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short, highly conserved regions located in Trf2 introns. This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes. The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2. This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
Collapse
Affiliation(s)
- Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Julia E Vorontsova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena E Kuvaeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina L Zavoloka
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga B Simonova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
15
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new tumor enhancer. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
16
|
Tortora F, Guastaferro A, Barbato S, Febbraio F, Cimmino A. New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities. SENSORS (BASEL, SWITZERLAND) 2024; 24:7873. [PMID: 39771612 PMCID: PMC11679013 DOI: 10.3390/s24247873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Bladder cancer is one of the most common cancers worldwide. Despite its high incidence, cystoscopy remains the currently used diagnostic gold standard, although it is invasive, expensive and has low sensitivity. As a result, the cancer diagnosis is mostly late, as it occurs following the presence of hematuria in urine, and population screening is not allowed. It would therefore be desirable to be able to act promptly in the early stage of the disease with the aid of biosensing. The use of devices/tools based on genetic assessments would be of great help in this field. However, the genetic differences between populations do not allow accurate analysis in the context of population screening. Current research is directed towards the discovery of universal biomarkers present in urine with the aim of providing an approach based on a non-invasive, easy-to-perform, rapid, and accurate test that can be widely used in clinical practice for the early diagnosis and follow-up of bladder cancer. An efficient biosensing device may have a disruptive impact in terms of patient health and disease management, contributing to a decrease in mortality rate, as well as easing the social and economic burden on the national healthcare system. Considering the advantage of accessing population screening for early diagnosis of cancer, the main challenges and future perspectives are critically discussed to address the research towards the selection of suitable biomarkers for the development of a very sensitive biosensor for bladder cancer.
Collapse
Affiliation(s)
- Fabiana Tortora
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy; (F.T.); (A.G.); (S.B.); (A.C.)
| | - Antonella Guastaferro
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy; (F.T.); (A.G.); (S.B.); (A.C.)
| | - Simona Barbato
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy; (F.T.); (A.G.); (S.B.); (A.C.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131 Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy; (F.T.); (A.G.); (S.B.); (A.C.)
| |
Collapse
|
17
|
Liu G, Pan Q, Zhu P, Guo X, Zhang Z, Li Z, Zhang Y, Zhang X, Wang J, Liu W, Hu C, Yu Y, Wang X, Chen W, Li M, Yu W, Liu X, Seim I, Fan G, Zhou X. Comparative Genomics Provides Insights into Adaptive Evolution and Demographics of Bats. Mol Biol Evol 2024; 41:msae208. [PMID: 39530650 DOI: 10.1093/molbev/msae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and 2 of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection-related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found 2 distinct patterns of ancient population dynamics in bats and population changes since the last glacial maximum does not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.
Collapse
Affiliation(s)
- Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui 230026, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiao Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510000, China
| | - Xin Liu
- BGI Research, Beijing 100101, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210023, China
| | - Guangyi Fan
- BGI Research, Qingdao 266555, China
- BGI Research, Shenzhen 518083, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Gowen BG, Khekare P, McCawley SR, Melton K, Soares C, Chan J, Jani V, Boivin P, Bans A, Leong WI, Cantor AJ, Walleshauser J, Otoupal PB, Mepani RJ, Silverman AP, Haak-Frendscho M, Wei SC. Identification of a Guide RNA Targeting an Ultraconserved Element for Evaluation of Cas9 Genome Editors Across Mammalian Species. CRISPR J 2024; 7:306-309. [PMID: 39308435 DOI: 10.1089/crispr.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Affiliation(s)
| | | | | | - Kory Melton
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Craig Soares
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Jean Chan
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Vihasi Jani
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Pierre Boivin
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Ashil Bans
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | - Weng-In Leong
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | | | | | | | - Rina J Mepani
- Spotlight Therapeutics, Inc, Hayward, California, USA
| | | | | | - Spencer C Wei
- Spotlight Therapeutics, Inc, Hayward, California, USA
| |
Collapse
|
20
|
Lepeco A, Branstetter MG, Melo GAR, Freitas FV, Tobin KB, Gan J, Jensen J, Almeida EAB. Phylogenomic insights into the worldwide evolutionary relationships of the stingless bees (Apidae, Meliponini). Mol Phylogenet Evol 2024; 201:108219. [PMID: 39414098 DOI: 10.1016/j.ympev.2024.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Stingless bees (tribe Meliponini) are remarkable for their characteristically large social colonies, their capacity to produce honey and other useful products, and their morphological and behavioral diversity. They have a disjunct pan-tropical distribution, primarily occurring in warm and humid environments in the Neotropical, Afrotropical, and Indo-Australasian regions. Even though phylogenetic hypotheses have been proposed for Meliponini based on morphology and molecular data, many questions are still unsolved regarding the evolutionary relationships and systematics of the tribe. In this contribution, we present a large phylogenomic dataset comprising over 2500 ultra-conserved element (UCE) loci sequenced for 153 species of Meliponini, representing all known genera of stingless bees. The genera Camargoia, Paratrigonoides, Plectoplebeia, Cleptotrigona, Ebaiotrigona, Papuatrigona, Pariotrigona, Platytrigona, and Sahulotrigona were included in molecular phylogenetic analyses for the first time. Concatenated and species-tree analyses were performed using different partitioning strategies and summary methods. We performed gene-genealogy interrogation (GGI) on several recalcitrant nodes to resolve discordances among recovered tree topologies. Results were mostly consistent among analyses, recovering three main lineages of Meliponini congruent with the biogeographic domains to which they are associated. Within major clades, discordances were found in relation to previous works. The genus Frieseomelitta was recovered as paraphyletic in relation to Trichotrigona, and the genus Lepidotrigona was revealed to be composed of two independent lineages. Even though concatenated and weighted ASTRAL analyses were mostly effective in recovering the relationships favored by GGI, they retrieved different results in relation to the phylogenetic placements of Oxytrigona and Cephalotrigona. The most favored hypothesis in GGI analyses was not found in any other analyses, being more congruent with morphological evidence and highlighting the relevance of exploring the support given to alternative hypotheses through topological tests. Recent advances in our capacity to generate molecular sequences from old specimens using modern sequencing methods allowed for unparalleled sampling across genera, yielding a backbone for the phylogenetic relationships of stingless bees, which will further investigations into their systematics and evolution.
Collapse
Affiliation(s)
- Anderson Lepeco
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Gabriel A R Melo
- Laboratório de Biologia Comparada de Hymenoptera, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR 19020, Brazil
| | - Felipe V Freitas
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Kerrigan B Tobin
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jenny Gan
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jeremy Jensen
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
21
|
Garcia EL, Cushing PE. Historical biogeography and the evolution of habitat preference in the North American camel spider family, Eremobatidae (Arachnida:Solifugae). Mol Phylogenet Evol 2024; 201:108193. [PMID: 39303972 DOI: 10.1016/j.ympev.2024.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Abiotic variables can influence species distributions, often restricting taxa to an acquired climatic signature or conversely, related species are conserved in the same ecological space over millions of years. An investigation into how abiotic change has shaped geographic distributions of taxa may be key to understanding diversification of lineages, and in the absence of reliable morphological characteristics, such information may support taxonomic units at multiple scales. Here, we examine the historical biogeography and patterns of habitat preference within the North American solifuge family, Eremobatidae. A previous study demonstrated that a major taxonomic revision of Eremobatidae is warranted, however recent studies demonstrate high levels of morphological convergence within the group, thus a re-classification of generic boundaries using additional information must be prioritized before we can formally begin solid revisionary efforts. In this study, we aimed to reconstruct a well-resolved phylogenetic hypothesis of Eremobatidae by filtering UCE loci based on informativeness, by mitigating the effect of cogenic UCE on phylogenetic estimation, and by supplementing our curated UCE loci with mitochondrial information. Using our preferred topology, in conjunction with published estimated divergence dates for Eremobatidae, we inferred a time-calibrated phylogenetic hypothesis to inform the historical biogeography and patterns of habitat preference. The two major habitat types that were observed for Eremobatidae were warm deserts for early diverging taxa and a subsequent evolution to cold deserts and Mediterranean California ecoregions for later diverging taxa. Eremobatid niche space, determined by temperature and precipitation, has been conserved for at least 25 million years in North America, supporting a warm desert origin, and thus supporting high species richness in the Sonoran and Mexican Plateau. Overall, our study provides support for new generic level designations within Eremobatidae.
Collapse
Affiliation(s)
- Erika L Garcia
- Denver Museum of Nature & Science, 2001 Colorado Blvd., Denver, CO 80205, USA; University of Colorado Denver, 1201 Larimer St, Denver, CO 80204, USA.
| | - Paula E Cushing
- Denver Museum of Nature & Science, 2001 Colorado Blvd., Denver, CO 80205, USA; University of Colorado Denver, 1201 Larimer St, Denver, CO 80204, USA
| |
Collapse
|
22
|
Huang J, Yang P, Pan W, Wu F, Qiu J, Ma Z. The role of polypeptides encoded by ncRNAs in cancer. Gene 2024; 928:148817. [PMID: 39098512 DOI: 10.1016/j.gene.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
It was previously thought that ncRNA could not encode polypeptides, but recent reports have challenged this notion. As research into ncRNA progresses, it is increasingly clear that it serves roles beyond traditional mechanisms, playing significant regulatory roles in various diseases, notably cancer, which is responsible for 70% of human deaths. Numerous studies have highlighted the diverse regulatory mechanisms of ncRNA that are pivotal in cancer initiation and progression. The role of ncRNA-encoded polypeptides in cancer regulation has gained prominence. This article explores the newly identified regulatory functions of these polypeptides in three types of ncRNA-lncRNA, pri-miRNA, and circRNA. These polypeptides can interact with proteins, influence signaling pathways, enhance miRNA stability, and regulate cancer progression, malignancy, resistance, and other clinical challenges. Furthermore, we discuss the evolutionary significance of these polypeptides in the transition from RNA to protein, examining their emergence and conservation throughout evolution.
Collapse
Affiliation(s)
- Jiayuan Huang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ping Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118,China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianhua Qiu
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201800, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624608. [PMID: 39605675 PMCID: PMC11601623 DOI: 10.1101/2024.11.21.624608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that the Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 ( Arhgap36 ) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but the Mc1r gene and its ability to stimulate cAMP accumulation is intact. Instead, we show that increased expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKA C ); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r . Our findings solve a comparative genomic conundrum, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
|
25
|
Cheng M, Zhu Y, Yu H, Shao L, Zhang Y, Li L, Tu H, Xie L, Chao H, Zhang P, Xin S, Feng C, Ivanisenko V, Orlov Y, Chen D, Wong A, Yang YE, Chen M. Non-coding RNA notations, regulations and interactive resources. Funct Integr Genomics 2024; 24:217. [PMID: 39557706 DOI: 10.1007/s10142-024-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
An increasing number of non-coding RNAs (ncRNAs) are found to have roles in gene expression and cellular regulations. However, there are still a large number of ncRNAs whose functions remain to be studied. Despite decades of research, the field continues to evolve, with each newly identified ncRNA undergoing processes such as biogenesis, identification, and functional annotation. Bioinformatics methodologies, alongside traditional biochemical experimental methods, have played an important role in advancing ncRNA research across various stages. Presently, over 50 types of ncRNAs have been characterized, each exhibiting diverse functions. However, there remains a need for standardization and integration of these ncRNAs within a unified framework. In response to this gap, this review traces the historical trajectory of ncRNA research and proposes a unified notation system. Additionally, we comprehensively elucidate the ncRNA interactome, detailing its associations with DNAs, RNAs, proteins, complexes, and chromatin. A web portal named ncRNA Hub ( https://bis.zju.edu.cn/nchub/ ) is also constructed to provide detailed notations of ncRNAs and share a collection of bioinformatics resources. This review aims to provide a broader perspective and standardized paradigm for advancing ncRNA research.
Collapse
Affiliation(s)
- Mengwei Cheng
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yinhuan Zhu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
- Wenzhou Institute, The University of Chinese Academy of Science, Wenzhou, 325001, China
| | - Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Linlin Shao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yiming Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
- Wenzhou Institute, The University of Chinese Academy of Science, Wenzhou, 325001, China
| | - Lanxing Li
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Haohong Tu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Luyao Xie
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peijing Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630060, Novosibirsk, Russia
| | - Yuriy Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630060, Novosibirsk, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Dijun Chen
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yixin Eric Yang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ming Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Zhu C, Li S, Zhang D, Zhang J, Wang G, Zhou B, Zheng J, Xu W, Wang Z, Gao X, Liu Q, Xue T, Zhang H, Li C, Ge B, Liu Y, Qiu Q, Zhang H, Huang J, Tang B, Wang K. Convergent Degenerated Regulatory Elements Associated with Limb Loss in Limbless Amphibians and Reptiles. Mol Biol Evol 2024; 41:msae239. [PMID: 39530343 PMCID: PMC11600591 DOI: 10.1093/molbev/msae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Limbs are a defining characteristic of tetrapods, yet numerous taxa, primarily among amphibians and reptiles, have independently lost limbs as an adaptation to new ecological niches. To elucidate the genetic factors contributing to this convergent limb loss, we present a 12 Gb chromosome-level assembly of the Banna caecilian (Ichthyophis bannanicus), a limbless amphibian. Our comparative analysis, which includes the reconstruction of amphibian karyotype evolution, reveals constrained gene length evolution in a subset of developmental genes across 3 large genomes. Investigation of limb development genes uncovered the loss of Grem1 in caecilians and Tulp3 in snakes. Interestingly, caecilians and snakes share a significantly larger number of convergent degenerated conserved noncoding elements than limbless lizards, which have a shorter evolutionary history of limb loss. These convergent degenerated conserved noncoding elements overlap significantly with active genomic regions during mouse limb development and are conserved in limbed species, suggesting their essential role in limb patterning in the tetrapod common ancestor. While most convergent degenerated conserved noncoding elements emerged in the jawed vertebrate ancestor, coinciding with the origin of paired appendage, more recent degenerated conserved noncoding elements also contribute to limb development, as demonstrated through functional experiments. Our study provides novel insights into the regulatory elements associated with limb development and loss, offering an evolutionary perspective on the genetic basis of morphological specialization.
Collapse
Affiliation(s)
- Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Jinjin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Botong Zhou
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Xueli Gao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Chunhui Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
27
|
Oguntoyinbo IO, Goyal R. The Role of Long Intergenic Noncoding RNA in Fetal Development. Int J Mol Sci 2024; 25:11453. [PMID: 39519006 PMCID: PMC11546696 DOI: 10.3390/ijms252111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The role of long intergenic noncoding RNAs (lincRNAs) in fetal development has emerged as a significant area of study, challenging the traditional protein-centric view of gene expression. While messenger RNAs (mRNAs) have long been recognized for their role in encoding proteins, recent advances have illuminated the critical functions of lincRNAs in various biological processes. Initially identified through high-throughput sequencing technologies, lincRNAs are transcribed from intergenic regions between protein-coding genes and exhibit unique regulatory functions. Unlike mRNAs, lincRNAs are involved in complex interactions with chromatin and chromatin-modifying complexes, influencing gene expression and chromatin structure. LincRNAs are pivotal in regulating tissue-specific development and embryogenesis. For example, they are crucial for proper cardiac, neural, and reproductive system development, with specific lincRNAs being associated with organogenesis and differentiation processes. Their roles in embryonic development include regulating transcription factors and modulating chromatin states, which are essential for maintaining developmental programs and cellular identity. Studies using RNA sequencing and genetic knockout models have highlighted the importance of lincRNAs in processes such as cell differentiation, tissue patterning, and organ development. Despite their functional significance, the comprehensive annotation and understanding of lincRNAs remain limited. Ongoing research aims to elucidate their mechanisms of action and potential applications in disease diagnostics and therapeutics. This review summarizes current knowledge on the functional roles of lincRNAs in fetal development, emphasizing their contributions to tissue-specific gene regulation and developmental processes.
Collapse
Affiliation(s)
- Ifetoluwani Oluwadunsin Oguntoyinbo
- School of Animal and Comparative Biomedical Sciences, College of Agriculture, Life & Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
28
|
Cooper KL. The case against simplistic genetic explanations of evolution. Development 2024; 151:dev203077. [PMID: 39369308 PMCID: PMC11463953 DOI: 10.1242/dev.203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Humans are curious to understand the causes of traits that distinguish us from other animals and that distinguish vastly different species from one another. We also have a proclivity for simple stories and sometimes tend toward seeking and accepting simple genetic explanations for large evolutionary shifts, even to a single gene. Here, I reveal how a biased expectation of mechanistic simplicity threads through the long history of evolutionary and developmental genetics. I argue, however, that expecting a simple mechanism threatens a deeper understanding of evolution, and I define the limitations for interpreting experimental evidence in evolutionary developmental genetics.
Collapse
Affiliation(s)
- Kimberly L. Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Liu D, Cui J, Liu Y, Niu M, Wang F, Zhao Q, Cai B, Zhang H, Wei J. Ultraconserved elements from transcriptome and genome data provide insight into the phylogenomics of Sternorrhyncha (Insecta: Hemiptera). Cladistics 2024; 40:496-509. [PMID: 38808591 DOI: 10.1111/cla.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Sternorrhyncha, one of the four major suborders of Hemiptera, is a phytophagous taxon inclusive of nearly 18 000 described species. The phylogenetic relationships within the taxon and the earliest-branching lineage of its infraorders remain incompletely understood. This study attempted to illuminate the phylogenetic relationships within Sternorrhyncha through the use of maximum likelihood, Bayesian inference and maximum parsimony analyses, employing ultraconserved element (UCE) data from 39 genomic and 62 transcriptomic datasets and thereby representing most families within the taxon. The probe set Hemiptera 2.7Kv1 was used to recover a total of 2731 UCE loci: from 547 to 1699 (with an average of 1084) across all genomic datasets and from 108 to 849 (with an average of 329) across all transcriptomic datasets. All three types of phylogenetic analyses employed in this study produced robust statistical support for Sternorrhyncha being a monophyletic group. The different methods of phylogenetic analysis produced inconsistent descriptions of topological structure at the infraorder level: while maximum likelihood and Bayesian inference analyses produced strong statistical evidence (100%) indicating the clade Psylloidea + Aleyrodoidea to be a sister of the clade Aphidoidea (Aphidomorpha) + Coccoidea (Coccomorpha), the maximum parsimony analysis failed to recover a similar result. Our results also provide detail on the phylogenetic relationships within each infraorder. This study presents the first use of UCE data to investigate the phylogeny of Sternorrhyncha. It also shows the viability of amalgamating genomic and transcriptomic data in studies of phylogenetic relationships, potentially highlighting a resource-efficient approach for future inquiries into diverse taxa through the integration of varied data sources.
Collapse
Affiliation(s)
- Dajun Liu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Jinyu Cui
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Yubo Liu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Minmin Niu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, No. 9 West Haixiu Road, Haikou, 570311, China
| | - Hufang Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, 030801, China
| |
Collapse
|
30
|
Qian XX. Non-coding transcribed ultraconserved region uc.290 in colon mucosa promotes intestinal fibrosis in chronic active ulcerative colitis. Dig Liver Dis 2024; 56:1698-1704. [PMID: 38735796 DOI: 10.1016/j.dld.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND AIMS TGF-β1 induces epithelial-mesenchymal transition (EMT) and leads to intestinal fibrosis in ulcerative colitis (UC). We aimed to investigate the expression of transcribed ultraconserved region uc.290 in chronic UC and its role in intestinal fibrosis. METHODS Colon specimens were taken from thirty chronic active UC, chronic inactive UC and healthy controls respectively. Modified Mayo score, expressions of uc.290, TGF-β1, EMT biomarkers (Vimentin, α-SMA and E-cadherin) and intestinal fibrosis biomarker (collagen Ⅲ) in colon biopsy specimens were determined in human. Expressions of TGF-β1, EMT biomarkers and collagen Ⅲ were determined in uc.290 overexpressed or silenced epithelial colon cells (HT29). RESULTS Uc.290, TGF-β1 and collagen Ⅲ were overexpressed, and EMT was prominent in chronic active UC. Uc.290 level had a positive correlation with modified Mayo score in chronic active UC. TGF-β1 and collagen Ⅲ were overexpressed, and EMT was prominent in uc.290 overexpressed HT29 cells. CONCLUSIONS Uc.290 was overexpressed in chronic active UC and might promote intestinal fibrosis by TGF-β1/EMT/collagen Ⅲ pathway.
Collapse
Affiliation(s)
- Xiao Xian Qian
- Department of gastroenterology, Minhang Hospital, Fudan University, Shanghai City, 201199, People's Republic of China; People's Hospital of Daguan County, No.3 Internal Medicine Department, Daguan County, Zhaotong City, Yunnan province, 657400, People's Republic of China.
| |
Collapse
|
31
|
Speak SA, Birley T, Bortoluzzi C, Clark MD, Percival-Alwyn L, Morales HE, van Oosterhout C. Genomics-informed captive breeding can reduce inbreeding depression and the genetic load in zoo populations. Mol Ecol Resour 2024; 24:e13967. [PMID: 38727721 DOI: 10.1111/1755-0998.13967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 10/10/2024]
Abstract
Zoo populations of threatened species are a valuable resource for the restoration of wild populations. However, their small effective population size poses a risk to long-term viability, especially in species with high genetic load. Recent bioinformatic developments can identify harmful genetic variants in genome data. Here, we advance this approach, analysing the genetic load in the threatened pink pigeon (Nesoenas mayeri). We lifted the mutation-impact scores that had been calculated for the chicken (Gallus gallus) to estimate the genetic load in six pink pigeons. Additionally, we perform in silico crossings to predict the genetic load and realized load of potential offspring. We thus identify the optimal mate pairs that are theoretically expected to produce offspring with the least inbreeding depression. We use computer simulations to show how genomics-informed conservation can reduce the genetic load whilst reducing the loss of genome-wide diversity. Genomics-informed management is likely to become instrumental in maintaining the long-term viability of zoo populations.
Collapse
Affiliation(s)
- Samuel A Speak
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Natural History Museum, London, UK
- North of England Zoological Society, Chester Zoo, Chester, UK
| | - Thomas Birley
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Chiara Bortoluzzi
- University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D Clark
- Natural History Museum, London, UK
- Earlham Institute, Norwich, UK
| | | | | | | |
Collapse
|
32
|
Liu Z, Ypsilanti AR, Markenscoff-Papadimitriou E, Dickel DE, Sanders SJ, Dong S, Pennacchio LA, Visel A, Rubenstein JL. Nr2f1 enhancers have distinct functions in controlling Nr2f1 expression during cortical development. Proc Natl Acad Sci U S A 2024; 121:e2402368121. [PMID: 39312666 PMCID: PMC11459158 DOI: 10.1073/pnas.2402368121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.
Collapse
Affiliation(s)
- Zhidong Liu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Athéna R. Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | | | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, OxfordOX3 7TY, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
- New York Genome Center, New York, NY10013
| | - Shan Dong
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- Comparative Biochemistry Program, University of California, Berkeley, CA94720
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- School of Natural Sciences, University of California, Merced, CA95343
| | - John L. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
33
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Karginov TA, Ménoret A, Leclair NK, Harrison AG, Chandiran K, Suarez-Ramirez JE, Yurieva M, Karlinsey K, Wang P, O’Neill RJ, Murphy PA, Adler AJ, Cauley LS, Anczuków O, Zhou B, Vella AT. Autoregulated splicing of TRA2β programs T cell fate in response to antigen-receptor stimulation. Science 2024; 385:eadj1979. [PMID: 39265028 PMCID: PMC11697694 DOI: 10.1126/science.adj1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024]
Abstract
T cell receptor (TCR) sensitivity to peptide-major histocompatibility complex (MHC) dictates T cell fate. Canonical models of TCR sensitivity cannot be fully explained by transcriptional regulation. In this work, we identify a posttranscriptional regulatory mechanism of TCR sensitivity that guides alternative splicing of TCR signaling transcripts through an evolutionarily ultraconserved poison exon (PE) in the RNA-binding protein (RBP) TRA2β in mouse and human. TRA2β-PE splicing, seen during cancer and infection, was required for TCR-induced effector T cell expansion and function. Tra2β-PE skipping enhanced T cell response to antigen by increasing TCR sensitivity. As antigen levels decreased, Tra2β-PE reinclusion allowed T cell survival. Finally, we found that TRA2β-PE was first included in the genome of jawed vertebrates that were capable of TCR gene rearrangements. We propose that TRA2β-PE splicing acts as a gatekeeper of TCR sensitivity to shape T cell fate.
Collapse
Affiliation(s)
- Timofey A. Karginov
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Nathan K. Leclair
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew G. Harrison
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Karthik Chandiran
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenny E. Suarez-Ramirez
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Marina Yurieva
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Rachel J. O’Neill
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Patrick A. Murphy
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Adam J. Adler
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Linda S. Cauley
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Olga Anczuków
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
35
|
Zeng F, Chen X, Zhong W, Chen T, Sa J, Wang G, Zhang S, Peng S. Recombinase-aid amplification combined with lateral flow detection assay for sex identification of the great white pelican (Pelecanus onocrotalus). Sci Rep 2024; 14:21332. [PMID: 39266713 PMCID: PMC11393076 DOI: 10.1038/s41598-024-72743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Sex identification in avian species is essential for biodiversity conservation and ecological studies. However, the sex of nearly half of the birds could not be identified based on their external appearance. It is difficult to visually identify sex to monitor the ecology and conservation of wild populations. In this study, we designed primer pairs for large white pelican using recombinase-based isothermal amplification combined with a lateral flow dipstick (RAA-LFD) assay for chromo-helicase-DNA binding protein (CHD) genes mapped to W chromosomes and an ultra-conserved element (UCE) located on chromosome 6, respectively. Our result showed that the raaW4-RAA-LFD can detect up to 0.1 ng of genomic DNA (gDNA) templates of female pelicans in 30 min at 39 ℃ and accurately distinguish female from male without any cross reactivity. RaaUCE2-RAA-LFD can amplify both male and female pelicans with a detection limit of 25 pg. To further evaluate the assay, 15 white pelicans of unknown sex were tested using the RAA-LFD assay and conventional polymerase chain reaction (PCR). The results of the raaW4-RAA-LFD assay were consistent with those of the conventional PCR. The developed RAA-LFD assay is equipped with field-deployable instruments and offers a field platform for rapid and reliable sex identification in pelicans.
Collapse
Affiliation(s)
- Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| | - Xuanjiao Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Wanhuan Zhong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tanzipeng Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Jiaqi Sa
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Guoqian Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Shouquan Zhang
- College of Animal Science of South, China Agricultural University, Guangzhou, 510642, China.
| | - Shiming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| |
Collapse
|
36
|
Crossley ER, Fedorova L, Mulyar O, Freeman R, Khuder S, Fedorov A. Computational identification of ultra-conserved elements in the human genome: a hypothesis on homologous DNA pairing. NAR Genom Bioinform 2024; 6:lqae074. [PMID: 38962254 PMCID: PMC11217675 DOI: 10.1093/nargab/lqae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Thousands of prolonged sequences of human ultra-conserved non-coding elements (UCNEs) share only one common feature: peculiarities in the unique composition of their dinucleotides. Here we investigate whether the numerous weak signals emanating from these dinucleotide arrangements can be used for computational identification of UCNEs within the human genome. For this purpose, we analyzed 4272 UCNE sequences, encompassing 1 393 448 nucleotides, alongside equally sized control samples of randomly selected human genomic sequences. Our research identified nine different features of dinucleotide arrangements that enable differentiation of UCNEs from the rest of the genome. We employed these nine features, implementing three Machine Learning techniques - Support Vector Machine, Random Forest, and Artificial Neural Networks - to classify UCNEs, achieving an accuracy rate of 82-84%, with specific conditions allowing for over 90% accuracy. Notably, the strongest feature for UCNE identification was the frequency ratio between GpC dinucleotides and the sum of GpG and CpC dinucleotides. Additionally, we investigated the entire pool of 31 046 SNPs located within UCNEs for their representation in the ClinVar database, which catalogs human SNPs with known phenotypic effects. The presence of UCNE-associated SNPs in ClinVar aligns with the expectation of a random distribution, emphasizing the enigmatic nature of UCNE phenotypic manifestation.
Collapse
Affiliation(s)
- Emily R Crossley
- Program of Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | - Sadik Khuder
- Program of Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43606, USA
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Alexei Fedorov
- Program of Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43606, USA
- CRI Genetics LLC, Santa Monica, CA 90404, USA
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
37
|
Haltenhof T, Preußner M, Heyd F. Thermoregulated transcriptomics: the molecular basis and biological significance of temperature-dependent alternative splicing. Biochem J 2024; 481:999-1013. [PMID: 39083035 PMCID: PMC11346455 DOI: 10.1042/bcj20230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.
Collapse
Affiliation(s)
- Tom Haltenhof
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
38
|
Hellemans S, Rocha MM, Wang M, Romero Arias J, Aanen DK, Bagnères AG, Buček A, Carrijo TF, Chouvenc T, Cuezzo C, Constantini JP, Constantino R, Dedeine F, Deligne J, Eggleton P, Evans TA, Hanus R, Harrison MC, Harry M, Josens G, Jouault C, Kalleshwaraswamy CM, Kaymak E, Korb J, Lee CY, Legendre F, Li HF, Lo N, Lu T, Matsuura K, Maekawa K, McMahon DP, Mizumoto N, Oliveira DE, Poulsen M, Sillam-Dussès D, Su NY, Tokuda G, Vargo EL, Ware JL, Šobotník J, Scheffrahn RH, Cancello E, Roisin Y, Engel MS, Bourguignon T. Genomic data provide insights into the classification of extant termites. Nat Commun 2024; 15:6724. [PMID: 39112457 PMCID: PMC11306793 DOI: 10.1038/s41467-024-51028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan.
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium.
| | - Mauricio M Rocha
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Menglin Wang
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Johanna Romero Arias
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium
| | - Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | | | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Thomas Chouvenc
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Carolina Cuezzo
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Joice P Constantini
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | | | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS / Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Tours, France
| | - Jean Deligne
- Royal Museum for Central Africa, Entomology, Tervuren, Belgium
- Département de Biologie des Organismes, Université libre de Bruxelles, Brussels, Belgium
| | - Paul Eggleton
- Department of Life Sciences, Natural History Museum, London, UK
| | - Theodore A Evans
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster. Hüfferstrasße 1, Münster, Germany
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie (EGCE), IDEEV, Université Paris Saclay-CNRS-IRD, 12 route 128, Gif-sur-Yvette, France
| | - Guy Josens
- Département de Biologie des Organismes, Université libre de Bruxelles, Brussels, Belgium
| | - Corentin Jouault
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, Paris, France
- Géosciences Rennes (UMR 6118), Université de Rennes, CNRS, Rennes, France
- Institut des Sciences de l'Évolution de Montpellier (UMR 5554), Université de Montpellier, CNRS, F-, Montpellier, France
| | - Chicknayakanahalli M Kalleshwaraswamy
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Department of Entomology, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Esra Kaymak
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany & Charles Darwin University, Darwin, Australia
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, USA
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, Paris, France
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taichug, Taiwan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Nobuaki Mizumoto
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA
| | - Danilo E Oliveira
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France
| | - Nan-Yao Su
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Jan Šobotník
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Rudolf H Scheffrahn
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Eliana Cancello
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium
| | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 14, Perú
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
39
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
40
|
Cummins M, Watson C, Edwards RJ, Mattick JS. The Evolution of Ultraconserved Elements in Vertebrates. Mol Biol Evol 2024; 41:msae146. [PMID: 39058500 PMCID: PMC11276968 DOI: 10.1093/molbev/msae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.
Collapse
Affiliation(s)
- Mitchell Cummins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cadel Watson
- School of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Merchant HN, Ivanova A, Hart DW, García C, Bennett NC, Portugal SJ, Faulkes CG. Patterns of Genetic Diversity and Gene Flow Associated With an Aridity Gradient in Populations of Common Mole-rats, Cryptomys hottentotus hottentotus. Genome Biol Evol 2024; 16:evae144. [PMID: 38953183 PMCID: PMC11258414 DOI: 10.1093/gbe/evae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Genetic adaptation is the change of a population toward a phenotype that best fits the present ecological conditions of the environment it inhabits. As environmental conditions change, allele frequencies shift, resulting in different populations of the same species possessing genetic variation and divergent phenotypes. Cooperatively breeding common mole-rats (Cryptomys hottentotus hottentotus) inhabit environments along an aridity gradient in South Africa, which provides an opportunity for local genetic adaptations to occur. Using one mitochondrial gene (cytochrome b) and 3,540 SNP loci across the whole genome, we determined the phylogenetic relationship, population structure and genetic diversity of five populations of C. h. hottentotus located along an aridity gradient. Mitochondrial data identified population-specific clades that were less distinct in the two mesic populations, potentially indicating historical or recent gene flow, or the retention of ancestral haplotypes. Arid and semi-arid populations formed a distinct cluster from the non-arid populations. Genetic diversity and gene flow were higher in arid-dwelling individuals, suggesting greater connectivity and interactions between colonies in arid regions in comparison to mesic ones. Using an Aridity Index, we determined that isolation by environment, rather than isolation by geographical distance, best explains the genetic distance between the populations. Further analyses using target loci may determine if there are differing underlying genetic adaptations among populations of C. h. hottentotus. These analyses could help unravel population differences in response to environmental factors within a subspecies of bathyergid mole-rat and determine the adaptive capacity of this small nonmigratory subterranean rodent species in response to aridification in the face of climate change.
Collapse
Affiliation(s)
- Hana N Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Anastasia Ivanova
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Daniel W Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Cristina García
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Steven J Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Chris G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
42
|
Li Y, Tan M, Akkari-Henić A, Zhang L, Kip M, Sun S, Sepers JJ, Xu N, Ariyurek Y, Kloet SL, Davis RP, Mikkers H, Gruber JJ, Snyder MP, Li X, Pang B. Genome-wide Cas9-mediated screening of essential non-coding regulatory elements via libraries of paired single-guide RNAs. Nat Biomed Eng 2024; 8:890-908. [PMID: 38778183 PMCID: PMC11310080 DOI: 10.1038/s41551-024-01204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Minkang Tan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Almira Akkari-Henić
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Limin Zhang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten Kip
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shengnan Sun
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jorian J Sepers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ningning Xu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan L Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Harald Mikkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joshua J Gruber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Xiao Li
- Department of Biochemistry, The Center for RNA Science and Therapeutics, Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Baoxu Pang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
43
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
45
|
Lotfollahi M, Yuhan Hao, Theis FJ, Satija R. The future of rapid and automated single-cell data analysis using reference mapping. Cell 2024; 187:2343-2358. [PMID: 38729109 PMCID: PMC11184658 DOI: 10.1016/j.cell.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.
Collapse
Affiliation(s)
- Mohammad Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Mathematics, Technical University of Munich, Garching, Germany.
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York Genome Center, New York, NY, USA.
| |
Collapse
|
46
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
47
|
Tessarech M, Friocourt G, Marguet F, Lecointre M, Le Mao M, Díaz RM, Mignot C, Keren B, Héron B, De Bie C, Van Gassen K, Loisel D, Delorme B, Syrbe S, Klabunde-Cherwon A, Jamra RA, Wegler M, Callewaert B, Dheedene A, Zidane-Marinnes M, Guichet A, Bris C, Van Bogaert P, Biquard F, Lenaers G, Marcorelles P, Ferec C, Gonzalez B, Procaccio V, Vitobello A, Bonneau D, Laquerriere A, Khiati S, Colin E. De novo variants in SP9 cause a novel form of interneuronopathy characterized by intellectual disability, autism spectrum disorder, and epilepsy with variable expressivity. Genet Med 2024; 26:101087. [PMID: 38288683 DOI: 10.1016/j.gim.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.
Collapse
Affiliation(s)
- Marine Tessarech
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.
| | | | - Florent Marguet
- Univ Rouen Normandie, INSERM U1245 and Rouen University Hospital, Department of Pathology, Rouen, France
| | - Maryline Lecointre
- Univ Rouen Normandie, INSERM U1245 and Rouen University Hospital, Department of Pathology, Rouen, France
| | - Morgane Le Mao
- Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Rodrigo Muñoz Díaz
- Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Cyril Mignot
- Department of Genetics, Center for Rare Causes of Intellectual Disabilities and UPMC Research Group "Intellectual Disabilities and Autism" Paris, France
| | - Boris Keren
- Department of Genetics, Center for Rare Causes of Intellectual Disabilities and UPMC Research Group "Intellectual Disabilities and Autism" Paris, France; Department of Genetics, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bénédicte Héron
- Sorbonne University, UPMC Univ Paris 06, UMR S 1127, INSERM U 1127, CNRS UMR 7225, ICM, Paris, France; Department of Pediatric Neurology, Reference Center of Lysosomal Diseases, Trousseau Hospital, APHP, GRC ConCer-LD, Sorbonne Universities, UPMC University, Paris, France
| | - Charlotte De Bie
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen Van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Didier Loisel
- Department of Radiology, Angers University Hospital, Angers, France
| | - Benoit Delorme
- Department of Radiology, Angers University Hospital, Angers, France
| | - Steffen Syrbe
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Epileptology, Heidelberg, Germany
| | - Annick Klabunde-Cherwon
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Epileptology, Heidelberg, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Meret Wegler
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Gent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Department of Biomolecular Medicine, Gent, Belgium
| | | | - Agnès Guichet
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Céline Bris
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | | | - Florence Biquard
- Department of Gynecology, Angers University Hospital, Angers, France
| | - Guy Lenaers
- Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | | | - Claude Ferec
- INSERM, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Bruno Gonzalez
- Univ Rouen Normandie, INSERM U1245 and Rouen University Hospital, Department of Pathology, Rouen, France
| | - Vincent Procaccio
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD (Génétique des Anomalies du Développement), FHU-TRANSLAD, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Dominique Bonneau
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Annie Laquerriere
- Univ Rouen Normandie, INSERM U1245 and Rouen University Hospital, Department of Pathology, Rouen, France
| | - Salim Khiati
- Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Estelle Colin
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.
| |
Collapse
|
48
|
Kosicki M, Cintrón DL, Page NF, Georgakopoulos-Soares I, Akiyama JA, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Barton S, Godfrey P, Beckman E, Sanders SJ, Pennacchio LA, Ahituv N. Massively parallel reporter assays and mouse transgenic assays provide complementary information about neuronal enhancer activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590634. [PMID: 38712228 PMCID: PMC11071441 DOI: 10.1101/2024.04.22.590634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dianne Laboy Cintrón
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nicholas F. Page
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sarah Barton
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Godfrey
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Erik Beckman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephan J. Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 16 7TY, UK
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
49
|
Rodrigues MF, Kern AD, Ralph PL. Shared evolutionary processes shape landscapes of genomic variation in the great apes. Genetics 2024; 226:iyae006. [PMID: 38242701 PMCID: PMC10990428 DOI: 10.1093/genetics/iyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
For at least the past 5 decades, population genetics, as a field, has worked to describe the precise balance of forces that shape patterns of variation in genomes. The problem is challenging because modeling the interactions between evolutionary processes is difficult, and different processes can impact genetic variation in similar ways. In this paper, we describe how diversity and divergence between closely related species change with time, using correlations between landscapes of genetic variation as a tool to understand the interplay between evolutionary processes. We find strong correlations between landscapes of diversity and divergence in a well-sampled set of great ape genomes, and explore how various processes such as incomplete lineage sorting, mutation rate variation, GC-biased gene conversion and selection contribute to these correlations. Through highly realistic, chromosome-scale, forward-in-time simulations, we show that the landscapes of diversity and divergence in the great apes are too well correlated to be explained via strictly neutral processes alone. Our best fitting simulation includes both deleterious and beneficial mutations in functional portions of the genome, in which 9% of fixations within those regions is driven by positive selection. This study provides a framework for modeling genetic variation in closely related species, an approach which can shed light on the complex balance of forces that have shaped genetic variation.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
50
|
Gonzalez P, Hauck QC, Baxevanis AD. Conserved Noncoding Elements Evolve Around the Same Genes Throughout Metazoan Evolution. Genome Biol Evol 2024; 16:evae052. [PMID: 38502060 PMCID: PMC10988421 DOI: 10.1093/gbe/evae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Conserved noncoding elements (CNEs) are DNA sequences located outside of protein-coding genes that can remain under purifying selection for up to hundreds of millions of years. Studies in vertebrate genomes have revealed that most CNEs carry out regulatory functions. Notably, many of them are enhancers that control the expression of homeodomain transcription factors and other genes that play crucial roles in embryonic development. To further our knowledge of CNEs in other parts of the animal tree, we conducted a large-scale characterization of CNEs in more than 50 genomes from three of the main branches of the metazoan tree: Cnidaria, Mollusca, and Arthropoda. We identified hundreds of thousands of CNEs and reconstructed the temporal dynamics of their appearance in each lineage, as well as determining their spatial distribution across genomes. We show that CNEs evolve repeatedly around the same genes across the Metazoa, including around homeodomain genes and other transcription factors; they also evolve repeatedly around genes involved in neural development. We also show that transposons are a major source of CNEs, confirming previous observations from vertebrates and suggesting that they have played a major role in wiring developmental gene regulatory mechanisms since the dawn of animal evolution.
Collapse
Affiliation(s)
- Paul Gonzalez
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quinn C Hauck
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|