1
|
Gao L, Lai JS, Chen H, Qian LX, Hong WJ, Li LC. Mechanism of trypsin-mediated differentiation of pancreatic progenitor cells into functional islet-like clusters. World J Diabetes 2025; 16:102727. [DOI: 10.4239/wjd.v16.i6.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/20/2025] [Accepted: 03/28/2025] [Indexed: 06/13/2025] Open
Abstract
BACKGROUND Endogenous regeneration of pancreatic islet β-cells is a path to cure both type 1 and advanced type 2 diabetes. Pancreatic cancer cell line-1 (PANC-1), a human pancreatic islet progenitor cell line, can be induced by trypsin to differentiate into insulin-secreting islet-like aggregates (ILAs). However, the underlying mechanism has not been explored.
AIM To explore the mechanism and signaling pathway of trypsin-induced differentiation of islet progenitor cells into insulin-secreting cells.
METHODS PANC-1 cells were induced by trypsin to form ILAs and differentiate into insulin-secreting cells. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 knockout and small interfering RNA knockdown techniques were used to investigate membrane proteins and downstream signaling pathways involved in the process.
RESULTS The extracellular domain of membrane receptor E-cadherin hydrolyzed by trypsin induced the aggregation of PANC-1 cells and stimulated E-cadherin-recruited casein kinase-1γ3, which specifically phosphorylated the Ser655/Thr658 site of α-catenin in the cadherin-catenin complex, participating in the process of PANC-1 differentiation and affecting the maturation of differentiated ILAs.
CONCLUSION The current study reveals the mechanism by which trypsin promotes PANC-1 cell differentiation into islet-like cells, providing a novel approach for endogenous islet β-cell regeneration.
Collapse
Affiliation(s)
- Ling Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Jia-Shuang Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Han Chen
- Department of Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Li-Xia Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Wan-Jin Hong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Liang-Cheng Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| |
Collapse
|
2
|
Yu JJ, Qi HY, Zhao Z, Yang Y, Zhang SY, Tan FQ, Yang WX. Hedgehog Signaling Functions in Spermatogenesis and Keeping Hemolymph-Testis Barrier Stability in Eriocheir sinensis. Int J Mol Sci 2025; 26:5378. [PMID: 40508185 PMCID: PMC12155367 DOI: 10.3390/ijms26115378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/24/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
Hedgehog (HH) signaling plays important roles in the development of the nervous system (Sonic hedgehog), bone, cartilage (Indian Hedgehog) and testis (Desert Hedgehog). Research on HH and testes has mostly been conducted in HH-knockout mice and rats, etc. The relationship between HH and cellular junctions has mostly been found in the nervous system and intestine. However, few research studies concerning the link between HH signaling and cell junctions in testis function have been reported. We identified the members of HH signaling that are involved in Eriocheir sinensis testes: HH, Smoothen, Patched, Kif27 and Ci. HH has only one homolog in E. sinensis and is expressed in several types of germ cells in the testes. We found that Kif27 colocalized with Ci in the testes. The knockdown of HH induced enlarged interstitial spaces of the seminiferous tubules. A biotin-streptavidin immunofluorescence experiment indicated that the hemolymph-testis barrier (HTB) was disrupted. Western blot results showed that pinin, HH signaling and cell proliferation- and apoptosis-related protein levels were downregulated. Further immunofluorescent results showed the dislocation of several junction proteins, the abnormality of F-actin and the slowdown of germ cell proliferation and apoptosis. While β-catenin entered the spermatocyte nucleus, it did not activate Wnt-β-catenin signaling, which indicated that the disturbance of the cell cycle in germ cells was not caused by Wnt-β-catenin signaling. In summary, HH signaling plays some roles beyond our understanding in the regulation of the HTB and the germ cell cycle in E. sinensis testes.
Collapse
Affiliation(s)
- Jun-Jie Yu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| | - Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| | - Yu Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| | - Shuang-Yi Zhang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| | - Fu-Qing Tan
- School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.-J.Y.); (Y.Y.); (S.-Y.Z.)
| |
Collapse
|
3
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
4
|
Viola V, Chinnappa K, Francis F. Radial glia progenitor polarity in health and disease. Front Cell Dev Biol 2024; 12:1478283. [PMID: 39416687 PMCID: PMC11479994 DOI: 10.3389/fcell.2024.1478283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.
Collapse
Affiliation(s)
- Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| |
Collapse
|
5
|
Oh SY, Jang G, Kim J, Jeong KY, Kim HM, Kwak YJ, Kong SH, Park DJ, Lee HJ, Cho SY, Kim JI, Yang HK. Identification of New Pathogenic Variants of Hereditary Diffuse Gastric Cancer. Cancer Res Treat 2024; 56:1126-1135. [PMID: 38605661 PMCID: PMC11491241 DOI: 10.4143/crt.2024.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Hereditary diffuse gastric cancer (HDGC) presents a significant genetic predisposition, notably linked to mutations in the CDH1 and CTNNA1. However, the genetic basis for over half of HDGC cases remains unidentified. The aim of this study is to identify novel pathogenic variants in HDGC and evaluate their protein expression. MATERIALS AND METHODS Among 20 qualifying families, two were selected based on available pedigree and DNA. Whole genome sequencing (WGS) on DNA extracted from blood and whole exome sequencing on DNA from formalin-fixed paraffin-embedded tissues were performed to find potential pathogenic variants in HDGC. After selection of a candidate variant, functional validation, and enrichment analysis were performed. RESULTS As a result of WGS, three candidate germline mutations (EPHA5, MCOA2, and RHOA) were identified in one family. After literature review and in-silico analyses, the RHOA mutation (R129W) was selected as a candidate. This mutation was found in two gastric cancer patients within the family. In functional validation, it showed RhoA overexpression and a higher GTP-bound state in the RhoaR129W mutant. Decreased phosphorylation at Ser127/397 suggested altered YAP1 regulation in the Rho-ROCK pathway. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses linked RhoaR129W overexpression to changed migration/adhesion in MKN1 cell line. However, this RHOA mutation (R129W) was not found in index patients in other families. CONCLUSION The RHOA mutation (R129W) emerges as a potential causative gene for HDGC, but only in one family, indicating a need for further studies to understand its role in HDGC pathogenesis fully.
Collapse
Affiliation(s)
- Seung-Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Giyong Jang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Ewha Biomedical Research Institute, Ewha Womans University Medical Center, Seoul, Korea
| | - Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Yun Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyun Myong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yoon Jin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Der B, Bugacov H, Briantseva BM, McMahon AP. Cadherin adhesion complexes direct cell aggregation in the epithelial transition of Wnt-induced nephron progenitor cells. Development 2024; 151:dev202303. [PMID: 39344436 PMCID: PMC11463967 DOI: 10.1242/dev.202303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on β-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the β-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of β-catenin supported a role for a Lef/Tcf-β-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of β-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of β-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.
Collapse
Affiliation(s)
- Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| |
Collapse
|
7
|
Zhu Y, Zhang Y, Jiang Y, Cai H, Liang J, Li H, Wang C, Hou J. Retinoic Acid Upregulates METTL14 Expression and the m 6A Modification Level to Inhibit the Proliferation of Embryonic Palate Mesenchymal Cells in Cleft Palate Mice. Int J Mol Sci 2024; 25:4538. [PMID: 38674123 PMCID: PMC11050043 DOI: 10.3390/ijms25084538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cleft palate only (CPO) is one of the most common craniofacial birth defects. Environmental factors can induce cleft palate by affecting epigenetic modifications such as DNA methylation, histone acetylation, and non-coding RNA. However, there are few reports focusing on the RNA modifications. In this study, all-trans retinoic acid (atRA) was used to simulate environmental factors to induce a C57BL/6J fetal mouse cleft palate model. Techniques such as dot blotting and immunofluorescence were used to find the changes in m6A modification when cleft palate occurs. RNA-seq and KEGG analysis were used to screen for significantly differentially expressed pathways downstream. Primary mouse embryonic palate mesenchymal (MEPM) cells were successfully isolated and used for in vitro experimental verification. We found that an increased m6A methylation level was correlated with suppressed cell proliferation in the palatine process mesenchyme of cleft palate mice. This change is due to the abnormally high expression of m6A methyltransferase METTL14. When using siRNAs and the m6A methyltransferase complex inhibitor SAH to interfere with the expression or function of METTL14, the teratogenic effect of atRA on primary cells was partially alleviated. In conclusion, METTL14 regulates palatal mesenchymal cell proliferation and cycle-related protein expression relies on m6A methylation modification, affecting the occurrence of cleft palate.
Collapse
Affiliation(s)
- Yue Zhu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yadong Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yaoqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongshi Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jianfeng Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Cheng Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinsong Hou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
8
|
Claude-Taupin A, Dupont N. To squeeze or not: Regulation of cell size by mechanical forces in development and human diseases. Biol Cell 2024; 116:e2200101. [PMID: 38059665 DOI: 10.1111/boc.202200101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Physical constraints, such as compression, shear stress, stretching and tension play major roles during development and tissue homeostasis. Mechanics directly impact physiology, and their alteration is also recognized as having an active role in driving human diseases. Recently, growing evidence has accumulated on how mechanical forces are translated into a wide panel of biological responses, including metabolism and changes in cell morphology. The aim of this review is to summarize and discuss our knowledge on the impact of mechanical forces on cell size regulation. Other biological consequences of mechanical forces will not be covered by this review. Moreover, wherever possible, we also discuss mechanosensors and molecular and cellular signaling pathways upstream of cell size regulation. We finally highlight the relevance of mechanical forces acting on cell size in physiology and human diseases.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Institut Necker Enfants Malades (INEM), INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants Malades (INEM), INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Koo H, Lee S, Kim WH. Usability of serum hedgehog signalling proteins as biomarkers in canine mammary carcinomas. BMC Vet Res 2023; 19:231. [PMID: 37932728 PMCID: PMC10626804 DOI: 10.1186/s12917-023-03761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The hedgehog signalling pathway has been implicated in tumourigenesis and progression of many tumour types. This pathway has recently emerged as a therapeutic target, and inhibitors of hedgehog signalling have gained considerable attention. In dogs, the roles of hedgehog signals in several types of tumours have been investigated, but their relationship with canine mammary gland tumours (MGTs) has not been established. This study aimed to evaluate the expression of sonic hedgehog (SHH) and glioma-associated oncogene 1 (GLI-1) in the serum and mammary tumour tissues of dogs. RESULTS SHH and GLI-1 protein expression levels were significantly higher in MGT tissues than in normal mammary gland tissues, as well as in malignant MGT specimens than in benign MGT specimens. Serum levels of SHH and GLI-1 were higher in MGT patients than in healthy controls (p < .001 and .001, respectively). Serum SHH level showed a statistically significant relationship with metastatic status (p = .01), and serum GLI-1 level showed a statistically significant relationship with histologic grade (p = 0.048) and metastatic status (p = 0.007). Serum hedgehog signalling protein levels were not significantly associated with breed size, sex, tumour size, or histologic type. CONCLUSIONS Hedgehog signalling protein expression in canine MGT tissue and serum differed according to the histological classification (benign and malignant) and metastatic status, indicating a relationship between the hedgehog signalling pathway and canine MGT. Thus, the hedgehog signalling pathway may serve as a new biomarker and therapeutic target in canine MGT patients.
Collapse
Affiliation(s)
- Haein Koo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sungin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
11
|
Der B, Bugacov H, Briantseva BM, McMahon AP. Cadherin Adhesion Complexes Direct Cell Aggregation in the Epithelial Transition of Wnt-Induced Nephron Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555021. [PMID: 38654822 PMCID: PMC11037868 DOI: 10.1101/2023.08.27.555021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin ( Ctnnb1 )-driven, transcriptional nephrogenic program. In conjunction, induced mesenchymal NPCs transition through a pre-tubular aggregate to an epithelial renal vesicle, the precursor for each nephron. How this critical mesenchymal-to-epithelial transition (MET) is regulated is unclear. In an in vitro mouse NPC culture model, activation of the Wnt pathway results in the aggregation of induced NPCs into closely-packed, cell clusters. Genetic removal of β-catenin resulted in a failure of both Wnt pathway-directed transcriptional activation and the formation of aggregated cell clusters. Modulating extracellular Ca 2+ levels showed cell-cell contacts were Ca 2+ -dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2 , Cdh4 and Cdh11 in uninduced NPCs and the up-regulation of Cdh3 and Cdh4 accompanying the Wnt pathway-induced MET. Genetic removal of all four cadherins, and independent removal of α-catenin, which couples Cdh-β-catenin membrane complexes to the actin cytoskeleton, abolished cell aggregation in response to Wnt pathway activation. However, the β-catenin driven inductive transcriptional program was unaltered. Together with the accompanying paper (Bugacov et al ., submitted), these data demonstrate that distinct cellular activities of β-catenin - transcriptional regulation and cell adhesion - combine in the mammalian kidney programs generating differentiated epithelial nephron precursors from mesenchymal nephron progenitors. Summary statement Our study highlights the role of Wnt-β-catenin pathway regulation of cadherin-mediated cell adhesion in the mesenchymal to epithelial transition of induced nephron progenitor cells.
Collapse
|
12
|
Tixi W, Maldonado M, Chang YT, Chiu A, Yeung W, Parveen N, Nelson MS, Hart R, Wang S, Hsu WJ, Fueger P, Kopp JL, Huising MO, Dhawan S, Shih HP. Coordination between ECM and cell-cell adhesion regulates the development of islet aggregation, architecture, and functional maturation. eLife 2023; 12:e90006. [PMID: 37610090 PMCID: PMC10482429 DOI: 10.7554/elife.90006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic islets are three-dimensional cell aggregates consisting of unique cellular composition, cell-to-cell contacts, and interactions with blood vessels. Cell aggregation is essential for islet endocrine function; however, it remains unclear how developing islets establish aggregation. By combining genetic animal models, imaging tools, and gene expression profiling, we demonstrate that islet aggregation is regulated by extracellular matrix signaling and cell-cell adhesion. Islet endocrine cell-specific inactivation of extracellular matrix receptor integrin β1 disrupted blood vessel interactions but promoted cell-cell adhesion and the formation of larger islets. In contrast, ablation of cell-cell adhesion molecule α-catenin promoted blood vessel interactions yet compromised islet clustering. Simultaneous removal of integrin β1 and α-catenin disrupts islet aggregation and the endocrine cell maturation process, demonstrating that establishment of islet aggregates is essential for functional maturation. Our study provides new insights into understanding the fundamental self-organizing mechanism for islet aggregation, architecture, and functional maturation.
Collapse
Affiliation(s)
- Wilma Tixi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Maricela Maldonado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
- Department of Biomedical Engineering, College of Engineering, California State University, Long BeachLong BeachUnited States
| | - Ya-Ting Chang
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Amy Chiu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Wilson Yeung
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Michael S Nelson
- Light Microscopy Core, Beckman Research Institute, City of HopeDuarteUnited States
| | - Ryan Hart
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Shihao Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Wu Jih Hsu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Patrick Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
- Department of Physiology and Membrane Biology, School of Medicine, University of California, DavisDavisUnited States
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Hung Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| |
Collapse
|
13
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
14
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Sharma D, Kaur G, Bisen S, Sharma A, Ibrahim AS, Singh NK. IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage. Cells 2023; 12:703. [PMID: 36899839 PMCID: PMC10001418 DOI: 10.3390/cells12050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
16
|
Serra R, Simard JM. Adherens, tight, and gap junctions in ependymal cells: A systematic review of their contribution to CSF-brain barrier. Front Neurol 2023; 14:1092205. [PMID: 37034077 PMCID: PMC10079940 DOI: 10.3389/fneur.2023.1092205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The movement of fluids and solutes across the ependymal barrier, and their changes in physiologic and disease states are poorly understood. This gap in knowledge contributes strongly to treatment failures and complications in various neurological disorders. Methods We systematically searched and reviewed original research articles treating ependymal intercellular junctions on PubMed. Reviews, opinion papers, and abstracts were excluded. Research conducted on tissue samples, cell lines, CSF, and animal models was considered. Results A total of 45 novel articles treating tight, adherens and gap junctions of the ependyma were included in our review, spanning from 1960 to 2022. The findings of this review point toward a central and not yet fully characterized role of the ependymal lining ultrastructure in fluid flow interactions in the brain. In particular, tight junctions circumferentially line the apical equator of ependymal cells, changing between embryonal and adult life in several rodent models, shaping fluid and solute transit in this location. Further, adherens and gap junctions appear to have a pivotal role in several forms of congenital hydrocephalus. Conclusions These findings may provide an opportunity for medical management of CSF disorders, potentially allowing for tuning of CSF secretion and absorption. Beyond hydrocephalus, stroke, trauma, this information has relevance for metabolite clearance and drug delivery, with potential to affect many patients with a variety of neurological disorders. This critical look at intercellular junctions in ependyma and the surrounding interstitial spaces is meant to inspire future research on a central and rather unknown component of the CSF-brain interface.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- *Correspondence: Riccardo Serra
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Department of Physiology, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
17
|
Weng A, Rabin EE, Flozak AS, Chiarella SE, Aillon RP, Gottardi CJ. Alpha-T-catenin is expressed in peripheral nerves as a constituent of Schwann cell adherens junctions. Biol Open 2022; 11:bio059634. [PMID: 36420826 PMCID: PMC9793867 DOI: 10.1242/bio.059634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The adherens junction component, alpha-T-catenin (αTcat) is an established contributor to cardiomyocyte junction structure and function, but recent genomic studies link CTNNA3 polymorphisms to diseases with no clear cardiac underpinning, including asthma, autism and multiple sclerosis, suggesting causal contributions from a different cell-type. We show Ctnna3 mRNA is highly expressed in peripheral nerves (e.g. vagus and sciatic), where αTcat protein enriches at paranodes and myelin incisure adherens junctions of Schwann cells. We validate αTcat immunodetection specificity using a new Ctnna3-knock-out fluorescence reporter mouse line yet find no obvious Schwann cell loss-of-function morphology at the light microscopic level. CTNNA3/Ctnna3 mRNA is also abundantly detected in oligodendrocytes of the central nervous system via public databases, supporting a general role for αTcat in these unique cell-cell junctions. These data suggest that the wide range of diseases linked to CTNNA3 may be through its role in maintaining neuroglial functions of central and peripheral nervous systems. This article has a corresponding First Person interview with the co-first authors of the paper.
Collapse
Affiliation(s)
- Anthea Weng
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Erik E. Rabin
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sergio E. Chiarella
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Raul Piseaux Aillon
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
18
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
19
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
20
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
21
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
22
|
An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers (Basel) 2021; 13:cancers13133221. [PMID: 34203272 PMCID: PMC8269186 DOI: 10.3390/cancers13133221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although biological information and the molecular classification of ependymoma have been studied, the treatment systems for ependymoma are still insufficient. In addition, because the disease occurs infrequently, it is difficult to obtain sufficient data to conduct large-scale or randomized clinical trials. Therefore, this study is intended to emphasize the importance of understanding its pathological characteristics and prognosis as well as developing treatments for ependymoma through multilateral studies. Abstract Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.
Collapse
|
23
|
Shohayeb B, Muzar Z, Cooper HM. Conservation of neural progenitor identity and the emergence of neocortical neuronal diversity. Semin Cell Dev Biol 2021; 118:4-13. [PMID: 34083116 DOI: 10.1016/j.semcdb.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
One paramount challenge for neuroscientists over the past century has been to identify the embryonic origins of the enormous diversity of cortical neurons found in the adult human neocortex and to unravel the developmental processes governing their emergence. In all mammals, including humans, the radial glia lining the ventricles of the embryonic telencephalon, more recently reclassified as apical radial glia (aRGs), have been identified as the neural progenitors giving rise to all excitatory neurons and inhibitory interneurons of the six-layered cortex. In this review, we explore the fundamental molecular and cellular mechanisms that regulate aRG function and the generation of neuronal diversity in the dorsal telencephalon. We survey the key structural features essential for the retention of the highly polarized aRG morphology and therefore impose aRG identity after cytokinesis. We discuss how these structures and associated molecular signaling complexes influence aRG proliferative capacity and the decision to undergo proliferative self-renewing symmetric or neurogenic asymmetric divisions. We also explore the intriguing and complex question of how the extensive neuronal diversity within the adult neocortex arises from the small aRG population located within the cortical proliferative zone. We further highlight the recent clonal lineage tracing and single-cell transcriptomic profiling studies providing compelling evidence that individual neuronal identity emerges as a consequence of exposure to temporally regulated extrinsic cues which coordinate waves of transcriptional activity that evolve over time to drive neuronal commitment and maturation.
Collapse
Affiliation(s)
- Belal Shohayeb
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| | - Zukhrofi Muzar
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
24
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
25
|
Identification of Possible Risk Variants of Familial Strabismus Using Exome Sequencing Analysis. Genes (Basel) 2021; 12:genes12010075. [PMID: 33435129 PMCID: PMC7827096 DOI: 10.3390/genes12010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To investigate candidate genes associated with familial strabismus and propose a theory of their interaction in familial strabismus associated with early neurodevelopment. METHODS Eighteen families, including 53 patients diagnosed with strabismus and 34 unaffected family members, were analyzed. All patients with strabismus and available unaffected family members were evaluated using whole exome sequencing. The primary outcome was to identify rare occurring variants among affected individuals and investigate the evidence of their genetic heterogeneity. These results were compared with exome sequencing analysis to build a comprehensive genetic profile of the study families. RESULTS We observed 60 variants from 58 genes in 53 patients diagnosed with strabismus. We prioritized the most credible risk variants, which showed clear segregation in family members affected by strabismus. As a result, we found risk variants in four genes (FAT3, KCNH2, CELSR1, and TTYH1) in five families, suggesting their role in development of familial strabismus. In other families, there were several rare genetic variants in affected cases, but we did not find clear segregation pattern across family members. CONCLUSION Genomic sequencing holds great promise in elucidating the genetic causes of strabismus; further research with larger cohorts or other related approaches are warranted.
Collapse
|
26
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
27
|
Piprek RP, Kloc M, Mizia P, Kubiak JZ. The Central Role of Cadherins in Gonad Development, Reproduction, and Fertility. Int J Mol Sci 2020; 21:E8264. [PMID: 33158211 PMCID: PMC7663743 DOI: 10.3390/ijms21218264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.
Collapse
Affiliation(s)
- Rafał P. Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Paulina Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Jacek Z. Kubiak
- Cycle Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, UnivRennes, UMR 6290 CNRS/UR1, F-35000 Rennes, France
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland
| |
Collapse
|
28
|
Hatakeyama J, Shimamura K. The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cereb Cortex 2020; 29:3725-3737. [PMID: 30307484 DOI: 10.1093/cercor/bhy252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
29
|
Uzquiano A, Cifuentes-Diaz C, Jabali A, Romero DM, Houllier A, Dingli F, Maillard C, Boland A, Deleuze JF, Loew D, Mancini GMS, Bahi-Buisson N, Ladewig J, Francis F. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep 2020; 28:1596-1611.e10. [PMID: 31390572 DOI: 10.1016/j.celrep.2019.06.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Apical radial glia (aRGs) are predominant progenitors during corticogenesis. Perturbing their function leads to cortical malformations, including subcortical heterotopia (SH), characterized by the presence of neurons below the cortex. EML1/Eml1 mutations lead to SH in patients, as well as to heterotopic cortex (HeCo) mutant mice. In HeCo mice, some aRGs are abnormally positioned away from the ventricular zone (VZ). Thus, unraveling EML1/Eml1 function will clarify mechanisms maintaining aRGs in the VZ. We pinpoint an unknown EML1/Eml1 function in primary cilium formation. In HeCo aRGs, cilia are shorter, less numerous, and often found aberrantly oriented within vesicles. Patient fibroblasts and human cortical progenitors show similar defects. EML1 interacts with RPGRIP1L, a ciliary protein, and RPGRIP1L mutations were revealed in a heterotopia patient. We also identify Golgi apparatus abnormalities in EML1/Eml1 mutant cells, potentially upstream of the cilia phenotype. We thus reveal primary cilia mechanisms impacting aRG dynamics in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Ammar Jabali
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delfina M Romero
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Anne Houllier
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Camille Maillard
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Nadia Bahi-Buisson
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP-Necker Enfants Malades University Hospital, Paris, France; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP-Necker Enfants Malades University Hospital, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
30
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
31
|
Veeraval L, O'Leary CJ, Cooper HM. Adherens Junctions: Guardians of Cortical Development. Front Cell Dev Biol 2020; 8:6. [PMID: 32117958 PMCID: PMC7025593 DOI: 10.3389/fcell.2020.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022] Open
Abstract
Apical radial glia comprise the pseudostratified neuroepithelium lining the embryonic lateral ventricles and give rise to the extensive repertoire of pyramidal neuronal subtypes of the neocortex. The establishment of a highly apicobasally polarized radial glial morphology is a mandatory prerequisite for cortical development as it governs neurogenesis, neural migration and the integrity of the ventricular wall. As in all epithelia, cadherin-based adherens junctions (AJs) play an obligate role in the maintenance of radial glial apicobasal polarity and neuroepithelial cohesion. In addition, the assembly of resilient AJs is critical to the integrity of the neuroepithelium which must resist the tensile forces arising from increasing CSF volume and other mechanical stresses associated with the expansion of the ventricles in the embryo and neonate. Junctional instability leads to the collapse of radial glial morphology, disruption of the ventricular surface and cortical lamination defects due to failed neuronal migration. The fidelity of cortical development is therefore dependent on AJ assembly and stability. Mutations in genes known to control radial glial junction formation are causative for a subset of inherited cortical malformations (neuronal heterotopias) as well as perinatal hydrocephalus, reinforcing the concept that radial glial junctions are pivotal determinants of successful corticogenesis. In this review we explore the key animal studies that have revealed important insights into the role of AJs in maintaining apical radial glial morphology and function, and as such, have provided a deeper understanding of the aberrant molecular and cellular processes contributing to debilitating cortical malformations. We highlight the reciprocal interactions between AJs and the epithelial polarity complexes that impose radial glial apicobasal polarity. We also discuss the critical molecular networks promoting AJ assembly in apical radial glia and emphasize the role of the actin cytoskeleton in the stabilization of cadherin adhesion – a crucial factor in buffering the mechanical forces exerted as a consequence of cortical expansion.
Collapse
Affiliation(s)
- Lenin Veeraval
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Conor J O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Bonnefont J, Tiberi L, van den Ameele J, Potier D, Gaber ZB, Lin X, Bilheu A, Herpoel A, Velez Bravo FD, Guillemot F, Aerts S, Vanderhaeghen P. Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways. Neuron 2019; 103:1096-1108.e4. [PMID: 31353074 PMCID: PMC6859502 DOI: 10.1016/j.neuron.2019.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.
Collapse
Affiliation(s)
- Jerome Bonnefont
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Luca Tiberi
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Jelle van den Ameele
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Delphine Potier
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Xionghui Lin
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Adèle Herpoel
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Fausto D Velez Bravo
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Welbio, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
| |
Collapse
|
33
|
Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron 2019; 102:143-158.e7. [PMID: 30770253 DOI: 10.1016/j.neuron.2019.01.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.
Collapse
|
34
|
Tang T, Zhang Y, Wang Y, Cai Z, Lu Z, Li L, Huang R, Hagelkruys A, Matthias P, Zhang H, Seiser C, Xie Y. HDAC1 and HDAC2 Regulate Intermediate Progenitor Positioning to Safeguard Neocortical Development. Neuron 2019; 101:1117-1133.e5. [PMID: 30709655 DOI: 10.1016/j.neuron.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
Neural progenitors with distinct potential to generate progeny are associated with a spatially distinct microenvironment. Neocortical intermediate progenitors (IPs) in the subventricular zone (SVZ) of the developing brain generate neurons for all cortical layers and are essential for cortical expansion. Here, we show that spatial control of IP positioning is essential for neocortical development. We demonstrate that HDAC1 and HDAC2 regulate the spatial positioning of IPs to form the SVZ. Developmental stage-specific depletion of both HDAC1 and HDAC2 in radial glial progenitors results in mispositioning of IPs at the ventricular surface, where they divide and differentiate into neurons, thereby leading to the cortical malformation. We further identified the proneural gene Neurogenin2 as a key target of HDAC1 and HDAC2 for regulating IP positioning. Our results demonstrate the importance of the spatial positioning of neural progenitors in cortical development and reveal a mechanism underlying the establishment of the SVZ microenvironment.
Collapse
Affiliation(s)
- Tianxiang Tang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yandong Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yafei Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zheping Cai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zhiheng Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Leiting Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Ru Huang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Astrid Hagelkruys
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Yunli Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
35
|
Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes. Stem Cell Res Ther 2018; 9:338. [PMID: 30526659 PMCID: PMC6286613 DOI: 10.1186/s13287-018-1086-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway plays an important role in the development of second heart field (SHF Isl1+) that gives rise to the anterior heart field (AHF) cardiac progenitor cells (CPCs) for the formation of the right ventricle, outflow tract (OFT), and a portion of the inflow tract (IFT). During early cardiogenesis, these AHF CPCs reside within the pharyngeal mesoderm (PM) that provides a microenvironment for them to receive signals that direct their cell fates. Here, N-cadherin, which is weakly expressed by CPCs, plays a significant role by promoting the adhesion of CPCs within the AHF, regulating β-catenin levels in the cytoplasm to maintain high Wnt signaling and cardioproliferation while also preventing the premature differentiation of CPCs. On the contrary, strong expression of N-cadherin observed throughout matured myocardium is associated with downregulation of Wnt signaling due to β-catenin sequestration at the cell membrane, inhibiting cardioproliferation. As such, upregulation of Wnt signaling pathway to enhance cardiac tissue proliferation in mature cardiomyocytes can be explored as an interesting avenue for regenerative treatment to patients who have suffered from myocardial infarction. Methods To investigate if Wnt signaling is able to enhance cellular proliferation of matured cardiomyocytes, we treated cardiomyocytes isolated from adult mouse heart and both murine and human ES cell-derived matured cardiomyocytes with N-cadherin antibody or CHIR99021 GSK inhibitor in an attempt to increase levels of cytoplasmic β-catenin. Immunostaining, western blot, and quantitative PCR for cell proliferation markers, cell cycling markers, and Wnt signaling pathway markers were used to quantitate re-activation of cardioproliferation and Wnt signaling. Results N-cadherin antibody treatment releases sequestered β-catenin at N-cadherin-based adherens junction, resulting in an increased pool of cytoplasmic β-catenin, similar in effect to CHIR99021 GSK inhibitor treatment. Both treatments therefore upregulate Wnt signaling successfully and result in significant increases in matured cardiomyocyte proliferation. Conclusion Although both N-cadherin antibody and CHIR99021 treatment resulted in increased Wnt signaling and cardioproliferation, CHIR99021 was found to be the more effective treatment method for human ES cell-derived cardiomyocytes. Therefore, we propose that CHIR99021 could be a potential therapeutic option for myocardial infarction patients in need of regeneration of cardiac tissue. Electronic supplementary material The online version of this article (10.1186/s13287-018-1086-8) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
de Groot JS, Ratze MAK, van Amersfoort M, Eisemann T, Vlug EJ, Niklaas MT, Chin S, Caldas C, van Diest PJ, Jonkers J, de Rooij J, Derksen PWB. αE-catenin is a candidate tumor suppressor for the development of E-cadherin-expressing lobular-type breast cancer. J Pathol 2018; 245:456-467. [PMID: 29774524 PMCID: PMC6055824 DOI: 10.1002/path.5099] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
Although mutational inactivation of E-cadherin (CDH1) is the main driver of invasive lobular breast cancer (ILC), approximately 10-15% of all ILCs retain membrane-localized E-cadherin despite the presence of an apparent non-cohesive and invasive lobular growth pattern. Given that ILC is dependent on constitutive actomyosin contraction for tumor development and progression, we used a combination of cell systems and in vivo experiments to investigate the consequences of α-catenin (CTNNA1) loss in the regulation of anchorage independence of non-invasive breast carcinoma. We found that inactivating somatic CTNNA1 mutations in human breast cancer correlated with lobular and mixed ducto-lobular phenotypes. Further, inducible loss of α-catenin in mouse and human E-cadherin-expressing breast cancer cells led to atypical localization of E-cadherin, a rounded cell morphology, and anoikis resistance. Pharmacological inhibition experiments subsequently revealed that, similar to E-cadherin-mutant ILC, anoikis resistance induced by α-catenin loss was dependent on Rho/Rock-dependent actomyosin contractility. Finally, using a transplantation-based conditional mouse model, we demonstrate that inducible inactivation of α-catenin instigates acquisition of lobular features and invasive behavior. We therefore suggest that α-catenin represents a bona fide tumor suppressor for the development of lobular-type breast cancer and as such provides an alternative event to E-cadherin inactivation, adherens junction (AJ) dysfunction, and subsequent constitutive actomyosin contraction. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max AK Ratze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Tanja Eisemann
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eva J Vlug
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mijanou T Niklaas
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Suet‐Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jos Jonkers
- Department of Molecular PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
37
|
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nat Genet 2018; 50:1093-1101. [PMID: 30013181 PMCID: PMC6072555 DOI: 10.1038/s41588-018-0166-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between β-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect β-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Martin W Breuss
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Ahmet Okay Caglayan
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, Istanbul Bilim University, Istanbul, Turkey
| | - Nouriya Al-Sanaa
- Department of Pediatrics, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Hind Y Al-Abdulwahed
- Department of Pediatrics, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Hande Kaymakçalan
- Department of Pediatrics, Istanbul Bilim University, Istanbul, Turkey
| | - Cahide Yılmaz
- Department of Pediatrics, Yıldırım Beyazıt University, Ankara, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Rasim O Rosti
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Brett Copeland
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Seung Tae Baek
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Damir Musaev
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Eric C Scott
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Section, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | | | - Hulya Kayserili
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | | | - Majdi Kara
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | - Na Cai
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Jennifer L Silhavy
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Seham Elsharif
- University of Tripoli, Tripoli Children's Hospital, Tripoli, Libya
| | - Elif Fenercioglu
- L.E.S. Mikrogen Genetic Diseases Diagnosis Center, Istanbul, Turkey
| | - Bruce A Barshop
- Department of Pediatrics, Biochemical Genetics Program, University of California, San Diego, San Diego, CA, USA
| | - Bulent Kara
- Department of Pediatric Neurology, Kocaeli University, Kocaeli, Turkey
| | - Rengang Wang
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Valentina Stanley
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Rahul Nachnani
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA
| | - Aneesha Kalur
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Hisham Megahed
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Faruk Incecik
- Department of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, India
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eissa Faqeih
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | | | - Lobna Mansour
- Pediatric Department, Neuropediatric Unit, Cairo University Children's Hospital, Cairo, Egypt
| | - Ian Miller
- Neurology Department, Nicklaus Children's Hospital, Miami, FL, USA
| | - Biayna Sukhudyan
- Arabkir Joint Medical Center and Institute of Child and Adolescent Health, Yerevan, Armenia
| | - Jamel Chelly
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA, USA
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Murat Gunel
- Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph G Gleeson
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
38
|
Abstract
The cadherin superfamily comprises a large, diverse collection of cell surface receptors that are expressed in the nervous system throughout development and have been shown to be essential for the proper assembly of the vertebrate nervous system. As our knowledge of each family member has grown, it has become increasingly clear that the functions of various cadherin subfamilies are intertwined: they can be present in the same protein complexes, impinge on the same developmental processes, and influence the same signaling pathways. This interconnectedness may illustrate a central way in which core developmental events are controlled to bring about the robust and precise assembly of neural circuitry.
Collapse
Affiliation(s)
- James D Jontes
- Department of Neuroscience, Ohio State University, Ohio 43210
| |
Collapse
|
39
|
Wickström SA, Niessen CM. Cell adhesion and mechanics as drivers of tissue organization and differentiation: local cues for large scale organization. Curr Opin Cell Biol 2018; 54:89-97. [PMID: 29864721 DOI: 10.1016/j.ceb.2018.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance.
Collapse
Affiliation(s)
- Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland; Paul Gerson Unna Group "Skin Homeostasis and Ageing" Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Germany.
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
Chiarella SE, Rabin EE, Ostilla LA, Flozak AS, Gottardi CJ. αT-catenin: A developmentally dispensable, disease-linked member of the α-catenin family. Tissue Barriers 2018; 6:e1463896. [PMID: 29746206 PMCID: PMC6179130 DOI: 10.1080/21688370.2018.1463896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
α-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms transcribed from three distinct genes. While most of α-catenin research has focused on the developmentally essential founding member, αE-catenin, this review discusses recent studies on αT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to cardiac, allergic and neurological diseases.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Erik E. Rabin
- Department of Medicine
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Lorena A. Ostilla
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Annette S. Flozak
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Cara J. Gottardi
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
41
|
Jimenez-Caliani AJ, Pillich R, Yang W, Diaferia GR, Meda P, Crisa L, Cirulli V. αE-Catenin Is a Positive Regulator of Pancreatic Islet Cell Lineage Differentiation. Cell Rep 2018; 20:1295-1306. [PMID: 28793255 PMCID: PMC5611824 DOI: 10.1016/j.celrep.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
The development and function of epithelia depend on the establishment and maintenance of cell-cell adhesion and intercellular junctions, which operate as mechanosensor hubs for the transduction of biochemical signals regulating cell proliferation, differentiation, survival, and regeneration. Here, we show that αE-catenin, a key component of adherens junctions, functions as a positive regulator of pancreatic islet cell lineage differentiation by repressing the sonic hedgehog pathway (SHH). Thus, deletion of αE-catenin in multipotent pancreatic progenitors resulted in (1) loss of adherens junctions, (2) constitutive activation of SHH, (3) decrease in islet cell lineage differentiation, and (4) accumulation of immature Sox9+ progenitors. Pharmacological blockade of SHH signaling in pancreatic organ cultures and in vivo rescued this defect, allowing αE-catenin-null Sox9+ pancreatic progenitors to differentiate into endocrine cells. The results uncover crucial functions of αE-catenin in pancreatic islet development and harbor significant implications for the design of β cell replacement and regeneration therapies in diabetes.
Collapse
Affiliation(s)
- Antonio J Jimenez-Caliani
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Dermatology, Rheumatology, Diabetology, University of Bremen, Bremen, Germany
| | - Rudolf Pillich
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wendy Yang
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
43
|
Chou FS, Li R, Wang PS. Molecular components and polarity of radial glial cells during cerebral cortex development. Cell Mol Life Sci 2018; 75:1027-1041. [PMID: 29018869 PMCID: PMC11105283 DOI: 10.1007/s00018-017-2680-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Originating from ectodermal epithelium, radial glial cells (RGCs) retain apico-basolateral polarity and comprise a pseudostratified epithelial layer in the developing cerebral cortex. The apical endfeet of the RGCs faces the fluid-filled ventricles, while the basal processes extend across the entire cortical span towards the pial surface. RGC functions are largely dependent on this polarized structure and the molecular components that define it. In this review, we will dissect existing molecular evidence on RGC polarity establishment and during cerebral cortex development and provide our perspective on the remaining key questions.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
- Division of Neonatology, Children's Mercy-Kansas City, Kansas City, MO, USA
| | - Rong Li
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Shan Wang
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
44
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
45
|
Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B, Mège RM. Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell 2017; 29:380-388. [PMID: 29282282 PMCID: PMC6014167 DOI: 10.1091/mbc.e17-04-0231] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
Combining cell biology and biomechanical analysis, we show here that the coupling between cadherin complexes and actin through tension-dependent α-catenin/vinculin association is regulating AJ stability and dynamics as well as tissue-scale mechanics. The shaping of a multicellular body and repair of adult tissues require fine-tuning of cell adhesion, cell mechanics, and intercellular transmission of mechanical load. Adherens junctions (AJs) are the major intercellular junctions by which cells sense and exert mechanical force on each other. However, how AJs adapt to mechanical stress and how this adaptation contributes to cell–cell cohesion and eventually to tissue-scale dynamics and mechanics remains largely unknown. Here, by analyzing the tension-dependent recruitment of vinculin, α-catenin, and F-actin as a function of stiffness, as well as the dynamics of GFP-tagged wild-type and mutated α-catenins, altered for their binding capability to vinculin, we demonstrate that the force-dependent binding of vinculin stabilizes α-catenin and is responsible for AJ adaptation to force. Challenging cadherin complexes mechanical coupling with magnetic tweezers, and cell–cell cohesion during collective cell movements, further highlight that tension-dependent adaptation of AJs regulates cell–cell contact dynamics and coordinated collective cell migration. Altogether, these data demonstrate that the force-dependent α-catenin/vinculin interaction, manipulated here by mutagenesis and mechanical control, is a core regulator of AJ mechanics and long-range cell–cell interactions.
Collapse
Affiliation(s)
- Rima Seddiki
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | | | - Pierre-Olivier Strale
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Grégoire Peyret
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - René Marc Mège
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
46
|
Ito S, Okuda S, Abe M, Fujimoto M, Onuki T, Nishimura T, Takeichi M. Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nat Commun 2017; 8:1834. [PMID: 29184140 PMCID: PMC5705652 DOI: 10.1038/s41467-017-01945-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022] Open
Abstract
Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA signaling, causing actomyosin contraction at the apical cortex. This contraction transmitted force to the cadherin-catenin complex, resulting in a mechanosensitive recruitment of vinculin to cell junctions. This process, in turn, recruited PDZ-RhoGEF to the junctions, leading to the RhoA/ROCK/LIM kinase/cofilin-dependent stabilization of the junctions. RhoGAP depletion mimicked these MTI-mediated processes. Cells that normally organize AJCs did not show such MTI/RhoA sensitivity. Thus, advanced carcinoma cells require elevated RhoA activity for establishing robust junctions, which triggers tension-sensitive reorganization of actin/adhesion regulators.
Collapse
Affiliation(s)
- Shoko Ito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoru Okuda
- Laboratoty for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masako Abe
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mari Fujimoto
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tetsuo Onuki
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tamako Nishimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
47
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
48
|
|
49
|
Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell 2017; 21:383-398.e7. [PMID: 28757360 DOI: 10.1016/j.stem.2017.07.007] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023]
Abstract
Organoid techniques provide unique platforms to model brain development and neurological disorders. Whereas several methods for recapitulating corticogenesis have been described, a system modeling human medial ganglionic eminence (MGE) development, a critical ventral brain domain producing cortical interneurons and related lineages, has been lacking until recently. Here, we describe the generation of MGE and cortex-specific organoids from human pluripotent stem cells that recapitulate the development of MGE and cortex domains, respectively. Population and single-cell RNA sequencing (RNA-seq) profiling combined with bulk assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed transcriptional and chromatin accessibility dynamics and lineage relationships during MGE and cortical organoid development. Furthermore, MGE and cortical organoids generated physiologically functional neurons and neuronal networks. Finally, fusing region-specific organoids followed by live imaging enabled analysis of human interneuron migration and integration. Together, our study provides a platform for generating domain-specific brain organoids and modeling human interneuron migration and offers deeper insight into molecular dynamics during human brain development.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gubbi Govindaiah
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Naomi Roselaar
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Adam P Lombroso
- Department of Biology, Program in Neuroscience and Behavior, Hall-Atwater Laboratory, Wesleyan University, Middletown, CT 06459, USA
| | - Sung-Min Hwang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Janice R Naegele
- Department of Biology, Program in Neuroscience and Behavior, Hall-Atwater Laboratory, Wesleyan University, Middletown, CT 06459, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sherman M Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
The regulation of Hh/Gli1 signaling cascade involves Gsk3β- mediated mechanism in estrogen-derived endometrial hyperplasia. Sci Rep 2017; 7:6557. [PMID: 28747625 PMCID: PMC5529438 DOI: 10.1038/s41598-017-06370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was undertaken to explore the functional involvement of Hh signaling and its regulatory mechanism in endometrial hyperplasia. Differential expression of Hh signaling molecules i.e., Ihh, Shh, Gli1 or Gsk3β was observed in endometrial hyperplasial (EH) cells as compared to normal endometrial cells. Estradiol induced the expression of Hh signaling molecules and attenuated the expression of Gsk3β whereas anti-estrogen (K1) or progestin (MPA) suppressed these effects in EH cells. Cyclopamine treatment or Gli1 siRNA knockdown suppressed the growth of EH cells and reduced the expression of proliferative markers. Estradiol also induced the nuclear translocation of Gli1 which was suppressed by both MPA and K1 in EH cells. While exploring non-canonical mechanism, LY-294002 (Gsk3β activator) caused a decrease in Gli1 expression indicating the involvement of Gsk3β in Gli1 regulation. Further, Gsk3β silencing promoted the expression and nuclear translocation of Gli1 demonstrating that Gsk3β serves as a negative kinase regulator of Gli1 in EH cells. Similar attenuation of Hh signaling molecules was observed in rats with uterine hyperplasia undergoing anti-estrogen treatment. The study suggested that Hh/Gli1 cascade (canonical pathway) as well as Gsk3β-Gli1 crosstalk (non-canonical pathway) play crucial role in estrogen-dependent cell proliferation in endometrial hyperplasia.
Collapse
|