1
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Wright AP, Harris S, Madden S, Reyes BR, Mulamula E, Gibson A, Rauch I, Constant DA, Nice TJ. Interferon regulatory factor 6 (IRF6) determines intestinal epithelial cell development and immunity. Mucosal Immunol 2024; 17:633-650. [PMID: 38604478 PMCID: PMC11323225 DOI: 10.1016/j.mucimm.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Intestinal epithelial cell (IEC) responses to interferon (IFN) favor antiviral defense with minimal cytotoxicity, but IEC-specific factors that regulate these responses remain poorly understood. Interferon regulatory factors (IRFs) are a family of nine related transcription factors, and IRF6 is preferentially expressed by epithelial cells, but its roles in IEC immunity are unknown. In this study, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screens found that Irf6 deficiency enhanced IFN-stimulated antiviral responses in transformed mouse IECs but not macrophages. Furthermore, knockout (KO) of Irf6 in IEC organoids resulted in profound changes to homeostasis and immunity gene expression. Irf6 KO organoids grew more slowly, and single-cell ribonucleic acid sequencing indicated reduced expression of genes in epithelial differentiation and immunity pathways. IFN-stimulated gene expression was also significantly different in Irf6 KO organoids, with increased expression of stress and apoptosis-associated genes. Functionally, the transcriptional changes in Irf6 KO organoids were associated with increased cytotoxicity upon IFN treatment or inflammasome activation. These data indicate a previously unappreciated role for IRF6 in IEC biology, including regulation of epithelial development and moderation of innate immune responses to minimize cytotoxicity and maintain barrier function.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Sydney Harris
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Shelby Madden
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan Ramirez Reyes
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ethan Mulamula
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexis Gibson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
3
|
Huyan T, Fan L, Zheng ZY, Zhao JH, Han ZR, Wu P, Ma Q, Du YQ, Shi YD, Gu CY, Li XJ, Wang WH, Zhang L, Tie L. ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway. Acta Pharmacol Sin 2024; 45:1477-1491. [PMID: 38538716 PMCID: PMC11192920 DOI: 10.1038/s41401-024-01246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.
Collapse
Affiliation(s)
- Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Yuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing-Hui Zhao
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen-Ru Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qun Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Ya-Qin Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yun-di Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Chun-Yan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Wen-Hui Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Long Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
5
|
Shan W, Peng W, Chen Y, Wang Y, Yu Q, Tian Y, Dou Y, Tu J, Huang X, Li X, Wang Z, Zhu Q, Chen J, Xia B. GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer. Oncogene 2024; 43:1885-1899. [PMID: 38664501 DOI: 10.1038/s41388-024-03040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3β-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3β-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yao Chen
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Yumeng Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qiongli Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jinqi Tu
- Hefei Jingdongfang Hospital, Hefei, Anhui, 230011, China
| | - Xu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Zengying Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jiming Chen
- Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| | - Bairong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| |
Collapse
|
6
|
Yin X, Zhao S, Zhang M, Xing J, Zhou J, Gao W, Chen L, Zhang Y, Lin L, Lu M, Li W, Shang J, Zhu X. m6A-modified RIPK4 facilitates proliferation and cisplatin resistance in epithelial ovarian cancer. Gynecol Oncol 2024; 180:99-110. [PMID: 38086167 DOI: 10.1016/j.ygyno.2023.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/14/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cisplatin (DDP)-based chemotherapy is a common chemotherapeutic regimen for the treatment of advanced epithelial ovarian cancer (EOC). However, most patients rapidly develop chemoresistance. N6-methyladenosine (m6A) is a pervasive RNA modification, and its specific role and potential mechanism in the regulation of chemosensitivity in EOC remain unclear. METHODS The expression of RIPK4 and its clinicopathological impact were evaluated in EOC cohorts. The biological effects of RIPK4 were investigated using in vitro and in vivo models. RNA m6A quantification was used to measure total m6A levels in epithelial ovarian cancer cells. Luciferase reporter, MeRIP-qPCR, RIP-qPCR and actinomycin-D assays were used to investigate RNA/RNA interactions and m6A modification of RIPK4 mRNA. RESULTS We demonstrated that RIPK4, an upregulated mRNA in EOC, acts as an oncogene in EOC cells by promoting tumor cell proliferation and DDP resistance at the clinical, database, cellular, and animal model levels. Mechanistically, METTL3 facilitates m6A modification, and YTHDF1 recognizes the specific m6A-modified site to prevent RIPK4 RNA degradation and upregulate RIPK4 expression. This induces NF-κB activation, resulting in tumor growth and DDP resistance in vitro and in vivo. CONCLUSIONS Collectively, the present findings reveal a novel mechanism underlying the induction of DDP resistance by m6A-modified RIPK4, that may contribute to overcoming chemoresistance in EOC.
Collapse
Affiliation(s)
- Xinming Yin
- Department of Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijie Zhao
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengxue Zhang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Xing
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiamin Zhou
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wujiang Gao
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lu Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yajiao Zhang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minjun Lu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Li
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junyu Shang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Reproductive Sciences, Jiangsu university, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
8
|
Vemurafenib and Dabrafenib Downregulates RIPK4 Level. Cancers (Basel) 2023; 15:cancers15030918. [PMID: 36765875 PMCID: PMC9913565 DOI: 10.3390/cancers15030918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients with melanoma carrying the V600E BRAF mutation. However, melanoma cells develop resistance to both drugs when used as monotherapy. Therefore, mechanisms of drug resistance are investigated, and new molecular targets are sought that could completely inhibit melanoma progression. Since receptor-interacting protein kinase (RIPK4) probably functions as an oncogene in melanoma and its structure is similar to the BRAF protein, we analyzed the impact of vemurafenib and dabrafenib on RIPK4 in melanomas. The in silico study confirmed the high similarity of BRAF kinase domains to the RIPK4 protein at both the sequence and structural levels and suggests that BRAFi could directly bind to RIPK4 even more strongly than to ATP. Furthermore, BRAFi inhibited ERK1/2 activity and lowered RIPK4 protein levels in BRAF-mutated melanoma cells (A375 and WM266.4), while in wild-type BRAF cells (BLM and LoVo), both inhibitors decreased the level of RIPK4 and enhanced ERK1/2 activity. The phosphorylation of phosphatidylethanolamine binding protein 1 (PEBP1)-a suppressor of the BRAF/MEK/ERK pathway-via RIPK4 observed in pancreatic cancer did not occur in melanoma. Neither downregulation nor upregulation of RIPK4 in BRAF- mutated cells affected PEBP1 levels or the BRAF/MEK/ERK pathway. The downregulation of RIPK4 inhibited cell proliferation and the FAK/AKT pathway, and increased BRAFi efficiency in WM266.4 cells. However, the silencing of RIPK4 did not induce apoptosis or necroptosis. Our study suggests that RIPK4 may be an off-target for BRAF inhibitors.
Collapse
|
9
|
The NOTCH-RIPK4-IRF6-ELOVL4 Axis Suppresses Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15030737. [PMID: 36765696 PMCID: PMC9913669 DOI: 10.3390/cancers15030737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Receptor-interacting serine/threonine protein kinase 4 (RIPK4) and its kinase substrate the transcription factor interferon regulatory factor 6 (IRF6) play critical roles in the development and maintenance of the epidermis. In addition, ourselves and others have previously shown that RIPK4 is a NOTCH target gene that suppresses the development of cutaneous and head and neck squamous cell carcinomas (HNSCCs). In this study, we used autochthonous mouse models, where the expression of Pik3caH1047R oncogene predisposes the skin and oral cavity to tumor development, and show that not only loss of Ripk4, but also loss of its kinase substrate Irf6, triggers rapid SCC development. In vivo rescue experiments using Ripk4 or a kinase-dead Ripk4 mutant showed that the tumor suppressive function of Ripk4 is dependent on its kinase activity. To elucidate critical mediators of this tumor suppressive pathway, we performed transcriptional profiling of Ripk4-deficient epidermal cells followed by multiplexed in vivo CRISPR screening to identify genes with tumor suppressive capabilities. We show that Elovl4 is a critical Notch-Ripk4-Irf6 downstream target gene, and that Elovl4 loss itself triggers SCC development. Importantly, overexpression of Elovl4 suppressed tumor growth of Ripk4-deficient keratinocytes. Altogether, our work identifies a potent Notch1-Ripk4-Irf6-Elovl4 tumor suppressor axis.
Collapse
|
10
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Zhong GY, Tan JN, Huang J, Zhou SN, Yu JH, Zhong L, Hou D, Zhi SL, Zeng JT, Li HM, Zheng CL, Yang B, Han FH. LncRNA LINC01537 Promotes Gastric Cancer Metastasis and Tumorigenesis by Stabilizing RIPK4 to Activate NF-κB Signaling. Cancers (Basel) 2022; 14:5237. [PMID: 36358656 PMCID: PMC9657364 DOI: 10.3390/cancers14215237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/30/2023] Open
Abstract
Many studies reported that long noncoding RNAs (lncRNAs) play a critical role in gastric cancer (GC) metastasis and tumorigenesis. However, the underlying mechanisms of lncRNAs in GC remain unexplored to a great extent. LINC01537 expression level was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Its biological roles in GC were then investigated using functional experiments. In order to investigate the underlying mechanism of LINC01537 in GC, RNA pull-down, RNA immunoprecipitation, and ubiquitination assays were performed. LINC01537 was significantly overexpressed in GC tissues and associated with a poor prognosis. Functional experimental results revealed that LINC01537 promoted the proliferation, invasion, and migration of GC cells. The animal experiments revealed that LINC01537 promoted tumorigenesis and metastasis in vivo. Mechanistically, LINC01537 stabilizes RIPK4 by reducing the binding of RIPK4 to TRIM25 and reducing its ubiquitination degradation, thereby promoting the expression of the NF-κB signaling pathway. According to our findings, the LINC01537-RIPK4-NF-κB axis promoted GC metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Huang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Hao Yu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi-Lin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Tao Zeng
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong-Ming Li
- Department of Colorectal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chu-Lian Zheng
- Department of Operation Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
13
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Agajanian MJ, Potjewyd FM, Bowman BM, Solomon S, LaPak KM, Bhatt DP, Smith JL, Goldfarb D, Axtman AD, Major MB. Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1γ3 in WNT signaling. J Biol Chem 2022; 298:101986. [PMID: 35487243 PMCID: PMC9157009 DOI: 10.1016/j.jbc.2022.101986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant activation or suppression of WNT/β-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the β-catenin-dependent and β-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.
Collapse
Affiliation(s)
- Megan J Agajanian
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Frances M Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany M Bowman
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Smaranda Solomon
- Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dhaval P Bhatt
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Jeffery L Smith
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Alison D Axtman
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
15
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
16
|
Xu J, Wu D, Zhang B, Pan C, Guo Y, Wei Q. Depletion of RIPK4 parallels higher malignancy potential in cutaneous squamous cell carcinoma. PeerJ 2022; 10:e12932. [PMID: 35186499 PMCID: PMC8841032 DOI: 10.7717/peerj.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The RIPK4 (receptor-interacting protein kinase 4), a member of the RIPK family, acts as an important regulator of epidermal differentiation, cutaneous inflammation, and cutaneous wound repair. However, Until now, the role of RIPK4 in tumorigenesis remains elusive. There have been no studies exploring the effects of RIPK4 on the signaling pathway in cutaneous squamous cell carcinoma (SCC). It remains unknown whether RIPK4 expression, which can affect the degree of epidermal differentiation can also influence the radiosensitivity of skin SCC. It is urgent to fully elucidate the biological mechanism by which RIPK4 promotes carcinogenesis in skin SCC and determine whether RIPK4 expression levels predicts the sensitivity to radiotherapy in skin SCC. METHODS Human skin SCC cell line, A431, was transfected with either small interfering RNAs (siRNAs) targeting RIPK4 (siR-RIPK4) or negative control siRNA (siR-NC). Western blotting was used to detect the expression of RIPK4 and Raf/MEK/ERK pathway-related proteins. The cells were irradiated using an X-ray irradiator at 6 MV with different radiation doses (0, 2, 6, and 10 Gy). Cell proliferation analysis, colony formation assay, transwell cell migration and invasion assay, cell cycle and apoptosis analysis were conducted to investigate the effect of RIPK4 silencing on skin SCC malignancy and radiosensitivity. RESULTS RIPK4 protein expression was significantly decreased in the A431 cells transfected with siR-RIPK4, compared with the A431 cells transfected with siR-NC. RIPK4 silencing facilitated the proliferation, colony formation, migration, and invasion ability of A431 cell line, while cell cycle progression or cell apoptosis were not significantly influenced. In contrast with the previous literature, Raf/MEK/ERK pathway was not effected by RIPK4 knockdown in skin SCC. RIPK4 knockdown could not reverse the radiation resistance of A431 cells to irradiation in vitro. CONCLUSIONS In general, although depletion of RIPK4 cannot reverse the radiation resistance of A431 cells in vitro, it parallels higher malignancy potential in cutaneous SCC. To our knowledge, this is the first report of the effects of RIPK4 expression on the Raf/MEK/ERK signaling pathway and radiosensitivity in cutaneous SCC. The better understanding of the molecular mechanism of RIPK4 in cutaneous SCC may provide a promising biomarker for skin SCC prognosis and treatment.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Bicheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Pan
- Department of Breast Surgey, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Yinglu Guo
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Sharma M, Castro-Piedras I, Rasha F, Ramachandran S, Sennoune SR, Furr K, Almodovar S, Ganapathy V, Grisham MB, Rahman RL, Pruitt K. Dishevelled-1 DIX and PDZ domain lysine residues regulate oncogenic Wnt signaling. Oncotarget 2021; 12:2234-2251. [PMID: 34733415 PMCID: PMC8555683 DOI: 10.18632/oncotarget.28089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of β-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sabarish Ramachandran
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R. Sennoune
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kathryn Furr
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Matthew B. Grisham
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
19
|
Madej E, Ryszawy D, Brożyna AA, Czyz M, Czyz J, Wolnicka-Glubisz A. Deciphering the Functional Role of RIPK4 in Melanoma. Int J Mol Sci 2021; 22:ijms222111504. [PMID: 34768934 PMCID: PMC8583870 DOI: 10.3390/ijms222111504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-1β level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-κB signaling in a RIPK4-dependent (RIPK4high) or independent (RIPK4low) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial).
Collapse
Affiliation(s)
- Ewelina Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
| | - Damian Ryszawy
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Anna A. Brożyna
- Faculty of Biological and Veterinary Sciences, Institute of Biology, Department of Human Biology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland;
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer Lodz, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland;
| | - Jaroslaw Czyz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Agnieszka Wolnicka-Glubisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-664-65-26; Fax: +48-12-664-69
| |
Collapse
|
20
|
Sheng M, Lin Y, Xu D, Tian Y, Zhan Y, Li C, Farmer DG, Kupiec-Weglinski JW, Ke B. CD47-Mediated Hedgehog/SMO/GLI1 Signaling Promotes Mesenchymal Stem Cell Immunomodulation in Mouse Liver Inflammation. Hepatology 2021; 74:1560-1577. [PMID: 33765345 PMCID: PMC9436023 DOI: 10.1002/hep.31831] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) signaling pathway plays important roles in immune homeostasis and tissue inflammatory response. Activation of the Hedgehog/smoothened (SMO)/GLI family zinc finger 1 (Gli1) pathway regulates cell growth, differentiation, and immune function. However, it remains unknown whether and how the CD47-SIRPα interaction may regulate Hedgehog/SMO/Gli1 signaling in mesenchymal stem cell (MSC)-mediated immune regulation during sterile inflammatory liver injury. APPROACH AND RESULTS In a mouse model of ischemia/reperfusion (IR)-induced sterile inflammatory liver injury, we found that adoptive transfer of MSCs increased CD47 expression and ameliorated liver IR injury. However, deletion of CD47 in MSCs exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators. MSC treatment augmented SIRPα, Hedgehog/SMO/Gli1, and Notch1 intracellular domain (NICD), whereas CD47-deficient MSC treatment reduced these gene expressions in IR-stressed livers. Moreover, disruption of myeloid SMO or Notch1 increased IR-triggered liver inflammation with diminished Gli1 and NICD, but enhanced NIMA related kinase 7 (NEK7) and NLR family pyrin domain containing 3 (NLRP3) activation in MSC-transferred mice. Using a MSC/macrophage co-culture system, we found that MSC CD47 and macrophage SIRPα expression were increased after LPS stimulation. The CD47-SIRPα interaction increased macrophage Gli1 and NICD nuclear translocation, whereby NICD interacted with Gli1 and regulated its target gene Dvl2 (dishevelled segment polarity protein 2), which in turn inhibited NEK7/NLRP3 activity. CONCLUSIONS The CD47-SIRPα signaling activates the Hedgehog/SMO/Gli1 pathway, which controls NEK7/NLRP3 activity through a direct interaction between Gli1 and NICD. NICD is a coactivator of Gli1, and the target gene Dvl2 regulated by the NICD-Gli1 complex is crucial for the modulation of NLRP3-driven inflammatory response in MSC-mediated immune regulation. Our findings provide potential therapeutic targets in MSC-mediated immunotherapy of sterile inflammatory liver injury.
Collapse
Affiliation(s)
- Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Anesthesiology, Tianjin First Center Hospital, Nankai University, Tianjin, China
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yongqiang Zhan
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Corresponding author: Bibo Ke, MD, PhD. The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Tel: (310) 825-7444; Fax: (310) 267-2367; .
| |
Collapse
|
21
|
Jin A, Zhang L, Fang G, Chen Y. Receptor interacting protein kinase 4 promotes cell proliferation, migration, and invasion in ovarian cancer via targeting protein kinase C delta. Drug Dev Res 2021; 83:407-415. [PMID: 34414590 DOI: 10.1002/ddr.21871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
Receptor interacting protein kinase 4 (RIPK4) has been reported to function as an oncogenic role in several types of cancers. The aim of this study was to evaluate the role of RIPK4 in ovarian cancer (OC) cells and to elucidate the mechanism behind this effect. In this study, the GEPIA database was used to analyze the RIPK4 expressions in OC tissues and overall survival. qRT-PCR and western blot assay were performed to detect the expressions of RIPK4 and protein kinase C delta (PRKCD) in OC cells. In addition, cell proliferation was assessed by CCK-8 and colony formation assay while cell invasion and migration were evaluated by transwell, wound healing and western blot assay. The interaction of RIPK4 and PRKCD was analyzed by the STRING database and the bioGRID database, and verified with co-immunoprecipitation. Herein, we describe that RIPK4 expression was upregulated in OC tissues and cells and was associated with poor overall survival. RIPK4 silencing repressed the proliferation, migration, and invasion of OC cells. Mechanistically, PRKCD was highly expressed in OC cells and was combined with RIPK4. PRKCD was highly positively associated with RIPK4 in OC and was regulated by RIPK4. Moreover, PRKCD overexpression reversed the inhibitory effects of RIPK4 silencing on OC cell proliferation, migration, and invasion. RIPK4 functions as an oncogene in OC cells via at least partially binding to PRKCD, which might represent a novel therapeutic strategy for improving survival for patients with OC.
Collapse
Affiliation(s)
- Aihong Jin
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Longhui Zhang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Guangguang Fang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yinzi Chen
- Department of Obstetrics and Gynecology, Ruian People's Hospital of Zhejiang Province, Ruian, China
| |
Collapse
|
22
|
Cullin 1 (CUL1) Promotes Primary Ciliogenesis through the Induction of Ubiquitin-Proteasome-Dependent Dvl2 Degradation. Int J Mol Sci 2021; 22:ijms22147572. [PMID: 34299191 PMCID: PMC8307194 DOI: 10.3390/ijms22147572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are nonmotile cellular signal-sensing antenna-like structures composed of microtubule-based structures that distinguish them from motile cilia in structure and function. Primary ciliogenesis is regulated by various cellular signals, such as Wnt, hedgehog (Hh), and platelet-derived growth factor (PDGF). The abnormal regulation of ciliogenesis is closely related to developing various human diseases, including ciliopathies and cancer. This study identified a novel primary ciliogenesis factor Cullin 1 (CUL1), a core component of Skp1-Cullin-F-box (SCF) E3 ubiquitin ligase complex, which regulates the proteolysis of dishevelled 2 (Dvl2) through the ubiquitin-proteasome system. Through immunoprecipitation-tandem mass spectrometry analysis, 176 Dvl2 interacting candidates were identified, of which CUL1 is a novel Dvl2 modulator that induces Dvl2 ubiquitination-dependent degradation. Neddylation-dependent CUL1 activity at the centrosomes was essential for centrosomal Dvl2 degradation and primary ciliogenesis. Therefore, this study provides a new mechanism of Dvl2 degradation by CUL1, which ultimately leads to primary ciliogenesis, and suggest a novel target for primary cilia-related human diseases.
Collapse
|
23
|
Overexpression of RIPK4 Predicts Poor Prognosis and Promotes Metastasis in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6622439. [PMID: 34124253 PMCID: PMC8192190 DOI: 10.1155/2021/6622439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This study was conducted to evaluate the prognostic value of receptor-interacting protein kinase 4 (RIPK4) in ovarian cancer (OC) and its role in tumorigenesis. RNA expression and the corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The relationship between clinical-pathological characteristics and RIPK4 expression was analyzed using the Wilcoxon signed-rank test and logistic regression. The Cox regression and the Kaplan-Meier method were used to evaluate the relationship between clinicopathological features and overall survival (OS). Gene set enrichment analysis (GSEA) was performed using Molecular Signatures Database. Scratch assay, transwell assay, and cell transfection were used to verify the function of RIPK4. Overexpression of RIPK4 was associated with the stage of OC and distant metastasis. Survival analysis revealed that patients with OC and higher expression of RIPK4 had a poorer prognosis. Univariate and multivariate analyses indicated that high expression of RIPK4 was associated with poor OS, as well as age and stage of OC. The areas under the curve (AUC) at 1, 4, and 8 years were 0.737, 0.634, and 0.669, respectively, according to the established OS prediction model. GSEA revealed that adherens junction, cadherin binding, and Wnt signaling pathway were enriched in the high RIPK4 expression group. Cell transfection confirmed RIPK4 was involved in the Wnt signaling pathway. RIPK4 can act as a potential prognostic molecular marker for poor survival in OC. Moreover, RIPK4 is associated with tumor metastasis and implicated in the regulation of the Wnt signaling pathway.
Collapse
|
24
|
Downregulation of RIPK4 Expression Inhibits Epithelial-Mesenchymal Transition in Ovarian Cancer through IL-6. J Immunol Res 2021; 2021:8875450. [PMID: 33855091 PMCID: PMC8019379 DOI: 10.1155/2021/8875450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
RIPK4 has been implicated in multiple cancer types, but its role in ovarian cancer (OC) has not been clearly elucidated. Our data from Gene Expression Profiling Interactive Analysis, RT-PCR, and immunohistochemical analysis showed that RIPK4 was expressed at higher levels in OC tissues and cells than in normal ovarian tissues and cells. Increased RIPK4 expression in OC markedly correlated with a worse overall survival than lower RIPK4 expression levels (hazard rate (HR) 1.5 (1.45–1.87); P = 0.001). In functional experiments, RIPK4 downregulation significantly inhibited metastatic behaviours in OC cells. Subsequently, based on data from 593 OC patients in the TCGA database, gene set enrichment analysis revealed that RIPK4 was involved in epithelial-mesenchymal transition (EMT) in OC. At the molecular level, silencing RIPK4 significantly downregulated vimentin, N-cadherin, and Twist expression but induced an increase in the protein level of E-cadherin and inhibited the IL-6 and STAT3 levels. Moreover, IL-6 levels were significantly decreased in RIPK4-silenced OC cells (P < 0.05). The addition of IL-6 to OC cells rescued the suppressive effect of RIPK4 knockdown on EMT. Thus, our data illustrate that downregulation of RIPK4 expression can restrain EMT in OC by inhibiting IL-6. This finding may provide a novel diagnostic and therapeutic target for improving the poor prognoses of OC patients.
Collapse
|
25
|
Dinçer T, Gümüş E, Toraman B, Er İ, Yildiz G, Yüksel Z, Kalay E. A novel homozygous RIPK4 variant in a family with severe Bartsocas-Papas syndrome. Am J Med Genet A 2021; 185:1691-1699. [PMID: 33713555 DOI: 10.1002/ajmg.a.62154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Bartsocas-Papas syndrome (BPS) is a rare autosomal recessive disorder characterized by popliteal pterygia, syndactyly, ankyloblepharon, filiform bands between the jaws, cleft lip and palate, and genital malformations. Most of the BPS cases reported to date are fatal either in the prenatal or neonatal period. Causative genetic defects of BPS were mapped on the RIPK4 gene encoding receptor-interacting serine/threonine kinase 4, which is critical for epidermal differentiation and development. RIPK4 variants are associated with a wide range of clinical features ranging from milder ectodermal dysplasia to severe BPS. Here, we evaluated a consanguineous Turkish family, who had two pregnancies with severe multiple malformations compatible with BPS phenotype. In order to identify the underlying genetic defect, direct sequencing of the coding region and exon-intron boundaries of RIPK4 was carried out. A homozygous transversion (c.481G>C) that leads to the substitution of a conserved aspartic acid to histidine (p.Asp161His) in the kinase domain of the protein was detected. Pathogenicity predictions, molecular modeling, and cell-based functional assays showed that Asp161 residue is required for the kinase activity of the protein, which indicates that the identified variant is responsible for the severe BPS phenotype in the family.
Collapse
Affiliation(s)
- Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Evren Gümüş
- Department of Medical Genetics, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Bayram Toraman
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İdris Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, Trabzon, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Zafer Yüksel
- Department of Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Ersan Kalay
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
26
|
Cai L, Ye L, Hu X, He W, Zhuang D, Guo Q, Shu K, Jie Y. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered 2021; 12:440-449. [PMID: 33487072 PMCID: PMC8291835 DOI: 10.1080/21655979.2021.1871817] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies reported that miR-330-3p was involved in the progression of several cancers, but the potential roles of miR-330-3p in ovarian cancer (OC) were unclear. In the current study, we aimed to explore the expression pattern and functions of miR-330-3p in OC. The expression level of miR-330-3p in OC tissues and cell lines was detected using RT-qPCR. The proliferation, migration and invasion of OC cells were detected using CCK-8 assay and transwell assay, respectively. Bioinformatics analysis and luciferase reporter assay were used to analyze the targeted binding
site of miR-330-3p and RIPK4. The results showed that miR-330-3p was significantly downregulated in OC tissues and cell lines. Overexpression of miR-330-3p inhibited the proliferation, migration and invasion of OC cells. Mechanistically, a dual-luciferase reported assay showed that RIPK4 is a target gene of miR-330-3p. Furthermore, rescue experiments revealed that miR-330-3p suppressed the proliferation, migration and invasion of OC cells by targeting RIPK4. In summary, our findings indicated that miR-330-3p suppressed the progression of OC by targeting RIPK4. Our results indicated that miR-330-3p/RIPK4 axis might act as a novel therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Li Cai
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Lu Ye
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Xiaoqing Hu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Debao Zhuang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Qi Guo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Kuanyong Shu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Youkun Jie
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Wu B, Jiang S, Wang X, Zhong S, Bi Y, Yi D, Liu G, Hu F, Dou G, Chen Y, Wu Y, Dong J. Identification of driver genes and key pathways of non-functional pituitary adenomas predicts the therapeutic effect of STO-609. PLoS One 2020; 15:e0240230. [PMID: 33119597 PMCID: PMC7595405 DOI: 10.1371/journal.pone.0240230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Our study is to identify DEGs (Differentially Expressed Genes), comprehensively investigate hub genes, annotate enrichment functions and key pathways of Non-functional pituitary adenomas (NFPAs), and also to verify STO-609 therapeutic effect. Methods The gene expression level of NFPA and normal tissues were compared to identify the DEGs (Differential expressed genes) based on gene expression profiles (GSE2175, GSE26966 and GSE51618). Enrichment functions, pathways and key genes were identified by carrying out GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis and PPI (Protein-Protein Interation) network analysis. Moreover, experiments in vitro were conducted to verify the anti-NFPAs effects of STO-609. Results 169 over-expression genes and 182 low expression genes were identified among 3 datasets. Dopaminergic synapse and vibrio cholerae infection pathways have distinctly changed in NFPA tissues. The Ca2+/CaM pathway played important roles in NFPA. Four hub proteins encoded by genes CALM1, PRDM10, RIPK4 and MAD2L1 were recognized as hub proteins. In vitro, assays showed that STO-609 induced apoptosis of NFPA cells to inhibit the hypophysoma cellular viability, diffusion and migration. Conclusion Four hub proteins, encoded by gene CALM1, PRDM10, RIPK4 and MAD2L1, played important roles in NFPA development. The Ca2+/CaM signaling pathway had significant alternations during NFPA forming process, the STO-609, a selective CaM-KK inhibitor, inhibited NFPA cellular viability, proliferation and migration. Meanwhile, NFPA was closely related to parkinson’s disease (PD) in many aspects.
Collapse
Affiliation(s)
- Bo Wu
- Clinical College, Jilin University, Changchun, China
- Department of Orthopedics, Jilin University First Hospital, Changchun, China
| | - Shanshan Jiang
- Institute of Zoology, China Academy of Science, Beijing, China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun, China
- Department of Oncology, Jilin University First Hospital, Changchun, China
| | - Sheng Zhong
- Department of Neurosurgery, Cancer Hospital of Sun Yat sen University, Guangzhou, China
| | - Yiming Bi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Dazhuang Yi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ge Liu
- College of Pharmacy, Jilin University, Changchun, China
| | - Fangfei Hu
- College of Pharmacy, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China
- Department of Breast Surgery, Jilin University First Hospital, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yi Wu
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| | - Jiajun Dong
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| |
Collapse
|
28
|
Esaki N, Enomoto A, Takagishi M, Mizutani Y, Iida T, Ushida K, Shiraki Y, Mii S, Takahashi M. The Daple-CK1ε complex regulates Dvl2 phosphorylation and canonical Wnt signaling. Biochem Biophys Res Commun 2020; 532:406-413. [PMID: 32888647 DOI: 10.1016/j.bbrc.2020.08.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/22/2023]
Abstract
The canonical Wnt signaling pathway plays a crucial role in embryonic development, tissue homeostasis and cancer progression. The binding of Wnt ligands to their cognate receptors, the Frizzled (Fzd) family of proteins, recruits Dishevelled segment polarity protein (Dvl) to the plasma membrane and induces its phosphorylation via casein kinase 1 (CK1), which leads to the activation of β-catenin. Previous studies showed that Dishevelled-associating protein with a high frequency of leucine residues (Daple) is an important component of the Wnt signaling pathway and essential for Dvl phosphorylation. However, the mechanism by which Daple promotes CK1-mediated phosphorylation of Dvl is not fully understood. In this study, we found that Daple overexpression induced CK1ε-mediated Dvl2 phosphorylation at threonine 224 (Thr224). A Daple mutant (Daple ΔGCV) that lacks a carboxyl-terminal motif to associate with Dvl, retained the ability to interact with CK1ε, but did not induce Dvl phosphorylation, suggesting the importance of the Daple/Dvl/CK1ε trimeric protein complex. We further found that Thr224 phosphorylation of Dvl was required for full activation of β-catenin transcriptional activity. Consistent with this, wild-type Daple promoted β-catenin transcriptional activity, following dissociation of β-catenin and axin. Finally, Wnt3a stimulation increased the membrane localization of Daple and its association with Dvl, and Daple knockdown attenuated Wnt3a-mediated β-catenin transcriptional activity. Collectively, these data suggested a essential role of spatial Daple localization in CK1ε-mediated activation of Dvl in the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Maki Takagishi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, 470-1192, Japan.
| |
Collapse
|
29
|
Xu J, Wei Q, He Z. Insight Into the Function of RIPK4 in Keratinocyte Differentiation and Carcinogenesis. Front Oncol 2020; 10:1562. [PMID: 32923402 PMCID: PMC7457045 DOI: 10.3389/fonc.2020.01562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4), a member of the RIPK family, was originally described as an interaction partner of protein kinase C (PKC) β and PKCδ. RIPK4 is identified as a key regulator of keratinocyte differentiation, cutaneous inflammation, and cutaneous wound repair. The mechanism by which RIPK4 integrates upstream signals to initiate specific responses remains elusive. Previous studies have indicated that RIPK4 can regulate several signaling pathways, including the NF-κB, Wnt/β-catenin, and RAF/MEK/ERK pathways. Furthermore, RIPK4-related biological signaling pathways interact with each other to form a complex network. Mounting evidence suggests that RIPK4 is aberrantly expressed in various kinds of cancers. In several types of squamous cell carcinoma (SCC), the mutations that drive aggressive SCC have been found in RIPK4. In addition, the function of RIPK4 in carcinogenesis is probably tissue-specific, since RIPK4 can play a dual role as both a tumor promoter and a tumor suppressor in different tumor types. Therefore, RIPK4 may represent as an independent prognostic factor and a promising novel therapeutic target, which can be used to identify the risks of patients and guide personalized treatments. In future, RIPK4-interacting pathways and precise molecular targets need to be investigated in order to further elucidate the mechanisms underlying epidermal differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Ou D, Chen L, He J, Rong Z, Gao J, Li Z, Liu L, Tang F, Li J, Deng Y, Sun L. CDK11 negatively regulates Wnt/β-catenin signaling in the endosomal compartment by affecting microtubule stability. Cancer Biol Med 2020; 17:328-342. [PMID: 32587772 PMCID: PMC7309457 DOI: 10.20892/j.issn.2095-3941.2019.0229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Improper activation of Wnt/β-catenin signaling has been implicated in human diseases. Beyond the well-studied glycogen synthase kinase 3β (GSK3β) and casein kinase 1 (CK1), other kinases affecting Wnt/β-catenin signaling remain to be defined. Methods:To identify the kinases that modulate Wnt/β-catenin signaling, we applied a kinase small interfering RNA (siRNA) library screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm the regulation of the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate colocalization, detect protein interactions, and explore the function of CDK11. Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/β-catenin signaling. Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes, in a manner dependent on intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/β-catenin signaling engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in Wnt/β-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/β-catenin signaling receptor complexes. CDK11 was found to suppress cell migration through altered Wnt/β-catenin signaling. Conclusions: CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules, thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.
Collapse
Affiliation(s)
- Danmin Ou
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lin Chen
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuoxian Rong
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Gao
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Liyu Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feiyu Tang
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuezhen Deng
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Lunquan Sun
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| |
Collapse
|
31
|
Phosphorylation-Dependent SERS Readout for Activity Assay of Protein Kinase A in Cell Extracts. NANOMATERIALS 2020; 10:nano10030575. [PMID: 32235706 PMCID: PMC7153394 DOI: 10.3390/nano10030575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Protein kinases are key regulators of cell function, the abnormal activity of which may induce several human diseases, including cancers. Therefore, it is of great significance to develop a sensitive and reliable method for assaying protein kinase activities in real biological samples. Here, we report the phosphorylation-dependent surface-enhanced Raman scattering (SERS) readout of spermine-functionalized silver nanoparticles (AgNPs) for protein kinase A (PKA) activity assay in cell extracts. In this assay, the presence of PKA would phosphorylate and alter the net charge states of Raman dye-labeled substrate peptides, and the resulting anionic products could absorb onto the AgNPs with cationic surface charge through electrostatic attraction. Meanwhile, the Raman signals of dyes labeled on peptides were strongly enhanced by the aggregated AgNPs with interparticle hot spots formed in assay buffer. The SERS readout was directly proportional to the PKA activity in a wide range of 0.0001-0.5 U·μL-1 with a detection limit as low as 0.00003 U·μL-1. Moreover, the proposed SERS-based assay for the PKA activity was successfully applied to monitoring the activity and inhibition of PKA in real biological samples, particularly in cell extracts, which would be beneficial for kinase-related disease diagnostics and inhibitor screening.
Collapse
|
32
|
Yi Z, Pu Y, Gou R, Chen Y, Ren X, Liu W, Dong P. Silencing of RIPK4 inhibits epithelial‑mesenchymal transition by inactivating the Wnt/β‑catenin signaling pathway in osteosarcoma. Mol Med Rep 2020; 21:1154-1162. [PMID: 32016450 PMCID: PMC7002986 DOI: 10.3892/mmr.2020.10939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Receptor interacting protein kinase 4 (RIPK4) is a serine/threonine kinase that plays an important role in the regulation of cell proliferation, invasion and metastasis in several malignancies; however, its clinical significance and biological function in osteosarcoma (OS) remains unknown. In the present study, the RIPK4 expression level was significantly upregulated in OS tissues and cell lines. High RIPK4 expression was positively associated with larger sized tumors, advanced Enneking stage and poor prognosis in patients with OS. Furthermore, the results revealed that RIPK4 knockdown in the OS cell lines MG‑63 and U2OS reduced cell migration and invasion via the inhibition of epithelial‑mesenchymal transition (EMT) process, whereby E‑cadherin expression was increased and N‑cadherin and vimentin expression decreased. Mechanistically, RIPK4 knockdown inhibited EMT by inactivating the Wnt/β‑catenin signaling pathway. These findings suggest that RIPK4 may be a novel potential therapeutic target for the treatment of metastases in patients with OS.
Collapse
Affiliation(s)
- Zhigang Yi
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei City People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Ruoyan Gou
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yonggang Chen
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaojun Ren
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenzhong Liu
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ping Dong
- Department of Pediatric Orthopedics and Pediatrics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
33
|
Hanáková K, Bernatík O, Kravec M, Micka M, Kumar J, Harnoš J, Ovesná P, Paclíková P, Rádsetoulal M, Potěšil D, Tripsianes K, Čajánek L, Zdráhal Z, Bryja V. Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun Signal 2019; 17:170. [PMID: 31870452 PMCID: PMC6927192 DOI: 10.1186/s12964-019-0470-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. Methods Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. Results We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced β-catenin activation. S630–643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. Conclusions We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.
Graphical abstract ![]()
Collapse
Affiliation(s)
- Kateřina Hanáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Bernatík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Matěj Rádsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - David Potěšil
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
34
|
Dinçer T, Boz Er AB, Er İ, Toraman B, Yildiz G, Kalay E. RIPK4 suppresses the TGF-β1 signaling pathway in HaCaT cells. Cell Biol Int 2019; 44:848-860. [PMID: 31825120 DOI: 10.1002/cbin.11282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Receptor-interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor-β 1 (TGF-β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF-β signaling during epidermal homeostasis-related events and suppression of RIPK4 expression by TGF-β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor-κB (NF-κB), protein kinase C (PKC), wingless-type MMTV integration site family (Wnt), and (mitogen-activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad-mediated TGF-β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad-mediated TGF-β1 signaling events through suppression of TGF-β1-induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3-Smad4 interaction, nuclear localization, and TGF-β1-induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound-scratch assay demonstrated that RIPK4 suppressed TGF-β1-mediated wound healing through blocking TGF-β1-induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF-β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF-β1 signaling.
Collapse
Affiliation(s)
- Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Asiye Büşra Boz Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - İdris Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Bayram Toraman
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ersan Kalay
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
35
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, Xie H, He L, Long Z, Lu X, Xiao M, Zhu Y, Bo H, Cao K. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. SCIENCE ADVANCES 2019; 5:eaaw6499. [PMID: 31579820 PMCID: PMC6760933 DOI: 10.1126/sciadv.aaw6499] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) technology can specifically silence the expression of a target gene and has emerged as a promising therapeutic method to treat cancer. In the present study, we showed that natural halloysite nanotube (HNT)-assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 ( RIPK4 ) efficiently silenced its expression to treat bladder cancer. The HNTs/siRNA complex increased the serum stability of the siRNA, increased its circulation lifetime in blood, and promoted the cellular uptake and tumor accumulation of the siRNA. The siRNA markedly down-regulated RIPK4 expression in bladder cancer cells and bladder tumors, thus inhibiting tumorigenesis and progression in three bladder tumor models (a subcutaneous model, an in situ bladder tumor model, and a lung metastasis model), with no adverse effects. Thus, we revealed a simple but effective method to inhibit bladder cancer using RIPK4 silencing, indicating a promising therapeutic method for bladder cancer.
Collapse
Affiliation(s)
- Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hongliang Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hongyi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Xiaoyong Lu
- Department of Urology, Hunan Aerospace Hospital, Changsha 410205, China
| | - Mengqing Xiao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yuxing Zhu
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410008, China
| | - Ke Cao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
37
|
Wang J, Zhang Q, Zhu Q, Liu C, Nan X, Wang F, Fang L, Liu J, Xie C, Fu S, Song B. Identification of methylation-driven genes related to prognosis in clear-cell renal cell carcinoma. J Cell Physiol 2019; 235:1296-1308. [PMID: 31273792 PMCID: PMC6899764 DOI: 10.1002/jcp.29046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
With the participation of the existing treatment methods, the prognosis of advanced clear‐cell renal cell carcinoma (ccRCC) is poor. More evidence indicates the presence of methylation in ccRCC cancer cells, but there is a lack of studies on methylation‐driven genes in ccRCC. We analyzed the open data of ccRCC in The Cancer Genome Atlas database to obtain ccRCC‐related methylation‐driven genes, and then carried out pathway enrichment, survival, and joint survival analyses. More important, we deeply explored the correlation between differential methylation sites and the expression of these driving genes. Finally, we screened 29 methylation‐driven genes via MethylMix, of which six were significantly associated with the survival of ccRCC patients. This study demonstrated that the effect of hypermethylation or hypomethylation on prognosis is different, and the level of methylation of key methylation sites is associated with gene expression. We identified methylation‐driven genes independently predicting prognosis in ccRCC, which offers theoretical support in bioinformatics for the study of methylation in ccRCC and a new perspective for the epigenetic study of ccRCC.
Collapse
Affiliation(s)
- Jia Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiujing Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingqing Zhu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengxiang Liu
- Department of Oncology, Jinan Jigang Hospital, Jinan, China
| | - Xueli Nan
- Department of Oncology, Wu Di People Hospital, Binzhou, China
| | - Fuxia Wang
- Department of Oncology, YunCheng Conuntry People's Hospital, YunCheng, China
| | - Lihua Fang
- Department of Oncology, Chang Qing District People's Hospital, Jinan, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Fu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bao Song
- Basic Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
38
|
Zhang L, Hu Z, Zhang Y, Huang J, Yang X, Wang J. Proteomics analysis of proteins interacting with heat shock factor 1 in squamous cell carcinoma of the cervix. Oncol Lett 2019; 18:2568-2575. [PMID: 31402952 DOI: 10.3892/ol.2019.10539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Protein interactions are crucial for maintaining homeostasis. Heat shock factor 1 (HSF1), a transcription factor that interacts with various proteins, is highly expressed in squamous cell carcinoma (SCC) of the cervix. The aim of the present study was to investigate the protein interaction profile of HSF1 in cervical SCC. Proteins interacting with HSF1 in SCC tissue and non-cancerous control (Ctrl) tissue were obtained by immunoprecipitation, separated by SDS-PAGE, identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and analyzed using bioinformatics methods. A total of 220 and 241 proteins were identified by mass spectrometry in the tissues of Ctrl and SCC samples, respectively, among which 172 were detected exclusively in SCC (Pro-S), 151 exclusively in Ctrl (Pro-C) and 69 in both groups (Pro-B). The protein interaction profiles were different in each group; the STRING database identified three proteins that interacted with HSF1 directly, including insulin-like growth factor 1 receptor and small nuclear RNA-activating protein complex subunit 4 in Pro-C and small ubiquitin-related modifier 1 in Pro-S. Functional enrichment analysis of Gene Ontology revealed that the top terms were alternative splicing in Pro-S and polymorphism in Pro-C. In Pro-S, more categories were related to protein modification, such as phosphorylation, ubiquitination and acetylation. Therefore, HSF1 may influence the occurrence and development of cervical SCC by interacting with specific proteins.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhe Hu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jinzhi Huang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xuefen Yang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
39
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
40
|
Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: Enzymatic jewels or jinxes? Biochim Biophys Acta Rev Cancer 2019; 1871:406-418. [PMID: 31034925 DOI: 10.1016/j.bbcan.2019.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
41
|
Xu Y, Chen D, Lin XX, Zhao Q, Guo J, Chen LJ, Zhang W, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Obianom O, Shu Y, Chen Y. The LRP6 functional mutation rs2302685 contributes to individual susceptibility to alcoholic liver injury related to the Wnt/β-catenin-TCF1-CYP2E1 signaling pathway. Arch Toxicol 2019; 93:1679-1695. [PMID: 30976847 DOI: 10.1007/s00204-019-02447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is an important coreceptor in the Wnt/β-catenin upstream signaling pathway. Rs2302685 is a common functional mutation of LRP6 that has been previously associated with reduced alcoholic liver injury among alcoholic liver disease (ALD) patients, and the present research was designed to study the underlying mechanisms of that finding. A total of 107 ALD patients and 138 non-ALD patients were recruited from hospitalized alcoholics in China. Their venous blood samples were collected for DNA extraction and genotyped using Sequenom MassARRAY. We found that the rs2302685 mutation, which impaired the function of LRP6, was present in higher frequency among alcoholics with ALD than those without ALD. We also conducted a mouse model experiment in which LRP6(+/-) knockdown mice and LRP6(+/+) wild-type mice received daily intragastric doses of ethanol (2.4 g/kg) as well as a larger dose of ethanol (4 g/kg) every 7 days for 28 days. The mouse blood and liver specimens were subsequently collected for laboratory analysis, and cell experiments were performed to compare the inhibition, activation, over-expression, and siRNA of LRP6 in the treatment versus the control HL7702 cells. Expression of the targeted molecules was detected by real-time PCR or western blot analysis. Stably transfected cells with pRL3-CYP2E1 vector were used to further study the underlying mechanisms. The total bile acid (TBA), direct bilirubin, total bilirubin (TBIL), aspartate aminotransferase (AST), mitochondrial aspartate aminotransferase, and AST/ALT values were significantly lower in carriers of the rs2302685 mutation than in the wild-type patients, by 63.4, 60.6, 82.1, 44.8, 45.7, and 21.4%, respectively. Compared to the LRP6(+/+) wild-type mice, the LRP6(+/-) knockdown mice had lower ALT, TBIL, TBA, and ALB/GLO values, as well reduced liver tissue damage, in accordance with their reduced expressions of LRP6, β-catenin, and CYP2E1. In HL7702 cells exposed to ethanol, AST, ALT, lipid accumulation, and ROS generation decreased in cells that were treated with LRP6 inhibitors or siRNA but increased in cells treated with LRP6 activators or over-expressed LRP6. TCF1 was the transcriptional factor most likely to connect the LRP6-Wnt/β-catenin signaling pathway to the regulation of CYP2E1. We concluded that the LRP6 functional mutation rs2302685 contributes to individual differences in susceptibility to alcoholic liver injury related to the Wnt/β-catenin-TCF1-CYP2E1 signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xiao
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guang-Hui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Obinna Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Institute of Clinical Pharmacology, Central South University, Changsha, 410078, Hunan, China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
42
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
43
|
Zhang Y, He W, Zhang S. Seeking for Correlative Genes and Signaling Pathways With Bone Metastasis From Breast Cancer by Integrated Analysis. Front Oncol 2019; 9:138. [PMID: 30918839 PMCID: PMC6424882 DOI: 10.3389/fonc.2019.00138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Bone metastasis frequently occurs in advanced breast cancer patients, and it is one of major causes of breast cancer associated mortality. The aim of the current study is to identify potential genes and related signaling pathways in the pathophysiology of breast cancer bone metastasis. Methods: Three mRNA expression datasets for breast cancer bone metastasis were obtained from Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were obtained. Functional analyses, protein-protein interaction (PPI) network, and transcription factors (TFs)-target genes network was constructed. Real-time PCR using clinical specimens was conducted to justify the results from integrated analysis. Results: A 749 DEGs were obtained. Osteoclast differentiation and rheumatoid arthritis were two significantly enriched signaling pathways for DEGs in the bone metastasis of breast cancer. SMAD7 (degree = 10), TGFBR2 (degree = 9), VIM (degree = 8), FOS (degree = 8), PDGFRB (degree = 7), COL5A1 (degree = 6), ARRB2 (degree = 6), and ITGAV (degree = 6) were high degree genes in the PPI network. ETS1 (degree = 12), SPI1 (degree = 12), FOS (degree = 10), FLI1 (degree = 5), KLF4 (degree = 4), JUNB (degree = 4), NR3C1 (degree = 4) were high degree genes in the TFs-target genes network. Validated by QRT-PCR, the expression levels of IBSP, MMP9, MMP13, TNFAIP6, CD200, DHRS3, ASS1, RIPK4, VIM, and PROM1 were roughly consistent with our integrated analysis. Except PROM1, the other genes had a diagnose value for breast cancer bone metastasis. Conclusions: The identified DEGs and signaling pathways may make contribution for understanding the pathological mechanism of bone metastasis from breast cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, China
| | - Wendan He
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Petrovic J, Zhou Y, Fasolino M, Goldman N, Schwartz GW, Mumbach MR, Nguyen SC, Rome KS, Sela Y, Zapataro Z, Blacklow SC, Kruhlak MJ, Shi J, Aster JC, Joyce EF, Little SC, Vahedi G, Pear WS, Faryabi RB. Oncogenic Notch Promotes Long-Range Regulatory Interactions within Hyperconnected 3D Cliques. Mol Cell 2019; 73:1174-1190.e12. [PMID: 30745086 DOI: 10.1016/j.molcel.2019.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/21/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023]
Abstract
Chromatin loops enable transcription-factor-bound distal enhancers to interact with their target promoters to regulate transcriptional programs. Although developmental transcription factors such as active forms of Notch can directly stimulate transcription by activating enhancers, the effect of their oncogenic subversion on the 3D organization of cancer genomes is largely undetermined. By mapping chromatin looping genome-wide in Notch-dependent triple-negative breast cancer and B cell lymphoma, we show that beyond the well-characterized role of Notch as an activator of distal enhancers, Notch regulates its direct target genes by instructing enhancer repositioning. Moreover, a large fraction of Notch-instructed regulatory loops form highly interacting enhancer and promoter spatial clusters termed "3D cliques." Loss- and gain-of-function experiments show that Notch preferentially targets hyperconnected 3D cliques that regulate the expression of crucial proto-oncogenes. Our observations suggest that oncogenic hijacking of developmental transcription factors can dysregulate transcription through widespread effects on the spatial organization of cancer genomes.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory W Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell R Mumbach
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly S Rome
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogev Sela
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zachary Zapataro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Junwei Shi
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Chen L, Hayden MS, Gilmore ES, Alexander-Savino C, Oleksyn D, Gillespie K, Zhao J, Poligone B. PKK deletion in basal keratinocytes promotes tumorigenesis after chemical carcinogenesis. Carcinogenesis 2018; 39:418-428. [PMID: 29186361 DOI: 10.1093/carcin/bgx120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma (SCC) of the skin is a keratinocyte malignancy characterized by tumors presenting on sun-exposed areas with surgery being the mainstay treatment. Despite advances in targeted therapy in other skin cancers, such as basal cell carcinoma and melanoma, there have been no such advances in the treatment of SCC. This is partly due to an incomplete knowledge of the pathogenesis of SCC. We have recently identified a protein kinase C-associated kinase (PKK) as a potential tumor suppressor in SCC. We now describe a novel conditional PKK knockout mouse model, which demonstrates that PKK deficiency promotes SCC formation during chemically induced tumorigenesis. Our results further support that PKK functions as a tumor suppressor in skin keratinocytes and is important in the pathogenesis of SCC of the skin. We further define the interactions of keratinocyte PKK with TP63 and NF-κB signaling, highlighting the importance of this protein as a tumor suppressor in SCC development.
Collapse
Affiliation(s)
- Luojing Chen
- Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, USA
| | - Matthew S Hayden
- Rochester General Hospital Research Institute, Center for Cancer and Blood Disorders, USA.,Department of Surgery, Section of Dermatology, Dartmouth-Hitchcock Medical Center, USA
| | | | | | - David Oleksyn
- Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, USA
| | | | - Jiyong Zhao
- Department of Biomedical Genetics, University of Rochester School of Medicine, USA
| | - Brian Poligone
- Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, USA.,Rochester General Hospital Research Institute, Center for Cancer and Blood Disorders, USA
| |
Collapse
|
46
|
Sun E, Liu K, Zhao K, Wang L. Serine/threonine kinase 32C is overexpressed in bladder cancer and contributes to tumor progression. Cancer Biol Ther 2018; 20:307-320. [PMID: 30359551 DOI: 10.1080/15384047.2018.1529098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Tumor markers of bladder cancer (BC) have been investigated for many years, but the clinical treatment based on these biomarkers is still unsatisfactory. STK32C, a member of the serine/threonine protein kinase of AGC superfamily, was first found to be highly expressed in brain tissues; however, the role of STK32C in malignant disease has not been determined. Data from TCGA database showed that the STK32C gene is overexpressed in BC and a number of other human tumors. In the current study, immunohistochemistry revealed that high expression of STK32C protein in tumor tissues was significantly associated with poor clinico pathologic features and a short relapse-free survival (RFS) in patients with BC. Slicing of STK32C inhibited tumor cell proliferation, migration and invasion in vitro. In vivo animal experiments demonstrated that knocking-down of STK32C restricted the growth of tumor cells in mice. Finally, microarray analysis revealed that silencing of STK32C inhibited the activity of the HMGB1 pathway and regulated the expression of key genes in this pathway. In conclusion, our study showed novel promoting roles for STK32C in human tumors, which may provide a new therapeutic target for the patients with BC.
Collapse
Affiliation(s)
- Erlin Sun
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Kangkang Liu
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Kun Zhao
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Lining Wang
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| |
Collapse
|
47
|
Gong Y, Luo X, Yang J, Jiang Q, Liu Z. RIPK4 promoted the tumorigenicity of nasopharyngeal carcinoma cells. Biomed Pharmacother 2018; 108:1-6. [PMID: 30212707 DOI: 10.1016/j.biopha.2018.08.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
RIPK4 (receptor interacting serine/threonine kinase 4) has been reported to be aberrantly expressed in several cancer types. However, its expression pattern and functions in nasopharyngeal carcinoma (NPC) have never been reported. In this study, we have shown that the expression of RIPK4 was up-regulated in NPC tissues. RIPK4 promoted the growth and anchorage-independent growth of NPC cells, and down-regulation of RIPK4 inhibited the growth of NPC cells both in the plate-based culture and on the soft agar. Moreover, RIPK4 promoted the expression of VEGF in the NPC cells and induced the tube formation of HUVEC, and Axitinib (the inhibitor for VEGF receptor) inhibited the tumorigenesis driven by RIPK4. In the molecular mechanism study, RIPK4 was found to enhance the interaction between IKKα and IKKβ, and activated NF-kB signaling. Taken together, our study demonstrated the oncogenic roles of RIPK4 in NPC and suggested that RIPK4 might be a therapeutic target.
Collapse
Affiliation(s)
- Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, China
| | - Zhifeng Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
48
|
Bae HC, Jeong SH, Kim JH, Lee H, Ryu WI, Kim MG, Son ED, Lee TR, Son SW. RIP4 upregulates CCL20 expression through STAT3 signalling in cultured keratinocytes. Exp Dermatol 2018; 27:1126-1133. [DOI: 10.1111/exd.13750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hyun Cheol Bae
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
- Department of Orthopedic Surgery; Seoul National University Hospital; Seoul Korea
| | - Sang Hoon Jeong
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| | - Jin Hee Kim
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| | - Hana Lee
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| | - Woo-In Ryu
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| | - Min-Gyu Kim
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| | - Eui Dong Son
- AmorePacific Corp/R&D Center; Yongin-si Gyeonggi-do Korea
| | - Tae Ryong Lee
- AmorePacific Corp/R&D Center; Yongin-si Gyeonggi-do Korea
| | - Sang Wook Son
- Department of Dermatology; College of Medicine; Korea University; Seoul Korea
- Department of Biomedical Sciences; College of Medicine; Korea University; Seoul Korea
| |
Collapse
|
49
|
Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D, Stainier DYR, Garcia-Pino A, Vanhollebeke B. A molecular mechanism for Wnt ligand-specific signaling. Science 2018; 361:science.aat1178. [PMID: 30026314 DOI: 10.1126/science.aat1178] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Wnt signaling is key to many developmental, physiological, and disease processes in which cells seem able to discriminate between multiple Wnt ligands. This selective Wnt recognition or "decoding" capacity has remained enigmatic because Wnt/Frizzled interactions are largely incompatible with monospecific recognition. Gpr124 and Reck enable brain endothelial cells to selectively respond to Wnt7. We show that Reck binds with low micromolar affinity to the intrinsically disordered linker region of Wnt7. Availability of Reck-bound Wnt7 for Frizzled signaling relies on the interaction between Gpr124 and Dishevelled. Through polymerization, Dishevelled recruits Gpr124 and the associated Reck-bound Wnt7 into dynamic Wnt/Frizzled/Lrp5/6 signalosomes, resulting in increased local concentrations of Wnt7 available for Frizzled signaling. This work provides mechanistic insights into the Wnt decoding capacities of vertebrate cells and unravels structural determinants of the functional diversification of Wnt family members.
Collapse
Affiliation(s)
- Marie Eubelen
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - Naguissa Bostaille
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - Anne Gauquier
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - Patricia Tebabi
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - Andra C Dumitru
- NanoBiophysics Laboratory, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- NanoBiophysics Laboratory, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Philipp Gut
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium
| | - David Alsteens
- NanoBiophysics Laboratory, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Abel Garcia-Pino
- Laboratory of Cellular and Molecular Microbiology, Department of Molecular Biology, ULB, Gosselies B-6041, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies B-6041, Belgium. .,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium.,Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies B-6041, Belgium
| |
Collapse
|
50
|
RIPK4 promotes bladder urothelial carcinoma cell aggressiveness by upregulating VEGF-A through the NF-κB pathway. Br J Cancer 2018; 118:1617-1627. [PMID: 29867225 PMCID: PMC6008479 DOI: 10.1038/s41416-018-0116-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Constitutively activated nuclear factor kappa B (NF-κB) signalling plays vital roles in bladder urothelial carcinoma (BC) progression. We investigate the effect of receptor-interacting protein kinase 4 (RIPK4) on NF-κB activation and BC progression. METHODS The expression of RIPK4 was examined in 25 cryopreserved paired bladder samples and 112 paraffin BC specimens. In vivo and in vitro assays were performed to validate effect of RIPK4 on NF-κB pathway-mediated BC progression. RESULTS High expression of RIPK4 was observed in BC tissues and was an independent predictor for poor overall survival. Up or downregulating the expression of RIPK4 enhanced or inhibited, respectively, the migration and invasion of BC cells in vitro and in vivo. Mechanistically, RIPK4 promoted K63-linked polyubiquitination of tumour necrosis factor receptor-associated factor 2 (TRAF2), receptor-interacting protein (RIP) and NF-κB essential modulator (NEMO). RIPK4 also promoted nuclear localisation of NF-κB-p65, and maintained activation of NF-κB substantially, leading to upregulation of VEGF-A, ultimately promoting BC cell aggressiveness. CONCLUSIONS Our data highlighted the molecular aetiology and clinical significance of RIPK4 in BC: upregulation of RIPK4 contributes to NF-κB activation, and upregulates VEGF-A, and BC progression. Targeting RIPK4 might represent a new therapeutic strategy to improve survival for patients with BC.
Collapse
|