1
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Sweeney-Lasch S, Quillmann M, Hannewald J, Dickgiesser S, Rasche N, Shan M, Deutsch C, Hecht S, Anderl J, Kolmar H, Piater B. Elucidating Critical Factors of Internalization and Drug Release of Antibody-Drug Conjugates (ADCs) Using Kinetic Parameters Evaluated by a Novel Tool Named TORCH. Bioconjug Chem 2025; 36:945-959. [PMID: 40326736 DOI: 10.1021/acs.bioconjchem.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
During the past decade, antibody-drug conjugates (ADCs) have emerged as new drugs in cancer therapy with 15 ADCs already approved such as Kadcyla, Enhertu, and Adcetris. ADCs contain a cytotoxic drug that is linked to an antibody, allowing for specific delivery of the warhead to tumor cells. Typically, the antibody targets a tumor-specific antigen expressed on the cell surface. After the internalization of ADCs into cells, the linker is often cleaved by enzymes in the lysosomal compartment of the cell, releasing the warhead and thereby allowing for its interaction with, for example, the DNA or the tubulin cytoskeleton, which finally leads to cell death. Consequently, binding, internalization, and drug release are key attributes for the efficacy of ADCs. Here, we describe a novel molecule named TORCH (Turn On after Release by CatHepsins) that contains a fluorescence quencher system that is separated by a cathepsin B-cleavable linker. When conjugated to an antibody, the TORCH molecule allows one to gain valuable insights on the internalization and drug release of ADCs. While we cannot exclude the influence of other factors such as receptor recycling, we have found that the receptor density is directly related to the amount of payload released intracellularly, meaning that the internalization per receptor is very similar for all investigated antibodies and cell lines.
Collapse
Affiliation(s)
- Stanley Sweeney-Lasch
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Marie Quillmann
- Department of Biochemistry, Technical University of Darmstadt, Darmstadt 64293, Germany
| | - Jens Hannewald
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Stephan Dickgiesser
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Nicolas Rasche
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Min Shan
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Carl Deutsch
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Stefan Hecht
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Jan Anderl
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| | - Harald Kolmar
- Department of Biochemistry, Technical University of Darmstadt, Darmstadt 64293, Germany
| | - Birgit Piater
- Department of Discovery & Development Technologies, The Healthcare Business of Merck KGaA, Darmstadt 64293, Germany
| |
Collapse
|
3
|
Chen S, Piatkov K, Dong L, Sugimoto H. Detection of antidrug antibodies against antibody-drug conjugates by solid-phase extraction with acid dissociation in cynomolgus monkey serum. Drug Metab Dispos 2025; 53:100039. [PMID: 40037092 DOI: 10.1016/j.dmd.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 03/06/2025] Open
Abstract
The formation of antidrug antibodies (ADAs) against antibody-drug conjugates (ADCs) can trigger a humoral immune response and change drug exposure. Although the immunogenicity assessment of an ADC drug in nonclinical nonhuman primates may not directly translate to potential immunogenicity in humans, the nonclinical ADA assay facilitates understanding the pharmacokinetic profiles of biotherapeutics. The immune response against the human IgG4 monoclonal antibody-based ADC was suspected in cynomolgus monkey serum after intravenous administration at 1.5 mg/kg. However, the conventional bridging format ADA assay presented unique challenges for the ADC molecules due to the interaction of ADC-based capture and detection reagents, which generated high background noise. Solid-phase extraction with acid dissociation (SPEAD) sample treatment allowed the selective ADA transfer to a second plate for detection while avoiding the interaction between the capture and detection reagents. The signal-to-noise ratio in the ADA assay for ADCs was notably improved with SPEAD sample treatment compared with the results from the bridging assay. Importantly, the rapid drug clearance of the ADC molecules at the later time points was well correlated with the signal-to-noise ratio of the ADA assay in monkey serum, suggesting the validity of the results. Hence, we demonstrated the utility of the SPEAD sample treatment to mitigate the critical reagent interaction that triggered the unexpectedly high background in the ADA assay. SIGNIFICANCE STATEMENT: A fit-for-purpose antidrug antibody screening assay for the human IgG4 monoclonal antibody-based antibody-drug conjugate (ADC) molecule by solid-phase extraction with acid dissociation was developed to mitigate the high background noise due to the interaction of capture and detection ADCs. A positive antidrug antibody signal was observed in the monkey serum sample, which is in line with the significant decrease in the plasma concentration of ADCs at the later time points.
Collapse
Affiliation(s)
- Susan Chen
- Drug Metabolism and Pharmacokinetics and Modeling (DMPK&M), Takeda Development Center Americas Inc, Cambridge, Massachusetts
| | - Konstantin Piatkov
- Drug Metabolism and Pharmacokinetics and Modeling (DMPK&M), Takeda Development Center Americas Inc, Cambridge, Massachusetts
| | - Linlin Dong
- Drug Metabolism and Pharmacokinetics and Modeling (DMPK&M), Takeda Development Center Americas Inc, Cambridge, Massachusetts
| | - Hiroshi Sugimoto
- Drug Metabolism and Pharmacokinetics and Modeling (DMPK&M), Takeda Development Center Americas Inc, Cambridge, Massachusetts.
| |
Collapse
|
4
|
Zeng Y, Zhou S, Yang Y, Tang B, Wei W, Huang G, Wu C, Fang X. Dual-Functional Nanobody Optical Probes for In Vivo Fluorescence Imaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11764-11773. [PMID: 39951515 DOI: 10.1021/acsami.4c20517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Nanobodies have gained significant attention as promising tools for cancer diagnostics and treatment due to their unique ability to precisely target specific cancer cells. However, a major challenge lies in the site-specific incorporation of multifunctional molecules into nanobodies, as it is essential to link these molecules in a manner that preserves the nanobody's function and stability while retaining the desired therapeutic or diagnostic properties. This study outlines the development of dual-functional nanobody optical probes for enhanced cancer diagnostics and therapeutic interventions. We designed a dual-functional clickable linker that enables site-specific functionalization of the nanobody, facilitating the simultaneous conjugation of two dyes: indocyanine green for imaging and chlorin e6 for photodynamic therapy. In vitro cellular assays confirmed the successful labeling of the dual-functional dyes, with the nanobody probe exhibiting high cellular binding specificity. In vivo imaging of mice bearing Hep3B tumors revealed clear visualization with a high signal-to-noise ratio. Furthermore, PEGylated probes significantly improved tumor retention, enhancing both imaging contrast and photodynamic therapy efficacy as compared to free chlorin e6. These dual-functional nanobody probes show great promise for the precise diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Yiqi Zeng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Siyu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yicheng Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
5
|
Wang W, Bunyatov M, Lopez-Barbosa N, DeLisa MP. Engineering affinity-matured variants of an anti-polysialic acid monoclonal antibody with superior cytotoxicity-mediating potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637914. [PMID: 40027839 PMCID: PMC11870402 DOI: 10.1101/2025.02.12.637914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Monoclonal antibodies (mAbs) that specifically recognize cell surface glycans associated with cancer and infectious disease hold tremendous value for both basic research and clinical applications. However, high-quality anti-glycan mAbs, especially those with sufficiently high affinity and specificity, remain scarce, highlighting the need for protein engineering approaches based on rational design or directed evolution that enable optimization of antigen-binding properties. To this end, we sought to enhance the affinity of a polysialic acid (polySia)-specific antibody called mAb735, which was raised by animal immunization and possesses only modest affinity, using a combination of rational design and directed evolution. The application of these approaches led to the discovery of affinity-matured IgG variants with up to ∼7-fold stronger affinity for polySia relative to the parental antibody. The higher affinity IgG variants were observed to opsonize polySia- positive cancer cells more avidly, which in turn resulted in significantly greater cytotoxicity as determined by both antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Collectively, these results demonstrate the effective application of both rational and random molecular evolution techniques to an important anti-glycan antibody, providing insights into its carbohydrate recognition while at the same time uncovering variants with greater therapeutic promise due to their enhanced affinity and potency.
Collapse
Affiliation(s)
- Weiyao Wang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Mehman Bunyatov
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, NY 14853 USA
| |
Collapse
|
6
|
Liao S, Li X, Lu Y, Luo K. Nanomedicine in Immunotherapy for Non-Small Cell Lung Cancer: Applications and Perspectives. SMALL METHODS 2025:e2401783. [PMID: 39871783 DOI: 10.1002/smtd.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Non-small cell lung cancer (NSCLC) has a strikingly high incidence rate globally. Although immunotherapy brings a great breakthrough in its clinical treatment of NSCLC, significant challenges still need to be overcome. The development of novel multi-functional nanomedicines in the realm of tumor immunotherapy offers promising opportunities for NSCLC patients, as nanomedicines exhibit significant advantages, including specific targeting of tumor cells, improved drug bioavailability, reduced systemic toxicity, and overcoming of immune resistance. In this review, the core features and current clinical status of strategies for NSCLC immunotherapy including immune checkpoint blockade, antibody-drug conjugates, cell engagers, adoptive cells, and cancer vaccines, are surveyed. Particular emphasis is placed on the recent development of nanomedicines that boost these strategies. Nanomedicine can provide novel perspectives for NSCLC immunotherapy.
Collapse
Affiliation(s)
- Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
7
|
Kong D, Chen Y, Yin Y, Liu Z, Yang F, Li X, Shen D, Zhang J. PD-L1 monoclonal antibody alleviated MI injury of left ventricular function via modulating CD47/SHP2/SIRPα/SYK/FcγR signalings in tumor associated macrophages. Sci Rep 2025; 15:2303. [PMID: 39824849 PMCID: PMC11748645 DOI: 10.1038/s41598-024-85065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound. Heart tissue and breast cancer tumor samples were isolated, and the content of cGAMP was measured using LC-MS/MS. The extent of myocardial infarction was evaluated by Masson staining. In vitro experiments involved dividing macrophages, treated with different inducers, into 8 groups. Protein expression levels in each group were analyzed by Western blotting, and the macrophages were transplanted into experimental mice for observation. In the in vivo experiments, ultrasound examination showed that PD-L1 mAb improved cardiac function in mice with breast cancer and MI. Both cGAMP content measurement and Masson staining results indicated that PD-L1 mAb had a therapeutic effect on mice with breast cancer and MI, improving the infarct condition and slowing tumor progression. In vitro Western blotting analysis revealed that PD-L1 mAb can modulate the CD47/SHP2/SIRPα/SYK/FcγR signaling pathway, thereby affecting breast cancer. Treatment with a STING inhibitor significantly reduced the cGAMP effect, leading to improved left ventricular function in mice with MI. PD-L1 monoclonal antibodies improve left ventricular function in mice with myocardial infarction by modulating the CD47/SHP2/SIRPα/SYK/FcγR signaling pathway in tumor-associated macrophages and inhibiting the expression of cGAMP.
Collapse
Affiliation(s)
- Deyou Kong
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yongzhen Chen
- Department of Function, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhikun Liu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohong Li
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dongxing Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jun Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
9
|
Zajanckauskaite A, Lingelbach M, Juozapaitė D, Utkus A, Rukšnaitytė G, Jonuškienė G, Gulla A. Utilization of Microfluidic Droplet-Based Methods in Diagnosis and Treatment Methods of Hepatocellular Carcinoma: A Review. Genes (Basel) 2024; 15:1242. [PMID: 39457366 PMCID: PMC11508129 DOI: 10.3390/genes15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is associated with high morbidity and mortality. One of the main challenges in the management of HCC is late clinical presentation and thus diagnosis of the disease, which results in poor survival. The pathogenesis of HCC is complex and involves chronic liver injury and genetic alterations. Diagnosis of HCC can be made either by biopsy or imaging; however, conventional tissue-based biopsy methods and serological biomarkers such as AFP have limited clinical applications. While hepatocellular carcinoma is associated with a range of molecular alterations, including the activation of oncogenic signaling pathways, such as Wnt-TGFβ, PI3K-AKT-mTOR, RAS-MAPK, MET, IGF, and Wnt-β-catenin and TP53 and TERT promoter mutations, microfluidic applications have been limited. Early diagnosis is crucial for advancing treatments that would address the heterogeneity of HCC. In this context, microfluidic droplet-based methods are crucial, as they enable comprehensive analysis of the genome and transcriptome of individual cells. Single-cell RNA sequencing (scRNA-seq) allows the examination of individual cell transcriptomes, identifying their heterogeneity and cellular evolutionary relationships. Other microfluidic methods, such as Drop-seq, InDrop, and ATAC-seq, are also employed for single-cell analysis. Here, we examine and compare these microfluidic droplet-based methods, exploring their advantages and limitations in liver cancer research. These technologies provide new opportunities to understand liver cancer biology, diagnosis, treatment, and prognosis, contributing to scientific efforts in combating this challenging disease.
Collapse
Affiliation(s)
- Akvilė Zajanckauskaite
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Miah Lingelbach
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, USA;
| | - Dovilė Juozapaitė
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | | | - Goda Jonuškienė
- Clinic of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, 01513 Vilnius, Lithuania
| | - Aistė Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
- Department of Surgery, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Bogdanova EA, Novoseletsky VN. ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes. Proteins 2024; 92:1127-1136. [PMID: 38722047 DOI: 10.1002/prot.26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 08/07/2024]
Abstract
Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.
Collapse
|
11
|
Andrianov AK. Delivery of protein therapeutics and vaccines using their multivalent complexes with synthetic polyelectrolytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:235-259. [PMID: 40122646 DOI: 10.1016/bs.pmbts.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Clinical applications of protein and peptide-based therapeutics and vaccines are rapidly expanding. However, the development of promising new product candidates is often hindered by unfavorable pharmacokinetic profiles, which necessitate the implementation of drug delivery systems to improve protein stability and bioavailability. Non-covalent modification of proteins with synthetic polyelectrolytes, which relies on the strength of cooperative multivalent interactions, may offer potential advantages. In contrast to commonly employed covalent conjugation or microencapsulation methodologies, this technology offers dynamic protection of the protein thereby minimizing the loss of its biological activity, enabling "mix-and-match" formulation approaches, reducing manufacturing costs and simplifying regulatory processes. The range of potential life sciences applications ranges from immunopotentiation and vaccine delivery systems to long-circulating stealth biotherapeutics. This review analyses current technology in the context of intended clinical indications and discusses various synthetic and formulation approaches leading to supramolecular complexation. It evaluates dynamic interactions of complexes with constituents of physiological compartments and attempts to identify critical factors that can affect future advancement of this paradigm-shifting protein delivery technology.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
12
|
Otani T, Suzuki M, Takakura H, Hanaoka H. Synthesis and biological evaluation of EGFR binding peptides for near-infrared photoimmunotherapy. Bioorg Med Chem 2024; 105:117717. [PMID: 38614014 DOI: 10.1016/j.bmc.2024.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that involves photoimmunotherapy drug injection and NIR light exposure. In NIR-PIT, antibodies are commonly used as target-directed molecules carrying IRDye700DX (IR700). However, antibodies have disadvantages, such as high cost, complex development strategies, and poor tumor penetration. In contrast, peptides have lower production costs, can be easy to chemically synthesize and modify, and can also be used for tumor-targeting like antibodies. In this study, we developed a novel PIT drug using a peptide as the target-directed molecule. Epidermal growth factor receptor (EGFR) was selected as the target, and monovalent and bivalent EGFR-binding peptides were synthesized. The bivalent peptide showed sufficient binding to EGFR-positive cells, and a bivalent peptide-IR700 conjugate with a long linker induced morphological changes in EGFR-positive cells. Additionally, the drug significantly reduced cell viability in vitro in an NIR light-dose- and drug-concentration-dependent manner. These results indicate the feasibility of NIR-PIT in treating cancer using peptide-based drugs.
Collapse
Affiliation(s)
- Takuya Otani
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Motofumi Suzuki
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hideo Takakura
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hirofumi Hanaoka
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
13
|
Wen K, Dai W, Meng X, Lin Q, Wei J, Tong L, Taylor SK, Rudchenko SA, Stojanovic MN, Kalantarov G, Trakht I. Rapid isolation of anti-idiotype aptamers for quantification of human monoclonal antibodies against SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 246:115842. [PMID: 38042051 PMCID: PMC10935567 DOI: 10.1016/j.bios.2023.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Therapeutic antibodies that block viral entry have already proven to be important, first line drugs for treatments of viral infections. In the case of SARS-CoV-2, combinations of multiple therapeutic antibodies may need to be rapidly identified and formulated in a way that blocks each new, predominant variant of the virus. For efficient introduction of any new antibody combination into patients, it is important to be able to monitor patient-specific pharmacokinetics of individual antibodies, which would include the time course of their specific capacity to block the viral spike proteins. Here, we present three examples of microfluidic-based rapid isolation of companion reagents useful for establishing combination antibody therapies. These reagents are specific three-dimensional imprints of variable regions of individual human monoclonal antibodies against the -spike protein of SARS-CoV-2 virus in the form of oligonucleotide-based ligands (aptamers). We implement these anti-idiotypic aptamers as bioreceptors in graphene-based field-effect transistor sensors to accomplish label free, rapid, and sensitive detection of matching antibodies within minutes. Through this work we have demonstrated the general applicability of anti-idiotype aptamers as capture reagents in quantification of active forms of monoclonal antibodies in complex biological mixtures.
Collapse
Affiliation(s)
- Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Wenting Dai
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Jia Wei
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Steven K Taylor
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Sergei A Rudchenko
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Milan N Stojanovic
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA; Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, NY, 10032, USA.
| | - Gary Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Ilya Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
14
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Babbar R, Vanya, Bassi A, Arora R, Aggarwal A, Wal P, Dwivedi SK, Alolayan S, Gulati M, Vargas-De-La-Cruz C, Behl T, Ojha S. Understanding the promising role of antibody drug conjugates in breast and ovarian cancer. Heliyon 2023; 9:e21425. [PMID: 38027672 PMCID: PMC10660083 DOI: 10.1016/j.heliyon.2023.e21425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Aarti Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ankur Aggarwal
- Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19 Bhauti, Kanpur, Uttar Pradesh, India
| | | | - Salma Alolayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, 140306, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
17
|
Nikam R, Yugandhar K, Gromiha MM. Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140948. [PMID: 37567456 DOI: 10.1016/j.bbapap.2023.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Protein-protein interactions (PPIs) play a critical role in various biological processes. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html.
Collapse
Affiliation(s)
- Rahul Nikam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Kumar Yugandhar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Computational Biology, Cornell University, New York, USA
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan; Department of Computer Science, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Zhou S, Fang X, Lv J, Yang Y, Zeng Y, Liu Y, Wei W, Huang G, Zhang B, Wu C. Site-Specific Modification of Single Domain Antibodies by Enzyme-Immobilized Magnetic Beads. Bioconjug Chem 2023; 34:1914-1922. [PMID: 37804224 DOI: 10.1021/acs.bioconjchem.3c00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Nanobodies as imaging agents and drug conjugates have shown great potential for cancer diagnostics and therapeutics. However, site-specific modification of a nanobody with microbial transglutaminase (mTGase) encounters problems in protein separation and purification. Here, we describe a facile yet reliable strategy of immobilizing mTGase onto magnetic beads for site-specific nanobody modification. The mTGase immobilized on magnetic beads (MB-mTGase) exhibits catalytic activity nearly equivalent to that of the free mTGase, with good reusability and universality. Magnetic separation simplifies the protein purification step and reduces the loss of nanobody bioconjugates more effectively than size exclusion chromatography. Using MB-mTGase, we demonstrate site-specific conjugation of nanobodies with fluorescent dyes and polyethylene glycol molecules, enabling targeted immunofluorescence imaging and improved circulation dynamics and tumor accumulation in vivo. The combined advantages of MB-mTGase method, including high conjugation efficiency, quick purification, less protein loss, and recycling use, are promising for site-specific nanobody functionalization and biomedical applications.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaofeng Fang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yicheng Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yiqi Zeng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
19
|
Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1897. [PMID: 37138514 DOI: 10.1002/wnan.1897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
20
|
Alameddine R, Mallea P, Shahab F, Zakharia Y. Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives. Curr Treat Options Oncol 2023; 24:1167-1182. [PMID: 37403009 DOI: 10.1007/s11864-023-01114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Over the last several years, the treatment landscape of urothelial carcinoma has witnessed an unprecedented expansion of therapeutic options including checkpoint inhibitors, tyrosine kinase inhibitors, and antibody drug conjugates (ADC). Early trial data has shown that ADCs are safer and potentially effective treatment options in advanced bladder cancer as well as in the early disease. In particular, enfortumab-vedotin (EV) has shown promising results with a recent cohort of a clinical trial demonstrating that EV is effective as neoadjuvant monotherapy as well as in combination with pembrolizumab in metastatic setting. Similar promising results have been shown by other classes of ADC in other trials including sacituzumab-govitecan (SG) and oportuzumab monatox (OM). ADCs are likely to become a mainstay treatment option in the urothelial carcinoma playbook as either a monotherapy or combination therapy. The cost of the drug presents a real challenge, but further trial data may justify the use of the drug as mainstay treatment.
Collapse
Affiliation(s)
- Raafat Alameddine
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Patrick Mallea
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Farhan Shahab
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
21
|
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, Wang P, Zhang M, Wang Y, Feng Y, Huang H, de Marco A. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol 2023; 247:125733. [PMID: 37423452 DOI: 10.1016/j.ijbiomac.2023.125733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- New Technology R&D Department, Tianjin Modern Innovative TCM Technology Company Limited, Tianjin 300392, China
| | - Miao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Yuli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research Institute, Tianjin Key Laboratory of Quality Control in Chinese Medicine, Tianjin 300457, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Yuanhang Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.
| |
Collapse
|
22
|
Zhu C, Xu L, Chen L, Zhang Z, Zhang Y, Wu W, Li C, Liu S, Xiang S, Dai S, Zhang J, Guo H, Zhou Y, Wang F. Epitope-Directed Antibody Elicitation by Genetically Encoded Chemical Cross-Linking Reactivity in the Antigen. ACS CENTRAL SCIENCE 2023; 9:1229-1240. [PMID: 37396855 PMCID: PMC10311653 DOI: 10.1021/acscentsci.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/04/2023]
Abstract
No current methods can selectively elicit an antibody response to a specific conformational epitope in a whole antigen in vivo. Here, we incorporated Nε-acryloyl-l-lysine (AcrK) or Nε-crotonyl-l-lysine (Kcr) with cross-linking activities into the specific epitopes of antigens and immunized mice to generate antibodies that can covalently cross-link with the antigens. By taking advantage of antibody clonal selection and evolution in vivo, an orthogonal antibody-antigen cross-linking reaction can be generated. With this mechanism, we developed a new approach for facile elicitation of antibodies binding to specific epitopes of the antigen in vivo. Antibody responses were directed and enriched to the target epitopes on protein antigens or peptide-KLH conjugates after mouse immunization with the AcrK or Kcr-incorporated immunogens. The effect is so prominent that the majority of selected hits bind to the target epitope. Furthermore, the epitope-specific antibodies effectively block IL-1β from activating its receptor, indicating its potential for the development of protein subunit vaccines.
Collapse
Affiliation(s)
- Chaoyang Zhu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Liang Xu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Longxin Chen
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Molecular
Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Zihan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiping Wu
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Chengxiang Li
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuang Liu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuqin Xiang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shengwang Dai
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Jay Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Hui Guo
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Yinjian Zhou
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Feng Wang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
23
|
Su H, Geng H, Cai L, Xu M, Xing W, Long W, Liu B, Li Y, Liu B. Immune-check blocking combination multiple cytokines shown curative potential in mice tumor model. Cancer Med 2023; 12:13573-13585. [PMID: 37199371 PMCID: PMC10315798 DOI: 10.1002/cam4.6053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
OBJECTIVE In order to ensure the stable transcription of target genes, we constructed a eukaryotic high expression vector carrying an immune-check inhibitor PD-1v and a variety of cytokines, and studied their effects on activating immune response to inhibit tumor growth. METHODS A novel eukaryotic expression plasmid vector named pT7AMPCE containing T7RNA polymerase, T7 promoter, internal ribosome entry site (IRES), and poly A tailing signal was constructed by T4 DNA ligase, on which homologous recombination was used to clone and construct the vector carrying PD-1v, IL-2/15, IL-12, GM-CSF, and GFP. In vitro transfection of CT26 cells was performed, and the protein expression of PD-1v, IL-12 and GM-CSF was detected by Western blot and ELISA after 48 h. Mice were subcutaneously inoculated with CT26-IRFP tumor cells in the rib abdomen, and the tumor tissues were injected with PD-1v, IL-2/15, IL-12, and GM-CSF recombinant plasmids for treatment during the experimental period. The efficacy of the treatment was evaluated by assay tumor size and survival time of tumor-bearing mice during the experiment. Expression levels of IFN-γ, TNF, IL-4, IL-2, and IL-5 in mouse blood were measured using the CBA method. Tumor tissues were extracted and immune cell infiltration in tumor tissues was detected by HE staining and the IHC method. RESULTS The recombinant plasmids carrying PD-1v, IL-2/15, IL-12, and GM-CSF were successfully constructed, and the Western blot and ELISA results showed that PD-1v, IL-12, and GM-CSF were expressed in the supernatant of CT26 cells 48 h after in vitro cell transfection. The combined application of PD-1v, IL-2/15, IL-12, and GM-CSF recombinant plasmids significantly inhibited tumor growth in mice, and the tumor growth rate was significantly lower than that in the blank control group and GFP plasmid control group (p < 0.05). Cytometric bead array data suggested that the combination of PD-1v and various cytokines can effectively activate immune cells. HE and IHC analysis revealed plenty of immune cell infiltrates in the tumor tissue, and a large proportion of tumor cells showed the necrotic phenotype in the combination treatment group. CONCLUSION The combination of immune check blockade and multiple cytokine therapy can significantly activate the body's immune response and inhibit tumor growth.
Collapse
Affiliation(s)
- Hongxia Su
- School of PharmacyHubei University of Science and TechnologycXianningChina
| | - Hui Geng
- School of Life ScienceHuazhong Normal UniversityWuhanChina
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd.WuhanChina
| | - Minjie Xu
- School of Life ScienceHuazhong Normal UniversityWuhanChina
| | - Wenpin Xing
- School of Life ScienceHuazhong Normal UniversityWuhanChina
| | - Wei Long
- Wuhan Binhui Biopharmaceutical Co., Ltd.WuhanChina
| | - Biao Liu
- Hubei University of TechnologyWuhanChina
| | - Yankun Li
- School of PharmacyHubei University of Science and TechnologycXianningChina
| | - Binlei Liu
- Wuhan Binhui Biopharmaceutical Co., Ltd.WuhanChina
- Hubei University of TechnologyWuhanChina
| |
Collapse
|
24
|
Song J, Jeong BS, Kim SW, Im SB, Kim S, Lai CJ, Cho W, Jung JU, Ahn MJ, Oh BH. Noncovalent antibody catenation on a target surface greatly increases the antigen-binding avidity. eLife 2023; 12:e81646. [PMID: 37249578 PMCID: PMC10229114 DOI: 10.7554/elife.81646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies are widely used for diagnosis and therapy. Given the unique dimeric structure of IgG, we hypothesized that, by genetically fusing a homodimeric protein (catenator) to the C-terminus of IgG, reversible catenation of antibody molecules could be induced on a surface where target antigen molecules are abundant, and that it could be an effective way to greatly enhance the antigen-binding avidity. A thermodynamic simulation showed that quite low homodimerization affinity of a catenator, e.g. dissociation constant of 100 μM, can enhance nanomolar antigen-binding avidity to a picomolar level, and that the fold enhancement sharply depends on the density of the antigen. In a proof-of-concept experiment where antigen molecules are immobilized on a biosensor tip, the C-terminal fusion of a pair of weakly homodimerizing proteins to three different antibodies enhanced the antigen-binding avidity by at least 110 or 304 folds from the intrinsic binding avidity. Compared with the mother antibody, Obinutuzumab(Y101L) which targets CD20, the same antibody with fused catenators exhibited significantly enhanced binding to SU-DHL5 cells. Together, the homodimerization-induced antibody catenation would be a new powerful approach to improve antibody applications, including the detection of scarce biomarkers and targeted anticancer therapies.
Collapse
Affiliation(s)
- Jinyeop Song
- Department of Physics, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Bo-Seong Jeong
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seong-Woo Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seong-Bin Im
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seonghoon Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Wonki Cho
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Jae U Jung
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Myung-Ju Ahn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
25
|
Smith CN, Kihn K, Williamson ZA, Chow KM, Hersh LB, Korotkov KV, Deredge D, Blackburn JS. Development and characterization of nanobodies that specifically target the oncogenic Phosphatase of Regenerating Liver-3 (PRL-3) and impact its interaction with a known binding partner, CNNM3. PLoS One 2023; 18:e0285964. [PMID: 37220097 PMCID: PMC10204944 DOI: 10.1371/journal.pone.0285964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.
Collapse
Affiliation(s)
- Caroline N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Zachary A. Williamson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| |
Collapse
|
26
|
Shrivastava A, Mandal S, Pattanayek SK, Rathore AS. Rapid Estimation of Size-Based Heterogeneity in Monoclonal Antibodies by Machine Learning-Enhanced Dynamic Light Scattering. Anal Chem 2023; 95:8299-8309. [PMID: 37200383 DOI: 10.1021/acs.analchem.3c00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Aggregation of monoclonal antibody therapeutics is a serious concern that is believed to impact product safety and efficacy. There is a need for analytical approaches that enable rapid estimation of mAb aggregates. Dynamic light scattering (DLS) is a well-established technique for estimating the average size of protein aggregates or for evaluating sample stability. It is usually used to measure the size and size distribution over a wide range of nano- to micro-sized particles using time-dependent fluctuations in the intensity of scattered light arising from the Brownian motion of particles. In this study, we present a novel DLS-based approach that allows us to quantify the relative percentage of multimers (monomer, dimer, trimer, and tetramer) in a monoclonal antibody (mAb) therapeutic product. The proposed approach uses a machine learning (ML) algorithm and regression to model the system and predict the amount of relevant species such as monomer, dimer, trimer, and tetramer of a mAb in the size range of 10-100 nm. The proposed DLS-ML technique compares favorably to all potential alternatives with respect to the key method attributes, including per sample cost of analysis, per sample time of data acquisition along with ML-based aggregate prediction (<2 min), sample requirements (<3 μg), and user-friendliness of analysis. The proposed rapid method can serve as an orthogonal tool to size exclusion chromatography, which is the current industry workhorse for aggregate assessment.
Collapse
Affiliation(s)
- Anuj Shrivastava
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Shyamapada Mandal
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudip K Pattanayek
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
27
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
28
|
Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol 2023; 14:1129323. [PMID: 37215135 PMCID: PMC10196129 DOI: 10.3389/fimmu.2023.1129323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.
Collapse
|
29
|
Lee SK, Yim B, Park J, Kim NG, Kim BS, Park Y, Yoon YK, Kim J. Method for the Rapid Detection of SARS-CoV-2-Neutralizing Antibodies Using a Nanogel-Based Surface Plasmon Resonance Biosensor. ACS APPLIED POLYMER MATERIALS 2023; 5:2195-2202. [PMID: 37552750 PMCID: PMC9969888 DOI: 10.1021/acsapm.2c02187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 06/10/2023]
Abstract
The efficacy of coronavirus disease 2019 (COVID-19) vaccination is closely related to the serum levels of SARS-CoV-2-neutralizing antibodies (NAb) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Therefore, the rapid and quantitative measurement of SARS-CoV-2 NAb in the sera of vaccinated individuals is essential to develop an effective vaccine and further achieve population immunity, that is, herd immunity. The plaque reduction neutralization test, the gold standard for NAb effectiveness in serological tests, is accurate but requires biosafety level 3 facilities because of the use of the virus, which hampers its application in common laboratories and clinical practice. Here, we developed a bioresponsive nanogel-based surface plasmon resonance (nSPR) platform that detects SARS-CoV-2 NAb in clinical samples without complicated pretreatment. We found that multivalent protein binding (MPB) between the nanogel-conjugated RBD protein and SARS-CoV-2 NAb yields significantly enhanced SPR signals compared to the nonspecific interference from serum proteins in the nSPR assay. The excellence of our nanogel-based SARS-CoV-2 NAb test is due to its selectivity for NAb, with resistance to all other proteins, allowing the rapid detection and quantification of NAbs in each individual. Importantly, this nSPR assay provides a NAb detection platform for easier and safer COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Bora Yim
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Jinseul Park
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
| | - Nam-Gun Kim
- Seoul Metropolitan Government Research
Institute of Public Health and Environment, Seoul 13818, Republic
of Korea
| | - Byung-Soo Kim
- Division of Hematology, Department of Internal
Medicine, Anam Hospital Korea University Medical Center, Seoul
02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of
Internal Medicine, Anam Hospital Korea University Medical
Center, Seoul 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| |
Collapse
|
30
|
Development of an Anti-Idiotype Aptamer-Based Electrochemical Sensor for a Humanized Therapeutic Antibody Monitoring. Int J Mol Sci 2023; 24:ijms24065277. [PMID: 36982354 PMCID: PMC10048959 DOI: 10.3390/ijms24065277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are currently the most effective medicines for a wide range of diseases. Therefore, it is expected that easy and rapid measurement of mAbs will be required to improve their efficacy. Here, we report an anti-idiotype aptamer-based electrochemical sensor for a humanized therapeutic antibody, bevacizumab, based on square wave voltammetry (SWV). With this measurement procedure, we were able to monitor the target mAb within 30 min by employing the anti-idiotype bivalent aptamer modified with a redox probe. A fabricated bevacizumab sensor achieved detection of bevacizumab from 1–100 nM while eliminating the need for free redox probes in the solution. The feasibility of monitoring biological samples was also demonstrated by detecting bevacizumab in the diluted artificial serum, and the fabricated sensor succeeded in detecting the target covering the physiologically relevant concentration range of bevacizumab. Our sensor contributes to ongoing efforts towards therapeutic mAbs monitoring by investigating their pharmacokinetics and improving their treatment efficacy.
Collapse
|
31
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
32
|
Bruni S, Mauro FL, Proietti CJ, Cordo-Russo RI, Rivas MA, Inurrigarro G, Dupont A, Rocha D, Fernández EA, Deza EG, Lopez Della Vecchia D, Barchuk S, Figurelli S, Lasso D, Friedrich AD, Santilli MC, Regge MV, Lebersztein G, Levit C, Anfuso F, Castiglione T, Elizalde PV, Mercogliano MF, Schillaci R. Blocking soluble TNFα sensitizes HER2-positive breast cancer to trastuzumab through MUC4 downregulation and subverts immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005325. [PMID: 36889811 PMCID: PMC10016294 DOI: 10.1136/jitc-2022-005325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Sofia Bruni
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia L Mauro
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Rosalia I Cordo-Russo
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martin A Rivas
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Agustina Dupont
- Servicio de Patología, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Dario Rocha
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | - Elmer A Fernández
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | | | | | - Sabrina Barchuk
- Sección Patología Mamaria Hospital General de Agudos "Juan A Fernández, Buenos Aires, Argentina
| | - Silvina Figurelli
- Servicio de Patología, Hospital General de Agudos "Juan A. Fernández,", Buenos Aires, Argentina
| | - David Lasso
- Hospital Oncológico Provincial de Córdoba, Córdoba, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María C Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Claudio Levit
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | - Fabiana Anfuso
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | - Patricia V Elizalde
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Maria F Mercogliano
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Li Y, Zhou H, Liu P, Lv D, Shi Y, Tang B, Xu J, Zhong T, Xu W, Zhang J, Zhou J, Ying K, Zhao Y, Sun Y, Jiang Z, Cheng H, Zhang X, Ke Y. SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPα axis. J Clin Invest 2023; 133:162870. [PMID: 36626230 PMCID: PMC9927946 DOI: 10.1172/jci162870] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
SIPRα on macrophages binds with CD47 to resist proengulfment signals, but how the downstream signal of SIPRα controls tumor-infiltrating macrophages (TIMs) is still poorly clarified. Here, we report that the CD47/signal regulatory protein α (SIRPα) axis requires the deneddylation of tyrosine phosphatase SHP2. Mechanistically, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) was constitutively neddylated on K358 and K364 sites; thus, its autoinhibited conformation was maintained. In response to CD47-liganded SIRPα, SHP2 was deneddylated by sentrin-specific protease 8 (SENP8), which led to the dephosphorylation of relevant substrates at the phagocytic cup and subsequent inhibition of macrophage phagocytosis. Furthermore, neddylation inactivated myeloid-SHP2 and greatly boosted the efficacy of colorectal cancer (CRC) immunotherapy. Importantly, we observed that supplementation with SHP2 allosteric inhibitors sensitized immune treatment-resistant CRC to immunotherapy. Our results emphasize that the CRC subtype that is unresponsive to immunotherapy relies on SIRPαhiSHP2hiNEDD8lo TIMs and highlight the need to further explore the strategy of SHP2 targeting in CRC therapy.
Collapse
Affiliation(s)
- Yiqing Li
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Dandan Lv
- Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yichun Shi
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research at The Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Jiaqi Xu
- Department of Pathology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangou, China
| | - Tingting Zhong
- Department of Pathology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangou, China
| | - Wangting Xu
- Department of Respiratory Medicine at The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Urology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Medicine at The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Cancer Institute of The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Cancer Institute of The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhinong Jiang
- Department of Pathology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Bianchi A, von Deimling M, Pallauf M, Yanagisawa T, Kawada T, Mostafaei H, Quhal F, Laukhtina E, Rajwa P, Majdoub M, Motlagh RS, Pradere B, Karakiewicz PI, Cerruto MA, Antonelli A, Shariat SF. Perspectives on the future of urothelial carcinoma therapy: chemotherapy and beyond. Expert Opin Pharmacother 2023; 24:177-195. [PMID: 36440477 DOI: 10.1080/14656566.2022.2150966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Despite recent developments in the landscape of urothelial carcinoma (UC) treatment, platinum combination chemotherapy still remains a milestone. Recently immunotherapeutic agents have gained ever-growing attractivity, particularly in the metastatic setting. Novel chemotherapeutic strategies and agents, such as antibody-drug conjugates (ADCs), and powerful combination regimens have been developed to overcome the resistance of most UC to current therapies. AREAS COVERED Herein, we review the current standard-of-care chemotherapy, the development of ADCs, the rationale for combining therapy regimens with chemotherapy in current trials, and future directions in UC management. EXPERT OPINION Immunotherapy has prompted a revolution in the treatment paradigm of UC. However, only a few patients experience a long-term response when treated with single-agent immunotherapies. Combination treatments are necessary to bypass resistance mechanisms and broaden the clinical utility of current options. Current evidence supports the intensification of standard-of-care chemotherapy with maintenance immunotherapy. However, the optimal sequence, combination, and duration must be determined to achieve individual longevity with acceptable health-related quality of life. In that regard, ADCs appear as a promising alternative for single and combination strategies in UC, as they specifically target the tumor cells, thereby, theoretically improving treatment efficacy and avoiding extensive off-target toxicities.
Collapse
Affiliation(s)
- Alberto Bianchi
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Markus von Deimling
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Pallauf
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Paracelsus Medical University Salzburg, University Hospital Salzburg, Salzburg, Austria
| | - Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hadi Mostafaei
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahad Quhal
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Muhammad Majdoub
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Reza Sari Motlagh
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Benjamin Pradere
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, La Croix Du Sud Hospital, Quint Fonsegrives, France
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, Québec, Canada
| | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.,Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| |
Collapse
|
35
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
36
|
Kilgore R, Chu W, Bhandari D, Fischler D, Carbonell RG, Crapanzano M, Menegatti S. Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids. J Chromatogr A 2023; 1687:463701. [PMID: 36502645 DOI: 10.1016/j.chroma.2022.463701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the CH1-3 and CL chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Qmax ∼ 20 mg of Fab per mL of resin) and dissociation constant (KD = 2.16·10-6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC10%) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Dipendra Bhandari
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - David Fischler
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Michael Crapanzano
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
37
|
Fenton SE, VanderWeele DJ. Antibody-drug conjugates and predictive biomarkers in advanced urothelial carcinoma. Front Oncol 2023; 12:1069356. [PMID: 36686762 PMCID: PMC9846350 DOI: 10.3389/fonc.2022.1069356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The use of antibody-drug conjugates (ADCs) is expanding in several malignancies, including urothelial carcinoma where two of these medications have been approved for use and several others remain under study. ADCs act by binding to specific cell surface proteins, delivering anticancer agents directly to the target cells. Preclinical studies suggest that loss of these surface proteins alters sensitivity to therapy and expression of target proteins vary significantly based on the tumor subtype, prior therapies and other characteristics. However, use of biomarkers to predict treatment response have not been regularly included in clinical trials and clinician practice. In this review we summarize what is known about potential predictive biomarkers for ADCs in UC and discuss potential areas where use of biomarkers may improve patient care.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
38
|
Chan J, Chan J, Shao L, Stawicki SS, Pham VC, Akita RW, Hafner M, Crocker L, Yu K, Koerber JT, Schaefer G, Comps-Agrar L. Systematic pharmacological analysis of agonistic and antagonistic fibroblast growth factor receptor 1 MAbs reveals a similar unique mode of action. J Biol Chem 2023; 299:102729. [PMID: 36410439 PMCID: PMC9758440 DOI: 10.1016/j.jbc.2022.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.
Collapse
Affiliation(s)
- Jocelyn Chan
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA
| | - Lily Shao
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Scott S Stawicki
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Victoria C Pham
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - Rob W Akita
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Lisa Crocker
- Department of Translational Oncology, Genentech Inc, South San Francisco, California, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Gabriele Schaefer
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA.
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
39
|
Guo Z, Yamaguchi R. Machine learning methods for protein-protein binding affinity prediction in protein design. FRONTIERS IN BIOINFORMATICS 2022; 2:1065703. [PMID: 36591334 PMCID: PMC9800603 DOI: 10.3389/fbinf.2022.1065703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Protein-protein interactions govern a wide range of biological activity. A proper estimation of the protein-protein binding affinity is vital to design proteins with high specificity and binding affinity toward a target protein, which has a variety of applications including antibody design in immunotherapy, enzyme engineering for reaction optimization, and construction of biosensors. However, experimental and theoretical modelling methods are time-consuming, hinder the exploration of the entire protein space, and deter the identification of optimal proteins that meet the requirements of practical applications. In recent years, the rapid development in machine learning methods for protein-protein binding affinity prediction has revealed the potential of a paradigm shift in protein design. Here, we review the prediction methods and associated datasets and discuss the requirements and construction methods of binding affinity prediction models for protein design.
Collapse
Affiliation(s)
- Zhongliang Guo
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan,Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan,*Correspondence: Rui Yamaguchi,
| |
Collapse
|
40
|
Bai Z, Wang J, Li J, Yuan H, Wang P, Zhang M, Feng Y, Cao X, Cao X, Kang G, de Marco A, Huang H. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Comput Struct Biotechnol J 2022; 21:601-613. [PMID: 36659922 PMCID: PMC9822835 DOI: 10.1016/j.csbj.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Random mutagenesis is the natural opportunity for proteins to evolve and biotechnologically it has been exploited to create diversity and identify variants with improved characteristics in the mutant pools. Rational mutagenesis based on biophysical assumptions and supported by computational power has been proposed as a faster and more predictable strategy to reach the same aim. In this work we confirm that substantial improvements in terms of both affinity and stability of nanobodies can be obtained by using combinations of algorithms, even for binders with already high affinity and elevated thermal stability. Furthermore, in silico approaches allowed the development of an optimized bispecific construct able to bind simultaneously the two clinically relevant antigens TNF-α and IL-23 and, by means of its enhanced avidity, to inhibit effectively the apoptosis of TNF-α-sensitive L929 cells. The results revealed that salt bridges, hydrogen bonds, aromatic-aromatic and cation-pi interactions had a critical role in increasing affinity. We provided a platform for the construction of high-affinity bispecific constructs based on nanobodies that can have relevant applications for the control of all those biological mechanisms in which more than a single antigen must be targeted to increase the treatment effectiveness and avoid resistance mechanisms.
Collapse
Affiliation(s)
- Zixuan Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Jiaqi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Miao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- China Resources Biopharmaceutical Company Limited, Beijing, China
| | - Yuanhang Feng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiangtong Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiangan Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| |
Collapse
|
41
|
Condelipes PGM, Fontes PM, Godinho-Santos A, Brás EJS, Marques V, Afonso MB, Rodrigues CMP, Chu V, Gonçalves J, Conde JP. Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection. LAB ON A CHIP 2022; 22:4717-4728. [PMID: 36349999 DOI: 10.1039/d2lc00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibody therapy has been one of the most successful therapies for a wide range of diseases, including cancer. One way of expediting antibody therapy development is through phage display technology. Here, by screening thousands of randomly assembled peptide sequences, it is possible to identify potential therapeutic candidates. Conventional screening technologies do not accommodate perfusion through the system, as is the case of standard plate-based cultures. This leads to a poor translation of the experimental results obtained in vitro when moving to a more physiologically relevant setting, such as the case of preclinical animal models or clinical trials. Microfluidics is a technology that can improve screening efficacy by replicating more physiologically relevant conditions such as shear stress. In this work, a polydimethylsiloxane/polystyrene-based microfluidic system for a continuously perfused culture of cancer cells is reported. Human colorectal adenocarcinoma cells (HCT116) expressing CXCR4 were used as a cell target. Fluorescently labeled M13 phages anti-CXCR4 were used to study the efficiency of the microfluidic system as a tool to study the binding kinetics of the engineered bacteriophages. Using our microfluidic platform, we estimated a dissociation constant of 0.45 pM for the engineered phage. Additionally, a receptor internalization assay was developed using SDF-1α to verify phage specificity to the CXCR4 receptor. Upon receptor internalization there was a signal reduction, proving that the anti-CXCR4 fluorescently labelled M13 phages bound specifically to the CXCR4 receptor. The simplicity and ease of use of the microfluidic device design presented in this work can form the basis of a generic platform that facilitates the study and optimization of therapies based on interaction with biological entities such as mammalian cells.
Collapse
Affiliation(s)
- Pedro G M Condelipes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Mendes Fontes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
42
|
Yang H, Karl MN, Wang W, Starich B, Tan H, Kiemen A, Pucsek AB, Kuo YH, Russo GC, Pan T, Jaffee EM, Fertig EJ, Wirtz D, Spangler JB. Engineered bispecific antibodies targeting the interleukin-6 and -8 receptors potently inhibit cancer cell migration and tumor metastasis. Mol Ther 2022; 30:3430-3449. [PMID: 35841152 PMCID: PMC9637575 DOI: 10.1016/j.ymthe.2022.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/12/2022] [Accepted: 07/09/2022] [Indexed: 12/15/2022] Open
Abstract
Simultaneous inhibition of interleukin-6 (IL-6) and interleukin-8 (IL-8) signaling diminishes cancer cell migration, and combination therapy has recently been shown to synergistically reduce metastatic burden in a preclinical model of triple-negative breast cancer. Here, we have engineered two novel bispecific antibodies that target the IL-6 and IL-8 receptors to concurrently block the signaling activity of both ligands. We demonstrate that a first-in-class bispecific antibody design has promising therapeutic potential, with enhanced selectivity and potency compared with monoclonal antibody and small-molecule drug combinations in both cellular and animal models of metastatic triple-negative breast cancer. Mechanistic characterization revealed that our engineered bispecific antibodies have no impact on cell viability, but profoundly reduce the migratory potential of cancer cells; hence they constitute a true anti-metastatic treatment. Moreover, we demonstrate that our antibodies can be readily combined with standard-of-care anti-proliferative drugs to develop effective anti-cancer regimens. Collectively, our work establishes an innovative metastasis-focused direction for cancer drug development.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle N Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haotian Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexandra B Pucsek
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yun-Huai Kuo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tim Pan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth M Jaffee
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
43
|
Sonju JJ, Dahal A, Prasasty VD, Shrestha P, Liu YY, Jois SD. Assessment of Antitumor and Antiproliferative Efficacy and Detection of Protein-Protein Interactions in Cancer Cells from 3D Tumor Spheroids. Curr Protoc 2022; 2:e569. [PMID: 36286844 PMCID: PMC9886098 DOI: 10.1002/cpz1.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When compared to two-dimensional (2D) cell cultures, 3D spheroids have been considered suitable in vitro models for drug discovery research and other studies of drug activity. Based on different 3D cell culture procedures, we describe procedures we have used to obtain 3D tumor spheroids by both the hanging-drop and ultra-low-attachment plate methods and to analyze the antiproliferative and antitumor efficacy of different chemotherapeutic agents, including a peptidomimetic. We have applied this method to breast and lung cancer cell lines such as BT-474, MCF-7, A549, and Calu-3. We also describe a proximity ligation assay of the cells from the spheroid model to detect protein-protein interactions of EGFR and HER2. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth of 3D spheroids using the hanging-drop method Basic Protocol 2: Growth of spheroids using ultra-low-attachment plates Support Protocol 1: Cell viability assay of tumor spheroids Support Protocol 2: Antiproliferative and antitumor study in 3D tumor spheroids Support Protocol 3: Proximity ligation assay on cells derived from 3D spheroids.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Vivitri Dewi Prasasty
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
44
|
D'Angelo A, Chapman R, Sirico M, Sobhani N, Catalano M, Mini E, Roviello G. An update on antibody-drug conjugates in urothelial carcinoma: state of the art strategies and what comes next. Cancer Chemother Pharmacol 2022; 90:191-205. [PMID: 35953604 PMCID: PMC9402760 DOI: 10.1007/s00280-022-04459-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
In recent years, considerable progress has been made in increasing the knowledge of tumour biology and drug resistance mechanisms in urothelial cancer. Therapeutic strategies have significantly advanced with the introduction of novel approaches such as immune checkpoint inhibitors and Fibroblast Growth Factor Receptor inhibitors. However, despite these novel agents, advanced urothelial cancer is often still progressive in spite of treatment and correlates with a poor prognosis. The introduction of antibody-drug conjugates consisting of a target-specific monoclonal antibody covalently linked to a payload (cytotoxic agent) is a novel and promising therapeutic strategy. In December 2019, the US Food and Drug Administration (FDA) granted accelerated approval to the nectin-4-targeting antibody-drug conjugate, enfortumab vedotin, for the treatment of advanced or metastatic urothelial carcinomas that are refractory to both immune checkpoint inhibitors and platinum-based treatment. Heavily pre-treated urothelial cancer patients reported a significant, 40% response to enfortumab vedotin while other antibody-drug conjugates are currently still under investigation in several clinical trials. We have comprehensively reviewed the available treatment strategies for advanced urothelial carcinoma and outlined the mechanism of action of antibody-drug conjugate agents, their clinical applications, resistance mechanisms and future strategies for urothelial cancer.
Collapse
Affiliation(s)
- Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Robert Chapman
- Department of Medicine, Princess Alexandra Hospital NHS Foundation Trust, Harlow, CM20 1QX, UK
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, vialePieraccini, 6, 50139, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, University of Florence, vialePieraccini, 6, 50139, Florence, Italy
| |
Collapse
|
45
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
46
|
Xin S, Sun X, Jin L, Li W, Liu X, Zhou L, Ye L. The Prognostic Signature and Therapeutic Value of Phagocytic Regulatory Factors in Prostate Adenocarcinoma (PRAD). Front Genet 2022; 13:877278. [PMID: 35706452 PMCID: PMC9190300 DOI: 10.3389/fgene.2022.877278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that phagocytosis regulatory factors (PRFs) play important roles in tumor progression, and therefore, identifying and characterizing these factors is crucial for understanding the mechanisms of cellular phagocytosis in tumorigenesis. Our research aimed to comprehensively characterize PRFs in prostate adenocarcinoma (PRAD) and to screen and determine important PRFs in PRAD which may help to inform tumor prognostic and therapeutic signatures based on these key PRFs. Here, we first systematically described the expression of PRFs in PRAD and evaluated their expression patterns and their prognostic value. We then analyzed prognostic phagocytic factors by Cox and Lasso analysis and constructed a phagocytic factor-mediated risk score. We then divided the samples into two groups with significant differences in overall survival (OS) based on the risk score. Then, we performed correlation analysis between the risk score and clinical features, immune infiltration levels, immune characteristics, immune checkpoint expression, IC50 of several classical sensitive drugs, and immunotherapy efficacy. Finally, the Human Protein Atlas (HPA) database was used to determine the protein expression of 18 PRF characteristic genes. The aforementioned results confirmed that multilayer alterations of PRFs were associated with the prognosis of patients with PRAD and the degree of macrophage infiltration. These findings may provide us with potential new therapies for PRAD.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liqing Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
47
|
Paukner M, Chappell R. Versatile tests for window mean survival time. Stat Med 2022; 41:3720-3736. [PMID: 35611993 DOI: 10.1002/sim.9444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Window mean survival time (WMST) evaluates the mean survival between a lower time horizon, τ 0 $$ {\tau}_0 $$ , and an upper time horizon, τ 1 $$ {\tau}_1 $$ . As a flexible extension of restricted mean survival time, specific clinically relevant windows of time can be assessed for survival difference accompanied by a communicable interpretation of estimates and tests. In its original application, WMST required the pre-specification of a window through the selection of appropriate window bounds, τ 0 $$ {\tau}_0 $$ and τ 1 $$ {\tau}_1 $$ . In the instance of severe window misspecification of τ 0 $$ {\tau}_0 $$ and τ 1 $$ {\tau}_1 $$ , the analysis may suffer from low power and a less meaningful interpretation. In this article, we introduce versatile tests whose procedures are based on the simultaneous use of multiple WMST test statistics that are asymptotically normal under the null hypothesis of no difference between two groups. Simulations are performed to examine the power of the tests in moderate sample sizes when the data are uncensored to heavily censored with a ramp-up enrollment period. The survival scenarios chosen for simulation are intended to imitate those which are commonly encountered in oncology, especially in trials involving immunotherapies. Implementation of the procedures is discussed in two real data examples for illustration. Functions for performing versatile WMST tests are provided in the survWMST package in R.
Collapse
Affiliation(s)
- Mitchell Paukner
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard Chappell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, Barreto A, Tawil M, Torregrosa L, Fiorentino S. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep 2022; 12:7981. [PMID: 35562400 PMCID: PMC9106657 DOI: 10.1038/s41598-022-12108-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response. Here, we showed that NAT induces dynamic changes in the tumor microenvironment (TME). After NAT, an increase of regulatory T cells and a decrease of CD8+ T cells was found in tumor, correlated with the presence of metastatic cells in lymph nodes. In addition, an increase of polymorphonuclear myeloid-derived suppressor like cells was found in luminal patients post-NAT. pCR patients showed a balance between the immune populations, while non-pCR patients presented an inverse relationship in the frequency of CD68+ versus CD3+, CD8+, and CD20+ cells. Moreover, activated T cells were found in peripheral blood, as well as an increase in T cell clonality with a lower diversity post-NAT. Overall, these results shown that NAT induces an activation of immune response, however, a balance in the TME seems to be related to a better antigenic presentation and therefore a better response to treatment.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - David Bernal-Estevez
- Grupo de Investigación en Inmunología y Oncología Clínica, Fundación Salud de los Andes, Bogotá, Colombia
| | - Diego Rubio
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ana Janeth Salazar
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mercedes Olaya
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - Mauricio Tawil
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lilian Torregrosa
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| |
Collapse
|
49
|
Recyclable cell-surface chemical tags for repetitive cancer targeting. J Control Release 2022; 347:164-174. [PMID: 35537537 DOI: 10.1016/j.jconrel.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Metabolic glycan labeling provides a facile yet powerful tool to install chemical tags to the cell membrane via metabolic glycoengineering processes of unnatural sugars. These cell-surface chemical tags can then mediate targeted conjugation of therapeutic agents via efficient chemistries, which has been extensively explored for cancer-targeted treatment. However, the commonly used in vivo chemistries such as azide-cyclooctyne and tetrazine-cyclooctene chemistries only allow for one-time use of cell-surface chemical tags, posing a challenge for long-term, continuous cell targeting. Here we show that cell-surface ketone groups can be recycled back to the cell membrane after covalent conjugation with hydrazide-bearing molecules, enabling repetitive targeting of hydrazide-bearing agents. Upon conjugation to ketone-labeled cancer cells via a pH-responsive hydrazone linkage, Alexa Fluor 488-hydrazide became internalized and entered endosomes/lysosomes where ketone-sugars can be released and recycled. The recycled ketone groups could then mediate targeted conjugation of Alexa Fluor 647-hydrazide. We also showed that doxorubicin-hydrazide can be targeted to ketone-labeled cancer cells for enhanced cancer cell killing. This study validates the recyclability of cell-surface chemical tags for repetitive targeting of cancer cells with the use of a reversible chemistry, which will greatly facilitate future development of potent cancer-targeted therapies based on metabolic glycan labeling.
Collapse
|
50
|
Vallejo DD, Jeon CK, Parson KF, Herderschee HR, Eschweiler JD, Filoti DI, Ruotolo BT. Ion Mobility-Mass Spectrometry Reveals the Structures and Stabilities of Biotherapeutic Antibody Aggregates. Anal Chem 2022; 94:6745-6753. [PMID: 35475624 DOI: 10.1021/acs.analchem.2c00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stability is a key critical quality attribute monitored throughout the development of monoclonal antibody (mAb) therapeutics. Minor changes in their higher order structure (HOS) caused by stress or environment may alter mAb aggregation, immunogenicity, and efficacy. In addition, the structures of the resulting mAb aggregates are largely unknown, as are their dependencies on conditions under which they are created. In this report, we investigate the HOS of mAb monomers and dimers under a variety of forced degradation conditions with ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) technologies. We evaluate two model IgG1 antibodies that differ significantly only in their complementarity-determinant regions: IgG1α and IgG1β. Our data covering both heat- and pH-based forced degradation conditions, aquired on two different IM-MS platforms, show that these mAbs undergo global HOS changes at both monomer and dimer levels upon degradation, but shifts in collision cross section (CCS) differ under pH or heat degradation conditions. In addition, the level of CCS change detected is different between IgG1α and IgG1β, suggesting that differences in the CDR drive differential responses to degradation that influence the antibody HOS. Dramatically different CIU fingerprints are obtained for IgG1α and IgG1β monomers and dimers for both degradation conditions. Finally, we constructed a series of computational models of mAb dimers for comparison with experimental CCS values and found evidence for a compact, overlapped dimer structure under native and heat degradation conditions, possibly adopting an inverted or nonoverlapped quaternary structure when produced through pH degredation. We conclude by discussing the potential impact of our findings on ongoing biotherapeutic discovery and development efforts.
Collapse
Affiliation(s)
- Daniel D Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hayley R Herderschee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Dana I Filoti
- AbbVie, North Chicago, Illinois 60064, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|