1
|
Kwon H, Son S, Morton SU, Wypij D, Cleveland J, Rollins CK, Huang H, Goldmuntz E, Panigrahy A, Thomas NH, Chung WK, Anagnostou E, Norris-Brilliant A, Gelb BD, McQuillen P, Porter GA, Tristani-Firouzi M, Russell MW, Roberts AE, Newburger JW, Grant PE, Lee JM, Im K. Graph-based prototype inverse-projection for identifying cortical sulcal pattern abnormalities in congenital heart disease. Med Image Anal 2025; 102:103538. [PMID: 40121807 PMCID: PMC12049241 DOI: 10.1016/j.media.2025.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Examining the altered arrangement and patterning of sulcal folds offers insights into the mechanisms of neurodevelopmental differences in psychiatric and neurological disorders. Previous sulcal pattern analysis used spectral graph matching of sulcal pit-based graph structures to assess deviations from normative sulcal patterns. However, challenges exist, including the absence of a standard criterion for defining a typical reference set, time-consuming cost of graph matching, user-defined feature weight sets, and assumptions about uniform node distribution. We developed a deep learning-based sulcal pattern analysis to address these challenges by adapting prototype-based graph neural networks to sulcal pattern graphs. Additionally, we proposed a prototype inverse-projection for better interpretability. Unlike other prototype-based models, our approach inversely projects prototypes onto individual node representations to calculate the inverse-projection weights, enabling efficient visualization of prototypes and focusing the model on selective regions. We evaluated our method through a classification task between healthy controls (n = 174, age = 15.4 ±1.9 [mean ± standard deviation, years]) and patients with congenital heart disease (n = 345, age = 15.8 ±4.7) from four cohort studies and a public dataset. Our approach demonstrated superior classification performance compared to other state-of-the-art models, supported by extensive ablative studies. Furthermore, we visualized and examined the learned prototypes to enhance understanding. We believe our method has the potential to be a sensitive and understandable tool for sulcal pattern analysis.
Collapse
Affiliation(s)
- Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Seungyeon Son
- Department of Artificial Intelligence, Hanyang University, Seoul, South Korea
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - John Cleveland
- Department of Surgery and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nina H Thomas
- Department of Child and Adolescent Psychiatry and Behavioral Sciences and Center for Human Phenomic Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Wendy K Chung
- Department of Pediatrics and Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evdokia Anagnostou
- Department of Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ami Norris-Brilliant
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick McQuillen
- Department of Pediatrics and Department of Neurology, University of California, San Francisco, CA, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark W Russell
- Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Amy E Roberts
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jong-Min Lee
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea; Department of Artificial Intelligence, Hanyang University, Seoul, South Korea; Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lion M, Ibrahim EC, Caccomo-Garcia E, Bourret J, Cinquanta G, Khalfallah O, Glaichenhaus N, Davidovic L, Courtet P, Turecki G, Tzavara E, Belzeaux R. A specific GPR56/ADGRG1 splicing isoform is associated with antidepressant response in major depressive disorder. Eur Neuropsychopharmacol 2025; 93:5-14. [PMID: 39874727 DOI: 10.1016/j.euroneuro.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Major Depressive Episode (MDE) is one of the most common psychiatric disorders. Often difficult to treat, this disease is one of the leading causes of suicide. A recent study showed an association between GPR56/ADGRG1 mRNA, MDE and response to antidepressant treatment in blood and in brain. Among GPR56 splicing variant, the S4 isoform has recently been associated with microglial synaptic pruning, while microglia are already known as a central player in MDE. Therefore, we hypothesized that S4 is the specific isoform associated to MDE and antidepressant response. To test our hypothesis, an in silico analysis was first performed to identify the different proteins and transcript isoforms of GPR56. This analysis allowed to design PCR and qPCR primers. GPR56 total, S4 and S3 were assessed by RT-qPCR in leukocytes from a cohort of 46 MDE patients including non-responders (NR, n = 31) and responders-remitters (R, n = 17) to antidepressant treatment. We replicated the result of one of our previous studies, which described an increase in total GPR56 mRNA in Rs. Additionally, we observed that this variation differs among mRNA splicing variants, with S4 exhibiting a similar pattern of variation while S3 shows no significant change. The differences observed withstood statistical correction for covariates of interest such as smoking, gender and suicidal ideation, demonstrating the robustness of the model. These findings confirm our hypothesis that certain mRNA splicing variants of GPR56 may play a more significant role in depression. This study highlighted a link between the GPR56-S4 and response to antidepressant treatment.
Collapse
Affiliation(s)
- Montaine Lion
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France; Fondation FondaMental, Créteil, France.
| | | | - Julie Bourret
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Guillaume Cinquanta
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Olfa Khalfallah
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Philippe Courtet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Eleni Tzavara
- Fondation FondaMental, Créteil, France; Hôpital Sainte Marguerite, Pôle de psychiatrie, AP-HM, Marseille, France; CNRS (Integrative Neuroscience and Cognition Center, UMR 8002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Raoul Belzeaux
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Departement of psychiatry, CHU Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function. Nat Commun 2024; 15:10545. [PMID: 39627215 PMCID: PMC11615224 DOI: 10.1038/s41467-024-54836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation.
Collapse
Affiliation(s)
- Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Kristina Cechova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Przemysław Dutka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Gracie Siffer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Lin H, Ma C, Zhuang X, Liu S, Liu D, Zhang M, Lu Y, Zhou G, Zhang C, Wang T, Zhang Z, Lv L, Zhang D, Ruan XZ, Xu Y, Chai R, Yu X, Sun JP, Chu B. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury. Cell Metab 2024; 36:2402-2418.e10. [PMID: 39389061 DOI: 10.1016/j.cmet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate most cellular responses to hormones, neurotransmitters, and environmental stimulants. However, whether GPCRs participate in tissue homeostasis through ferroptosis remains unclear. Here we identify that GPR56/ADGRG1 renders cells resistant to ferroptosis and deficiency of GPR56 exacerbates ferroptosis-mediated liver injury induced by doxorubicin (DOX) or ischemia-reperfusion (IR). Mechanistically, GPR56 decreases the abundance of phospholipids containing free polyunsaturated fatty acids (PUFAs) by promoting endocytosis-lysosomal degradation of CD36. By screening a panel of steroid hormones, we identified that 17α-hydroxypregnenolone (17-OH PREG) acts as an agonist of GPR56 to antagonize ferroptosis and efficiently attenuates liver injury before or after insult. Moreover, disease-associated GPR56 mutants were unresponsive to 17-OH PREG activation and insufficient to defend against ferroptosis. Together, our findings uncover that 17-OH PREG-GPR56 axis-mediated signal transduction works as a new anti-ferroptotic pathway to maintain liver homeostasis, providing novel insights into the potential therapy for liver injury.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Guangjian Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Tengwei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiong-Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Gheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Mental Disorders and Intelligent Control, Shandong University, Jinan 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Qi W, Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem Pharmacol 2024; 226:116395. [PMID: 38942087 DOI: 10.1016/j.bcp.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China.
| |
Collapse
|
6
|
Kim Y, Jeong M, Koh IG, Kim C, Lee H, Kim JH, Yurko R, Kim IB, Park J, Werling DM, Sanders SJ, An JY. CWAS-Plus: estimating category-wide association of rare noncoding variation from whole-genome sequencing data with cell-type-specific functional data. Brief Bioinform 2024; 25:bbae323. [PMID: 38966948 PMCID: PMC11224609 DOI: 10.1093/bib/bbae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Minwoo Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Ronald Yurko
- Department of Statistics and Data Science, Carnegie Mellon University, 5000 Forbes Avenue, Squirrel Hill North, Pittsburgh, PA 15213, United States
| | - Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, 566 Nonhyon-ro, Gangnam-gu, Seoul 06135, Republic of Korea
| | - Jeongbin Park
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, Republic of Korea
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI 53706, Unite States
| | - Stephan J Sanders
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, 1651 4th Street, San Francisco, CA 94158, United States
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Langenhan T. Modularization of adhesion G protein-coupled receptor (aGPCR) structure: how alternative splicing regulates synaptogenesis. Signal Transduct Target Ther 2024; 9:106. [PMID: 38658561 PMCID: PMC11043342 DOI: 10.1038/s41392-024-01829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig University, Leipzig, Germany.
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
| |
Collapse
|
8
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Kim Y, Jeong M, Koh IG, Kim C, Lee H, Kim JH, Yurko R, Kim IB, Park J, Werling DM, Sanders SJ, An JY. CWAS-Plus: Estimating category-wide association of rare noncoding variation from whole-genome sequencing data with cell-type-specific functional data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305828. [PMID: 38699372 PMCID: PMC11065022 DOI: 10.1101/2024.04.15.24305828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Variants in cis-regulatory elements link the noncoding genome to human brain pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS) employs both whole-genome sequencing and user-provided functional data to enhance noncoding variant analysis, with a faster and more efficient execution of the CWAS workflow. Here, we used single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type specific enhancers and promoters. Examining autism spectrum disorder whole-genome sequencing data (n = 7,280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease whole-genome sequencing data (n = 1,087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale whole-genome sequencing data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Minwoo Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ronald Yurko
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, Republic of Korea
| | - Jeongbin Park
- School of Biomedical Convergence Engineering, Pusan National University, Busan, 50612, Republic of Korea
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Cubillos P, Ditzer N, Kolodziejczyk A, Schwenk G, Hoffmann J, Schütze TM, Derihaci RP, Birdir C, Köllner JE, Petzold A, Sarov M, Martin U, Long KR, Wimberger P, Albert M. The growth factor EPIREGULIN promotes basal progenitor cell proliferation in the developing neocortex. EMBO J 2024; 43:1388-1419. [PMID: 38514807 PMCID: PMC11021537 DOI: 10.1038/s44318-024-00068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.
Collapse
Affiliation(s)
- Paula Cubillos
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Nora Ditzer
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Annika Kolodziejczyk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Gustav Schwenk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Janine Hoffmann
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Theresa M Schütze
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Razvan P Derihaci
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- Center for feto/neonatal Health, TU Dresden, 01307, Dresden, Germany
| | - Johannes Em Köllner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover, Germany
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Structural analysis and conformational dynamics of a holo-adhesion GPCR reveal interplay between extracellular and transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581807. [PMID: 38464178 PMCID: PMC10925191 DOI: 10.1101/2024.02.25.581807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.
Collapse
|
12
|
Abaci Turk E, Yun HJ, Feldman HA, Lee JY, Lee HJ, Bibbo C, Zhou C, Tamen R, Grant PE, Im K. Association between placental oxygen transport and fetal brain cortical development: a study in monochorionic diamniotic twins. Cereb Cortex 2024; 34:bhad383. [PMID: 37885155 PMCID: PMC11032198 DOI: 10.1093/cercor/bhad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.
Collapse
Affiliation(s)
- Esra Abaci Turk
- Department of Pediatrics, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
| | - Hyuk Jin Yun
- Department of Pediatrics, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
| | - Henry A Feldman
- Department of Pediatrics, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Carolina Bibbo
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Cindy Zhou
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
| | - Rubii Tamen
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
| | - Patricia Ellen Grant
- Department of Pediatrics, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
- Department of Radiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
| | - Kiho Im
- Department of Pediatrics, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, 401 Park Dr, Boston, MA 02115, United States
| |
Collapse
|
13
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
14
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Hsiao CC, Vos E, van Gisbergen KPJM, Hamann J. The adhesion G protein-coupled receptor GPR56/ADGRG1 in cytotoxic lymphocytes. Basic Clin Pharmacol Toxicol 2023; 133:286-294. [PMID: 36750420 DOI: 10.1111/bcpt.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
GPR56/ADGRG1 is an adhesion G protein-coupled receptor connected to brain development, haematopoiesis, male fertility, and tumorigenesis. Nevertheless, expression of GPR56 is not restricted to developmental processes. Studies over the last years have demonstrated a marked presence of GPR56 in human cytotoxic NK and T cells. Expression of GPR56 in these cells is driven by the transcription factor HOBIT, corresponds with the production of cytolytic mediators and the presence of CX3 CR1 and CD57, indicates a state of terminal differentiation and cellular exhaustion, and disappears upon cellular activation. Functional studies indicate that GPR56 regulates cell migration and effector functions and thereby acts as an inhibitory immune checkpoint. We here discuss the current state of knowledge regarding GPR56 in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Els Vos
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Shin T, Song JH, Kosicki M, Kenny C, Beck SG, Kelley L, Qian X, Bonacina J, Papandile F, Antony I, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in noncoding regions with evolutionary signatures contributes to autism spectrum disorder risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295780. [PMID: 37790480 PMCID: PMC10543033 DOI: 10.1101/2023.09.19.23295780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Samantha G. Beck
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Evan M. Bushinsky
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Len A. Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Koo B, Lee KH, Ming GL, Yoon KJ, Song H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin Cell Dev Biol 2023; 142:43-53. [PMID: 35644876 PMCID: PMC9699901 DOI: 10.1016/j.semcdb.2022.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Radial glial cells (RGCs) as primary neural stem cells in the developing mammalian cortex give rise to diverse types of neurons and glial cells according to sophisticated developmental programs with remarkable spatiotemporal precision. Recent studies suggest that regulation of the temporal competence of RGCs is a key mechanism for the highly conserved and predictable development of the cerebral cortex. Various types of epigenetic regulations, such as DNA methylation, histone modifications, and 3D chromatin architecture, play a key role in shaping the gene expression pattern of RGCs. In addition, epitranscriptomic modifications regulate temporal pre-patterning of RGCs by affecting the turnover rate and function of cell-type-specific transcripts. In this review, we summarize epigenetic and epitranscriptomic regulatory mechanisms that control the temporal competence of RGCs during mammalian corticogenesis. Furthermore, we discuss various developmental elements that also dynamically regulate the temporal competence of RGCs, including biochemical reaction speed, local environmental changes, and subcellular organelle remodeling. Finally, we discuss the underlying mechanisms that regulate the interspecies developmental tempo contributing to human-specific features of brain development.
Collapse
Affiliation(s)
- Bonsang Koo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Heon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Mattis KK, Krentz NAJ, Metzendorf C, Abaitua F, Spigelman AF, Sun H, Ikle JM, Thaman S, Rottner AK, Bautista A, Mazzaferro E, Perez-Alcantara M, Manning Fox JE, Torres JM, Wesolowska-Andersen A, Yu GZ, Mahajan A, Larsson A, MacDonald PE, Davies B, den Hoed M, Gloyn AL. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023; 66:674-694. [PMID: 36633628 PMCID: PMC9947029 DOI: 10.1007/s00125-022-05856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Christoph Metzendorf
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Mazzaferro
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason M Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
19
|
Li T, Luo R, Schmidt R, D'Alessandro N, Kishore P, Zhu B, Yu D, Piao X. GPR56 S4 variant is required for microglia-mediated synaptic pruning. Glia 2023; 71:560-570. [PMID: 36336959 DOI: 10.1002/glia.24293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
ADGRG1 (also called GPR56) plays critical roles in brain development and wiring, including cortical lamination, central nervous system (CNS) myelination, and developmental synaptic refinement. However, the underlying mechanism(s) in mediating such diverse functions is not fully understood. Here, we investigate the function of one specific alternative splicing isoform, the GPR56 splice variant 4 (S4), to test the hypothesis that alternative splicing variants of GPR56 in part support its different functions. We created a new transgenic mouse line, Gpr56∆S4 , using CRISPR/Cas9, in which GPR56 S4 was deleted. Detailed phenotype analyses show that Gpr56∆S4 mice manifest no deficits in cortical architecture and CNS myelination compared to controls. Excitingly, they present significantly increased synapse densities, decreased synapse engulfment by microglia, and impaired eye-segregation. Taken together, our findings support that the GPR56 S4 variant is dispensable for cortical development and CNS myelination but is essential for microglia-mediated synaptic pruning.
Collapse
Affiliation(s)
- Tao Li
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Rong Luo
- Sanofi, Framingham, Massachusetts, USA
| | - Rachael Schmidt
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nicholas D'Alessandro
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Priya Kishore
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Beika Zhu
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Diankun Yu
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Xianhua Piao
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, California, USA.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
20
|
Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder. Nat Commun 2023; 14:635. [PMID: 36746957 PMCID: PMC9902482 DOI: 10.1038/s41467-023-36312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1. The LK30/ADGRL3 complex structure revealed that the LK30 binding site on ADGRL3 overlaps with the binding site for an ADGRL3 ligand - teneurin. In cellular-adhesion assays, LK30 specifically broke the trans-cellular interaction of ADGRL3 with teneurin, but not with another ADGRL3 ligand - FLRT3. Our work provides proof of concept for the modulation of isoform- and ligand-specific aGPCR functions using unique tools, and thus establishes a foundation for the development of fine-tuned aGPCR-targeted therapeutics.
Collapse
|
21
|
Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proc Natl Acad Sci U S A 2023; 120:e2210967120. [PMID: 36574666 PMCID: PMC9910595 DOI: 10.1073/pnas.2210967120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The convolutions of the mammalian cerebral cortex allow the enlargement of its surface and addition of novel functional areas during evolution while minimizing expansion of the cranium. Cognitive neurodevelopmental disorders in humans, including microcephaly and lissencephaly, are often associated with impaired gyrification. In the classical model of gyrification, surface area is initially set by the number of radial units, and the forces driving cortical folding include neuronal growth, formation of neuropil, glial cell intercalation, and the patterned growth of subcortical white matter. An alternative model proposes that specified neurogenic hotspots in the outer subventricular zone (oSVZ) produce larger numbers of neurons that generate convexities in the cortex. This directly contradicts reports showing that cortical neurogenesis and settling of neurons into the cortical plate in primates, including humans, are completed well prior to the formation of secondary and tertiary gyri and indeed most primary gyri. In addition, during the main period of gyrification, the oSVZ produces mainly astrocytes and oligodendrocytes. Here we describe how rapid growth of intracortical neuropil, addition of glial cells, and enlargement of subcortical white matter in primates are the primary forces responsible for the post-neurogenic expansion of the cortical surface and formation of gyri during fetal development. Using immunohistochemistry for markers of proliferation and glial and neuronal progenitors combined with transcriptomic analysis, we show that neurogenesis in the ventricular zone and oSVZ is phased out and transitions to gliogenesis prior to gyral development. In summary, our data support the classical model of gyrification and provide insight into the pathogenesis of congenital cortical malformations.
Collapse
|
22
|
Zhao J, Feng C, Wang W, Su L, Jiao J. Human SERPINA3 induces neocortical folding and improves cognitive ability in mice. Cell Discov 2022; 8:124. [DOI: 10.1038/s41421-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractNeocortex expansion and folding are related to human intelligence and cognition, but the molecular and cellular mechanisms underlying cortical folding remain poorly understood. Here, we report that the human gene SERPINA3 is linked to gyrification. Specifically, the overexpression of SERPINA3 induced neocortical folding, increased the abundance of neurons, and improved cognitive abilities. Further, SERPINA3 promoted proliferation of the outer radial glia (oRG, also referred to as the basal radial glia) and increased the number of upper-layer neurons. The downstream target Glo1 was determined to be involved in SERPINA3-induced gyrification. Moreover, SERPINA3 increased the proliferation of oRG by binding to the Glo1 promoter. Assessment of behavior performance showed enhanced cognitive abilities in SERPINA3 knock-in mice. Our findings will enrich the understanding of neocortical expansion and gyrification and provide insights into possible treatments for intellectual disability and lissencephaly syndrome.
Collapse
|
23
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
24
|
ADGRL1 haploinsufficiency causes a variable spectrum of neurodevelopmental disorders in humans and alters synaptic activity and behavior in a mouse model. Am J Hum Genet 2022; 109:1436-1457. [PMID: 35907405 PMCID: PMC9388395 DOI: 10.1016/j.ajhg.2022.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.
Collapse
|
25
|
The Novel Immune Checkpoint GPR56 Is Expressed on Tumor-Infiltrating Lymphocytes and Selectively Upregulated upon TCR Signaling. Cancers (Basel) 2022; 14:cancers14133164. [PMID: 35804934 PMCID: PMC9264967 DOI: 10.3390/cancers14133164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
High levels of tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME) are associated with a survival benefit in various cancer types and the targeted (re)activation of TILs is an attractive therapeutic anti-cancer approach that yields curative responses. However, current T cell targeting strategies directed at known immune checkpoints have not increased objective response rates for all cancer types, including for epithelial ovarian cancer (EOC). For this reason, the identification of new immune checkpoints that regulate T cell immunity remains of great interest. One yet largely uninvestigated checkpoint of potential interest is the G protein-coupled receptor 56 (GPR56), which belongs to the adhesion GPCR family. GPR56 was originally reported to function in cerebral cortical development and in anti-depressant response, but also in cancer. Recently, GPR56 was identified as an inhibitory receptor expressed on human NK cells that by cis-interaction with the tetraspanin CD81 attenuated the cytotoxic activity of NK cells. This NK cell checkpoint could be blocked by an GPR56 antibody, leading to increased cytotoxicity. Interestingly, GPR56 expression has also been reported on cytokine producing memory CD8 T lymphocytes and may thus represent a T cell checkpoint as well. Here, GPR56 mRNA expression was characterized in the context of TILs, with GPR56 expression being detected predominantly in tumor infiltrating CD8 T cells with a cytotoxic and (pre-)exhausted phenotype. In accordance with this mRNA profile, TILs from ovarian cancer patients expressed GPR56 primarily within the effector memory and central memory T cell subsets. On T cells from healthy donors the expression was limited to effector memory and terminally differentiated T cells. Notably, GPR56 expression further increased on TILs upon T cell receptor (TCR)-mediated stimulation in co-cultures with cancer cells, whereas GPR56 expression on healthy primary human T cells did not. Further, the ectopic expression of GPR56 significantly reduced the migration of GPR56-positive T cells. Taken together, GPR56 is a potential immune-checkpoint in EOC found on (pre-)exhausted CD8 TILs that may regulate migratory behavior.
Collapse
|
26
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
27
|
He L, Arnold C, Thoma J, Rohde C, Kholmatov M, Garg S, Hsiao CC, Viol L, Zhang K, Sun R, Schmidt C, Janssen M, MacRae T, Huber K, Thiede C, Hébert J, Sauvageau G, Spratte J, Fluhr H, Aust G, Müller-Tidow C, Niehrs C, Pereira G, Hamann J, Tanaka M, Zaugg JB, Pabst C. CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med 2022; 14:e14990. [PMID: 35253392 PMCID: PMC8988201 DOI: 10.15252/emmm.202114990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The heterogeneous response of acute myeloid leukemia (AML) to current anti‐leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)‐enriched compartments with different self‐renewal capacities. How these compartments self‐renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial‐to‐mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co‐activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC‐enriched subsets in vivo and synergize with the Bcl‐2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl‐2 inhibition as LSC‐directed therapy in this disease.
Collapse
Affiliation(s)
- Lixiazi He
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christian Arnold
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maksim Kholmatov
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Swati Garg
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Linda Viol
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christina Schmidt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tara MacRae
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Karin Huber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital of Dresden Carl Gustav Carus, Dresden, Germany
| | - Josée Hébert
- The Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julia Spratte
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Judith B Zaugg
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
28
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
29
|
Adhesion GPCR GPR56 Expression Profiling in Human Tissues. Cells 2021; 10:cells10123557. [PMID: 34944065 PMCID: PMC8700376 DOI: 10.3390/cells10123557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the immense functional relevance of GPR56 (gene ADGRG1) in highly diverse (patho)physiological processes such as tumorigenesis, immune regulation, and brain development, little is known about its exact tissue localization. Here, we validated antibodies for GPR56-specific binding using cells with tagged GPR56 or eliminated ADGRG1 in immunotechniques. Using the most suitable antibody, we then established the human GPR56 tissue expression profile. Overall, ADGRG1 RNA-sequencing data of human tissues and GPR56 protein expression correlate very well. In the adult brain especially, microglia are GPR56-positive. Outside the central nervous system, GPR56 is frequently expressed in cuboidal or highly prismatic secreting epithelia. High ADGRG1 mRNA, present in the thyroid, kidney, and placenta is related to elevated GPR56 in thyrocytes, kidney tubules, and the syncytiotrophoblast, respectively. GPR56 often appears in association with secreted proteins such as pepsinogen A in gastric chief cells and insulin in islet β-cells. In summary, GPR56 shows a broad, not cell-type restricted expression in humans.
Collapse
|
30
|
Ng KF, Chen TC, Stacey M, Lin HH. Role of ADGRG1/GPR56 in Tumor Progression. Cells 2021; 10:cells10123352. [PMID: 34943858 PMCID: PMC8699533 DOI: 10.3390/cells10123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular communication plays a critical role in diverse aspects of tumorigenesis including tumor cell growth/death, adhesion/detachment, migration/invasion, angiogenesis, and metastasis. G protein-coupled receptors (GPCRs) which constitute the largest group of cell surface receptors are known to play fundamental roles in all these processes. When considering the importance of GPCRs in tumorigenesis, the adhesion GPCRs (aGPCRs) are unique due to their hybrid structural organization of a long extracellular cell-adhesive domain and a seven-transmembrane signaling domain. Indeed, aGPCRs have been increasingly shown to be associated with tumor development by participating in tumor cell interaction and signaling. ADGRG1/GPR56, a representative tumor-associated aGPCR, is recognized as a potential biomarker/prognostic factor of specific cancer types with both tumor-suppressive and tumor-promoting functions. We summarize herein the latest findings of the role of ADGRG1/GPR56 in tumor progression.
Collapse
Affiliation(s)
- Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Hsi-Hsien Lin
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Center for Medical and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
31
|
Wang Y, Zhao B, Choi J, Lee EA. Genomic approaches to trace the history of human brain evolution with an emerging opportunity for transposon profiling of ancient humans. Mob DNA 2021; 12:22. [PMID: 34663455 PMCID: PMC8525043 DOI: 10.1186/s13100-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) significantly contribute to shaping the diversity of the human genome, and lines of evidence suggest TEs as one of driving forces of human brain evolution. Existing computational approaches, including cross-species comparative genomics and population genetic modeling, can be adapted for the study of the role of TEs in evolution. In particular, diverse ancient and archaic human genome sequences are increasingly available, allowing reconstruction of past human migration events and holding the promise of identifying and tracking TEs among other evolutionarily important genetic variants at an unprecedented spatiotemporal resolution. However, highly degraded short DNA templates and other unique challenges presented by ancient human DNA call for major changes in current experimental and computational procedures to enable the identification of evolutionarily important TEs. Ancient human genomes are valuable resources for investigating TEs in the evolutionary context, and efforts to explore ancient human genomes will potentially provide a novel perspective on the genetic mechanism of human brain evolution and inspire a variety of technological and methodological advances. In this review, we summarize computational and experimental approaches that can be adapted to identify and validate evolutionarily important TEs, especially for human brain evolution. We also highlight strategies that leverage ancient genomic data and discuss unique challenges in ancient transposon genomics.
Collapse
Affiliation(s)
- Yilan Wang
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
33
|
Kerimoglu C, Pham L, Tonchev AB, Sakib MS, Xie Y, Sokpor G, Ulmke PA, Kaurani L, Abbas E, Nguyen H, Rosenbusch J, Michurina A, Capece V, Angelova M, Maricic N, Brand-Saberi B, Esgleas M, Albert M, Minkov R, Kovachev E, Teichmann U, Seong RH, Huttner WB, Nguyen HP, Stoykova A, Staiger JF, Fischer A, Tuoc T. H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion. SCIENCE ADVANCES 2021; 7:eabc6792. [PMID: 34524839 PMCID: PMC8443185 DOI: 10.1126/sciadv.abc6792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Increase in the size of human neocortex―acquired in evolution―accounts for the unique cognitive capacity of humans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), including the basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, how the epigenome in BPs differs across species is not known. Here, we report that histone H3 acetylation is a key epigenetic regulation in bIP amplification and cortical expansion. Through epigenetic profiling of sorted bIPs, we show that histone H3 lysine 9 acetylation (H3K9ac) is low in murine bIPs and high in human bIPs. Elevated H3K9ac preferentially increases bIP proliferation, increasing the size and folding of the normally smooth mouse neocortex. H3K9ac drives bIP amplification by increasing expression of the evolutionarily regulated gene, Trnp1, in developing cortex. Our findings demonstrate a previously unknown mechanism that controls cortical architecture.
Collapse
Affiliation(s)
- Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Anton B. Tonchev
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- Departments of Anatomy and Cell Biology and Stem Cell Biology, Research Institute, Medical University of Varna, Varna 9002, Bulgaria
| | - M. Sadman Sakib
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Gannan Medical University, Ganzhou 341000, The People’s Republic of China
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Lalit Kaurani
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Eman Abbas
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | | | - Vincenzo Capece
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | - Meglena Angelova
- Departments of Anatomy and Cell Biology and Stem Cell Biology, Research Institute, Medical University of Varna, Varna 9002, Bulgaria
| | - Nenad Maricic
- Institute of Anatomy and Molecular Embryology, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Institute of Anatomy and Molecular Embryology, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Miriam Esgleas
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Radoslav Minkov
- Specialized Hospital for Obstetrics and Gynecology “Prof. Dimitar Stamatov” –Varna, Medical University of Varna, Varna 9002, Bulgaria
| | - Emil Kovachev
- Specialized Hospital for Obstetrics and Gynecology “Prof. Dimitar Stamatov” –Varna, Medical University of Varna, Varna 9002, Bulgaria
| | - Ulrike Teichmann
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Rho H. Seong
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Anastassia Stoykova
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Goettingen, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Goettingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Goettingen, Germany
| |
Collapse
|
34
|
Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021; 148:272121. [PMID: 34499710 PMCID: PMC8451944 DOI: 10.1242/dev.199417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex. Summary: We suggest that the inheritance and flexibility of cell polarity are implicated in the evolutionary expansion of the developing neocortex by promoting the amplification of neural progenitors and tangential migration of neurons.
Collapse
Affiliation(s)
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
35
|
Venti V, Consentino MC, Smilari P, Greco F, Oliva CF, Fiumara A, Falsaperla R, Ruggieri M, Pavone P. Malformations of Cortical Development, Cognitive Involvementand Epilepsy: A Single Institution Experience in 19 Young Patients. CHILDREN (BASEL, SWITZERLAND) 2021; 8:637. [PMID: 34438528 PMCID: PMC8392186 DOI: 10.3390/children8080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Malformations of cortical development (MCD) include a wide range of congenital disorders mostly causing severe cognitive dysfunction and epilepsy. OBJECTIVE to report on clinical features including cognitive involvement, epileptic seizures with response to antiseizure medications, comorbidities in young patients affected by MCD and followed in a single tertiary hospital. PATIENTS AND METHODS A retrospective review of the medical records and magnetic resonance images (MRI) of 19 young patients with an age ranging between eight days and fifteen years affected by MCD and admitted to Pediatrics Department University of Catania, Italy from October 2009 and October 2020 were selected. Patients were distinguished in three groups following the Barcovich et al. 2012 classification for MCD: 4 (21%) in Group I; 8 (42%) in Group II; and, and 7 (37%) in Group III. Clinical features and MRI of the patients including cognitive involvement, epilepsy type and response to drugs treatment were analyzed. RESULTS In Group I, two patients showed cortical dysplasia and two dysembryoplastic neuroepithelial tumors plus focal cortical dysplasia; developmental delay/intellectual disability (DD/ID) was severe in one, moderate in one and absent in two; the type of seizures was in all the cases focal to bilateral tonic-clonic (FBTCs), and drug resistant was found in one case. In Group II, three patients showed neuronal hetero-topias and five had pachygyria-lissencephaly: DD/ID was severe in four, moderate in two, and absent in two; the type of seizure was focal (FS) in five, focal to bilateral tonic-clonic (FBTCs) in two, infantile spasms (IS) in one, and drug resistant was found in three. In Group III, six showed polymicrogyria and one schizencephaly: DD/ID was found severe in five, moderate in two, and the type of seizure was focal (FS) in five, FBTCS in two, and drug resistance was found in three.
Collapse
Affiliation(s)
- Valeria Venti
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Maria Chiara Consentino
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (M.C.C.); (C.F.O.)
| | - Pierluigi Smilari
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Filippo Greco
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Claudia Francesca Oliva
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (M.C.C.); (C.F.O.)
| | - Agata Fiumara
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Raffaele Falsaperla
- Unit of Pediatrics and Neonatology, Neonatal Intensive Care, and Pediatric Emergency, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy;
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| |
Collapse
|
36
|
Genome sequencing in families with congenital limb malformations. Hum Genet 2021; 140:1229-1239. [PMID: 34159400 PMCID: PMC8263393 DOI: 10.1007/s00439-021-02295-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.
Collapse
|
37
|
Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates. Cell Rep 2021; 35:109226. [PMID: 34107259 DOI: 10.1016/j.celrep.2021.109226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.
Collapse
|
38
|
The role of GPR56/ADGRG1 in health and disease. Biomed J 2021; 44:534-547. [PMID: 34654683 PMCID: PMC8640549 DOI: 10.1016/j.bj.2021.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
GPR56/ADGRG1 is a versatile adhesion G protein-coupled receptor important in the physiological functions of the central and peripheral nervous systems, reproductive system, muscle hypertrophy, immune regulation, and hematopoietic stem cell generation. By contrast, aberrant expression or deregulated functions of GPR56 have been implicated in diverse pathological processes, including bilateral frontoparietal polymicrogyria, depression, and tumorigenesis. In this review article, we summarize and discuss the current understandings of the role of GPR56 in health and disease.
Collapse
|
39
|
Sun Y, Liu F, Fan C, Wang Y, Song L, Fang Z, Han R, Wang Z, Wang X, Yang Z, Xu Z, Peng J, Shi C, Zhang H, Dong W, Huang H, Li Y, Le Y, Sun J, Peng Z. Characterizing sensitivity and coverage of clinical WGS as a diagnostic test for genetic disorders. BMC Med Genomics 2021; 14:102. [PMID: 33849535 PMCID: PMC8045368 DOI: 10.1186/s12920-021-00948-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Due to its reduced cost and incomparable advantages, WGS is likely to lead to changes in clinical diagnosis of rare and undiagnosed diseases. However, the sensitivity and breadth of coverage of clinical WGS as a diagnostic test for genetic disorders has not been fully evaluated. METHODS Here, the performance of WGS in NA12878, the YH cell line, and the Chinese trios were measured by assessing their sensitivity, PPV, depth and breadth of coverage using MGISEQ-2000. We also compared the performance of WES and WGS using NA12878. The sensitivity and PPV were tested using the family-based trio design for the Chinese trios. We further developed a systematic WGS pipeline for the analysis of 8 clinical cases. RESULTS In general, the sensitivity and PPV for SNV/indel detection increased with mean depth and reached a plateau at an ~ 40X mean depth using down-sampling samples of NA12878. With a mean depth of 40X, the sensitivity of homozygous and heterozygous SNPs of NA12878 was > 99.25% and > 99.50%, respectively, and the PPV was 99.97% and 98.96%. Homozygous and heterozygous indels showed lower sensitivity and PPV. The sensitivity and PPV were still not 100% even with a mean depth of ~ 150X. We also observed a substantial variation in the sensitivity of CNV detection across different tools, especially in CNVs with a size less than 1 kb. In general, the breadth of coverage for disease-associated genes and CNVs increased with mean depth. The sensitivity and coverage of WGS (~ 40X) was better than WES (~ 120X). Among the Chinese trios with an ~ 40X mean depth, the sensitivity among offspring was > 99.48% and > 96.36% for SNP and indel detection, and the PPVs were 99.86% and 97.93%. All 12 previously validated variants in the 8 clinical cases were successfully detected using our WGS pipeline. CONCLUSIONS The current standard of a mean depth of 40X may be sufficient for SNV/indel detection and identification of most CNVs. It would be advisable for clinical scientists to determine the range of sensitivity and PPV for different classes of variants for a particular WGS pipeline, which would be useful when interpreting and delivering clinical reports.
Collapse
Affiliation(s)
- Yan Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fengxia Liu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Chunna Fan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Lijie Song
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhonghai Fang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Rui Han
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhonghua Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Xiaodan Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Ziying Yang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhenpeng Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiguang Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chaonan Shi
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | | | - Wei Dong
- BGI-Beijing Clinical Laboratories, BGI-Shenzhen, Beijing, 101300, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanqun Le
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
40
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
41
|
Chatterjee T, Zhang S, Posey TA, Jacob J, Wu L, Yu W, Francisco LE, Liu QJ, Carmon KS. Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak signaling to modulate cell adhesion. J Biol Chem 2021; 296:100261. [PMID: 33837725 PMCID: PMC7948743 DOI: 10.1016/j.jbc.2021.100261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
GPR56 is a member of the adhesion G-protein-coupled receptor family shown to play important roles in cell adhesion, brain development, immune function, and tumorigenesis. GPR56 is highly upregulated in colorectal cancer and correlates with poor prognosis. Several studies have shown GPR56 couples to the Gα12/13 class of heterotrimeric G-proteins to promote RhoA activation. However, due to its structural complexity and lack of a high-affinity receptor-specific ligand, the complete GPR56 signaling mechanism remains largely unknown. To delineate the activation mechanism and intracellular signaling functions of GPR56, we generated a monoclonal antibody (mAb) that binds with high affinity and specificity to the extracellular domain (ECD). Using deletion mutants, we mapped the mAb binding site to the GAIN domain, which mediates membrane-proximal autoproteolytic cleavage of the ECD. We showed that GPR56 overexpression in 293T cells leads to increased phosphorylation of Src, Fak, and paxillin adhesion proteins and activation of the Gα12/13-RhoA-mediated serum response factor (SRF) pathway. Treatment with the mAb potentiated Src-Fak phosphorylation, RhoA–SRF signaling, and cell adhesion. Consistently, GPR56 knockdown in colorectal cancer cells decreased Src–Fak pathway phosphorylation and cell adhesion. Interestingly, GPR56-mediated activation of Src–Fak phosphorylation occurred independent of RhoA, yet mAb-induced potentiation of RhoA–SRF signaling was Src-dependent. Furthermore, we show that the C-terminal portion of the Serine–Threonine–Proline-rich (STP) region, adjacent to the GAIN domain, was required for Src–Fak activation. However, autoproteolytic cleavage of the ECD was dispensable. These data support a new ECD-dependent mechanism by which GPR56 functions to regulate adhesion through activation of Src–Fak signaling.
Collapse
Affiliation(s)
- Treena Chatterjee
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tressie A Posey
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Joan Jacob
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ling Wu
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wangsheng Yu
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Liezl E Francisco
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qingyun J Liu
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kendra S Carmon
- The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
42
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
43
|
Ayo-Martin AC, Kyrousi C, Di Giaimo R, Cappello S. GNG5 Controls the Number of Apical and Basal Progenitors and Alters Neuronal Migration During Cortical Development. Front Mol Biosci 2020; 7:578137. [PMID: 33330619 PMCID: PMC7673377 DOI: 10.3389/fmolb.2020.578137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cortical development is a very complex process in which any temporal or spatial alterations can give rise to a wide range of cortical malformations. Among those malformations, periventricular heterotopia (PH) is characterized by clusters of neurons that do not migrate to the correct place. Cerebral organoids derived from patients with mutations in DCHS1 and FAT4, which have been associated with PH, exhibit higher levels of GNG5 expression in a patient-specific cluster of neurons. Here we investigate the role of GNG5 during the development of the cerebral cortex in mice and human cerebral organoids. GNG5, highly expressed in progenitors and downregulated in neurons, is critical for controlling the number of apical and basal progenitors and neuronal migration. Moreover, forced expression of GNG5 recapitulates some of the alterations observed upon downregulation of Dchs1 and Fat4 in mice and human cerebral organoids derived from DCHS1 and FAT4 patients, suggesting a critical role of GNG5 in cortical development.
Collapse
Affiliation(s)
- Ane Cristina Ayo-Martin
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
44
|
The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Sci Rep 2020; 10:21516. [PMID: 33299078 PMCID: PMC7726139 DOI: 10.1038/s41598-020-78608-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.
Collapse
|
45
|
Hecher L, Johannsen J, Bierhals T, Buhk JH, Hempel M, Denecke J. The Clinical Picture of a Bilateral Perisylvian Syndrome as the Initial Symptom of Mega-Corpus-Callosum Syndrome due to a MAST1-Gene Mutation. Neuropediatrics 2020; 51:435-439. [PMID: 32818970 DOI: 10.1055/s-0040-1710588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disorder associated with typical clinical and imaging features such as bilateral symmetrical polymicrogyria, either exclusively or mainly affecting the perisylvian region of the brain. We present a girl with the typical clinical picture of a CBPS and a complex migration disorder, predominantly presenting as bilateral symmetrical polymicrogyria associated with corpus callosum hyperplasia, ventricular dilation, and pontine hypoplasia. At the age of 6 months, the girl showed a profound global developmental delay, seizures refractory to treatment, and severe oromotor dysfunction. Exome analysis revealed a de novo mutation in microtubule-associated serine/threonine kinase 1 (MAST1). Recently, mutations in this gene were described in six patients with a cortical migration disorder named mega-corpus-callosum syndrome with cerebellar hypoplasia. Although all patients present the clinical and imaging features of CBPS, a clear assignment between CBPS and MAST1 mutations has not been reported yet.
Collapse
Affiliation(s)
- Laura Hecher
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Buhk
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Colpo GD, Rocha NP, Furr Stimming E, Teixeira AL. Gene Expression Profiling in Huntington's Disease: Does Comorbidity with Depressive Symptoms Matter? Int J Mol Sci 2020; 21:E8474. [PMID: 33187165 PMCID: PMC7697115 DOI: 10.3390/ijms21228474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. Besides the well-characterized motor symptoms, HD is marked by cognitive impairment and behavioral changes. In this study, we analyzed the blood of HD gene carries using RNA-sequencing techniques. We evaluated samples from HD gene carriers with (n = 8) and without clinically meaningful depressive symptoms (n = 8) compared with healthy controls (n = 8). Groups were age- and sex-matched. Preprocessing of data and between-group comparisons were calculated using DESeq2. The Wald test was used to generate p-values and log2 fold changes. We found 60 genes differently expressed in HD and healthy controls, of which 21 were upregulated and 39 downregulated. Within HD group, nineteen genes were differently expressed between patients with and without depression, being 6 upregulated and 13 downregulated. Several of the top differentially expressed genes are involved in nervous system development. Although preliminary, our findings corroborate the emerging view that in addition to neurodegenerative mechanisms, HD has a neurodevelopmental component. Importantly, the emergence of depression in HD might be related to these mechanisms.
Collapse
Affiliation(s)
- Gabriela Delevati Colpo
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Natalia Pessoa Rocha
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Erin Furr Stimming
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Instituto de Ensino & Pesquisa, Santa Casa BH, Belo Horizonte 30150-221, Brazil
| |
Collapse
|
47
|
Francis F, Cappello S. Neuronal migration and disorders - an update. Curr Opin Neurobiol 2020; 66:57-68. [PMID: 33096394 DOI: 10.1016/j.conb.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
This review highlights genes, proteins and subcellular mechanisms, recently shown to influence cortical neuronal migration. A current view on mechanisms which become disrupted in a diverse array of migration disorders is presented. The microtubule (MT) cytoskeleton is a major player in migrating neurons. Recently, variable impacts on MTs have been revealed in different cell compartments. Thus there are a multiplicity of effects involving centrosomal, microtubule-associated, as well as motor proteins. However, other causative factors also emerge, illuminating cortical neuronal migration research. These include disruptions of the actin cytoskeleton, the extracellular matrix, different adhesion molecules and signaling pathways, especially revealed in disorders such as periventricular heterotopia. These recent advances often involve the use of human in vitro models as well as model organisms. Focusing on cell-type specific knockouts and knockins, as well as generating omics and functional data, all seem critical for an integrated view on neuronal migration dysfunction.
Collapse
Affiliation(s)
- Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, F-75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| | | |
Collapse
|
48
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
49
|
Ganesh RA, Venkataraman K, Sirdeshmukh R. GPR56: An adhesion GPCR involved in brain development, neurological disorders and cancer. Brain Res 2020; 1747:147055. [PMID: 32798453 DOI: 10.1016/j.brainres.2020.147055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
GPR56/ADGRG1 is a member of the adhesion G-protein coupled receptor (aGPCR) family and one of the important players in the normal development of the brain. It plays a pivotal role in the diverse neurobiological processes, including cortical formation, oligodendrocyte development, and myelination. Mutations in GPR56 are known to cause brain malformation, myelination defects and are also implied in many cancers, including brain tumors. Since its identification almost two decades ago, GPR56 has emerged from an orphaned and uncharacterized GPCR to an increasingly well studied receptor. Yet, much needs to be understood about GPR56, both in terms of its molecular interactions and biological functions that may be relevant in normal health and disease. The review is focussed on the recent available knowledge of GPR56, which would give useful insights into its known and potential roles in the human brain, neurological disorders, and brain tumors like glioblastoma.
Collapse
Affiliation(s)
- Raksha A Ganesh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore 560099, India; Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632104, India
| | - Krishnan Venkataraman
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632104, India
| | - Ravi Sirdeshmukh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Bangalore 560099, India; Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
50
|
Jha R, Kovilapu UB, Devgan A, Sondhi V. Two Novel Compound Heterozygous ADGRG1/GPR56 Mutations Associated with Diffuse Cerebral Polymicrogyria. J Pediatr Genet 2020; 11:74-80. [PMID: 35186395 DOI: 10.1055/s-0040-1714716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Background Polymicrogyria (PMG) has environmental or genetic etiologies. We report a 8-year-old boy with diffuse PMG and two novel adhesion G protein-coupled receptor G1 ( ADGRG1 ) / G protein-coupled receptor 56 ( GPR56 ) mutations. Case Report The proband has intellectual disability, spastic quadriparesis, and intractable epilepsy without antenatal or perinatal insults. Brain magnetic resonance imaging revealed PMG involving fronto-polar, parietal and occipital lobes with decreasing antero-posterior gradient, and a thinned-out brain stem. Targeted exome sequencing identified two novel compound heterozygote ADGRG1/GPR56 mutations (c.C209T and c.1010dupT), and each parent carries one of these mutations. Subsequent pregnancy was terminated because the fetus had the same mutations. Conclusion The detected mutations expanded the genetic etiology of PMG and helped the family to avoid another child with this devastating condition.
Collapse
Affiliation(s)
- Ruchika Jha
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Uday B Kovilapu
- Department of Radiodiagnosis, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Devgan
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Vishal Sondhi
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|