1
|
Krishnan A, Kim D, Jaye C, Alamgir FM. Anion Activity and Metastable Phase Formation in Li 1-x FePO 4 Investigated Using Soft-to-Hard X-ray Absorption and Emission Spectroscopy. ACS MATERIALS LETTERS 2025; 7:1956-1962. [PMID: 40343142 PMCID: PMC12056757 DOI: 10.1021/acsmaterialslett.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
We systematically investigate the intricate roles of cations as well as anions during phase transformation, specifically, the formation of a metastable phase in phospho-olivine, LiFePO4 (LFP). The cation- and anion-specific electronic structures are studied using a combination of high-resolution soft-to-hard X-ray absorption and emission spectroscopy. Our findings reveal that the formation of the metastable phase at higher states-of-charge (SoC) is associated with a decreased oxidation state of iron, assisted by oxygen release. Additionally, we find that phosphorus is active in the charge process, exhibiting reduction, resulting from an electron density redistribution between oxygen and its neighboring iron and phosphorus atoms. Furthermore, the phase transformation process in LFP impacts its magnetic properties, with iron retaining its high-spin configuration along with an increased average spin during its transformation into FePO4 (FP).
Collapse
Affiliation(s)
- Abiram Krishnan
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Doyoub Kim
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cherno Jaye
- Material
Measurement Laboratory, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Faisal M Alamgir
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Wang J, Sun Y, Yang Y, Zhang C, Zheng W, Wang C, Zhang W, Zhou L, Yu H, Li J. Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407432. [PMID: 39792780 PMCID: PMC11884610 DOI: 10.1002/advs.202407432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles. Image sequences are recorded by the state-of-the-art plasmonic microscopy during single nanoparticle collision onto the sensor surface. Deep-SM can enhance signal detection and suppresses noise by leveraging spatio-temporal correlations of the unique signal and noise characteristics in plasmonic microscopy image sequences. Deep-SM can provide significant scattering signal enhancement and noise reduction in dynamic imaging of biological nanoparticles as small as 10 nm, as well as the collision detection of metallic nanoparticle electrochemistry and quantum coupling with plasmonic microscopy. The high sensitivity and simplicity make this approach promising for routine use in nanoparticle analysis across diverse scientific fields.
Collapse
Affiliation(s)
- Jingan Wang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yi Sun
- Department of ChemistryCenter for BioAnalytical ChemistryKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua UniversityBeijing100084China
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Yuting Yang
- School of Sensing Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Cheng Zhang
- School of Sensing Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Weiqiang Zheng
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Chen Wang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhou215163China
| | - Lianqun Zhou
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhou215163China
| | - Hui Yu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jinghong Li
- Department of ChemistryCenter for BioAnalytical ChemistryKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua UniversityBeijing100084China
| |
Collapse
|
3
|
Alsaç EP, Nelson DL, Yoon SG, Cavallaro KA, Wang C, Sandoval SE, Eze UD, Jeong WJ, McDowell MT. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chem Rev 2025; 125:2009-2119. [PMID: 39903474 PMCID: PMC11869192 DOI: 10.1021/acs.chemrev.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Solid-state batteries (SSBs) could offer improved energy density and safety, but the evolution and degradation of electrode materials and interfaces within SSBs are distinct from conventional batteries with liquid electrolytes and represent a barrier to performance improvement. Over the past decade, a variety of imaging, scattering, and spectroscopic characterization methods has been developed or used for characterizing the unique aspects of materials in SSBs. These characterization efforts have yielded new understanding of the behavior of lithium metal anodes, alloy anodes, composite cathodes, and the interfaces of these various electrode materials with solid-state electrolytes (SSEs). This review provides a comprehensive overview of the characterization methods and strategies applied to SSBs, and it presents the mechanistic understanding of SSB materials and interfaces that has been derived from these methods. This knowledge has been critical for advancing SSB technology and will continue to guide the engineering of materials and interfaces toward practical performance.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas Lars Nelson
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey Anne Cavallaro
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Elizabeth Sandoval
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udochukwu D. Eze
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Won Joon Jeong
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Skurtveit A, North ET, Park H, Chernyshov D, Wragg DS, Koposov AY. Stepwise Structural Relaxation in Battery Active Materials. ACS MATERIALS LETTERS 2025; 7:343-349. [PMID: 39790737 PMCID: PMC11707793 DOI: 10.1021/acsmaterialslett.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Whenever the cycling of Li-ion batteries is stopped, the electrode materials undergo a relaxation process, but the structural changes that occur during relaxation are not well-understood. We have used operando synchrotron X-ray diffraction with a time resolution of 1.24 s to observe the structural changes that occur when the lithiation of graphite and LiFePO4 electrodes are interrupted. Assessing the kinetics of the relaxation processes coupled with molecular dynamics simulations allows us to identify three relaxation stages in graphite. The atomistic origin for the relaxation process within the partially lithiated graphite structure is driven by the reorganization of Li ions into Li clusters. Relaxation in LiFePO4 electrodes is considerably slower than for graphite, but the observed structural changes is also attributed to reorganization of Li ions. These insights highlight the nature of the structural changes that occur during relaxation and the importance of using operando structural studies to avoid misleading conclusions about the reaction mechanisms in battery materials.
Collapse
Affiliation(s)
- Amalie Skurtveit
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern 0315 Norway
| | - Erlend Tiberg North
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern 0315 Norway
| | - Heesoo Park
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern 0315 Norway
| | - Dmitry Chernyshov
- Swiss-Norwegian
Beamlines, European Synchrotron Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - David S. Wragg
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern 0315 Norway
- Department
of Battery Technology, Institute for Energy
Technology, Instituttveien
18, 2007 Kjeller, Norway
| | - Alexey Y. Koposov
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern 0315 Norway
- Department
of Battery Technology, Institute for Energy
Technology, Instituttveien
18, 2007 Kjeller, Norway
| |
Collapse
|
5
|
Sun Y, Hy S, Hua N, Wingert J, Harder R, Meng YS, Shpyrko O, Singer A. Operando real-space imaging of a structural phase transformation in the high-voltage electrode Li xNi 0.5Mn 1.5O 4. Nat Commun 2024; 15:10783. [PMID: 39738022 DOI: 10.1038/s41467-024-55010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4 within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to a planar semi-coherent interface driven by dislocation dynamics. Our data indicates negligible kinetic limitations from interface propagation impacting the transformation kinetics, even at a discharge rate of C/2 (80 mA/g). This study highlights BCDI's capability to decode complex operando diffraction data, offering exciting opportunities to study nanoscale phase transformations with various stimuli.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sunny Hy
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nelson Hua
- Department of Physics, University of California San Diego, La Jolla, CA, USA
- PSI Center for Photon Science, Paul Scherrer Institute, Villigen, Switzerland
| | - James Wingert
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Ying Shirley Meng
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Oleg Shpyrko
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Yang D, Fang Z, Ji Y, Yang Y, Hou J, Zhang Z, Du W, Qi X, Zhu Z, Zhang R, Hu P, Qie L, Huang Y. A Room-Temperature Lithium-Restocking Strategy for the Direct Reuse of Degraded LiFePO 4 Electrodes. Angew Chem Int Ed Engl 2024; 63:e202409929. [PMID: 39356117 DOI: 10.1002/anie.202409929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
The sustainable development of lithium iron phosphate (LFP) batteries calls for efficient recycling technologies for spent LFP (SLFP). Even for the advanced direct material regeneration (DMR) method, multiple steps including separation, regeneration, and electrode refabrication processes are still needed. To circumvent these intricacies, new regeneration methods that allow direct electrode reuse (DER) by rejuvenating SLFP electrodes without damaging its structure are desired. Here, a 0.1 M lithium triethyl borohydride/tetrahydrofuran solution, which has the proper reductive capability to reduce Fe3+ in SLFP to Fe2+ without alloying with the aluminum current collector, is selected as the lithiation/regeneration reagent to restock the Li loss and regenerate SLFP electrodes. By soaking the SLFP electrodes in the lithiation solution, we successfully rejuvenated the crystal structure and electrochemical activity of SLFP electrodes with structural integrity within only 6 minutes at room temperature. When being directly reused, the regenerated LFP electrodes deliver a high specific capacity of 162.6 mAh g-1 even after being exposed to air for 3 months. The DER strategy presents significant economic and environmental benefits compared with the DMR method. This research provides a timely and innovative solution for recycling spent blade batteries using large-sized LFP electrodes, boosting the closed-loop development of LFP batteries.
Collapse
Affiliation(s)
- Dan Yang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhou Fang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yongsheng Ji
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Ying Yang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jingrong Hou
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhenyan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weichen Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoqun Qi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhenglu Zhu
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Renyuan Zhang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Pei Hu
- School of Science, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Long Qie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
7
|
Wang YH, Tong KW, Xiong SR, Chen CQ, Song YH, Yang P. Steerable Structural Evolvement and Adsorption Behavior of Metastable Polyoxovanadate-Based Metal-Organic Polyhedra. Inorg Chem 2024; 63:20984-20992. [PMID: 39441664 DOI: 10.1021/acs.inorgchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Promoting the advancement of the structure and function of metastable substances is challenging but worthwhile. In particular, how to harness the entangled state and evolution path of labile porous structures has been at the forefront of research in molecular self-assembly. In this work, the metastable structures of polyoxovanadate-based metal-organic polyhedra (VMOPs) can be manually regulated, including separation of the interlocked aggregate by a ligand-widening approach as well as transformation from a tetrahedral to capsule-like scaffold via a vertice-remodeling strategy. In these processes, intra- and intermolecular π···π and C-H···π interactions have been recognized as the primary driving forces. Besides being responsible for commanding the structural evolvement of VMOPs, such weak interactions were able to program their spatial arrangements and hence the adsorption performances for dye and iodine. The successful use of such a weak force-dominated design concept beacons a feasible route for customization of the function-oriented metastable structures. Separation and transformation of the interlocked metastable VMOPs have been achieved via the respective ligand-widening approach and vertice-remodeling strategy. Not only their structures but also adsorption features could be well regulated by such a weak force-dominated design concept.
Collapse
Affiliation(s)
- Yan-Hu Wang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Ke-Wei Tong
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Shi-Ru Xiong
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Chao-Qin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yue-Hong Song
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, P. R. China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Ke J, Chen S, Xiao P, Chen Y, Tang R, Gao P, Hu A, Liu J. Breaking the Lithiation Barrier via Tailored-Design Facile Kinetic Pathways in TiO 2(B) Realizing 50C Ultrafast Charging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412266. [PMID: 39380398 DOI: 10.1002/adma.202412266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Indexed: 10/10/2024]
Abstract
As a promising anode material for fast charging lithium-ion batteries, bronze-phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice-granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice-granular TiO2(B) enhances Li+ diffusion efficiency on C' site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice-granular TiO2(B) maintains a high specific capacity of 159.5 mAh g-1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design.
Collapse
Affiliation(s)
- Jinlong Ke
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| | - Shi Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Peitao Xiao
- Department of Materials Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Yufang Chen
- Department of Materials Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Rui Tang
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| | - Peng Gao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| | - Aiping Hu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| |
Collapse
|
9
|
Romanenko K, Avdievich N, Foy E. A Universal Plug-and-Play Approach to In Situ Multinuclear Magnetic Resonance Analysis of Electrochemical Phenomena in Commercial Battery Cells. J Am Chem Soc 2024; 146:29407-29416. [PMID: 39415697 DOI: 10.1021/jacs.4c08380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Advancing electrochemical energy storage devices relies on versatile analytical tools capable of revealing the molecular mechanisms behind the function and degradation of battery materials in situ. The nuclear magnetic resonance phenomenon plays a pivotal role in fundamental studies of energy materials and devices because of its exceptional sensitivity to local environments and the dynamics of many electrochemically relevant elements. The jelly roll architecture is one of the most energy-dense and, therefore, most popular concepts implemented in pouch, prismatic, and cylindrical Li- and Na-ion cells. Such widely commercialized designs, however, represent a significant obstacle for a range of powerful in situ magnetic resonance-based methodologies due to negligible radio frequency electromagnetic field penetration through conductive metal casings and current collectors. In this work, we introduce an experimental setup that enables direct RF wave transmission through the cell terminals and current collectors, and provides efficient excitation and detection of NMR signals. An RF adapter designed as a plug-and-play device effectively turns the battery cell into an NMR probe that can be tuned to a broad range of Larmor frequencies. Due to its exceptional sensitivity, versatility, and multinuclear capability, the proposed methodology is suitable for fundamental research and industrial high-throughput screening applications. In situ NMR lineshapes provide a direct quantitative description of the chemical environments of electrochemically active elements and enable new metrics for the accurate assessment of state-of-charge (SoC) and state-of-health (SoH). Specifically, in commercial pouch cells based on lithium cobalt oxide, lithium nickel manganese cobalt oxide, and sodium nickel iron manganese oxide chemistries, 7Li and 23Na NMR data unambiguously show electrochemical transformations between intercalated and metallic forms of charge carrier ions, and reveal anisotropic magnetic properties of the electrode coating.
Collapse
Affiliation(s)
| | - Nikolai Avdievich
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Eddy Foy
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| |
Collapse
|
10
|
Zhu X, Huang A, Martens I, Vostrov N, Sun Y, Richard MI, Schülli TU, Wang L. High-Voltage Spinel Cathode Materials: Navigating the Structural Evolution for Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403482. [PMID: 38722691 DOI: 10.1002/adma.202403482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Indexed: 05/21/2024]
Abstract
High-voltage LiNi0.5Mn1.5O4 (LNMO) spinel oxides are highly promising cobalt-free cathode materials to cater to the surging demand for lithium-ion batteries (LIBs). However, commercial application of LNMOs is still challenging despite decades of research. To address the challenge, the understanding of their crystallography and structural evolutions during synthesis and electrochemical operation is critical. This review aims to illustrate and to update the fundamentals of crystallography, phase transition mechanisms, and electrochemical behaviors of LNMOs. First, the research history of LNMO and its development into a LIB cathode material is outlined. Then the structural basics of LNMOs including the classic and updated views of the crystal polymorphism, interconversion between the polymorphs, and structure-composition relationship is reviewed. Afterward, the phase transition mechanisms of LNMOs that connect structural and electrochemical properties are comprehensively discussed from fundamental thermodynamics to operando dynamics at intra- and inter-particle levels. In addition, phase evolutions during overlithiation as well as thermal-/electrochemical-driven phase transformations of LNMOs are also discussed. Finally, recommendations are offered for the further development of LNMOs as well as other complex materials to unlock their full potential for future sustainable and powerful batteries.
Collapse
Affiliation(s)
- Xiaobo Zhu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Aoyu Huang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Isaac Martens
- ESRF-The European Synchrotron, Grenoble, 38000, France
| | | | - Yongqi Sun
- School of Metallurgy and Environment and National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Marie-Ingrid Richard
- ESRF-The European Synchrotron, Grenoble, 38000, France
- Univ. Grenoble Alpes, CEA Grenoble, IRIG MEM, NRX, Grenoble, 38000, France
| | | | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Yan G, Wei J, Apodaca E, Choi S, Eng PJ, Stubbs JE, Han Y, Zou S, Bera MK, Wu R, Karapetrova E, Zhou H, Chen W, Liu C. Identifying critical features of iron phosphate particle for lithium preference. Nat Commun 2024; 15:4859. [PMID: 38849339 PMCID: PMC11161493 DOI: 10.1038/s41467-024-49191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
One-dimensional (1D) olivine iron phosphate (FePO4) is widely proposed for electrochemical lithium (Li) extraction from dilute water sources, however, significant variations in Li selectivity were observed for particles with different physical attributes. Understanding how particle features influence Li and sodium (Na) co-intercalation is crucial for system design and enhancing Li selectivity. Here, we investigate a series of FePO4 particles with various features and revealed the importance of harnessing kinetic and chemo-mechanical barrier difference between lithiation and sodiation to promote selectivity. The thermodynamic preference of FePO4 provides baseline of selectivity while the particle features are critical to induce different kinetic pathways and barriers, resulting in different Li to Na selectivity from 6.2 × 102 to 2.3 × 104. Importantly, we categorize the FePO4 particles into two groups based on their distinctly paired phase evolutions upon lithiation and sodiation, and generate quantitative correlation maps among Li preference, morphological features, and electrochemical properties. By selecting FePO4 particles with specific features, we demonstrate fast (636 mA/g) Li extraction from a high Li source (1: 100 Li to Na) with (96.6 ± 0.2)% purity, and high selectivity (2.3 × 104) from a low Li source (1: 1000 Li to Na) with (95.8 ± 0.3)% purity in a single step.
Collapse
Affiliation(s)
- Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jialiang Wei
- Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Emory Apodaca
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suin Choi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Peter J Eng
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
- James Frank Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Joanne E Stubbs
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Siqi Zou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ronghui Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Evguenia Karapetrova
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hua Zhou
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wei Chen
- Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Weissmüller J. Coherent Phase Change in Interstitial Solutions: A Hierarchy of Instabilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308554. [PMID: 38509868 DOI: 10.1002/advs.202308554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 03/22/2024]
Abstract
Metal hydrides or lithium ion battery electrodes can take the form of interstitial solid solutions with a miscibility gap. This work discusses theory approaches for locating, in temperature-composition space, coherent phase transformations during the charging/discharging of such systems and for identifying the associated transformation mechanisms. The focus is on the simplest scenario, where instabilities derive from the thermodynamics of the bulk phase alone, considering strain energy as the foremost consequence of coherency and admitting for stress relaxation at free surfaces. The extension of the approach to include capillarity is demonstrated by an example. The analysis rests on constrained equilibrium phase diagrams that are informed by geometry- and dimensionality-specific mechanical boundary conditions and on elastic instabilities-again geometry-specific-as implied by the theory of open-system elasticity. It is demonstrated that some scenarios afford the analysis of chemical stability to be based entirely on a linear stability analysis of the mechanical equilibrium, which provides closed-form solutions in a straightforward manner. Attention is on the impact of the system geometry (infinitely extended or of finite size) and on the chemical (closed or open system) and mechanical (incoherent or coherent) boundary conditions. Transformation mechanism maps are suggested for documenting the findings. The maps reveal a hierarchy of instabilities, which depend strongly on each of the above characteristics. Specifically, realistic, finite-sized systems differ qualitatively from idealized systems of infinite extension. Among the transformation mechanisms exposed by the analysis are a uniform switchover to the other phase when the open system reaches its chemical spinodal, practical coherent nucleation, as well as chemo-elastically coupled spontaneous buckling modes, which may take the form of either, single-phase or dual-phase states.
Collapse
Affiliation(s)
- Jörg Weissmüller
- Institute of Materials Physics and Technology, Hamburg University of Technology, 20173, Hamburg, Germany
- Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| |
Collapse
|
13
|
Ji G, Tang D, Wang J, Liang Z, Ji H, Ma J, Zhuang Z, Liu S, Zhou G, Cheng HM. Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat Commun 2024; 15:4086. [PMID: 38744858 PMCID: PMC11094161 DOI: 10.1038/s41467-024-48181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Sustainable battery recycling is essential for achieving resource conservation and alleviating environmental issues. Many open/closed-loop strategies for critical metal recycling or direct recovery aim at a single component, and the reuse of mixed cathode materials is a significant challenge. To address this barrier, here we propose an upcycling strategy for spent LiFePO4 and Mn-rich cathodes by structural design and transition metal replacement, for which uses a green deep eutectic solvent to regenerate a high-voltage polyanionic cathode material. This process ensures the complete recycling of all the elements in mixed cathodes and the deep eutectic solvent can be reused. The regenerated LiFe0.5Mn0.5PO4 has an increased mean voltage (3.68 V versus Li/Li+) and energy density (559 Wh kg-1) compared with a commercial LiFePO4 (3.38 V and 524 Wh kg-1). The proposed upcycling strategy can expand at a gram-grade scale and was also applicable for LiFe0.5Mn0.5PO4 recovery, thus achieving a closed-loop recycling between the mixed spent cathodes and the next generation cathode materials. Techno-economic analysis shows that this strategy has potentially high environmental and economic benefits, while providing a sustainable approach for the value-added utilization of waste battery materials.
Collapse
Affiliation(s)
- Guanjun Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Tang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junxiong Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haocheng Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jun Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaofeng Zhuang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Song Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality / Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
14
|
Chen T, Banda H, Wang J, Oppenheim JJ, Franceschi A, Dincǎ M. A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries. ACS CENTRAL SCIENCE 2024; 10:569-578. [PMID: 38559291 PMCID: PMC10979494 DOI: 10.1021/acscentsci.3c01478] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 04/04/2024]
Abstract
Eliminating the use of critical metals in cathode materials can accelerate global adoption of rechargeable lithium-ion batteries. Organic cathode materials, derived entirely from earth-abundant elements, are in principle ideal alternatives but have not yet challenged inorganic cathodes due to poor conductivity, low practical storage capacity, or poor cyclability. Here, we describe a layered organic electrode material whose high electrical conductivity, high storage capacity, and complete insolubility enable reversible intercalation of Li+ ions, allowing it to compete at the electrode level, in all relevant metrics, with inorganic-based lithium-ion battery cathodes. Our optimized cathode stores 306 mAh g-1cathode, delivers an energy density of 765 Wh kg-1cathode, higher than most cobalt-based cathodes, and can charge-discharge in as little as 6 min. These results demonstrate the operational competitiveness of sustainable organic electrode materials in practical batteries.
Collapse
Affiliation(s)
- Tianyang Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Harish Banda
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Jiande Wang
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Julius J. Oppenheim
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | | | - Mircea Dincǎ
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Brennhagen A, Skautvedt C, Cavallo C, Wragg DS, Koposov AY, Sjåstad AO, Fjellvåg H. Unraveling the (De)sodiation Mechanisms of BiFeO 3 at a High Rate with Operando XRD. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12428-12436. [PMID: 38412363 PMCID: PMC10941182 DOI: 10.1021/acsami.3c17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Development of new anode materials for Na-ion batteries strongly depends on a detailed understanding of their cycling mechanism. Due to instrumental limitations, the majority of mechanistic studies focus on operando materials' characterization at low cycling rates. In this work, we evaluate and compare the (de)sodiation mechanisms of BiFeO3 in Na-ion batteries at different current densities using operando X-ray diffraction (XRD) and ex situ X-ray absorption spectroscopy (XAS). BiFeO3 is a conversion-alloying anode material with a high initial sodiation capacity of ∼600 mAh g-1, when cycled at 0.1 A g-1. It does not change its performance or cycling mechanism, except for minor losses in capacity, when the current density is increased to 1 A g-1. In addition, operando XRD characterization carried out over multiple cycles shows that the Bi ⇋ NaBi (de)alloying reaction and the oxidation of Bi at the interface with the Na-Fe-O matrix are detrimental for cycling stability. The isolated NaBi ⇋ Na3Bi reaction is less damaging to the cycling stability of the material.
Collapse
Affiliation(s)
- Anders Brennhagen
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
| | - Casper Skautvedt
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
| | - Carmen Cavallo
- CENATE,
Centrifugal Nanotechnology, Rakkestadveien 1, 1814 Askim, Norway
| | - David S. Wragg
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
- Department
of Battery Technology, Institute for Energy
Technology (IFE), Instituttveien 18, 2007 Kjeller, Norway
| | - Alexey Y. Koposov
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
- Department
of Battery Technology, Institute for Energy
Technology (IFE), Instituttveien 18, 2007 Kjeller, Norway
| | - Anja O. Sjåstad
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
| | - Helmer Fjellvåg
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
16
|
Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS NANO 2024; 18:2611-2648. [PMID: 38221745 DOI: 10.1021/acsnano.3c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lu Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Youzhi Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
17
|
Wu Y, Li G, Zhao S, Yin Y, Wang B, He W. Selective recovery of lithium from spent lithium iron phosphate batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241227375. [PMID: 38268141 DOI: 10.1177/0734242x241227375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The recovery of lithium from spent lithium iron phosphate (LiFePO4) batteries is of great significance to prevent resource depletion and environmental pollution. In this study, through active ingredient separation, selective leaching and stepwise chemical precipitation develop a new method for the selective recovery of lithium from spent LiFePO4 batteries by using sodium persulphate (Na2S2O8) to oxidize LiFePO4 to FePO4. The impact of various variables on the efficiency of lithium leaching was investigated. Moreover, a combination of thermodynamic analysis and characterization techniques such as X-ray diffraction and X-ray photoelectron spectroscopy was employed to elucidate the leaching mechanism. It was found that 98.65% of lithium could be selectively leached in just 35 minutes at 60°C with only 0.2 times excess of Na2S2O8. This high leaching efficiency can be attributed to the stability and lack of structural damage during the oxidation leaching process. The proposed process is economically viable and environmentally friendly, thus showing great potential for the large-scale recycling of spent LiFePO4 batteries.
Collapse
Affiliation(s)
- Yuanzhong Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Siqi Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | | | - Beng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Deng HD, Jin N, Attia PM, Lim K, Kang SD, Kapate N, Zhao H, Li Y, Bazant MZ, Chueh WC. Beyond Constant Current: Origin of Pulse-Induced Activation in Phase-Transforming Battery Electrodes. ACS NANO 2024; 18:2210-2218. [PMID: 38189239 DOI: 10.1021/acsnano.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mechanistic understanding of phase transformation dynamics during battery charging and discharging is crucial toward rationally improving intercalation electrodes. Most studies focus on constant-current conditions. However, in real battery operation, such as in electric vehicles during discharge, the current is rarely constant. In this work we study current pulsing in LiXFePO4 (LFP), a model and technologically important phase-transforming electrode. A current-pulse activation effect has been observed in LFP, which decreases the overpotential by up to ∼70% after a short, high-rate pulse. This effect persists for hours or even days. Using scanning transmission X-ray microscopy and operando X-ray diffraction, we link this long-lived activation effect to a pulse-induced electrode homogenization on both the intra- and interparticle length scales, i.e., within and between particles. Many-particle phase-field simulations explain how such pulse-induced homogeneity contributes to the decreased electrode overpotential. Specifically, we correlate the extent and duration of this activation to lithium surface diffusivity and the magnitude of the current pulse. This work directly links the transient electrode-level electrochemistry to the underlying phase transformation and explains the critical effect of current pulses on phase separation, with significant implication on both battery round-trip efficiency and cycle life. More broadly, the mechanisms revealed here likely extend to other phase-separating electrodes, such as graphite.
Collapse
Affiliation(s)
- Haitao D Deng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Norman Jin
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Peter M Attia
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kipil Lim
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen D Kang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nidhi Kapate
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongbo Zhao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yiyang Li
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William C Chueh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Wang S, Wang F. Effect of Mn, N co-doped LiFePO 4 on electrochemical and mechanical properties: A DFT study. J Mol Graph Model 2023; 125:108604. [PMID: 37598604 DOI: 10.1016/j.jmgm.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
In this study, the thermodynamic stability, embedding voltage, volume change rate, electronic structure properties, mechanical properties and lithium-ion diffusion characteristics of the Mn, N co-doped LiFePO4 material are investigated using a first-principles approach based on density generalization theory. The results show that the doped system has a low formation energy and the material meets the thermodynamic stability criteria. During the de-lithium process, the volume change rate of the doped material decreases and the cycling performance is improved, but the battery energy density decreases slightly. It is also found that the doping of N led to the transformation of the material from a p-type semiconductor to an N-type semiconductor, while the doping of Mn and N lead to the creation of impurity bands, narrowing of the band gap and an increase in conductivity. At the same time, Mn, N co-doping greatly improve the ductility of the material, suppress the generation of microcracks, and reduce the possibility of shear deformation. In addition, it is noteworthy that the lithium-ion diffusion energy barrier of the doped system is reduced, which predicts an increase in the diffusion rate of lithium ions in the doped system.
Collapse
Affiliation(s)
- Shucheng Wang
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Fazhan Wang
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China.
| |
Collapse
|
20
|
Ji H, Wang J, Ma J, Cheng HM, Zhou G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem Soc Rev 2023; 52:8194-8244. [PMID: 37886791 DOI: 10.1039/d3cs00254c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Advancement in energy storage technologies is closely related to social development. However, a significant conflict has arisen between the explosive growth in battery demand and resource availability. Facing the upcoming large-scale disposal problem of spent lithium-ion batteries (LIBs), their recycling technology development has become key. Emerging direct recycling has attracted widespread attention in recent years because it aims to 'repair' the battery materials, rather than break them down and extract valuable products from their components. To achieve this goal, a profound understanding of the failure mechanisms of spent LIB electrode materials is essential. This review summarizes the failure mechanisms of LIB cathode and anode materials and the direct recycling strategies developed. We systematically explore the correlation between the failure mechanism and the required repair process to achieve efficient and even upcycling of spent LIB electrode materials. Furthermore, we systematically introduce advanced in situ characterization techniques that can be utilized for investigating direct recycling processes. We then compare different direct recycling strategies, focussing on their respective advantages and disadvantages and their applicability to different materials. It is our belief that this review will offer valuable guidelines for the design and selection of LIB direct recycling methods in future endeavors. Finally, the opportunities and challenges for the future of battery direct recycling technology are discussed, paving the way for its further development.
Collapse
Affiliation(s)
- Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ma
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering & Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Cattermull J, Roth N, Cassidy SJ, Pasta M, Goodwin AL. K-Ion Slides in Prussian Blue Analogues. J Am Chem Soc 2023; 145:24249-24259. [PMID: 37879069 PMCID: PMC10636749 DOI: 10.1021/jacs.3c08751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
We study the phenomenology of cooperative off-centering of K+ ions in potassiated Prussian blue analogues (PBAs). The principal distortion mechanism by which this off-centering occurs is termed a "K-ion slide", and its origin is shown to lie in the interaction between local electrostatic dipoles that couple through a combination of electrostatics and elastic strain. Using synchrotron powder X-ray diffraction measurements, we determine the crystal structures of a range of low-vacancy K2M[Fe(CN)6] PBAs (M = Ni, Co, Fe, Mn, Cd) and establish an empirical link between composition, temperature, and slide-distortion magnitude. Our results reflect the common underlying physics responsible for K-ion slides and their evolution with temperature and composition. Monte Carlo simulations driven by a simple model of dipolar interactions and strain coupling reproduce the general features of the experimental phase behavior. We discuss the implications of our study for optimizing the performance of PBA K-ion battery cathode materials and also its relevance to distortions in other, conceptually related, hybrid perovskites.
Collapse
Affiliation(s)
- John Cattermull
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Nikolaj Roth
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
- iNANO, Aarhus, DK-8000 Denmark
| | - Simon J. Cassidy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Mauro Pasta
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Andrew L. Goodwin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
22
|
Zhou S, Figueras-Valls M, Shi Y, Ding Y, Mavrikakis M, Xia Y. Fast and Non-equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202306906. [PMID: 37528509 DOI: 10.1002/anie.202306906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
We report for the first time that Pd nanocrystals can absorb H via a "single-phase pathway" when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7- and 12-nm in size are exposed to H atoms, the H-saturated twin boundaries can divide each particle into 20 smaller single-crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single-phase pathway and one can readily obtain PdHx with anyx in the range of 0-0.7. When switched to Pd octahedral nanocrystals, the single-phase pathway is only observed for particles of 7 nm in size. We also establish that the H-absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H-absorption behaviors, the PdHx (x=0-0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marc Figueras-Valls
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Shen Z, Wang P, Hu X, Qu W, Liu X, Zhang D. Ultrahighly Alkali-Tolerant NO x Reduction over Self-Adaptive CePO 4/FePO 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14472-14481. [PMID: 37695840 DOI: 10.1021/acs.est.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Chen Y, Zeng G, Zhang B, Chen L, Yin J, Yan Y, Zhang H, Zhu Y, Yu X, Fang K, Liu T, Kuai X, Qiao Y, Sun SG. From Li to Na: Exploratory Analysis of Fe-Based Phosphates Polyanion-Type Cathode Materials by Mn Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303929. [PMID: 37621028 DOI: 10.1002/smll.202303929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Both LiFePO4 (LFP) and NaFePO4 (NFP) are phosphate polyanion-type cathode materials, which have received much attention due to their low cost and high theoretical capacity. Substitution of manganese (Mn) elements for LFP/NFP materials can improve the electrochemical properties, but the connection between local structural changes and electrochemical behaviors after Mn substitution is still not clear. This study not only achieves improvements in energy density of LFP and cyclic stability of NFP through Mn substitution, but also provides an in-depth analysis of the structural evolutions induced by the substitution. Among them, the substitution of Mn enables LiFe0.5 Mn0.5 PO4 to achieve a high energy density of 535.3 Wh kg-1 , while NaFe0.7 Mn0.3 PO4 exhibits outstanding cyclability with 89.6% capacity retention after 250 cycles. Specifically, Mn substitution broadens the ion-transport channels, improving the ion diffusion coefficient. Moreover, LiFe0.5 Mn0.5 PO4 maintains a more stable single-phase transition during the charge/discharge process. The transition of NaFe0.7 Mn0.3 PO4 to the amorphous phase is avoided, which can maintain structural stability and achieve better electrochemical performance. With systematic analysis, this research provides valuable guidance for the subsequent design of high-performance polyanion-type cathodes.
Collapse
Affiliation(s)
- Yilong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Guifan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Leiyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Jianhua Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Yawen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Yuanlong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Kai Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoxiao Kuai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen, 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| |
Collapse
|
25
|
Wang W, Wang R, Zhan R, Du J, Chen Z, Feng R, Tan Y, Hu Y, Ou Y, Yuan Y, Li C, Xiao Y, Sun Y. Probing Hybrid LiFePO 4/FePO 4 Phases in a Single Olive LiFePO 4 Particle and Their Recovering from Degraded Electric Vehicle Batteries. NANO LETTERS 2023; 23:7485-7492. [PMID: 37477256 DOI: 10.1021/acs.nanolett.3c01991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The recycling of LiFePO4 from degraded lithium-ion batteries (LIBs) from electric vehicles (EVs) has gained significant attention due to resource, environment, and cost considerations. Through neutron diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy, we revealed continuous lithium loss during battery cycling, resulting in a Li-deficient state (Li1-xFePO4) and phase separation within individual particles, where olive-shaped FePO4 nanodomains (5-10 nm) were embedded in the LiFePO4 matrix. The preservation of the olive-shaped skeleton during Li loss and phase change enabled materials recovery. By chemical compensation for the lithium loss, we successfully restored the hybrid LiFePO4/FePO4 structure to pure LiFePO4, eliminating nanograin boundaries. The regenerated LiFePO4 (R-LiFePO4) exhibited a high crystallinity similar to the fresh counterpart. This study highlights the importance of topotactic chemical reactions in structural repair and offers insights into the potential of targeted Li compensation for energy-efficient recycling of battery electrode materials with polyanion-type skeletons.
Collapse
Affiliation(s)
- Wenyu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Renming Zhan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junmou Du
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Deepal Automobile Technology Co., Ltd., Chongqing 401120, China
| | - Zihe Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruikang Feng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Tan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yangtao Ou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Cheng Li
- Neutron Scattering Division, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6473, United States
| | - Yinguo Xiao
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Rahman MM, Xia K, Yang XQ, Ariyoshi K, Hu E. Asymmetric Lithium Extraction and Insertion in High Voltage Spinel at Fast Rate. NANO LETTERS 2023; 23:7135-7142. [PMID: 37462326 DOI: 10.1021/acs.nanolett.3c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Spinel-structured ordered-LiNi0.5Mn1.5O4 (o-LNMO) has experienced a resurgence of interest in the context of reducing scarce elements such as cobalt from the lithium-ion batteries. O-LNMO undergoes two two-phase reactions at slow rates. However, it is not known if such phenomenon also applies at fast rates. Herein, we investigate the rate-dependent phase transition behavior of o-LNMO through in operando time-resolved X-ray diffraction. The results indicate that a narrow region of the solid solution reaction exists for charge and discharge at both slow and fast rates. The overall phase transition is highly asymmetric at fast rates. During fast charge, it is a particle-by-particle mechanism resulting from an asynchronized reaction among the particles. During fast discharge, it is likely a core-shell mechanism involving transition from Li0+xNi0.5Mn1.5O4 to Li1+xNi0.5Mn1.5O4 in the outer layer of particles. The Li0.5Ni0.5Mn1.5O4 phase is suppressed during fast discharge and appears only through Li redistribution upon relaxation.
Collapse
Affiliation(s)
| | - Kangxuan Xia
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kingo Ariyoshi
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
27
|
Christensen CK, Karlsen MA, Drejer AØ, Andersen BP, Jakobsen CL, Johansen M, Sørensen DR, Kantor I, Jørgensen MRV, Ravnsbæk DB. Beam damage in operando X-ray diffraction studies of Li-ion batteries. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:561-570. [PMID: 36952234 PMCID: PMC10161878 DOI: 10.1107/s160057752300142x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Operando powder X-ray diffraction (PXRD) is a widely employed method for the investigation of structural evolution and phase transitions in electrodes for rechargeable batteries. Due to the advantages of high brilliance and high X-ray energies, the experiments are often carried out at synchrotron facilities. It is known that the X-ray exposure can cause beam damage in the battery cell, resulting in hindrance of the electrochemical reaction. This study investigates the extent of X-ray beam damage during operando PXRD synchrotron experiments on battery materials with varying X-ray energies, amount of X-ray exposure and battery cell chemistries. Battery cells were exposed to 15, 25 or 35 keV X-rays (with varying dose) during charge or discharge in a battery test cell specially designed for operando experiments. The observed beam damage was probed by µPXRD mapping of the electrodes recovered from the operando battery cell after charge/discharge. The investigation reveals that the beam damage depends strongly on both the X-ray energy and the amount of exposure, and that it also depends strongly on the cell chemistry, i.e. the chemical composition of the electrode.
Collapse
Affiliation(s)
- Christian Kolle Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Martin Aaskov Karlsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andreas Østergaard Drejer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Bettina Pilgaard Andersen
- Department of Chemistry and Centre for Integrated Materials Research (iMAT), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Christian Lund Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Morten Johansen
- Department of Chemistry and Centre for Integrated Materials Research (iMAT), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel Risskov Sørensen
- Department of Chemistry and Centre for Integrated Materials Research (iMAT), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Innokenty Kantor
- MAX IV Laboratory, Lund University, Fotongatan 2, SE-221 00 Lund, Sweden
| | - Mads Ry Vogel Jørgensen
- Department of Chemistry and Centre for Integrated Materials Research (iMAT), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Dorthe Bomholdt Ravnsbæk
- Department of Chemistry and Centre for Integrated Materials Research (iMAT), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Peng J, Hong X, Zhou Q, Hui KS, Chen B. Novel Synthesis of 3D Mesoporous FePO 4 from Electroflocculation of Iron Filings as a Precursor of High-Performance LiFePO 4/C Cathode for Lithium-Ion Batteries. ACS OMEGA 2023; 8:12707-12715. [PMID: 37065085 PMCID: PMC10099130 DOI: 10.1021/acsomega.2c07838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
This study presents an economic and environmentally friendly method for the synthesis of microspherical FePO4·2H2O precursors with secondary nanostructures by the electroflocculation of low-cost iron fillers in a hot solution. The morphology and crystalline shape of the precursors were adjusted by gradient co-precipitation of pH conditions. The effect of precursor structure and morphology on the electrochemical performance of the synthesized LiFePO4/C was investigated. Electrochemical analysis showed that the assembly of FePO4·2H2O submicron spherical particles from primary nanoparticles and nanorods resulted in LiFePO4/C exhibiting excellent multiplicity and cycling performance with first discharge capacities at 0.2C, 1C, 5C, and 10C of 162.8, 134.7, 85.5, and 47.7 mAh·g-1, respectively, and the capacity of LiFePO4/C was maintained at 85.5% after 300 cycles at 1C. The significant improvement in the electrochemical performance of LiFePO4/C was attributed to the enhanced Li+ diffusion rate and the crystallinity of LiFePO4/C. Thus, this work shows a new three-dimensional mesoporous FePO4 synthesized from the iron flake electroflocculation as a precursor for high-performance LiFePO4/C cathodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Jiawu Peng
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoting Hong
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiongxiang Zhou
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kwan San Hui
- Engineering,
Faculty of Science, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Bin Chen
- Zhejiang
Agriculture and Forestry University, Lin’an 311300, China
| |
Collapse
|
29
|
Sun Y, Zhao Y, Lei Q, Du W, Yao Z, Zhang W, Si J, Ren Z, Chen J, Gao Y, Wen W, Tai R, Li X, Zhu D. Initiating Reversible Aqueous Copper-Tellurium Conversion Reaction with High Volumetric Capacity through Electrolyte Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209322. [PMID: 36482793 DOI: 10.1002/adma.202209322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Pursuing conversion-type cathodes with high volumetric capacity that can be used in aqueous environments remains rewarding and challenging. Tellurium (Te) is a promising alternative electrode due to its intrinsic attractive electronic conductivity and high theoretical volumetric capacity yet still to be explored. Herein, the kinetically/thermodynamically co-dominat copper-tellurium (Cu-Te) alloying phase-conversion process and corresponding oxidation failure mechanism of tellurium are investigated using in situ synchrotron X-ray diffraction and comprehensive ex situ characterization techniques. By virtue of the fundamental insights into the tellurium electrode, facile and precise electrolyte engineering (solvated structure modulation or reductive antioxidant addition) is implemented to essentially tackle the dramatic capacity loss in tellurium, affording reversible aqueous Cu-Te conversion reaction with an unprecedented ultrahigh volumetric capacity of up to 3927 mAh cm-3 , a flat long discharge plateau (capacity proportion of ≈81%), and an extraordinary level of capacity retention of 80.4% over 2000 cycles at 20 A g-1 of which lifespan thousand-fold longer than Cu-Te conversion using CuSO4 -H2 O electrolyte. This work paves a significant avenue for expanding high-performance conversion-type cathodes toward energetic aqueous multivalent-ion batteries.
Collapse
Affiliation(s)
- Yuanhe Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuanxin Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Qi Lei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wei Du
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zeying Yao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Wei Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingying Si
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhiguo Ren
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jige Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Gao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaolong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Daming Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
30
|
Dong Y, Li J. Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chem Rev 2023; 123:811-833. [PMID: 36398933 DOI: 10.1021/acs.chemrev.2c00251] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent progress in high-energy-density oxide cathodes for lithium-ion batteries has pushed the limits of lithium usage and accessible redox couples. It often invokes hybrid anion- and cation-redox (HACR), with exotic valence states such as oxidized oxygen ions under high voltages. Electrochemical cycling under such extreme conditions over an extended period can trigger various forms of chemical, electrochemical, mechanical, and microstructural degradations, which shorten the battery life and cause safety issues. Mitigation strategies require an in-depth understanding of the underlying mechanisms. Here we offer a systematic overview of the functions, instabilities, and peculiar materials behaviors of the oxide cathodes. We note unusual anion and cation mobilities caused by high-voltage charging and exotic valences. It explains the extensive lattice reconstructions at room temperature in both good (plasticity and self-healing) and bad (phase change, corrosion, and damage) senses, with intriguing electrochemomechanical coupling. The insights are critical to the understanding of the unusual self-healing phenomena in ceramics (e.g., grain boundary sliding and lattice microcrack healing) and to novel cathode designs and degradation mitigations (e.g., suppressing stress-corrosion cracking and constructing reactively wetted cathode coating). Such mixed ionic-electronic conducting, electrochemically active oxides can be thought of as almost "metalized" if at voltages far from the open-circuit voltage, thus differing significantly from the highly insulating ionic materials in electronic transport and mechanical behaviors. These characteristics should be better understood and exploited for high-performance energy storage, electrocatalysis, and other emerging applications.
Collapse
Affiliation(s)
- Yanhao Dong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
31
|
Santos DA, Rezaei S, Zhang D, Luo Y, Lin B, Balakrishna AR, Xu BX, Banerjee S. Chemistry-mechanics-geometry coupling in positive electrode materials: a scale-bridging perspective for mitigating degradation in lithium-ion batteries through materials design. Chem Sci 2023; 14:458-484. [PMID: 36741524 PMCID: PMC9848157 DOI: 10.1039/d2sc04157j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Despite their rapid emergence as the dominant paradigm for electrochemical energy storage, the full promise of lithium-ion batteries is yet to be fully realized, partly because of challenges in adequately resolving common degradation mechanisms. Positive electrodes of Li-ion batteries store ions in interstitial sites based on redox reactions throughout their interior volume. However, variations in the local concentration of inserted Li-ions and inhomogeneous intercalation-induced structural transformations beget substantial stress. Such stress can accumulate and ultimately engender substantial delamination and transgranular/intergranular fracture in typically brittle oxide materials upon continuous electrochemical cycling. This perspective highlights the coupling between electrochemistry, mechanics, and geometry spanning key electrochemical processes: surface reaction, solid-state diffusion, and phase nucleation/transformation in intercalating positive electrodes. In particular, we highlight recent findings on tunable material design parameters that can be used to modulate the kinetics and thermodynamics of intercalation phenomena, spanning the range from atomistic and crystallographic materials design principles (based on alloying, polymorphism, and pre-intercalation) to emergent mesoscale structuring of electrode architectures (through control of crystallite dimensions and geometry, curvature, and external strain). This framework enables intercalation chemistry design principles to be mapped to degradation phenomena based on consideration of mechanics coupling across decades of length scales. Scale-bridging characterization and modeling, along with materials design, holds promise for deciphering mechanistic understanding, modulating multiphysics couplings, and devising actionable strategies to substantially modify intercalation phase diagrams in a manner that unlocks greater useable capacity and enables alleviation of chemo-mechanical degradation mechanisms.
Collapse
Affiliation(s)
- David A Santos
- Department of Chemistry, Texas A&M University College Station TX 77843 USA https://twitter.com/sarbajitbanerj1
- Department of Materials Science and Engineering, Texas A&M University College Station TX 77843 USA
| | - Shahed Rezaei
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt Otto-Berndt-Str. 3 Darmstadt 64287 Germany
| | - Delin Zhang
- Department of Aerospace and Mechanical Engineering, University of Southern California Los Angeles CA 90089 USA
| | - Yuting Luo
- Department of Chemistry, Texas A&M University College Station TX 77843 USA https://twitter.com/sarbajitbanerj1
- Department of Materials Science and Engineering, Texas A&M University College Station TX 77843 USA
| | - Binbin Lin
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt Otto-Berndt-Str. 3 Darmstadt 64287 Germany
| | - Ananya R Balakrishna
- Department of Aerospace and Mechanical Engineering, University of Southern California Los Angeles CA 90089 USA
| | - Bai-Xiang Xu
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt Otto-Berndt-Str. 3 Darmstadt 64287 Germany
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University College Station TX 77843 USA https://twitter.com/sarbajitbanerj1
- Department of Materials Science and Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
32
|
Ren M, Zhao S, Gao S, Zhang T, Hou M, Zhang W, Feng K, Zhong J, Hua W, Indris S, Zhang K, Chen J, Li F. Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries. J Am Chem Soc 2023; 145:224-233. [PMID: 36562472 DOI: 10.1021/jacs.2c09725] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-phase transformation reaction is ubiquitous in solid-state electrochemistry; however, it usually involves inferior structure rearrangement upon extraction and insertion of large-sized Na+, thus leading to severe local strain, cracks, and capacity decay in sodium-ion batteries (SIBs). Here, a homeostatic solid solution reaction is reported in the layered cathode material P'2-Na0.653Ni0.081Mn0.799Ti0.120O2 during sodiation and desodiation. It is induced by the synergistic incorporation of Ni and Ti for the reinforced O(2p)-Mn(3d-eg*) hybridization, which leads to mitigated Jahn-Teller distortion of MnO6 octahedra, contracted transition-metal oxide slabs, and enlarged Na layer spacings. The thermodynamically favorable solid solution pathway rewards the SIBs with excellent cycling stability (87.2% capacity retention after 500 cycles) and rate performance (100.5 mA h g-1 at 2500 mA g-1). The demonstrated reaction pathway will open a new avenue for rational designing of cathode materials for SIBs and beyond.
Collapse
Affiliation(s)
- Meng Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Suning Gao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tong Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Machuan Hou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Weibo Hua
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Sylvio Indris
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
33
|
Rutz D, Bauer I, Brauchle F, Jacob T. Designing a reference electrode – An approach to fabricate laser perforated reference electrodes for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Nikitina VA, Fedotov SS. Solvent Control of the Nucleation-Induced Voltage Hysteresis in Li-rich LiFePO4 Materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Merryweather AJ, Jacquet Q, Emge SP, Schnedermann C, Rao A, Grey CP. Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes. NATURE MATERIALS 2022; 21:1306-1313. [PMID: 35970962 DOI: 10.1038/s41563-022-01324-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
To rationalize and improve the performance of newly developed high-rate battery electrode materials, it is crucial to understand the ion intercalation and degradation mechanisms occurring during realistic battery operation. Here we apply a laboratory-based operando optical scattering microscopy method to study micrometre-sized rod-like particles of the anode material Nb14W3O44 during high-rate cycling. We directly visualize elongation of the particles, which, by comparison with ensemble X-ray diffraction, allows us to determine changes in the state of charge of individual particles. A continuous change in scattering intensity with state of charge enables the observation of non-equilibrium kinetic phase separations within individual particles. Phase field modelling (informed by pulsed-field-gradient nuclear magnetic resonance and electrochemical experiments) supports the kinetic origin of this separation, which arises from the state-of-charge dependence of the Li-ion diffusion coefficient. The non-equilibrium phase separations lead to particle cracking at high rates of delithiation, particularly in longer particles, with some of the resulting fragments becoming electrically disconnected on subsequent cycling. These results demonstrate the power of optical scattering microscopy to track rapid non-equilibrium processes that would be inaccessible with established characterization techniques.
Collapse
Affiliation(s)
- Alice J Merryweather
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- The Faraday Institution, Didcot, UK
| | - Quentin Jacquet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Steffen P Emge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christoph Schnedermann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- The Faraday Institution, Didcot, UK.
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- The Faraday Institution, Didcot, UK.
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- The Faraday Institution, Didcot, UK.
| |
Collapse
|
36
|
MATSUI M, ORIKASA Y, UCHIYAMA T, NISHI N, MIYAHARA Y, OTOYAMA M, TSUDA T. Electrochemical In Situ/<i>operando</i> Spectroscopy and Microscopy Part 2: Battery Applications. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-66109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Yuki ORIKASA
- Department of Applied Chemistry, Ritsumeikan University
| | - Tomoki UCHIYAMA
- Department of Interdisciplinary Environment, Kyoto University
| | - Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Yuto MIYAHARA
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Misae OTOYAMA
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
37
|
First-principles study of the structural and electronic properties of LiFePO4 by graphene and N-doped graphene modification. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Yan G, Kim G, Yuan R, Hoenig E, Shi F, Chen W, Han Y, Chen Q, Zuo JM, Chen W, Liu C. The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction. Nat Commun 2022; 13:4579. [PMID: 35931691 PMCID: PMC9355959 DOI: 10.1038/s41467-022-32369-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Electrochemical intercalation can enable lithium extraction from dilute water sources. However, during extraction, co-intercalation of lithium and sodium ions occurs, and the response of host materials to this process is not fully understood. This aspect limits the rational materials designs for improving lithium extraction. Here, to address this knowledge gap, we report one-dimensional (1D) olivine iron phosphate (FePO4) as a model host to investigate the co-intercalation behavior and demonstrate the control of lithium selectivity through intercalation kinetic manipulations. Via computational and experimental investigations, we show that lithium and sodium tend to phase separate in the host. Exploiting this mechanism, we increase the sodium-ion intercalation energy barrier by using partially filled 1D lithium channels via non-equilibrium solid-solution lithium seeding or remnant lithium in the solid-solution phases. The lithium selectivity enhancement after seeding shows a strong correlation with the fractions of solid-solution phases with high lithium content (i.e., LixFePO4 with 0.5 ≤ x < 1). Finally, we also demonstrate that the solid-solution formation pathway depends on the host material’s particle morphology, size and defect content. Lithium extraction from dilute sources could help solve the lithium supply security issue. Here, the authors investigate the Li- and Na- ion co-intercalation behavior in iron phosphate electrodes and demonstrate the lithium selectivity control through intercalation kinetic manipulations.
Collapse
Affiliation(s)
- Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - George Kim
- Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Renliang Yuan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Fengyuan Shi
- Electron Microscopy Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Wenxiang Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wei Chen
- Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
39
|
Gallagher TC, Wu C, Lucero M, Sandstrom SK, Hagglund L, Jiang H, Stickle W, Feng Z, Ji X. From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries. Angew Chem Int Ed Engl 2022; 61:e202203837. [DOI: 10.1002/anie.202203837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Che‐Yu Wu
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Marcos Lucero
- School of Chemical, Biological, and Environmental Engineering Oregon State University Corvallis OR 97331 USA
| | - Sean K. Sandstrom
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Lindsey Hagglund
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Heng Jiang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - William Stickle
- Hewlett-Packard Co. 1000 NE Circle Blvd. Corvallis OR 97330 USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering Oregon State University Corvallis OR 97331 USA
| | - Xiulei Ji
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| |
Collapse
|
40
|
Carvalho RP, Alhanash M, Marchiori CFN, Brandell D, Araujo CM. Exploring Metastable Phases During Lithiation of Organic Battery Electrode Materials. CHEMSUSCHEM 2022; 15:e202200354. [PMID: 35389531 PMCID: PMC9321076 DOI: 10.1002/cssc.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, the Li-ion insertion mechanism in organic electrode materials is investigated through the lens of atomic-scale models based on first-principles theory. Starting with a structural analysis, the interplay of density functional theory with evolutionary and potential-mapping algorithms is used to resolve the crystal structure of the different (de)lithiated phases. These methods elucidate different lithiation reaction pathways and help to explore the formation of metastable phases and predict one- or multi-electron reactions, which are still poorly understood for organic intercalation electrodes. The cathode material dilithium 2,5-oxyterephthalate (operating at 2.6 V vs. Li/Li+) is investigated in depth as a case study, owing to its rich redox chemistry. When compared with recent experimental results, it is demonstrated that metastable phases with peculiar ring-ring molecular interactions are more likely to be controlling the redox reactions thermodynamics and consequently the battery voltage.
Collapse
Affiliation(s)
- Rodrigo P. Carvalho
- Materials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Department of Chemistry – Ångström LaboratoryUppsala UniversityBox 53875121UppsalaSweden
| | - Mirna Alhanash
- Materials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Materials Physics DivisionDepartment of PhysicsChalmers University of Technology41296GöteborgSweden
| | | | - Daniel Brandell
- Department of Chemistry – Ångström LaboratoryUppsala UniversityBox 53875121UppsalaSweden
| | - C. Moyses Araujo
- Materials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Department of Engineering and PhysicsKarlstad University65188KarlstadSweden
| |
Collapse
|
41
|
Cattermull J, Sada K, Hurlbutt K, Cassidy SJ, Pasta M, Goodwin AL. Uncovering the Interplay of Competing Distortions in the Prussian Blue Analogue K 2Cu[Fe(CN) 6]. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:5000-5008. [PMID: 35722203 PMCID: PMC9202302 DOI: 10.1021/acs.chemmater.2c00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We report the synthesis, crystal structure, thermal response, and electrochemical behavior of the Prussian blue analogue (PBA) K2Cu[Fe(CN)6]. From a structural perspective, this is the most complex PBA yet characterized: its triclinic crystal structure results from an interplay of cooperative Jahn-Teller order, octahedral tilts, and a collective "slide" distortion involving K-ion displacements. These different distortions give rise to two crystallographically distinct K-ion channels with different mobilities. Variable-temperature X-ray powder diffraction measurements show that K-ion slides are the lowest-energy distortion mechanism at play, as they are the only distortion to be switched off with increasing temperature. Electrochemically, the material operates as a K-ion cathode with a high operating voltage and an improved initial capacity relative to higher-vacancy PBA alternatives. On charging, K+ ions are selectively removed from a single K-ion channel type, and the slide distortions are again switched on and off accordingly. We discuss the functional importance of various aspects of structural complexity in this system, placing our discussion in the context of other related PBAs.
Collapse
Affiliation(s)
- John Cattermull
- Department
of Chemistry, University of Oxford, Inorganic
Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Krishnakanth Sada
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Kevin Hurlbutt
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Simon J. Cassidy
- Department
of Chemistry, University of Oxford, Inorganic
Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.
| | - Mauro Pasta
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Andrew L. Goodwin
- Department
of Chemistry, University of Oxford, Inorganic
Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
42
|
Gallagher TC, Wu CY, Lucero M, Sandstrom SK, Hagglund L, Jiang H, Stickle W, Feng Z, Ji X. From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Che-Yu Wu
- Oregon State University Chemistry UNITED STATES
| | - Marcos Lucero
- Oregon State University School of Chemical, Biological, and Environmental Engineering UNITED STATES
| | | | | | - Heng Jiang
- Oregon State University Chemistry UNITED STATES
| | - William Stickle
- Hewlett-Packard Inc: HP Inc Hewlett-Packard Co. Corvallis UNITED STATES
| | - Zhenxing Feng
- Oregon State University School of Chemical, Biological, and Environmental Engineering UNITED STATES
| | - Xiulei Ji
- Oregon State University Department of Chemistry 2100 SW Monroe Ave. 97331 Corvallis UNITED STATES
| |
Collapse
|
43
|
Cheng Z, Wang C, Zhu Y, Wang C, Jiang X, Qian Z, Chen B, Yang J. Mesocarbon Microbeads Boost the Electrochemical Performances of LiFePO 4 ||Li 4 Ti 5 O 12 through Anion Intercalation. CHEMSUSCHEM 2022; 15:e202102475. [PMID: 35243804 DOI: 10.1002/cssc.202102475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Li-ion batteries with LiFePO4 cathode and Li4 Ti5 O12 anode show promise for storing renewable energy. However, their low output voltage results in a low energy density. In contrast, dual-ion batteries with graphite cathode and Li4 Ti5 O12 anode can achieve a high output voltage of >3.0 V. In this study, mesocarbon microbeads (MCMB)@LiFePO4 ||Li4 Ti5 O12 dual-ion batteries are developed to address these issues. In the cathode, MCMB improves the conductivity of LiFePO4 and increases the output voltage by the intercalation of anions in the cell voltage range of 2.1-3.5 V. Moreover, the LiFePO4 shell sustains the structural integrity of MCMB and generates in situ a cathode-electrolyte interphase (CEI) with rich LiF. Owing to these unique compositional and structural features, MCMB@LiFePO4 ||Li4 Ti5 O12 manifests much better electrochemical performance than LiFePO4 ||Li4 Ti5 O12 and MCMB||Li4 Ti5 O12 . It sustains 89.6 % of the initial capacity after 1200 cycles at 0.2 A g-1 and achieves a specific energy up to 128 Wh kg-1 at 179 W kg-1 .
Collapse
Affiliation(s)
- Zhenjie Cheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chenggang Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yansong Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Cheng Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiaolei Jiang
- School Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
44
|
Ali M, Tsud N, Meena SS, Murugavel S. Size dependent electronic structure of LiFePO 4 probed using X-ray absorption and Mössbauer spectroscopy. Phys Chem Chem Phys 2022; 24:9695-9706. [PMID: 35412543 DOI: 10.1039/d2cp00411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the combined Mössbauer and X-ray absorption spectroscopy investigation of the electronic structure and local site symmetry of Fe in olivine structured LiFePO4 (LFP) with crystallite size (CS). The lattice parameters are found to contract with a decrease in CS, monotonously, whereas the electronic structural parameters exhibit two different regions with a threshold anomaly of around ≈30 nm. 57Fe Mössbauer studies reveal the coexistence of Fe2+ and Fe3+ sites and their relative concentrations are mainly determined by CS, which provides a comprehensive insight into the electronic structure of LFP at the mesoscopic level. The soft X-ray absorption unequivocally unravels the valence states of Fe 3d electrons in proximity to the Fermi level, which are prone to the local lattice distortion. The obtained spectra fingerprint the effect of CS supplying rich information on valency, lithium-ion vacancy concentration, covalency and crystal field. By comparing the spectra with the results of charge-transfer multiplet calculations, which include the full-atomic multiplet theory, we have found that the local symmetry of Fe ions is well described by the D4h point group with intermixing between eg and t2g orbitals. The unique structural and electronic properties of LFP are closely interlinked with changes in the bonding character, which shows the strong dependency on CS. The evolution of 3d states is in overall agreement with the local lattice distortion and provides the origin of the size effects on the electronic structure of olivine phosphate and other transition metal ion-containing materials.
Collapse
Affiliation(s)
- Mahboob Ali
- Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India.
| | - Nataliya Tsud
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Sher Singh Meena
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sevi Murugavel
- Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
45
|
Guo S, Li J, Zhang B, Chen W, Fang G, Long M, Liang S. Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Sci Bull (Beijing) 2022; 67:626-635. [DOI: 10.1016/j.scib.2021.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
|
46
|
Pérez‐Rodríguez S, Fitch SDS, Bartlett PN, Garcia‐Araez N. LiFePO 4 Battery Material for the Production of Lithium from Brines: Effect of Brine Composition and Benefits of Dilution. CHEMSUSCHEM 2022; 15:e202102182. [PMID: 34730274 PMCID: PMC9299151 DOI: 10.1002/cssc.202102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Indexed: 05/31/2023]
Abstract
Lithium battery materials can be advantageously used for the selective sequestration of lithium ions from natural resources, which contain other cations in high excess. However, for practical applications, this new approach for lithium production requires the battery host materials to be stable over many cycles while retaining the high lithium selectivity. Here, a nearly symmetrical cell design was employed to show that LiFePO4 shows good capacity retention with cycling in artificial lithium brines representative of brines from Chile, Bolivia and Argentina. A quantitative correlation was identified between brine viscosity and capacity degradation, and for the first time it was demonstrated that the dilution of viscous brines with water significantly enhanced capacity retention and rate capability. The electrochemical and X-ray diffraction characterisation of the cycled electrodes also showed that the high lithium selectivity was preserved with cycling. Raman spectra of the cycled electrodes showed no signs of degradation of the carbon coating of LiFePO4 , while scanning electron microscopy images showed signs of particle cracking, thus pointing towards interfacial reactions as the cause of capacity degradation.
Collapse
Affiliation(s)
- Sara Pérez‐Rodríguez
- Department of ChemistryUniversity of SouthamptonUniversity RoadSouthamptonSO171BJUnited Kingdom
| | - Samuel D. S. Fitch
- Department of ChemistryUniversity of SouthamptonUniversity RoadSouthamptonSO171BJUnited Kingdom
| | - Philip N. Bartlett
- Department of ChemistryUniversity of SouthamptonUniversity RoadSouthamptonSO171BJUnited Kingdom
| | - Nuria Garcia‐Araez
- Department of ChemistryUniversity of SouthamptonUniversity RoadSouthamptonSO171BJUnited Kingdom
| |
Collapse
|
47
|
Zhang J, Lei Q, Ren Z, Zhu X, Li J, Li Z, Liu S, Ding Y, Jiang Z, Li J, Huang Y, Li X, Zhou X, Wang Y, Zhu D, Zeng M, Fu L. A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries. ACS NANO 2021; 15:17748-17756. [PMID: 34714615 DOI: 10.1021/acsnano.1c05725] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rechargeable aqueous zinc ion batteries (AZIBs) are attracting extensive attention owing to environmental friendliness and high safety. However, its practical applications are limited to the poor Coulombic efficiency and stability of a Zn anode. Herein, we demonstrate a periodically stacked CuS-CTAB superlattice, as a competitive conversion-type anode for AZIBs with greatly improved specific capacity, rate performance, and stability. The CuS layers react with Zn2+ to endow high capacity, while CTAB layers serve to stabilize the structure and facilitate Zn2+ diffusion kinetics. Accordingly, CuS-CTAB shows superior rate performance (225.3 mA h g-1 at 0.1 A g-1 with 144.4 mA h g-1 at 10 A g-1) and a respectable cyclability of 87.6% capacity retention over 3400 cycles at 10 A g-1. In view of the outstanding electrochemical properties, full batteries constructed with a CuS-CTAB anode and cathode (ZnxFeCo(CN)6 and ZnxMnO2) are evaluated in coin cells, which demonstrate impressive full-battery performance.
Collapse
Affiliation(s)
- Jiaqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Lei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Ren
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaohui Zhu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Ji Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Li
- National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shilei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yaobo Huang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaolong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xingtai Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yong Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Daming Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
48
|
Bae J, Kim M, Kang H, Kim T, Choi H, Kim B, Do HW, Shim W. Kinetic 2D Crystals via Topochemical Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006043. [PMID: 34013602 DOI: 10.1002/adma.202006043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Minjung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyeonsoo Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
49
|
Wang C, Meng C, Li S, Zhang G, Ning Y, Fu Q. In Situ Visualization of Atmosphere-Dependent Relaxation and Failure in Energy Storage Electrodes. J Am Chem Soc 2021; 143:17843-17850. [PMID: 34644051 DOI: 10.1021/jacs.1c09429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ambient atmosphere is critical for the surface/interface chemistry of electrodes that governs the operation and failure in energy storage devices (ESDs). Here, taking an Al/graphite battery as an example, both the relaxation and failure processes in the working graphite electrodes have been dynamically monitored by multiple in situ surface and interface characterization methods within various well-controlled atmospheres. Relaxation effects are manifested by recoverable stage-structure change and electronic relaxation occurring in anhydrous inert atmospheres and O2, which are induced by the anion/cation redistribution within the neighboring graphene layers and have slight influence on the long-term cycling. In contrast, rapid and unrecoverable failure behaviors happen in hydrous atmospheres as shown by the stage-structure degradation and electronic decoupling between guest ions and host graphite, which are caused by the hydrolysis between newly intercalated H2O molecules and intercalants. Consistent with the characterization results, exposure to H2O can cause nearly 100% capacity loss. The methodology and concept adopted in this work to unravel the battery mechanism under ambient conditions are universal and significant to investigate many ESDs.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Meng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiwen Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
50
|
Li XL, Bao J, Shadike Z, Wang QC, Yang XQ, Zhou YN, Sun D, Fang F. Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co 2+ /Co 3+ Redox and Sodium-Site Doping for Layered Cathode Materials. Angew Chem Int Ed Engl 2021; 60:22026-22034. [PMID: 34378281 DOI: 10.1002/anie.202108933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 11/12/2022]
Abstract
Anionic redox is an effective way to boost the energy density of layer-structured metal-oxide cathodes for rechargeable batteries. However, inherent rigid nature of the TMO6 (TM: transition metals) subunits in the layered materials makes it hardly tolerate the inner strains induced by lattice glide, especially at high voltage. Herein, P2-Na0.8 Mg0.13 [Mn0.6 Co0.2 Mg0.07 □0.13 ]O2 (□: TM vacancy) is designed that contains vacancies in TM sites, and Mg ions in both TM and sodium sites. Vacancies make the rigid TMO6 octahedron become more asymmetric and flexible. Low valence Co2+ /Co3+ redox couple stabilizes the electronic structure, especially at the charged state. Mg2+ in sodium sites can tune the interlayer spacing against O-O electrostatic repulsion. Time-resolved in situ X-ray diffraction confirms that irreversible structure evolution is effectively suppressed during deep desodiation benefiting from the specific configuration. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations demonstrate that, deriving from the intrinsic vacancies, multiple local configurations of "□-O-□", "Na-O-□", "Mg-O-□" are superior in facilitating the oxygen redox for charge compensation than previously reported "Na-O-Mg". The resulted material delivers promising cycle stability and rate capability, with a long voltage plateau at 4.2 V contributed by oxygen, and can be well maintained even at high rates. The strategy will inspire new ideas in designing highly stable cathode materials with reversible anionic redox for sodium-ion batteries.
Collapse
Affiliation(s)
- Xun-Lu Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jian Bao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zulipiya Shadike
- Institute of Fuel Cells, Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qin-Chao Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Yong-Ning Zhou
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.,Yiwu Research Institute, Fudan University, Yiwu City, Zhejiang, 322000, P. R. China
| |
Collapse
|