1
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Khan N, Chen X. SLC38A9 is directly involved in Tat-induced endolysosome dysfunction and senescence in astrocytes. Life Sci Alliance 2025; 8:e202503231. [PMID: 40324823 PMCID: PMC12053450 DOI: 10.26508/lsa.202503231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular senescence contributes to accelerated aging and the development of various neurodegeneration disorders including HIV-associated neurocognitive disorders. The development of HIV-associated neurocognitive disorders is attributed, at least in part, to the CNS persistence of HIV-1 transactivator of transcription (Tat), an essential protein for viral transcription that is actively secreted from HIV-1-infected cells. Secreted Tat enters cells via receptor-mediated endocytosis and induces endolysosome dysfunction and cellular senescence in CNS cells. Given that endolysosome dysfunction represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that internalized Tat interacts with an endolysosome-resident arginine sensor SLC38A9 via the arginine-rich basic domain. Such an interaction between Tat and SLC38A9 leads to endolysosome dysfunction, enhanced HIV-1 LTR transactivation, and cellular senescence. These findings suggest that endolysosome dysfunction drives the development of senescence and highlight the novel role of SLC38A9 in Tat-induced endolysosome dysfunction and astrocyte senescence.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
2
|
Feng T, Xie F, Lyu Y, Yu P, Chen B, Yu J, Zhang G, To KF, Tsang CM, Kang W. The arginine metabolism and its deprivation in cancer therapy. Cancer Lett 2025; 620:217680. [PMID: 40157492 DOI: 10.1016/j.canlet.2025.217680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Arginine deprivation has emerged as a promising therapeutic strategy in cancer treatment due to the auxotrophy of certain tumors. Many cancers, such as pancreatic, colorectal, and hepatocellular carcinoma, exhibit downregulated argininosuccinate synthetase, making them reliant on external arginine sources. This dependency allows targeted therapies that deplete arginine, inhibiting tumor growth while sparing normal cells. Arginine is crucial for various cellular processes, including protein synthesis and immune function. Its deprivation affects both tumor metabolism and immune responses, potentially enhancing cancer therapy. Studies have explored using enzymes like arginine deiminase and arginase, often modified for increased stability and reduced immunogenicity, to effectively lower arginine levels in the tumor microenvironment. These approaches show promise, particularly in tumors with low argininosuccinate synthetase expression. However, the impact on immune cells and the potential for resistance highlight the need for further research. Combining arginine deprivation with other treatments might improve outcomes, offering a novel approach to combat arginine-dependent cancers.
Collapse
Affiliation(s)
- Tiejun Feng
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Peiyao Yu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Kumabe H, Masuda T, Ito S, Furihata T, Toda A, Mogi M, Araki N, Ohtsuki S. Proteome profile differences among human, monkey, and mouse brain microvessels and cultured brain microvascular endothelial cells. Fluids Barriers CNS 2025; 22:53. [PMID: 40448242 PMCID: PMC12124085 DOI: 10.1186/s12987-025-00650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/04/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) expresses transporters, receptors, and tight junction proteins that regulate the exchange of substances between the blood and brain. The differences in the expression of these proteins in the BBB among different species and cultured BBB model cells should be clarified to interpret the BBB function in model animals and cells. This study aimed to elucidate species differences among humans, monkeys, and mice and in vitro-in vivo differences in the BBB proteome using deep proteomic analysis. METHODS Brain microvessels (BMVs) were isolated from frozen cerebral cortices of human and monkey and frozen mouse cerebrums. BMVs and cultured brain microvascular endothelial cells (BMECs), such as hCMEC/D3, HBMEC/ciβ, and primary BMECs, were analyzed via data-independent acquisition using liquid chromatography-mass spectrometry. RESULTS Proteomics identified 7,149-8,274 proteins in the BMV fractions and 6,657-7,534 proteins in the brain lysates. Comparative analysis revealed distinct proteomic profiles among the three species, with the human profile being more similar to that of monkeys than that of mice. The expression profile of the solute carrier organic anion transporter family was found to vary among mouse, monkey, and human BMVs. The expression levels of SLC22A6/Slc22a6 and SLC22A8/Slc22a8 were higher in mice than in monkeys and humans, whereas SLC43A3/Slc43a3 expression levels were lower in mice. The expression of amino acid transporters, such as SLC7A5 and SLC3A2/Slc3a2, was higher in BMVs, whereas that of SLC1A5/Slc1a5 and SLC38A9/Slc38a9 was higher in cultured BMECs. MFSD2A/Mfsd2a and SLC27A1/Slc27a1 were highly expressed in BMVs. The expression of tight junction proteins, particularly the claudin family, varied between BMVs and cultured BMECs and among cell lines. Specifically, the expression of claudin-5 was higher in BMVs, and claudin-11 expression was higher in cultured BMECs. CONCLUSIONS Deep proteomic analysis revealed species-specific differences in transport-related proteins in the BBB. Furthermore, in vitro and in vivo differences were observed in the transporter and claudin protein expression. This study provides a BBB proteome profile dataset and offers insights for a comprehensive understanding of BBB protein expression across species and between in vivo and in vitro conditions.
Collapse
Affiliation(s)
- Haruka Kumabe
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tomomi Furihata
- Laboratory of Advanced Drug Development Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Akiko Toda
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd, Miyanoura, Kagoshima, 891-1394, Japan
| | - Masayuki Mogi
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd, Miyanoura, Kagoshima, 891-1394, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
4
|
Wiedmer T, Teoh ST, Christodoulaki E, Wolf G, Tian C, Sedlyarov V, Jarret A, Leippe P, Frommelt F, Ingles-Prieto A, Lindinger S, Barbosa BMG, Onstein S, Klimek C, Garcia J, Serrano I, Reil D, Santacruz D, Piotrowski M, Noell S, Bueschl C, Li H, Chi G, Mereiter S, Oliveira T, Penninger JM, Sauer DB, Steppan CM, Viollet C, Klavins K, Hannich JT, Goldmann U, Superti-Furga G. Metabolic mapping of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00106-4. [PMID: 40355754 DOI: 10.1038/s44320-025-00106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carrier (SLC) transporters govern most of the chemical exchange across cellular membranes and are integral to metabolic regulation, which in turn is linked to cellular function and identity. Despite their key role, individual functions of the SLC superfamily members were not evaluated systematically. We determined the metabolic and transcriptional profiles upon SLC overexpression in knock-out or wild-type isogenic cell backgrounds for 378 SLCs and 441 SLCs, respectively. Targeted metabolomics provided a fingerprint of 189 intracellular metabolites, while transcriptomics offered insights into cellular programs modulated by SLC expression. Beyond the metabolic profiles of 102 SLCs directly related to their known substrates, we identified putative substrates or metabolic pathway connections for 71 SLCs without previously annotated bona fide substrates, including SLC45A4 as a new polyamine transporter. By comparing the molecular profiles, we identified functionally related SLC groups, including some with distinct impacts on osmolyte balancing and glycosylation. The assessment of functionally related human genes presented here may serve as a blueprint for other systematic studies and supports future investigations into the functional roles of SLCs.
Collapse
Affiliation(s)
- Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Chengzhe Tian
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Abigail Jarret
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Barbara M G Barbosa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Daniela Reil
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Diana Santacruz
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach, Germany
| | - Mary Piotrowski
- Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Stephen Noell
- Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Christoph Bueschl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Huanyu Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Mereiter
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030, Vienna, Austria
| | - Tiago Oliveira
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030, Vienna, Austria
| | - Josef M Penninger
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030, Vienna, Austria
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, V6T 1Z3, Vancouver, Canada
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire M Steppan
- Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Coralie Viollet
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach, Germany
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
5
|
Frommelt F, Ladurner R, Goldmann U, Wolf G, Ingles-Prieto A, Lineiro-Retes E, Gelová Z, Hopp AK, Christodoulaki E, Teoh ST, Leippe P, Santini BL, Rebsamen M, Lindinger S, Serrano I, Onstein S, Klimek C, Barbosa B, Pantielieieva A, Dvorak V, Hannich TJ, Schoenbett J, Sansig G, Mocking TAM, Ooms JF, IJzerman AP, Heitman LH, Sykacek P, Reinhardt J, Müller AC, Wiedmer T, Superti-Furga G. The solute carrier superfamily interactome. Mol Syst Biol 2025:10.1038/s44320-025-00109-1. [PMID: 40355756 DOI: 10.1038/s44320-025-00109-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carrier (SLC) transporters form a protein superfamily that enables transmembrane transport of diverse substrates including nutrients, ions and drugs. There are about 450 different SLCs, residing in a variety of subcellular membranes. Loss-of-function of an unusually high proportion of SLC transporters is genetically associated with a plethora of human diseases, making SLCs a rapidly emerging but challenging drug target class. Knowledge of their protein environment may elucidate the molecular basis for their functional integration with metabolic and cellular pathways and help conceive pharmacological interventions based on modulating proteostatic regulation. We aimed at obtaining a global survey of the SLC-protein interaction landscape and mapped the protein-protein interactions of 396 SLCs by interaction proteomics. We employed a functional assessment based on RNA interference of interactors in combination with measurement of protein stability and localization. As an example, we detail the role of a SLC16A6 phospho-degron and the contributions of PDZ-domain proteins LIN7C and MPP1 to the trafficking of SLC43A2. Overall, our work offers a resource for SLC-protein interactions for the scientific community.
Collapse
Affiliation(s)
- Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rene Ladurner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Eva Lineiro-Retes
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ann-Katrin Hopp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Brianda L Santini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Barbara Barbosa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Anastasiia Pantielieieva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Thomas J Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Julian Schoenbett
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - Gilles Sansig
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - Tamara A M Mocking
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jasper F Ooms
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Sykacek
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Juergen Reinhardt
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
6
|
Muneshige K, Hatakeyama R. Vacuoles provide the source membrane for TORC1-containing signaling endosomes. J Cell Biol 2025; 224:e202407021. [PMID: 40052923 PMCID: PMC11893502 DOI: 10.1083/jcb.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/12/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Organelle biogenesis is fundamental to eukaryotic cell biology. Yeast signaling endosomes were recently identified as a signaling platform for the evolutionarily conserved Target of Rapamycin Complex 1 (TORC1) kinase complex. Despite the importance of signaling endosomes for TORC1-mediated control of cellular metabolism, how this organelle is generated has been a mystery. Here, we developed a system to induce synchronized de novo formation of signaling endosomes, enabling real-time monitoring of their biogenesis. Using this system, we identify vacuoles as a membrane source for newly formed signaling endosomes. Membrane supply from vacuoles is mediated by the CROP membrane-cutting complex, consisting of Atg18 PROPPIN and retromer subunits. The formation of signaling endosomes requires TORC1 activity, suggestive of a tightly regulated process. This study unveiled the first mechanistic principles and molecular participants of signaling endosome biogenesis.
Collapse
Affiliation(s)
- Kenji Muneshige
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Riko Hatakeyama
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Xiong Q, Zhu Z, Li T, Li X, Zhou Z, Chao Y, Yang C, Feng S, Qu Q, Li D. Molecular architecture of human LYCHOS involved in lysosomal cholesterol signaling. Nat Struct Mol Biol 2025; 32:905-913. [PMID: 39824977 DOI: 10.1038/s41594-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly. The NhaA-fold transporter harbors a previously uncharacterized intramembrane Na+ pocket. The GPCR-like domain is stabilized, by analogy to canonical GPCRs, in an inactive state through 'tethered antagonism' by a lumenal loop and strong interactions at the cytosol side preventing the hallmark swing of the sixth transmembrane helix seen in active GPCRs. A cholesterol molecule and an associated docosahexaenoic acid (DHA)-phospholipid are entrapped between the transporter and GPCR-like domains, with the DHA-phospholipid occupying a pocket previously implicated in cholesterol sensing, indicating inter-domain coupling via dynamic lipid-protein interactions. Our work provides a high-resolution framework for functional investigations of the understudied LYCHOS protein.
Collapse
Affiliation(s)
- Qi Xiong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhini Zhu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Tingting Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Zhou
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yulin Chao
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Chuanhui Yang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qianhui Qu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| | - Dianfan Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
8
|
Zhao J, Shen Q, Yong X, Li X, Tian X, Sun S, Xu Z, Zhang X, Zhang L, Yang H, Shao Z, Xu H, Jiang Y, Zhang Y, Yan W. Cryo-EM reveals cholesterol binding in the lysosomal GPCR-like protein LYCHOS. Nat Struct Mol Biol 2025; 32:896-904. [PMID: 39824976 DOI: 10.1038/s41594-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Cholesterol plays a pivotal role in modulating the activity of mechanistic target of rapamycin complex 1 (mTOR1), thereby regulating cell growth and metabolic homeostasis. LYCHOS, a lysosome-localized G-protein-coupled receptor-like protein, emerges as a cholesterol sensor and is capable of transducing the cholesterol signal to affect the mTORC1 function. However, the precise mechanism by which LYCHOS recognizes cholesterol remains unknown. Here, using cryo-electron microscopy, we determined the three-dimensional structural architecture of LYCHOS in complex with cholesterol molecules, revealing a unique arrangement of two sequential structural domains. Through a comprehensive analysis of this structure, we elucidated the specific structural features of these two domains and their collaborative role in the process of cholesterol recognition by LYCHOS.
Collapse
Affiliation(s)
- Jie Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Qingya Shen
- Department of Pathology of Sir Run Shaw Hospital, Department of Pharmacology, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xin Li
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Zheng Xu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xiaoyu Zhang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Lu Zhang
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Haoxing Xu
- New Cornerstone Science Laboratory & Liangzhu Laboratory, the Second Affiliated Hospital & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Yiyang Jiang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Shaw Hospital, Department of Pharmacology, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Ogger PP, Murray PJ. Dissecting inflammation in the immunemetabolomic era. Cell Mol Life Sci 2025; 82:182. [PMID: 40293552 PMCID: PMC12037969 DOI: 10.1007/s00018-025-05715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
The role of immune metabolism, specific metabolites and cell-intrinsic and -extrinsic metabolic states across the time course of an inflammatory response are emerging knowledge. Targeted and untargeted metabolomic analysis is essential to understand how immune cells adapt their metabolic program throughout an immune response. In addition, metabolomic analysis can aid to identify pathophysiological patterns in inflammatory disease. Here, we discuss new metabolomic findings within the transition from inflammation to resolution, focusing on three key programs of immunity: Efferocytosis, IL-10 signaling and trained immunity. Particularly the tryptophan-derived metabolite kynurenine was identified as essential for efferocytosis and inflammation resolution as well as a potential biomarker in diverse inflammatory conditions. In summary, metabolomic analysis and integration with transcriptomic and proteomic data, high resolution imaging and spatial information is key to unravel metabolic drivers and dependencies during inflammation and progression to tissue-repair.
Collapse
Affiliation(s)
- Patricia P Ogger
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Peter J Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
10
|
Jiang D, Zhang J, Ji Y, Dai Z, Yang Y, Wu Z. Glutamate Supplementation Regulates Nitrogen Metabolism in the Colon and Liver of Weaned Rats Fed a Low-Protein Diet. Nutrients 2025; 17:1465. [PMID: 40362775 PMCID: PMC12073364 DOI: 10.3390/nu17091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Glutamate, a nutritionally non-essential amino acid, is a key intermediate in nitrogen metabolism. Despite more studies on its functional role in intestine health, it remains unknown how glutamate regulates nitrogen metabolism in animals fed a low-protein diet. Methods: Herein, we investigated the effects of glutamate supplementation on colonic amino acid transport, barrier protein expression, microbiota alterations, fecal nitrogen emissions, hepatic amino acid transport, and protein synthesis in weaned rats. Results: We found that protein restriction diminished the mucus thickness, reduced goblet cell numbers, and the expression of EAAT3, y+LAT2 in the colon. In contrast, glutamate supplementation reversed these effects, increasing the colon length and enhancing the expression of ZO-1, Occludin, and Claudin-1 in the colon. At the genus level, glutamate increased the abundance of Lactococcus and Clostridia_sensu_stricto_18. Additionally, glutamate supplementation resulted in an increased apparent nitrogen digestibility, reduced the ratio of fecal nitrogen to total nitrogen intake, and increased the ratio of fecal microbial nitrogen to total nitrogen intake. Protein restriction decreased the mRNA level of ATP1A1, EAAT3, SNAT9/2, and ASCT2, and the protein level of p-mTOR, mTOR, p-mTOR/mTOR, and p-p70S6K/p70S6K as well as p-4EBP1/4EBP1 in the liver. These effects were reversed by glutamate supplementation. Conclusions: In conclusion, glutamate supplementation upregulates amino acid transporters and barrier protein expression in the colon, modulates microbiota composition to reduce fecal nitrogen excretion, and enhances amino acid transport and protein synthesis in the liver by activating the mTOR/p70S6K/4EBP1 pathway, which influences nitrogen metabolism in weaned rats fed a low-protein diet.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (D.J.); (J.Z.); (Y.J.); (Z.D.); (Y.Y.)
| |
Collapse
|
11
|
Zhou N, Chen J, Hu M, Wen N, Cai W, Li P, Zhao L, Meng Y, Zhao D, Yang X, Liu S, Huang F, Zhao C, Feng X, Jiang Z, Xie E, Pan H, Cen Z, Chen X, Luo W, Tang B, Min J, Wang F, Yang J, Xu H. SLC7A11 is an unconventional H + transporter in lysosomes. Cell 2025:S0092-8674(25)00406-4. [PMID: 40280132 DOI: 10.1016/j.cell.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Lysosomes maintain an acidic pH of 4.5-5.0, optimal for macromolecular degradation. Whereas proton influx is produced by a V-type H+ ATPase, proton efflux is mediated by a fast H+ leak through TMEM175 channels, as well as an unidentified slow pathway. A candidate screen on an orphan lysosome membrane protein (OLMP) library enabled us to discover that SLC7A11, the protein target of the ferroptosis-inducing compound erastin, mediates a slow lysosomal H+ leak through downward flux of cystine and glutamate, two H+ equivalents with uniquely large but opposite concentration gradients across lysosomal membranes. SLC7A11 deficiency or inhibition caused lysosomal over-acidification, reduced degradation, accumulation of storage materials, and ferroptosis, as well as facilitated α-synuclein aggregation in neurons. Correction of abnormal lysosomal acidity restored lysosome homeostasis and prevented ferroptosis. These studies have revealed an unconventional H+ transport conduit that is integral to lysosomal flux of protonatable metabolites to regulate lysosome function, ferroptosis, and Parkinson's disease (PD) pathology.
Collapse
Affiliation(s)
- Nan Zhou
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jingzhi Chen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Na Wen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Liding Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Dongdong Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaotong Yang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Fangqian Huang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zikai Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Pan
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beisha Tang
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junxia Min
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research and The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
He X, Wang QX, Wei D, Lin Y, Zhang X, Wu Y, Qian X, Lin Z, Xiao B, Wu Q, Wang Z, Zhou F, Wei Z, Wang J, Gong R, Zhang R, Zhang Q, Ding K, Gao S, Kang T. Lysosomal EGFR acts as a Rheb-GEF independent of its kinase activity to activate mTORC1. Cell Res 2025:10.1038/s41422-025-01110-x. [PMID: 40259053 DOI: 10.1038/s41422-025-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Oncogenic mutations in EGFR often result in EGF-independent constitutive activation and aberrant trafficking and are associated with several human malignancies, including non-small cell lung cancer. A major consequence of EGFR mutations is the activation of the mechanistic target of rapamycin complex 1 (mTORC1), which requires EGFR kinase activity and downstream PI3K/AKT signaling, resulting in increased cell proliferation. However, recent studies have elucidated kinase-independent roles of EGFR in cell survival and cancer progression. Here, we report a cis mTORC1 activation function of EGFR that is independent of its kinase activity. Our results reveal that lysosomal localization of EGFR is critical to mTORC1 activation, where EGFR physically binds Rheb, acting as a guanine exchange factor (GEF) for Rheb, with its Glu804 serving as a potential glutamic finger. Genetic knock-in of EGFR-E804K in cells reduces the level of GTP-bound Rheb, and significantly suppresses mTORC1 activation, cell proliferation and tumor growth. Different tyrosine kinase inhibitors exhibit distinct effects on EGFR-induced mTORC1 activation, with afatinib, which additionally blocks EGFR's GEF activity, causing a much greater suppression of mTORC1 activation and cell growth, and erlotinib, which targets only kinase activity, resulting in only a slight decrease. Moreover, a novel small molecule, BIEGi-1, was designed to target both the Rheb-GEF and kinase activities of EGFR, and shows a strong inhibitory effect on the viability of cells harboring EGFR mutants. These findings unveil a fundamental event in cell growth and suggest a promising strategy against cancers with EGFR mutations.
Collapse
Affiliation(s)
- Xiaobo He
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qiu-Xia Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| | - Yujie Lin
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xia Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xuexia Qian
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihao Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zhihao Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jingxuan Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Run Gong
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.
| | - Song Gao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
14
|
Parkhitko AA, Cracan V. Xenotopic synthetic biology: Prospective tools for delaying aging and age-related diseases. SCIENCE ADVANCES 2025; 11:eadu1710. [PMID: 40153513 DOI: 10.1126/sciadv.adu1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Metabolic dysregulation represents one of the major driving forces in aging. Although multiple genetic and pharmacological manipulations are known to extend longevity in model organisms, aging is a complex trait, and targeting one's own genes may be insufficient to prevent age-dependent deterioration. An alternative strategy could be to use enzymes from other species to reverse age-associated metabolic changes. In this review, we discuss a set of enzymes from lower organisms that have been shown to affect various metabolic parameters linked to age-related processes. These enzymes include modulators of steady-state levels of amino acids (METase, ASNase, and ADI), NADPH/NADP+ and/or reduced form of coenzyme Q (CoQH2)/CoQ redox potentials (NDI1, AOX, LbNOX, TPNOX, EcSTH, RquA, LOXCAT, Grubraw, and ScURA), GSH (StGshF), mitochondrial membrane potential (mtON and mito-dR), or reactive oxygen species (DAAO and KillerRed-SOD1). We propose that leveraging non-mammalian enzymes represents an untapped resource that can be used to delay aging and age-related diseases.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
15
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
16
|
Jie H, Wei J, Li Z, Yi M, Qian X, Li Y, Liu C, Li C, Wang L, Deng P, Liu L, Cen X, Zhao Y. Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH. Cancer Metab 2025; 13:10. [PMID: 39948566 PMCID: PMC11827256 DOI: 10.1186/s40170-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Hui Jie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhuoling Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yi
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinying Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
18
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
19
|
Jin J, Meng T, Yu Y, Wu S, Jiao CC, Song S, Li YX, Zhang Y, Zhao YY, Li X, Wang Z, Liu YF, Huang R, Qin J, Chen Y, Cao H, Tan X, Ge X, Jiang C, Xue J, Yuan J, Wu D, Wu W, Jiang CZ, Wang P. Human HDAC6 senses valine abundancy to regulate DNA damage. Nature 2025; 637:215-223. [PMID: 39567688 DOI: 10.1038/s41586-024-08248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
As an essential branched amino acid, valine is pivotal for protein synthesis, neurological behaviour, haematopoiesis and leukaemia progression1-3. However, the mechanism by which cellular valine abundancy is sensed for subsequent cellular functions remains undefined. Here we identify that human histone deacetylase 6 (HDAC6) serves as a valine sensor by directly binding valine through a primate-specific SE14 repeat domain. The nucleus and cytoplasm shuttling of human, but not mouse, HDAC6 is tightly controlled by the intracellular levels of valine. Valine deprivation leads to HDAC6 retention in the nucleus and induces DNA damage. Mechanistically, nuclear-localized HDAC6 binds and deacetylates ten-eleven translocation 2 (TET2) to initiate active DNA demethylation, which promotes DNA damage through thymine DNA glycosylase-driven excision. Dietary valine restriction inhibits tumour growth in xenograft and patient-derived xenograft models, and enhances the therapeutic efficacy of PARP inhibitors. Collectively, our study identifies human HDAC6 as a valine sensor that mediates active DNA demethylation and DNA damage in response to valine deprivation, and highlights the potential of dietary valine restriction for cancer treatment.
Collapse
Affiliation(s)
- Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuanyuan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuheng Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen-Chen Jiao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sihui Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ya-Xu Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Yuan Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinran Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zixin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Fan Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Hao Cao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhuang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ci-Zhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
21
|
Wu Y, Avcilar-Kücükgöze I, Santovito D, Atzler D. Amino Acid Metabolism and Autophagy in Atherosclerotic Cardiovascular Disease. Biomolecules 2024; 14:1557. [PMID: 39766264 PMCID: PMC11673637 DOI: 10.3390/biom14121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the most common cause of mortality globally, accounting for approximately one out of three deaths. The main underlying pathology is atherosclerosis, a dyslipidemia-driven, chronic inflammatory disease. The interplay between immune cells and non-immune cells is of great importance in the complex process of atherogenesis. During atheroprogression, intracellular metabolic pathways, such as amino acid metabolism, are master switches of immune cell function. Autophagy, an important stress survival mechanism involved in maintaining (immune) cell homeostasis, is crucial during the development of atherosclerosis and is strongly regulated by the availability of amino acids. In this review, we focus on the interplay between amino acids, especially L-leucine, L-arginine, and L-glutamine, and autophagy during atherosclerosis development and progression, highlighting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Yuting Wu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20133 Milan, Italy
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
22
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
23
|
Qin C, Yang G, Wei Q, Xin H, Ding J, Chen X. Multidimensional Role of Amino Acid Metabolism in Immune Regulation: From Molecular Mechanisms to Therapeutic Strategies. Chem Res Chin Univ 2024. [DOI: 10.1007/s40242-024-4180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025]
|
24
|
Kaade E, Mausbach S, Erps N, Sylvester M, Shakeri F, Jachimowicz RD, Gieselmann V, Thelen M. Starvation-induced metabolic rewiring affects mTORC1 composition in vivo. Sci Rep 2024; 14:28296. [PMID: 39550382 PMCID: PMC11569187 DOI: 10.1038/s41598-024-78873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Lysosomes play a crucial role in metabolic adaptation to starvation, but detailed in vivo studies are scarce. Therefore, we investigated the changes of the proteome of liver lysosomes in mice starved short-term for 6h or long-term for 24h. We verified starvation-induced catabolism by weight loss, ketone body production, drop in blood glucose and an increase of 3-methylhistidine. Deactivation of mTORC1 in vivo after short-term starvation causes a depletion of mTORC1 and the associated Ragulator complex in hepatic lysosomes, resulting in diminished phosphorylation of mTORC1 target proteins. While mTORC1 lysosomal protein levels and activity in liver were restored after long-term starvation, the lysosomal levels of Ragulator remained constantly reduced. To determine whether this mTORC1 activity pattern may be organ-specific, we further investigated the key metabolic organs muscle and brain. mTORC1 inactivation, but not re-activation, occurred in muscle after a starvation of 12 h or longer. In brain, mTORC1 activity remained unchanged during starvation. As mTORC1 deactivation is known to induce autophagy, we further investigated the more than 150 non-lysosomal proteins enriched in the lysosomal fraction upon starvation. Proteasomal, cytosolic and peroxisomal proteins dominated after short-term starvation, while after long-term starvation, mainly proteasomal and mitochondrial proteins accumulated, indicating ordered autophagic protein degradation.
Collapse
Affiliation(s)
- Edgar Kaade
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Simone Mausbach
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Nina Erps
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
| | - Marc Sylvester
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
- Core Facility Analytical Proteomics, Medical Faculty , Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ron D Jachimowicz
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany.
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
27
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
28
|
Hamanaka RB, Shin KWD, Atalay MV, Cetin-Atalay R, Shah H, Houpy Szafran JC, Woods PS, Meliton AY, Shamaa OR, Tian Y, Cho T, Mutlu GM. Role of Arginine and its Metabolism in TGF-β-Induced Activation of Lung Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.618293. [PMID: 39554075 PMCID: PMC11565920 DOI: 10.1101/2024.11.01.618293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we used metabolic dropouts and labeling strategies to determine how activated fibroblasts utilize arginine. We found that arginine limitation leads to activation of GCN2 while inhibiting TGF-β-induced mTORC1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an ASS1-dependent manner. Using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Extracellular ornithine or glutamine were the primary sources of ornithine and polyamines, not arginine. Our findings suggest that the major role for arginine in lung fibroblasts is for charging of arginyl-tRNAs and for promotion of mTOR signaling. Highlights Arginine depletion inhibits TGF-β-induced transcription in human lung fibroblasts (HLFs).Arginine is not significantly catabolized in HLFs either through NOS or ARG dependent pathways.Extracellular glutamine and ornithine are the primary sources of polyamines in lung fibroblasts.The primary role of arginine in lung fibroblasts is for signaling through mTOR and GNC2.
Collapse
|
29
|
Groopman E, Mohan S, Waddell A, Wilke M, Fernandez R, Weaver M, Chen H, Liu H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Pinto E Vairo F, Racacho L, Yuzyuk T, Craigen WJ, Goldstein J. Assessment of genes involved in lysosomal diseases using the ClinGen clinical validity framework. Mol Genet Metab 2024; 143:108593. [PMID: 39426251 PMCID: PMC11560485 DOI: 10.1016/j.ymgme.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
Collapse
Affiliation(s)
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Meredith Weaver
- American College of Genetics and Genomics, Bethesda, MD, USA
| | - Hongjie Chen
- PreventionGenetics/Exact Sciences, Marshfield, WI, USA
| | | | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | | | - Tatiana Yuzyuk
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | - Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Kolaczkowski OM, Goodson BA, Vazquez VM, Jia J, Bhat AQ, Kim TH, Pu J. Synergistic Role of Amino Acids in Enhancing mTOR Activation Through Lysosome Positioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618047. [PMID: 39416115 PMCID: PMC11482915 DOI: 10.1101/2024.10.12.618047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Lysosome positioning, or lysosome cellular distribution, is critical for lysosomal functions in response to both extracellular and intracellular cues. Amino acids, as essential nutrients, have been shown to promote lysosome movement toward the cell periphery. Peripheral lysosomes are involved in processes such as lysosomal exocytosis, cell migration, and metabolic signaling-functions that are particularly important for cancer cell motility and growth. However, the specific types of amino acids that regulate lysosome positioning, their underlying mechanisms, and their connection to amino acid-regulated metabolic signaling remain poorly understood. In this study, we developed a high-content imaging system for unbiased, quantitative analysis of lysosome positioning. We examined the 15 amino acids present in cell culture media and found that 10 promoted lysosome redistribution toward the cell periphery to varying extents, with aromatic amino acids showing the strongest effect. This redistribution was mediated by promoting outward transport through SLC38A9-BORC-kinesin 1/3 axis and simultaneously reducing inward transport via inhibiting the recruitment of Rab7 and JIP4 onto lysosomes. When examining the effects of amino acids on mTOR activation-a central regulator of cell metabolism-we found that the amino acids most strongly promoting lysosome dispersal, such as phenylalanine, did not activate mTOR on their own. However, combining phenylalanine with arginine, which activates mTOR without affecting lysosome positioning, synergistically enhanced mTOR activity. This synergy was lost when lysosomes failed to localize to the cell periphery, as observed in kinesin 1/3 knockout (KO) cells. Furthermore, breast cancer cells exhibited heightened sensitivity to phenylalanine-induced lysosome dispersal compared to noncancerous breast cells. Inhibition of LAT1, the amino acid transporter responsible for phenylalanine uptake, reduced peripheral lysosomes and impaired cancer cell migration and proliferation, highlighting the importance of lysosome positioning in these coordinated cellular activities. In summary, amino acid-regulated lysosome positioning and mTOR signaling depend on distinct sets of amino acids. Combining lysosome-dispersing amino acids with mTOR-activating amino acids synergistically enhances mTOR activation, which may be particularly relevant in cancer cells.
Collapse
Affiliation(s)
- Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Valeria Montenegro Vazquez
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Aadil Qadir Bhat
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Tae-Hyung Kim
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
31
|
Livneh I, Fabre B, Goldhirsh G, Lulu C, Zinger A, Shammai Vainer Y, Kaduri M, Dahan A, Ziv T, Schroeder A, Ben-Neriah Y, Zohar Y, Cohen-Kaplan V, Ciechanover A. Inhibition of nucleo-cytoplasmic proteasome translocation by the aromatic amino acids or silencing Sestrin3-their sensing mediator-is tumor suppressive. Cell Death Differ 2024; 31:1242-1254. [PMID: 39266717 PMCID: PMC11445514 DOI: 10.1038/s41418-024-01370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The proteasome, the catalytic arm of the ubiquitin system, is regulated via its dynamic compartmentation between the nucleus and the cytoplasm, among other mechanisms. Under amino acid shortage, the proteolytic complex is translocated to the cytoplasm, where it stimulates proteolysis to supplement recycled amino acids for essential protein synthesis. This response is mediated via the mTOR pathway and the lack of the three aromatic amino acids Tyr, Trp, and Phe (YWF). mTOR activation by supplementation of the triad inhibits proteasome translocation, leading to cell death. We now show that tumoral inherent stress conditions result in translocation of the proteasome from the nucleus to the cytosol. We further show that the modulation of the signaling cascade governed by YWF is applicable also to non-starved cells by using higher concentration of the triad to achieve a surplus relative to all other amino acids. Based on these two phenomena, we found that the modulation of stress signals via the administration of YWF leads to nuclear proteasome sequestration and inhibition of growth of xenograft, spontaneous, and metastatic mouse tumor models. In correlation with the observed effect of YWF on tumors, we found - using transcriptomic and proteomic analyses - that the triad affects various cellular processes related to cell proliferation, migration, and death. In addition, Sestrin3-a mediator of YWF sensing upstream of mTOR-is essential for proteasome translocation, and therefore plays a pro-tumorigenic role, positioning it as a potential oncogene. This newly identified approach for hijacking the cellular "satiety center" carries therefore potential therapeutic implications for cancer.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel.
| | - Bertrand Fabre
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse 3, INP, CNRS, Auzeville-Tolosane, France
| | - Gilad Goldhirsh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Chen Lulu
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adar Zinger
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviva Dahan
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaniv Zohar
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Victoria Cohen-Kaplan
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Ciechanover
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
Swaroop V, Ozkan E, Herrmann L, Thurman A, Kopasz-Gemmen O, Kunamneni A, Inoki K. mTORC1 signaling and diabetic kidney disease. Diabetol Int 2024; 15:707-718. [PMID: 39469564 PMCID: PMC11512951 DOI: 10.1007/s13340-024-00738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
Diabetic kidney disease (DKD) represents the most lethal complication in both type 1 and type 2 diabetes. The disease progresses without obvious symptoms and is often refractory when apparent symptoms have emerged. Although the molecular mechanisms underlying the onset/progression of DKD have been extensively studied, only a few effective therapies are currently available. Pathogenesis of DKD involves multifaced events caused by diabetes, which include alterations of metabolisms, signals, and hemodynamics. While the considerable efficacy of sodium/glucose cotransporter-2 (SGLT2) inhibitors or angiotensin II receptor blockers (ARBs) for DKD has been recognized, the ever-increasing number of patients with diabetes and DKD warrants additional practical therapeutic approaches that prevent DKD from diabetes. One plausible but promising target is the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, which senses cellular nutrients to control various anabolic and catabolic processes. This review introduces the current understanding of the mTOR signaling pathway and its roles in the development of DKD and other chronic kidney diseases (CKDs), and discusses potential therapeutic approaches targeting this pathway for the future treatment of DKD.
Collapse
Affiliation(s)
- Vinamra Swaroop
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Eden Ozkan
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Lydia Herrmann
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | | | | | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
33
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
34
|
Valenstein ML, Lalgudi PV, Gu X, Kedir JF, Taylor MS, Chivukula RR, Sabatini DM. Rag-Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway. Proc Natl Acad Sci U S A 2024; 121:e2322755121. [PMID: 39163330 PMCID: PMC11363303 DOI: 10.1073/pnas.2322755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.
Collapse
Affiliation(s)
- Max L. Valenstein
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Pranav V. Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Jibril F. Kedir
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Martin S. Taylor
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Boston, MA02114
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02903
- Brown Center on the Biology of Aging, Brown University, Providence, RI02903
- Legorreta Cancer Center, Brown University, Providence, RI02903
| | - Raghu R. Chivukula
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA02115
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Massachusetts General Hospital, Boston, MA02114
- Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA02142
| | - David M. Sabatini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague166 10, Czech Republic
| |
Collapse
|
35
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
36
|
Xu Z, Amakye WK, Ren Z, Xu Y, Liu W, Gong C, Wong C, Gao L, Zhao Z, Wang M, Yan T, Ye Z, Zhong J, Hou C, Zhao M, Qiu C, Tan J, Xu X, Liu G, Yao M, Ren J. Soy Peptide Supplementation Mitigates Undernutrition through Reprogramming Hepatic Metabolism in a Novel Undernourished Non-Human Primate Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306890. [PMID: 38816931 PMCID: PMC11304262 DOI: 10.1002/advs.202306890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
In spite of recent advances in the field of undernutrition, current dietary therapy relying on the supply of high protein high calorie formulas is still plagued with transient recovery of impaired organs resulting in significant relapse of cases. This is partly attributed to the inadequacy of current research models in recapitulating clinical undernutrition for mechanistic exploration. Using 1636 Macaca fascicularis monkeys, a human-relevant criterion for determining undernutrition weight-for-age z-score (WAZ), with a cutoff point of ≤ -1.83 is established as the benchmark for identifying undernourished nonhuman primates (U-NHPs). In U-NHPs, pathological anomalies in multi-organs are revealed. In particular, severe dysregulation of hepatic lipid metabolism characterized by impaired fatty acid oxidation due to mitochondria dysfunction, but unlikely peroxisome disorder, is identified as the anchor metabolic aberration in U-NHPs. Mitochondria dysfunction is typified by reduced mito-number, accumulated long-chain fatty acids, and disruption of OXPHOS complexes. Soy peptide-treated U-NHPs increase in WAZ scores, in addition to attenuated mitochondria dysfunction and restored OXPHOS complex levels. Herein, innovative criteria for identifying U-NHPs are developed, and unknown molecular mechanisms of undernutrition are revealed hitherto, and it is further proved that soypeptide supplementation reprogramed mitochondrial function to re-establish lipid metabolism balance and mitigated undernutrition.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - William Kwame Amakye
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengyu Ren
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences (ICMS)University of MacauMacau999078China
| | - Yongzhao Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Wei Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Congcong Gong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chiwai Wong
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Li Gao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zikuan Zhao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Min Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Tao Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhiming Ye
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jun Zhong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chuanli Hou
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Can Qiu
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Xin Xu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Guoyan Liu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jiaoyan Ren
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
37
|
Kim M, Hwang S, Jeong SM. Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy. Mol Cells 2024; 47:100096. [PMID: 39038517 PMCID: PMC11342766 DOI: 10.1016/j.mocell.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions. This review meticulously examines the multifaceted adaptive mechanisms that cancer cells deploy to sustain survival and growth following the disruption of glutamine metabolism. Emphasis is placed on the roles of transcription factors, alterations in metabolic pathways, the mechanistic target of rapamycin complex 1 signaling axis, autophagy, macropinocytosis, nucleotide biosynthesis, and the scavenging of ROS. Thus, the delineation and subsequent targeting of these adaptive responses in the context of therapies aimed at glutamine metabolism offer a promising avenue for circumventing drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
38
|
Sawaguchi S, Ishida M, Miyamoto Y, Yamauchi J. Hypomyelination Leukodystrophy 16 (HLD16)-Associated Mutation p.Asp252Asn of TMEM106B Blunts Cell Morphological Differentiation. Curr Issues Mol Biol 2024; 46:8088-8103. [PMID: 39194695 DOI: 10.3390/cimb46080478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the receptor needed for the entry of SARS-CoV-2, independently of angiotensin-converting enzyme 2 (ACE2). A missense mutation, p.Asp252Asn, of TMEM106B is associated with hypomyelinating leukodystrophy 16 (HLD16), which is an oligodendroglial cell-related white matter disorder causing thin myelin sheaths or myelin deficiency in the central nervous system (CNS). However, it remains to be elucidated how the mutated TMEM106B affects oligodendroglial cells. Here, we show that the TMEM106B mutant protein fails to exhibit lysosome distribution in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing differentiation. In contrast, wild-type TMEM106B was indeed localized in the lysosome. Cells harboring wild-type TMEM106B differentiated into ones with widespread membranes, whereas cells harboring mutated TMEM106B failed to differentiate. It is of note that the output of signaling through the lysosome-resident mechanistic target of rapamycin (mTOR) was greatly decreased in cells harboring mutated TMEM106B. Furthermore, treatment with hesperetin, a citrus flavonoid known as an activator of mTOR signaling, restored the molecular and cellular phenotypes induced by the TMEM106B mutant protein. These findings suggest the potential pathological mechanisms underlying HLD16 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
39
|
Lu H, Zhang Q, Long J. Prospective study of protein intake and mortality among US adults with chronic obstructive pulmonary disease. Front Nutr 2024; 11:1399038. [PMID: 39114119 PMCID: PMC11303319 DOI: 10.3389/fnut.2024.1399038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Protein is crucial for the rehabilitation of patients with chronic obstructive pulmonary disease (COPD), and appropriate daily protein intake is essential for COPD patients. However, the specific role of protein intake in COPD and its impact on mortality remain uncertain. This study aims to ascertain the relationship between protein intake and mortality in COPD patients. Methods This investigation included 522 adult COPD patients from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018, with a focus on evaluating protein intake. Multivariate Cox proportional hazard models were constructed to analyze the correlation between protein intake and the prognosis of COPD patients. Additionally, the restricted cubic spline (RCS) was employed to investigate the potential non-linear association between protein intake and mortality. Results A total of 522 patients with COPD were categorized into 4 groups based on the quartiles of protein intake: Q1 (< 25th percentile, 11.7-48.5 gm), Q2 (25-50th percentile, 48.5-67.7 gm), Q3 (50-75th percentile, 67.7-94.3 gm), and Q4 (≥ 75th percentile, 94.3-266.6 gm). Cox regression analysis revealed a significant trend in the p value of the Q3 group compared to the Q1 group when adjusting for other variables. The RCS-fitted Cox regression model indicated no non-linear relationship between protein intake levels and COPD mortality. Conclusion There is no evidence of a non-linear relationship between protein intake and all-cause mortality in COPD patients. Further investigation is warranted to comprehend the intricate relationship between protein intake and COPD outcomes.
Collapse
Affiliation(s)
- HuiLun Lu
- The Department of Respiratory Medicine, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiao Long
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Datta G, Rezagholizadeh N, Hasler WA, Khan N, Chen X. SLC38A9 regulates SARS-CoV-2 viral entry. iScience 2024; 27:110387. [PMID: 39071889 PMCID: PMC11277692 DOI: 10.1016/j.isci.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
SARS-CoV-2 viral entry into host cells depends on the cleavage of spike (S) protein into S1 and S2 proteins. Such proteolytic cleavage by furin results in the exposure of a multibasic motif on S1, which is critical for SARS-CoV-2 viral infection and transmission; however, how such a multibasic motif contributes to the infection of SARS-CoV-2 remains elusive. Here, we demonstrate that the multibasic motif on S1 is critical for its interaction with SLC38A9, an endolysosome-resident arginine sensor. SLC38A9 knockdown prevents S1-induced endolysosome de-acidification and blocks the S protein-mediated entry of pseudo-SARS-CoV-2 in Calu-3, U87MG, Caco-2, and A549 cells. Our findings provide a novel mechanism in regulating SARS-CoV-2 viral entry; S1 present in endolysosome lumen could interact with SLC38A9, which mediates S1-induced endolysosome de-acidification and dysfunction, facilitating the escape of SARS-CoV-2 from endolysosomes and enhancing viral entry.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Wendie A. Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
41
|
Zou J, Mitra K, Anees P, Oettinger D, Ramirez JR, Veetil AT, Gupta PD, Rao R, Smith JJ, Kratsios P, Krishnan Y. A DNA nanodevice for mapping sodium at single-organelle resolution. Nat Biotechnol 2024; 42:1075-1083. [PMID: 37735265 PMCID: PMC11004682 DOI: 10.1038/s41587-023-01950-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cellular sodium ion (Na+) homeostasis is integral to organism physiology. Our current understanding of Na+ homeostasis is largely limited to Na+ transport at the plasma membrane. Organelles may also contribute to Na+ homeostasis; however, the direction of Na+ flow across organelle membranes is unknown because organellar Na+ cannot be imaged. Here we report a pH-independent, organelle-targetable, ratiometric probe that reports lumenal Na+. It is a DNA nanodevice containing a Na+-sensitive fluorophore, a reference dye and an organelle-targeting domain. By measuring Na+ at single endosome resolution in mammalian cells and Caenorhabditis elegans, we discovered that lumenal Na+ levels in each stage of the endolysosomal pathway exceed cytosolic levels and decrease as endosomes mature. Further, we find that lysosomal Na+ levels in nematodes are modulated by the Na+/H+ exchanger NHX-5 in response to salt stress. The ability to image subcellular Na+ will unveil mechanisms of Na+ homeostasis at an increased level of cellular detail.
Collapse
Affiliation(s)
- Junyi Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Koushambi Mitra
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Daphne Oettinger
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Joseph R Ramirez
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Priyanka Dutta Gupta
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayson J Smith
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
43
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
44
|
Barai P, Chen J. Beyond protein synthesis: non-translational functions of threonyl-tRNA synthetases. Biochem Soc Trans 2024; 52:661-670. [PMID: 38477373 PMCID: PMC11088916 DOI: 10.1042/bst20230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play an indispensable role in the translation of mRNAs into proteins. It has become amply clear that AARSs also have non-canonical or non-translational, yet essential, functions in a myriad of cellular and developmental processes. In this mini-review we discuss the current understanding of the roles of threonyl-tRNA synthetase (TARS) beyond protein synthesis and the underlying mechanisms. The two proteins in eukaryotes - cytoplasmic TARS1 and mitochondrial TARS2 - exert their non-canonical functions in the regulation of gene expression, cell signaling, angiogenesis, inflammatory responses, and tumorigenesis. The TARS proteins utilize a range of biochemical mechanisms, including assembly of a translation initiation complex, unexpected protein-protein interactions that lead to activation or inhibition of intracellular signaling pathways, and cytokine-like signaling through cell surface receptors in inflammation and angiogenesis. It is likely that new functions and novel mechanisms will continue to emerge for these multi-talented proteins.
Collapse
Affiliation(s)
- Pallob Barai
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
45
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N, Zhang B. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol 2024; 15:1357072. [PMID: 38638435 PMCID: PMC11024335 DOI: 10.3389/fimmu.2024.1357072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-β (TGF-β), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
46
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
47
|
Newstead S. Future opportunities in solute carrier structural biology. Nat Struct Mol Biol 2024; 31:587-590. [PMID: 38637662 DOI: 10.1038/s41594-024-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Solute carriers (SLCs) control the flow of small molecules and ions across biological membranes. Over the last 20 years, the pace of research in SLC biology has accelerated markedly, opening new opportunities to treat metabolic diseases, cancer and neurological disorders. Recently, new families of atypical SLCs, with roles in organelle biology, metabolite signaling and trafficking, have expanded their roles in the cell. This Perspective discusses work leading to current advances and the emerging opportunities to target and modulate SLCs to uncover new biology and treat human disease.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. Nat Commun 2024; 15:2517. [PMID: 38514639 PMCID: PMC10957897 DOI: 10.1038/s41467-024-46680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.
Collapse
Affiliation(s)
- Grace Y Liu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 455 Main Street, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-UM-ICM, Campus Val d'Aurelle, Montpellier, Cedex 5, France
| | - Raymond E Bahng
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 455 Main Street, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, Flemingovo n. 2, 166 10 Praha 6, Prague, Czech Republic.
| |
Collapse
|
49
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Arines FM, Wielenga A, Henn D, Burata OE, Garcia FN, Stockbridge RB, Li M. Lysosomal membrane transporter purification and reconstitution for functional studies. Mol Biol Cell 2024; 35:ar28. [PMID: 38117592 PMCID: PMC10916862 DOI: 10.1091/mbc.e23-06-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes achieve their function through numerous transporters that import or export nutrients across their membrane. However, technical challenges in membrane protein overexpression, purification, and reconstitution hinder our understanding of lysosome transporter function. Here, we developed a platform to overexpress and purify the putative lysine transporter Ypq1 using a constitutive overexpression system in protease- and ubiquitination-deficient yeast vacuoles. Using this method, we purified and reconstituted Ypq1 into proteoliposomes and showed lysine transport function, supporting its role as a basic amino acid transporter on the vacuole membrane. We also found that the absence of lysine destabilizes purified Ypq1 and causes it to aggregate, consistent with its propensity to be downregulated in vivo upon lysine starvation. Our approach may be useful for the biochemical characterization of many transporters and membrane proteins to understand organellar transport and regulation.
Collapse
Affiliation(s)
- Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Aleksander Wielenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Olive E. Burata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Francisco Narro Garcia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|