1
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
2
|
Springenberg M, Frommholz A, Wenzel M, Weicken E, Ma J, Strodthoff N. From modern CNNs to vision transformers: Assessing the performance, robustness, and classification strategies of deep learning models in histopathology. Med Image Anal 2023; 87:102809. [PMID: 37201221 DOI: 10.1016/j.media.2023.102809] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
While machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations. Further, we extended existing interpretability methods to previously unstudied models and systematically reveal insights of the models' classification strategies that allow for plausibility checks and systematic comparisons. The study resulted in specific model recommendations for practitioners as well as putting forward a general methodology to quantify a model's quality according to complementary requirements that can be transferred to future model architectures.
Collapse
Affiliation(s)
| | - Annika Frommholz
- Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany
| | - Markus Wenzel
- Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany
| | - Eva Weicken
- Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany
| | - Jackie Ma
- Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany
| | - Nils Strodthoff
- University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Group IVA Cytosolic Phospholipase A2 Regulates the G2-to-M Transition by Modulating the Activity of Tumor Suppressor SIRT2. Mol Cell Biol 2015; 35:3768-84. [PMID: 26303530 DOI: 10.1128/mcb.00184-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/18/2015] [Indexed: 12/26/2022] Open
Abstract
The G2-to-M transition (or prophase) checkpoint of the cell cycle is a critical regulator of mitotic entry. SIRT2, a tumor suppressor gene, contributes to the control of this checkpoint by blocking mitotic entry under cellular stress. However, the mechanism underlying both SIRT2 activation and regulation of the G2-to-M transition remains largely unknown. Here, we report the formation of a multiprotein complex at the G2-to-M transition in vitro and in vivo. Group IVA cytosolic phospholipase A2 (cPLA2α) acts as a bridge in this complex to promote binding of SIRT2 to cyclin A-Cdk2. Cyclin A-Cdk2 then phosphorylates SIRT2 at Ser331. This phosphorylation reduces SIRT2 catalytic activity and its binding affinity to centrosomes and mitotic spindles, promoting G2-to-M transition. We show that the inhibitory effect of cPLA2α on SIRT2 activity impacts various cellular processes, including cellular levels of histone H4 acetylated at K16 (Ac-H4K16) and Ac-α-tubulin. This regulatory effect of cPLA2α on SIRT2 defines a novel function of cPLA2α independent of its phospholipase activity and may have implications for the impact of SIRT2-related effects on tumorigenesis and age-related diseases.
Collapse
|
4
|
Lawrence E, Mandato C. Mitochondrial inheritance is mediated by microtubules in mammalian cell division. Commun Integr Biol 2013; 6:e27557. [PMID: 24567781 PMCID: PMC3925154 DOI: 10.4161/cib.27557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial network fragments and becomes uniformly dispersed within the cytoplasm when mammalian cells enter mitosis. Such morphology and distribution of mitochondria was previously thought to facilitate the stochastic inheritance of mitochondria by daughter cells. In contrast, we recently reported that mitochondria in dividing mammalian cells are inherited by an ordered mechanism of inheritance mediated by microtubules. We showed that mitochondria are progressively enriched at the cell equator and depleted at the poles throughout division. Furthermore, the mitochondrial distribution during division is dependent on microtubules, indicating an ordered inheritance strategy. The microtubule-mediated positioning of mitochondria in dividing mammalian cells may have functional consequences for cell division and/or mitochondrial inheritance.
Collapse
Affiliation(s)
- Elizabeth Lawrence
- Department of Anatomy & Cell Biology; McGill University; Montreal, QC Canada
| | - Craig Mandato
- Department of Anatomy & Cell Biology; McGill University; Montreal, QC Canada
| |
Collapse
|
5
|
Nakamura A, Naito M, Arai H, Fujita N. Mitotic phosphorylation of Aki1 at Ser208 by cyclin B1-Cdk1 complex. Biochem Biophys Res Commun 2010; 393:872-6. [PMID: 20171170 DOI: 10.1016/j.bbrc.2010.02.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/23/2022]
Abstract
Akt kinase-interacting protein 1 (Aki1)/Freud-1/CC2D1A is localized in the cytosol, nucleus, and centrosome. Aki1 plays distinct roles depending on its localization. In the cytosol, it acts as a scaffold protein in the phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathway. In the nucleus, it is a transcriptional repressor of the serotonin-1A (5-HT1A) receptor. In the centrosome, it regulates spindle pole localization of the cohesin subunit Scc1, thereby mediating centriole cohesion during mitosis. Although the function of Aki1 has been well clarified, the regulatory machinery of Aki1 is poorly understood. We previously found that Aki1 in mitotic cells displayed reduced mobility on immunoblot analysis, but the reason for this was unclear. Here we show that the electrophoretic mobility shift of Aki1 is derived from mitotic phosphorylation. The cyclin B1-cyclin-dependent kinase 1 (Cdk1) complex was found to be one of the kinases responsible for Aki1 phosphorylation during mitosis. We identified the Ser(208) residue of Aki1 as a cyclin B1-Cdk1 phosphorylation site. Furthermore, cyclin B1-Cdk1 inhibitor treatment was shown to attenuate the level of Aki1 in complex with Scc1, suggesting that Aki1 phosphorylation by cyclin B1-Cdk1 contributes to Aki1-Scc1 complex formation. Our results indicate that cyclin B1-Cdk1 is a kinase of Aki1 during mitosis and that its phosphorylation of Aki1 may regulate mitotic function.
Collapse
Affiliation(s)
- Akito Nakamura
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | | | | |
Collapse
|
6
|
Chien J, Ota T, Aletti G, Shridhar R, Boccellino M, Quagliuolo L, Baldi A, Shridhar V. Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol Cell Biol 2009; 29:4177-87. [PMID: 19470753 PMCID: PMC2715801 DOI: 10.1128/mcb.00035-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified alpha- and beta-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of alpha-, beta-, and gamma-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in the regulation of cell motility by modulating microtubule stability.
Collapse
Affiliation(s)
- Jeremy Chien
- Experimental Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Keim DR, Hanash SM. Proliferating Cell Nuclear Antigen: A New Marker of Proliferation in Cancer. Leuk Lymphoma 2009. [DOI: 10.3109/10428199209053584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- David R. Keim
- University of Michigan School of Medicine, Division of Pediatric Hematology, Ann Arbor, Michigan, USA
| | - Sam M. Hanash
- University of Michigan School of Medicine, Division of Pediatric Hematology, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Ling GSF, Lee EY, Kalehua AN. Traumatic brain injury in the rat using the fluid-percussion model. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.2. [PMID: 18428615 DOI: 10.1002/0471142301.ns0902s28] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury is a leading cause of death and disability, particularly among young adults. During closed head trauma, the injury process is initiated by the impact of the brain against the inner table of the calvarium. Subsequently, there is prompt initiation of a complex biochemical, cellular, and physiological injury cascade that may take days to complete. From a functional standpoint, this culminates in neurologic dysfunction and, if severe, death. This unit describes an impact-induced brain trauma model in rats which replicates nonpenetrating head injury. It does not model either penetrating or ischemic brain injuries.
Collapse
Affiliation(s)
- Geoffrey S F Ling
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | |
Collapse
|
9
|
Aneja R, Zhou J, Zhou B, Chandra R, Joshi HC. Treatment of hormone-refractory breast cancer: apoptosis and regression of human tumors implanted in mice. Mol Cancer Ther 2006; 5:2366-77. [PMID: 16985071 DOI: 10.1158/1535-7163.mct-06-0205] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Following surgery, the hormone dependence of breast tumors is exploited for therapy using antagonists such as tamoxifen, although occasional hormone-resistant clones do appear. Another chemotherapeutic strategy uses microtubule inhibitors such as taxanes. Unfortunately, these agents elicit toxicities such as leukocytopenia, diarrhea, alopecia, and peripheral neuropathies and are also associated with the emergence of drug resistance. We have previously described a tubulin-binding, natural compound, noscapine, that was nontoxic and triggered apoptosis in many cancer types albeit at 10 mumol/L or higher concentrations depending on the cell type. We now show that a synthetic analogue of noscapine, 9-bromonoscapine, is approximately 10-fold to 15-fold more potent than noscapine in inhibiting cell proliferation and induces apoptosis following G2-M arrest in hormone-insensitive human breast cancers (MDA-MB-231). Furthermore, a clear loss of mitochondrial membrane potential, release of cytochrome c, activation of the terminal caspase-3, and the cleavage of its substrates such as poly(ADP-ribose) polymerase, suggest an intrinsic apoptotic mechanism. Taken together, these data point to a mitochondrially mediated apoptosis of hormone-insensitive breast cancer cells. Human tumor xenografts in nude mice showed significant tumor volume reduction and a surprising increase in longevity without signs of obvious toxicity. Thus, our data provide compelling evidence that 9-bromonoscapine can be useful for the therapy of hormone-refractory breast cancer.
Collapse
Affiliation(s)
- Ritu Aneja
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
10
|
Summers MK, Bothos J, Halazonetis TD. The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 2005; 24:2589-98. [PMID: 15674323 DOI: 10.1038/sj.onc.1208428] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CHFR, a novel checkpoint gene inactivated in human cancer, delays chromosome condensation in cells treated with microtubule poisons. To understand the molecular mechanism for this delay, we characterized cells with inactivated CHFR and stably transfected derivatives expressing the wild-type gene. After exposure to microtubule poisons, the CHFR-expressing cells arrested transiently in early prophase with a characteristic ruffled morphology of the nuclear envelope and no signs of chromosome condensation. Several markers suggested that Cyclin A/Cdc2 had been activated, whereas Aurora-A and -B and Cyclin B1/Cdc2 were inactive. Further, Cyclin B1 was excluded from the nucleus. Ectopic expression of Cyclin B1 with a mutant nuclear export sequence induced chromosome condensation, and thus overcame the CHFR checkpoint. We conclude that the mechanism by which CHFR delays chromosome condensation involves inhibition of accumulation of Cyclin B1 in the nucleus.
Collapse
Affiliation(s)
- Matthew K Summers
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104-4268, USA
| | | | | |
Collapse
|
11
|
Kisurina-Evgenieva O, Mack G, Du Q, Macara I, Khodjakov A, Compton DA. Multiple mechanisms regulate NuMA dynamics at spindle poles. J Cell Sci 2004; 117:6391-400. [PMID: 15561764 DOI: 10.1242/jcs.01568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large coiled-coil protein NuMA plays an essential role in organizing microtubule minus ends at spindle poles in vertebrate cells. Here, we use both in vivo and in vitro methods to examine NuMA dynamics at mitotic spindle poles. Using fluorescence recovery after photobleaching, we show that an exogenously expressed green-fluorescent-protein/NuMA fusion undergoes continuous exchange between soluble and spindle-associated pools in living cells. These dynamics require cellular energy and display an average half-time for fluorescence recovery of approximately 3 minutes. To explore how NuMA dynamics at spindle poles is regulated, we exploited the association of NuMA with microtubule asters formed in mammalian mitotic extracts. Using a monoclonal antibody specific for human NuMA, we followed the fate of human NuMA associated with microtubule asters upon dilution with a hamster mitotic extract. Consistent with in vivo data, this assay shows that NuMA can be displaced from the core of pre-assembled asters into the soluble pool. The half-time of NuMA displacement from asters under these conditions is approximately 5 minutes. Using this assay, we show that protein kinase activity and the NuMA-binding protein LGN regulate the dynamic exchange of NuMA on microtubule asters. Thus, the dynamic properties of NuMA are regulated by multiple mechanisms including protein phosphorylation and binding to the LGN protein, and the rate of exchange between soluble and microtubule-associated pools suggests that NuMA associates with an insoluble matrix at spindle poles.
Collapse
Affiliation(s)
- Olga Kisurina-Evgenieva
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ganem NJ, Compton DA. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. ACTA ACUST UNITED AC 2004; 166:473-8. [PMID: 15302853 PMCID: PMC2172212 DOI: 10.1083/jcb.200404012] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore–microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity.
Collapse
Affiliation(s)
- Neil J Ganem
- Department of Biochemistry, Dartmouth Medical School, 410 Remsen Bldg., Hanover, NH 03755, USA
| | | |
Collapse
|
13
|
Srsen V, Kitazawa H, Sugita M, Murofushi H, Bulinski JC, Kishimoto T, Hisanaga S. Serum-dependent phosphorylation of human MAP4 at Ser696 in cultured mammalian cells. Cell Struct Funct 2004; 24:321-7. [PMID: 15216889 DOI: 10.1247/csf.24.321] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the previous paper (Ookata et al., (1997) Biochemistry, 36: 249-259), we identified two mitotic cdc2 kinase phosphorylation sites (Ser696 and Ser787) in the proline-rich region of human MAP4. One (Ser696) of them was also phosphorylated during interphase. A protein kinase responsible for interphase phosphorylation of Ser696 could necessarily be distinct from cdc2/cyclin B kinase. To get insights into a physiological role for Ser696 phosphorylation, we searched for a Ser696 kinase and for cellular conditions under which Ser696 is dephosphorylated. Because Ser696 conforms to the MAP kinase phosphorylation consensus motif (PXSP), MAP kinase was tested as a possible kinase phosphorylating Ser696. MAP kinase, in fact, did phosphorylate Ser696 in MTB3, the carboxy-terminal half of human MAP4 in vitro. Phosphorylation of Ser696 in HeLa cell extract was suppressed by a MAP kinase inhibitor, DBTM-0004. Also consistent with the notion that Ser696 is a MAP kinase site were the fact that serum-starvation induced dephosphorylation of Ser696 in HeLa cells, TIG-3 and MRC-5-30 human fibroblasts, while readdition of serum recovered Ser696 phosphorylation, albeit after a surprisingly long interval. Thus, phosphorylation of Ser696 of MAP4, most likely carried out by MAP kinase, may play a role in modulation of MAP4 activity in proliferating versus quiescent cells.
Collapse
Affiliation(s)
- V Srsen
- Laboratory of Cell and Developmental Biology, Faculty of Biosciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Leite SP, de Medeiros PL, da Silva EC, de Souza Maia MB, de Menezes Lima VL, Saul DE. Embryotoxicity in vitro with extract of Indigofera suffruticosa leaves. Reprod Toxicol 2004; 18:701-5. [PMID: 15219632 DOI: 10.1016/j.reprotox.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/19/2004] [Accepted: 04/19/2004] [Indexed: 11/26/2022]
Abstract
Aqueous extract of leaves of Indigofera suffruticosa (AELIs) were studied for adverse effects in preimplantation mouse embryos. Two-cell mouse embryos were cultured for 94 h in human tubal fluid medium (HTF), and AELIs at a concentration of 5 or 10 mg/ml. On Day 4 of culture, morulae and blastocysts were collected for morphological analysis of blastomeres. We found that embryos exposed to the higher concentration of AELIs (10 mg/ml) did not develop and all embryos persisted at the two-cell stage. Those embryos exposed to the lower concentration (5 mg/ml) showed development until morula, blastocyst and hatched blastocyst stages that were similar to the controls. These results suggest that use of AELIs may be hazardous to humans who make use of it in folk medicine.
Collapse
Affiliation(s)
- Sônia Pereira Leite
- Laboratório de Cultura de Células II, Departamento de Histologia e Embriologia do Centro de Ciências Biológicas da, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Recife 50, 670-420 Pernambuco, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Chakravarty A, Howard L, Compton DA. A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol Biol Cell 2004; 15:2116-32. [PMID: 14978218 PMCID: PMC404009 DOI: 10.1091/mbc.e03-08-0579] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 11/11/2022] Open
Abstract
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end-directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.
Collapse
Affiliation(s)
- Arijit Chakravarty
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
16
|
ISHIGURO J, UHARA Y, KAWAHARA K. Molecular cloning and characterization of a fission yeast gene responsible for supersensitivity to the spindle poison, isopropyl N-3-chlorophenyl carbamate. Genes Genet Syst 2004. [DOI: 10.1266/ggs.69.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Dunster K, Toh BH, Sentry JW. Early endosomes, late endosomes, and lysosomes display distinct partitioning strategies of inheritance with similarities to Golgi-derived membranes. Eur J Cell Biol 2002; 81:117-24. [PMID: 11998863 DOI: 10.1078/0171-9335-00232] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pattern of inheritance of compartments of the endocytic pathway has been rarely reported, and the precise mechanism(s) are yet to be elucidated. We used antibodies reactive to early endosomes (anti-EEA1), late endosomes (anti-LBPA and anti-LAMP-1), lysosomes (anti-LAMP-1) and trans-Golgi network (TGN) (anti-GOLGA4) to examine the inheritance of these compartments in fixed human HEp-2 cells. Prior to entering M phase, these compartments display a perinuclear bias in their cytoplasmic distribution with areas of local accumulation juxtaposed to the centrosome. The location of these compartments during mitosis was examined relative to each other, the chromosomes, centrosomes and the microtubule network. During M phase early endosomes and TGN-derived compartments share overlapping subcellular distributions. A portion of these compartments display discernible clustering around the separated and migrating centrosomes in prophase. At metaphase these compartments co-localise with the mitotic spindle, are absent at the metaphase plate and do not overlay the astral microtubules. At anaphase these compartments are concentrated between shortening kinetochore microtubules and centrosomes. In addition, they appear distributed over the elongating polar microtubules in the body of the cell. From telophase and into cytokinesis these compartments concentrate around the minus ends of the constricted remnants of polar spindle microtubules and re-establish a prominent presence juxtaposed to the centrosome. In contrast, there is little evidence of movement of late endosomes and lysosomes with migrating centrosomes in prophase, and these compartments are excluded from the mitotic spindle at metaphase. However, by the end of telophase, the subcellular distribution of a portion of late endosomes and lysosomes share overlapping distributions with that of early endosomes. We conclude a portion of endosomal compartments and Golgi-derived membranes undergo ordered partitioning based on the centrosome and mitotic spindle.
Collapse
Affiliation(s)
- Kate Dunster
- Department of Pathology and Immunology, Monash Medical School, Prahran, Victoria, Australia
| | | | | |
Collapse
|
18
|
Compton DA. In vitro approaches for the study of molecular motors in aster formation. Methods Cell Biol 2002; 67:225-39. [PMID: 11550471 DOI: 10.1016/s0091-679x(01)67016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| |
Collapse
|
19
|
Mack GJ, Compton DA. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc Natl Acad Sci U S A 2001; 98:14434-9. [PMID: 11724960 PMCID: PMC64699 DOI: 10.1073/pnas.261371298] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Indexed: 01/16/2023] Open
Abstract
We purified microtubules from a mammalian mitotic extract and obtained an amino acid sequence from each microtubule-associated protein by using mass spectrometry. Most of these proteins are known spindle-associated components with essential functional roles in spindle organization. We generated antibodies against a protein identified in this collection and refer to it as astrin because of its association with astral microtubule arrays assembled in vitro. Astrin is approximately 134 kDa, and except for a large predicted coiled-coil domain in its C-terminal region it lacks any known functional motifs. Astrin associates with spindle microtubules as early as prophase where it concentrates at spindle poles. It localizes throughout the spindle in metaphase and anaphase and associates with midzone microtubules in anaphase and telophase. Astrin also localizes to kinetochores but only on those chromosomes that have congressed. Deletion analysis indicates that astrin's primary spindle-targeting domain is at the C terminus, although a secondary domain in the N terminus can target some of the protein to spindle poles. Thus, we have generated a comprehensive list of major mitotic microtubule-associated proteins, among which is astrin, a nonmotor spindle protein.
Collapse
Affiliation(s)
- G J Mack
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
20
|
Chandra S. Studies of cell division (mitosis and cytokinesis) by dynamic secondary ion mass spectrometry ion microscopy: LLC-PK1 epithelial cells as a model for subcellular isotopic imaging. J Microsc 2001; 204:150-65. [PMID: 11737547 DOI: 10.1046/j.1365-2818.2001.00944.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The feasibility of the renal epithelial LLC-PK1 cell line as a model for cell division studies with secondary ion mass spectrometry (SIMS) was tested. In this cell line, cells undergoing all stages of mitosis and cytokinesis remained firmly attached to the substrate and could be cryogenically prepared. Fractured freeze-dried mitotic cells showed well-preserved organelles as revealed by fluorescence imaging of rhodamine-123 and C6-NBD-ceramide by confocal laser scanning microscopy. Secondary electron microscopy analysis of fractured freeze-dried dividing cells revealed minimal surface topography that does not interfere in isotopic imaging of both positive (39K, 23Na, 24Mg, 40Ca, etc.) and negative (31P, 35Cl, etc.) secondaries with a CAMECA IMS-3f ion microscope. Mitotic cells revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of 39K+ and 23Na+) as revealed by K : Na ratios of approximately 10. Structurally damaged mitotic cells could be identified by their reduced K : Na ratios and an excessive loading of calcium. Quantitative three-dimensional SIMS analysis was required for studying subcellular calcium distribution in dividing cells. The LLC-PK1 model also allowed SIMS studies of M-phase arrested cells with mitosis-arresting drugs (taxol, monastrol and nocodazole). This study opens new avenues of cell division research related to ion fluxes and chemical composition with SIMS.
Collapse
Affiliation(s)
- S Chandra
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.
| |
Collapse
|
21
|
Abstract
BACKGROUND Some of the mechanisms underlying cell division and partitioning of the cellular components into the daughter cells are well known. Within the endomembrane system, there is a general cessation of membrane traffic, including endocytosis and endosome fusion, at the onset of mitosis. However, the fate of endosomes and lysosomes during mitosis has been less well studied. RESULTS Using video and confocal microscopy of living cells, we show here that endosomes and lysosomes remain intact and separate during mitosis. The segregation into daughter cells takes place by coordinated movements, and during cytokinesis, these organelles accumulate in the vicinity of the microtubule organization center. However, partitioning into daughter cells is not more accurate than a calculated stochastic distribution, despite the apparent order to the process. CONCLUSION We conclude that partitioning of endosomes and lysosomes is an ordered, yet imprecise, process, and that the organelle copy number is maintained by the daughter cells.
Collapse
Affiliation(s)
- T Bergeland
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
22
|
Gordon MB, Howard L, Compton DA. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J Cell Biol 2001; 152:425-34. [PMID: 11157972 PMCID: PMC2196006 DOI: 10.1083/jcb.152.3.425] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 12/08/2000] [Indexed: 11/22/2022] Open
Abstract
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.
Collapse
Affiliation(s)
- Michael B. Gordon
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Louisa Howard
- Rippel Electron Microscope Facility, Dartmouth College, Hanover, New Hampshire 03755
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| |
Collapse
|
23
|
Hammond AT, Glick BS. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 2000; 11:3013-30. [PMID: 10982397 PMCID: PMC14972 DOI: 10.1091/mbc.11.9.3013] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A typical vertebrate cell contains several hundred sites of transitional ER (tER). Presumably, tER sites generate elements of the ER-Golgi intermediate compartment (ERGIC), and ERGIC elements then generate Golgi cisternae. Therefore, characterizing the mechanisms that influence tER distribution may shed light on the dynamic behavior of the Golgi. We explored the properties of tER sites using Sec13 as a marker protein. Fluorescence microscopy confirmed that tER sites are long-lived ER subdomains. tER sites proliferate during interphase but lose Sec13 during mitosis. Unlike ERGIC elements, tER sites move very little. Nevertheless, when microtubules are depolymerized with nocodazole, tER sites redistribute rapidly to form clusters next to Golgi structures. Hence, tER sites have the unusual property of being immobile, yet dynamic. These findings can be explained by a model in which new tER sites are created by retrograde membrane traffic from the Golgi. We propose that the tER-Golgi system is organized by mutual feedback between these two compartments.
Collapse
Affiliation(s)
- A T Hammond
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
24
|
Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 2000; 406:430-5. [PMID: 10935642 DOI: 10.1038/35019108] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.
Collapse
Affiliation(s)
- D M Scolnick
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|
25
|
Gómez-Conde E, López-Robles MC, Hernández-Rivas R, Hernández-Jáuregui P, Vargas-Mejía M. Structural organization of gamma-tubulin in the microtubule organizing center (MTOC) during the nuclear division of Entamoeba histolytica trophozoites. Arch Med Res 2000; 31:S205-6. [PMID: 11070285 DOI: 10.1016/s0188-4409(00)00203-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- E Gómez-Conde
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Puebla, Mexico
| | | | | | | | | |
Collapse
|
26
|
Dionne MA, Howard L, Compton DA. NuMA is a component of an insoluble matrix at mitotic spindle poles. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:189-203. [PMID: 10098933 DOI: 10.1002/(sici)1097-0169(1999)42:3<189::aid-cm3>3.0.co;2-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NuMA associates with microtubule motors during mitosis to perform an essential role in organizing microtubule minus ends at spindle poles. Using immunogold electron microscopy, we show that NuMA is a component of an electron-dense material concentrated at both mitotic spindle poles in PtK1 cells and the core of microtubule asters formed through a centrosome-independent mechanism in cell-free mitotic extracts. This NuMA-containing material is distinct from the peri-centriolar material and forms a matrix that appears to anchor microtubule ends at the spindle pole. In stark contrast to conventional microtubule-associated proteins whose solubility is directly dependent on microtubules, we find that once NuMA is incorporated into this matrix either in vivo or in vitro, it becomes insoluble and this insolubility is no longer dependent on microtubules. NuMA is essential for the formation of this insoluble matrix at the core of mitotic asters assembled in vitro because the matrix is absent from mitotic asters assembled in a cell-free mitotic extract that is specifically depleted of NuMA. These physical properties are consistent with NuMA being a component of the putative mitotic spindle matrix in vertebrate cells. Furthermore, given that NuMA is essential for spindle pole organization in vertebrate systems, it is likely that this insoluble matrix plays an essential structural function in anchoring and/or stabilizing microtubule minus ends at spindle poles in mitotic cells.
Collapse
Affiliation(s)
- M A Dionne
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
27
|
Dionne MA, Sanchez A, Compton DA. ch-TOGp is required for microtubule aster formation in a mammalian mitotic extract. J Biol Chem 2000; 275:12346-52. [PMID: 10766876 DOI: 10.1074/jbc.275.16.12346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules induced to polymerize with taxol in a mammalian mitotic extract organize into aster-like arrays in a centrosome-independent process that is driven by microtubule motors and structural proteins. These microtubule asters accurately reflect the noncentrosomal aspects of mitotic spindle pole formation. We show here that colonic-hepatic tumor-overexpressed gene (ch-TOGp) is an abundant component of these asters. We have prepared ch-TOGp-specific antibodies and show by immunodepletion that ch-TOGp is required for microtubule aster assembly. Microtubule polymerization is severely inhibited in the absence of ch-TOGp, and silver stain analysis of the ch-TOGp immunoprecipitate indicates that it is not present in a preformed complex and is the only protein removed from the extract during immunodepletion. Furthermore, the reduction in microtubule polymerization efficiency in the absence of ch-TOGp is dependent on ATP. These results demonstrate that ch-TOGp is a major constituent of microtubule asters assembled in a mammalian mitotic extract and that it is required for robust microtubule polymerization in an ATP-dependent manner in this system even though taxol is present. These data, coupled with biochemical and genetic data derived from analysis of ch-TOGp-related proteins in other organisms, indicate that ch-TOGp is a key factor regulating microtubule dynamics during mitosis.
Collapse
Affiliation(s)
- M A Dionne
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
28
|
Bastians H, Topper LM, Gorbsky GL, Ruderman JV. Cell cycle-regulated proteolysis of mitotic target proteins. Mol Biol Cell 1999; 10:3927-41. [PMID: 10564281 PMCID: PMC25689 DOI: 10.1091/mbc.10.11.3927] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 08/24/1999] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.
Collapse
Affiliation(s)
- H Bastians
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 1999; 147:351-66. [PMID: 10525540 PMCID: PMC2174226 DOI: 10.1083/jcb.147.2.351] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1999] [Accepted: 09/07/1999] [Indexed: 11/22/2022] Open
Abstract
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.
Collapse
Affiliation(s)
- Vicki Mountain
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Calvin Simerly
- Departments of Cell-Developmental Biology, Obstetrics-Gynecology, and Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006
| | - Louisa Howard
- Rippel Electron Microscope Facility, Dartmouth College, Hanover, New Hampshire 03755
| | - Asako Ando
- Department of Genetic Information, Division of Molecular Life Science, University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Gerald Schatten
- Departments of Cell-Developmental Biology, Obstetrics-Gynecology, and Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| |
Collapse
|
30
|
Simerly C, Zoran SS, Payne C, Dominko T, Sutovsky P, Navara CS, Salisbury JL, Schatten G. Biparental inheritance of gamma-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell 1999; 10:2955-69. [PMID: 10473639 PMCID: PMC25540 DOI: 10.1091/mbc.10.9.2955] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human sperm centrosome reconstitution and the parental contributions to the zygotic centrosome are examined in mammalian zygotes and after exposure of spermatozoa to Xenopus laevis cell-free extracts. The presence and inheritance of the conserved centrosomal constituents gamma-tubulin, centrin, and MPM-2 (which detects phosphorylated epitopes) are traced, as is the sperm microtubule-nucleating capability on reconstituted centrosomes. gamma-Tubulin is biparentally inherited in humans (maternal >> than paternal): Western blots detect the presence of paternal gamma-tubulin. Recruitment of maternal gamma-tubulin to the sperm centrosome occurs after sperm incorporation in vivo or exposure to cell-free extract, especially after sperm "priming" induced by disulfide bond reduction. Centrin is found in the proximal sperm centrosomal region, demonstrates expected calcium sensitivity, but appears absent from the zygotic centrosome after sperm incorporation or exposure to extracts. Sperm centrosome phosphorylation is detected after exposure of primed sperm to egg extracts as well as during the early stages of sperm incorporation after fertilization. Finally, centrosome reconstitution in cell-free extracts permits sperm aster microtubule assembly in vitro. Collectively, these results support a model of a blended zygotic centrosome composed of maternal constituents attracted to an introduced paternal template after insemination.
Collapse
Affiliation(s)
- C Simerly
- Departments of Cell-Developmental Biology and Obstetrics-Gynecology, Oregon Health Sciences University, and the Oregon Regional Primate Research Center, Portland, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Palazzo RE, Vaisberg EA, Weiss DG, Kuznetsov SA, Steffen W. Dynein is required for spindle assembly in cytoplasmic extracts of Spisula solidissima oocytes. J Cell Sci 1999; 112 ( Pt 9):1291-302. [PMID: 10194408 DOI: 10.1242/jcs.112.9.1291] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis I spindle assembly is induced in lysate-extract mixtures prepared from clam (Spisula solidissima) oocytes. Unactivated lysate prepared from unactivated oocytes contain nuclei (germinal vesicles, GVs) which house condensed chromosomes. Treatment of unactivated lysate with clarified activated extract prepared from oocytes induced to complete meiosis by treatment with KCl induces GV breakdown (GVBD) and assembly of monopolar, bipolar, and multipolar aster-chromosome complexes. The process of in vitro meiosis I spindle assembly involves the assembly of microtubule asters and the association of these asters with the surfaces of the GVs, followed by GVBD and spindle assembly. Monoclonal antibody m74-1, known to react specifically with the N terminus of the intermediate chain of cytoplasmic dynein, recognizes Spisula oocyte dynein and inhibits in vitro meiosis I spindle assembly. Control antibody has no affect on spindle assembly. A similar inhibitory effect on spindle assembly was observed in the presence of orthovanadate, a known inhibitor of dynein ATPase activity. Neither m74-1 nor orthovanadate has any obvious affect on GVBD or aster formation. We propose that dynein function is required for the association of chromosomes with astral microtubules during in vitro meiosis I spindle assembly in these lysate-extract mixtures. However, we conclude that dynein function is not required for centrosome assembly and maturation or for centrosome-dependent aster formation.
Collapse
Affiliation(s)
- R E Palazzo
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | |
Collapse
|
32
|
Bassini A, Pierpaoli S, Falcieri E, Vitale M, Guidotti L, Capitani S, Zauli G. Selective modulation of the cyclin B/CDK1 and cyclin D/CDK4 complexes during in vitro human megakaryocyte development. Br J Haematol 1999; 104:820-8. [PMID: 10192445 DOI: 10.1046/j.1365-2141.1999.01264.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mammalian megakaryocyte development is characterized by a progressive accumulation of cells exhibiting a polylobated nucleus with a polyploid DNA content. In this study human megakaryocytes were obtained from CD34+ haemopoietic progenitors by in vitro liquid culture in the presence of 100 ng/ml of recombinant thrombopoietin (TPO). Ultrastructural examination of polyploid megakaryocytes showed the presence of a large number of centrioles, the breakdown of the nuclear envelope, and the progressive chromatin condensation, all aspects characteristic of mitosis. At both indirect immunofluorescence and Western blot analyses, cyclin B and its related cyclin-dependent kinase (CDK)1, which forms the mitosis promoting factor (MPF), showed an increased expression in maturating megakaryoblasts and megakaryocytes (day 8 of culture) with respect to freshly isolated CD34+ progenitors. This expression tended to decline in fully developed megakaryocytes (day 15 of culture). The amount of cyclin D and of the related CDK4, governing the G1 phase of the cell cycle, increased during megakaryocyte development, maintaining high levels of expression also in mature megakaryocytes. These results indicate that megakaryocyte polyploidization depends on a true, although incomplete, mitotic process, and that cyclin D/CDK4 probably plays a crucial role throughout megakaryocytopoiesis.
Collapse
Affiliation(s)
- A Bassini
- Institute of Histology and Embryology, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- M A Jordan
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara 93106-0001, USA
| | | |
Collapse
|
34
|
Affiliation(s)
- C E Gillett
- Hedley Atkins/ICRF Breast Pathology Laboratory, Guy's Hospital, London, UK.
| | | |
Collapse
|
35
|
Jordan MA, Wilson L. Use of drugs to study role of microtubule assembly dynamics in living cells. Methods Enzymol 1998; 298:252-76. [PMID: 9751887 DOI: 10.1016/s0076-6879(98)98024-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M A Jordan
- Department of Molecular, Cellular, and Development Biology, University of California, Santa Barbara 93106-9610, USA
| | | |
Collapse
|
36
|
Cabrera-Poch N, Pepperkok R, Shima DT. Inheritance of the mammalian Golgi apparatus during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:139-51. [PMID: 9714778 DOI: 10.1016/s0167-4889(98)00051-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The creation and propagation of the intricate Golgi architecture during the cell cycle poses a fascinating problem for biologists. Similar to the inheritance process for nuclear DNA, the inheritance of the Golgi apparatus consists of biogenesis (replication) and partitioning (mitosis/meiosis) phases, in which Golgi components must double in unit mass, then be appropriately divided between nascent daughter cells during cytokinesis. In this article we focus discussion on the recent advances in the area of Golgi inheritance, first outlining our current understanding of the behaviour of the Golgi apparatus during cell division, then concluding with a more conceptual discussion of the Golgi biogenesis problem. Throughout, we attempt to integrate ultrastructural and biochemical findings with more recent information obtained using live cell microscopy and morphological techniques.
Collapse
Affiliation(s)
- N Cabrera-Poch
- Cell Biology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
37
|
|
38
|
Shima DT, Cabrera-Poch N, Pepperkok R, Warren G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J Biophys Biochem Cytol 1998; 141:955-66. [PMID: 9585414 PMCID: PMC2132765 DOI: 10.1083/jcb.141.4.955] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1-3-micron fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis.
Collapse
Affiliation(s)
- D T Shima
- Cell Biology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
39
|
Abstract
Abstract
During megakaryocyte differentiation, the promegakaryoblast (immature megakaryocyte) increases its ploidy to a 2x DNA content by a poorly understood process called endomitosis. This leads to the formation of a giant cell, the megakaryocyte (MK), which subsequently gives rise to platelets. In this report, we show that endomitotis of human MKs is due to abortive mitosis. Human MKs were obtained by a two-step purification of CD34+ blood or marrow precursors followed by in vitro culture in the presence of MK growth factors. Microcoscopic examination shows that a large number of centrosomes (up to 32) and centrioles are present in polyploid MKs. After nocodazole treatment, more than 20% of the MK are blocked in a typical pseudo-metaphase. Both spontaneous and nocodazole-induced endomitosis are associated with a breakdown of the nuclear envelope and possess a complex mitotic spindle composed of several asters. Spindle microtubules radiate from each aster, creating a spherical structure. At metaphase, expression of the kinetochore phosphoepitope recognized by the 3F3/2 antibody is lost, and the sister chromatides segregate moving toward the spindle poles. After limited segregation, the chromosomes decondense and the nuclear envelope reforms in the absence of cytokinesis, isolating all chromosomes in a single nucleus. It has been proposed that endomitosis could be due to an abnormal CDK1 activity or an absence of cyclin B1. Our results show that cyclin B1 can be detected in all MKs, including those with a ploidy of 8N or more. The cyclin B1 staining colocalizes with the mitotic spindle. Using flow cytometry, the level of cyclin B1 increased until 8N, but remained identical in 16N and 32N MKs. Cell sorting was used to separate the MKs into a 2N/4N and >4N population. Both cyclin B1 and CDK1 could be detected in the endomitotic polyploid MKs using Western blot analysis, and a histone H1 kinase activity was associated with immunoprecipitated cyclin B1. We conclude that endomitosis of human MKs is due to abortive mitosis, possibly due to alterations in the regulation of mitotic exit.
Collapse
|
40
|
Abstract
During megakaryocyte differentiation, the promegakaryoblast (immature megakaryocyte) increases its ploidy to a 2x DNA content by a poorly understood process called endomitosis. This leads to the formation of a giant cell, the megakaryocyte (MK), which subsequently gives rise to platelets. In this report, we show that endomitotis of human MKs is due to abortive mitosis. Human MKs were obtained by a two-step purification of CD34+ blood or marrow precursors followed by in vitro culture in the presence of MK growth factors. Microcoscopic examination shows that a large number of centrosomes (up to 32) and centrioles are present in polyploid MKs. After nocodazole treatment, more than 20% of the MK are blocked in a typical pseudo-metaphase. Both spontaneous and nocodazole-induced endomitosis are associated with a breakdown of the nuclear envelope and possess a complex mitotic spindle composed of several asters. Spindle microtubules radiate from each aster, creating a spherical structure. At metaphase, expression of the kinetochore phosphoepitope recognized by the 3F3/2 antibody is lost, and the sister chromatides segregate moving toward the spindle poles. After limited segregation, the chromosomes decondense and the nuclear envelope reforms in the absence of cytokinesis, isolating all chromosomes in a single nucleus. It has been proposed that endomitosis could be due to an abnormal CDK1 activity or an absence of cyclin B1. Our results show that cyclin B1 can be detected in all MKs, including those with a ploidy of 8N or more. The cyclin B1 staining colocalizes with the mitotic spindle. Using flow cytometry, the level of cyclin B1 increased until 8N, but remained identical in 16N and 32N MKs. Cell sorting was used to separate the MKs into a 2N/4N and >4N population. Both cyclin B1 and CDK1 could be detected in the endomitotic polyploid MKs using Western blot analysis, and a histone H1 kinase activity was associated with immunoprecipitated cyclin B1. We conclude that endomitosis of human MKs is due to abortive mitosis, possibly due to alterations in the regulation of mitotic exit.
Collapse
|
41
|
Pereira G, Knop M, Schiebel E. Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 1998; 9:775-93. [PMID: 9529377 PMCID: PMC25305 DOI: 10.1091/mbc.9.4.775] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the gamma-tubulin complex containing the gamma-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.
Collapse
Affiliation(s)
- G Pereira
- Max-Planck Institut für Biochemie, 82152 Martinsried, Germany
| | | | | |
Collapse
|
42
|
Harris EE, Kao GD, Muschel RJ, McKenna WG. Potential applications of cell cycle manipulation to clinical response. Cancer Treat Res 1998; 93:169-90. [PMID: 9513781 DOI: 10.1007/978-1-4615-5769-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- E E Harris
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA
| | | | | | | |
Collapse
|
43
|
Shindo M, Nakano H, Kuroyanagi H, Shirasawa T, Mihara M, Gilbert DJ, Jenkins NA, Copeland NG, Yagita H, Okumura K. cDNA cloning, expression, subcellular localization, and chromosomal assignment of mammalian aurora homologues, aurora-related kinase (ARK) 1 and 2. Biochem Biophys Res Commun 1998; 244:285-92. [PMID: 9514916 DOI: 10.1006/bbrc.1998.8250] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomal segregation during mitosis as well as meiosis is considered to be regulated by multiple kinases, but the precise mechanism remains largely unknown. A mutation in Drosophila, designated aurora, was identified as a responsible gene for a chromosomal segregation defect and encodes a putative serine-threonine kinase. Here we have identified mammalian aurora homologues, designated aurora-related kinase (ARK) 1 and ARK2. Kinase domains of murine ARK1 and ARK2 showed 61 and 62% identity, respectively, to that of aurora at the amino acid levels, respectively. Cell cycle analysis revealed that the expression of ARK1 was correlated with G2/M phase, while ARK2 was expressed during S and G2/M phases. Immunofluorescence analysis demonstrated that ARK2 was mainly localized to the midbody, while ARK1 has been reported to be localized to the spindle pole during mitosis. Collectively, these results suggest that these two kinases may have distinct roles with different expression timing and subcellular localization during the cell cycle progression. Interspecific backcross mapping revealed that Ark1 is located in a distal region of mouse chromosome 2, while Ark2 is located in a central region of mouse chromosome 11.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Aurora Kinase A
- Aurora Kinase B
- Aurora Kinases
- Cell Cycle/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression Regulation
- Humans
- Lymphoma, B-Cell
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Organ Specificity/genetics
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/isolation & purification
- RNA, Messenger/biosynthesis
- Sequence Homology, Amino Acid
- Subcellular Fractions/enzymology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Shindo
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gaglio T, Dionne MA, Compton DA. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol 1997; 138:1055-66. [PMID: 9281583 PMCID: PMC2136753 DOI: 10.1083/jcb.138.5.1055] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1997] [Revised: 07/14/1997] [Indexed: 02/05/2023] Open
Abstract
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420-425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.
Collapse
Affiliation(s)
- T Gaglio
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
45
|
Orosz F, Vértessy BG, Salerno C, Crifo C, Capuozzo E, Ovádi J. The interaction of a new anti-tumour drug, KAR-2 with calmodulin. Br J Pharmacol 1997; 121:955-62. [PMID: 9222553 PMCID: PMC1564757 DOI: 10.1038/sj.bjp.0701190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. KAR-2 (3"-(beta-chloroethyl)-2",4"-dioxo-3,5" -spiro-oxazolidino-4-deacetoxy-vinblastine) is a semisynthetic bis-indol derivative, with high anti-microtubular and anti-tumour activities but with low toxicity. KAR-2, in contrast to other biologically active bis-indols (e.g. vinblastine) did not show anti-calmodulin activity in vitro (enzyme kinetic, fluorescence anisotropy and immunological tests). 2. Direct binding studies (fluorescence resonance energy transfer, circular dichroism) provided evidence for the binding of KAR-2 to calmodulin. The binding affinity of KAR-2 to calmodulin (dissociation constant was about 5 microM) in the presence of Ca2+ was comparable to that of vinblastine. 3. KAR-2 was able to interact with apo-calmodulin as well; in the absence of Ca2+ the binding was of cooperative nature. 4. The effect of drugs on Ca2+ homeostasis in human neutrophil cells was investigated by means of a specific fluorescent probe. Trifluoperazine extensively inhibited the elevation of intracellular Ca2+ level, vinblastine did not appreciably affect it, KAR-2 stimulated the Ca2+ influx and after a transient enhancement the Ca2+ concentration reached a new steady-state level. 5. Comparison of the data obtained with KAR-2 and bis-indols used in chemotherapy suggests that the lack of anti-calmodulin potency resides on the spiro-oxazolidino portion of KAR-2. This character of KAR-2 manifested itself in various systems and might result in its low in vivo toxicity, established in an anti-tumour test.
Collapse
Affiliation(s)
- F Orosz
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
Dirks PB, Rutka JT. Current concepts in neuro-oncology: the cell cycle--a review. Neurosurgery 1997; 40:1000-13; discussion 1013-5. [PMID: 9149259 DOI: 10.1097/00006123-199705000-00025] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Uncontrolled cellular proliferation is the hallmark of human malignant brain tumors. Their growth proceeds inexorably, in part because their cellular constituents have an altered genetic code that enables them to evade the checks and balances of the normal cell cycle. Recently, a number of major advances in molecular biology have led to the identification of several critical genetic and enzymatic pathways that are disturbed in cancer cells resulting in uncontrolled cell cycling. We now know that the progression of a cell through the cell cycle is controlled in part by a series of protein kinases, the activity of which is regulated by a group of proteins called cyclins. Cyclins act in concert with the cyclin-dependent kinases (CDKs) to phosphorylate key substrates that facilitate the passage of the cell through each phase of the cell cycle. A critical target of cyclin-CDK enzymes is the retinoblastoma tumor suppressor protein, and phosphorylation of this protein inhibits its ability to restrain activity of a family of transcription factors (E2F family), which induce expression of genes important for cell proliferation. In addition to the cyclins and CDKS, there is an emerging family of CDK inhibitors, which modulate the activity of cyclins and CDKs. CDK inhibitors inhibit cyclin-CDK complexes and transduce internal or external growth-suppressive signals, which act on the cell cycle machinery. Accordingly, all CDK inhibitors are candidate tumor suppressor genes. It is becoming clear that a common feature of cancer cells is the abrogation of cell cycle checkpoints, either by aberrant expression of positive regulators (for example, cyclins and CDKs) or the loss of negative regulators, including p21Cip1 through loss of function of its transcriptional activator p53, or deletion or mutation of p16ink4A (multiple tumor suppressor 1/CDKN2) and the retinoblastoma tumor suppressor protein. In this review, we describe in detail our current knowledge of the normal cell cycle and how it is disturbed in cancer cells. Because there have now been a number of recent studies showing alterations in cell cycle gene expression in human brain tumors, we will review the derangements in both the positive and negative cell cycle regulators that have been reported for these neoplasms. A thorough understanding of the molecular events of the cell cycle may lead to new opportunities by which astrocytoma cell proliferation can be controlled either pharmacologically or by gene transfer techniques.
Collapse
Affiliation(s)
- P B Dirks
- Brain Tumor Research Laboratory, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
Wistuba A, Kern A, Weger S, Grimm D, Kleinschmidt JA. Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 1997; 71:1341-52. [PMID: 8995658 PMCID: PMC191189 DOI: 10.1128/jvi.71.2.1341-1352.1997] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using immunofluorescence and in situ hybridization techniques, we studied the intracellular localization of adeno-associated virus type 2 (AAV-2) Rep proteins, VP proteins, and DNA during the course of an AAV-2/adenovirus type 2 coinfection. In an early stage, the Rep proteins showed a punctate distribution pattern over the nuclei of infected cells, reminiscent of replication foci. At this stage, no capsid proteins were detectable. At later stages, the Rep proteins were distributed more homogeneously over the nuclear interior and finally became redistributed into clusters slightly enriched at the nuclear periphery. During an intermediate stage, they also appeared at an interior part of the nucleolus for a short period, whereas most of the time the nucleoli were Rep negative. AAV-2 DNA colocalized with the Rep proteins. All three capsid proteins were strongly enriched in the nucleolus in a transient stage of infection, when the Rep proteins homogeneously filled the nucleoplasm. Thereafter, they became distributed over the whole nucleus and colocalized in nucleoplasmic clusters with the Rep proteins and AAV-2 DNA. While VP1 and VP2 strongly accumulated in the nucleus, VP3 was almost equally distributed between the nucleus and cytoplasm. Capsids, visualized by a conformation-specific antibody, were first detectable in the nucleoli and then spread over the whole nucleoplasm. This suggests that nucleolar components are involved in initiation of capsid assembly whereas DNA packaging occurs in the nucleoplasm. Expression of a transfected full-length AAV-2 genome followed by adenovirus infection showed all stages of an AAV-2/adenovirus coinfection, whereas after expression of the cap gene alone, capsids were restricted to the nucleoli and did not follow the nuclear redistribution observed in the presence of the whole AAV-2 genome. Coexpression of Rep proteins released the restriction of capsids to the nucleolus, suggesting that the Rep proteins are involved in nuclear redistribution of AAV capsids during viral infection. Capsid formation was dependent on the concentration of expressed capsid protein.
Collapse
Affiliation(s)
- A Wistuba
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
In many cell types the formation of microtubules from tubulin subunits is initiated at defined nucleation sites at the centrosome. These sites contain the conserved gamma-tubulin which is in association with additional not very will characterised proteins, identified as components of a gamma-tubulin ring complex from Xenopus egg extracts or from suppressor screens in the yeast Saccharomyces cerevisiae. In this review we discuss two recently proposed models of how the gamma-tubulin complex assists in the assembly of tubulin to form microtubules. These models propose different roles for gamma-tubulin and the other proteins in the complex in tubulin assembly. While the structure and composition of a microtubule nucleation site is becoming clearer, it is still unknown how the cell-cycle dependent regulation of microtubule nucleation sites is achieved and whether they disassemble after microtubule formation in order to allow microtubule fluxes towards the centrosome which have been observed in mitotic cells.
Collapse
Affiliation(s)
- G Pereira
- Max-Planck Institut für Biochemie, Genzentrum, Martinsried, Germany
| | | |
Collapse
|
49
|
Gaglio T, Saredi A, Bingham JB, Hasbani MJ, Gill SR, Schroer TA, Compton DA. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 1996; 135:399-414. [PMID: 8896597 PMCID: PMC2121053 DOI: 10.1083/jcb.135.2.399] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end-directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.
Collapse
Affiliation(s)
- T Gaglio
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Andrade LE, Chan EK, Peebles CL, Tan EM. Two major autoantigen-antibody systems of the mitotic spindle apparatus. ARTHRITIS AND RHEUMATISM 1996; 39:1643-53. [PMID: 8843854 DOI: 10.1002/art.1780391006] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize human autoantigen-antibody systems related to the mitotic poles and spindles. METHODS Thirty-seven human sera with autoantibodies staining mitotic poles and spindles in indirect immunofluorescence (IIF) studies were further characterized by immunofluorescence on mitotic cells and by immunoblotting and immunoprecipitation. Clinical diagnoses meeting the American College of Rheumatology criteria were based on chart review and interview with the corresponding physicians. RESULTS Two autoantibody systems reactive with mitotic poles and spindles were defined. Type 1 nuclear mitotic apparatus (NuMA-1) antibodies were identified in the serum of 30 patients. Interphase cells showed a fine, speckled, nuclear staining, while mitotic cells had bright staining of the rim of the centrosomes and light staining of the spindles proximal to the centrosomes. In telophase, the staining shifted from the centrosomes to the reforming nuclei. On immunoblotting, anti-NuMA-1 sera reacted with a 210-kd protein. The reactivity of these sera was identified (with the aid of reference antibodies) as the previously described NuMA antigen-antibody system. Clinical information was available for only 17 of the 30 patients with anti-NuMA-1; of these, 17 (53%) had clinical and lip biopsy findings that met the criteria for Sjögren's syndrome. NuMA-2 antibodies were found in the sera of 7 patients. Interphase cells showed no nuclear or cytoplasmic staining, but mitotic cells had brightly stained poles and spindles. At anaphase/telophase, staining shifted to the midbody and the intercellular bridge. Anti-NuMA-2 sera immunoprecipitated a protein of 116 kd. This group of patients was more heterogeneous and had both systemic and organ-specific autoimmune diseases. CONCLUSIONS NuMA protein (here called NuMA-1) and a 116-kd protein (here called NuMA-2) are the major targets of the autoimmune response in the mitotic apparatus, since most of the selected sera (based on IIF staining of the mitotic spindles and poles) recognized 1 of these 2 antigens.
Collapse
Affiliation(s)
- L E Andrade
- W. M. Keck Autoimmune Disease Center, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|