1
|
Lui Y, Ferreira Fernandes J, Vuong MT, Sharma S, Santos AM, Davis SJ. The Structural Biology of T-Cell Antigen Detection at Close Contacts. Immunol Rev 2025; 331:e70014. [PMID: 40181535 PMCID: PMC11969063 DOI: 10.1111/imr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025]
Abstract
T cells physically interrogate their targets using tiny membrane protrusions called microvilli, forming junctions ~400 nm in diameter and ~ 15 nm deep, referred to as "close contacts". These contacts, which are stabilized by the binding of the small adhesion protein CD2 to its ligand, CD58 and locally exclude large proteins such as the phosphatase CD45, are the sites of antigen recognition by the T-cell receptor (TCR) and very early signaling by T cells. With our collaborators, we have characterized the molecular structures of several of the key proteins mediating these early events: i.e., CD2 and its ligands, CD45, the αβ- and γδ-TCRs, and the accessory proteins CD28, CTLA-4, and PD-1. Here, we review our structural work and the insights it offers into the early events underpinning T-cell responsiveness that take place in the confined space of the close contact. We reflect on the crucial roles that the structural organization and dimensions of these proteins are likely to have in determining the sequence of events leading to antigen recognition at close contacts and consider the general implications of the structural work for explanations of how immune receptor signaling is initiated.
Collapse
Affiliation(s)
- Yuan Lui
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - João Ferreira Fernandes
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Mai T. Vuong
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Sumana Sharma
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ana Mafalda Santos
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Huberman LB, Wu VW, Kowbel DJ, Lee J, Daum C, Singan VR, Grigoriev IV, O'Malley RC, Louise Glass N. A novel regulator of the fungal phosphate starvation response revealed by transcriptional profiling and DNA affinity purification sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647663. [PMID: 40291735 PMCID: PMC12026986 DOI: 10.1101/2025.04.07.647663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cells must accurately sense and respond to nutrients to compete for resources and establish growth. Phosphate is a critical nutrient source necessary for signaling, energy metabolism, and synthesis of nucleic acids, phospholipids, and cellular metabolites. During phosphate limitation, fungi import phosphate from the environment and liberate phosphate from phosphate-containing molecules in the cell. In the model filamentous fungus Neurospora crassa , the phosphate starvation response is regulated by the conserved transcription factor NUC-1. The activity of NUC-1 is repressed by a complex of the cyclin-dependent kinase MDK-1 and the cyclin PREG when phosphate is plentiful. When phosphate is limiting, NUC-1 repression by MDK-1/PREG is relieved by the cyclin-dependent kinase inhibitor NUC-2. We investigated the global response of N. crassa to phosphate starvation. During phosphate starvation, NUC-1 directly activated expression of genes encoding phosphatases, nucleases, and a phosphate transporter and directly repressed genes associated with the ribosome. Additionally, NUC-1 indirectly activated the expression of an uncharacterized transcription factor, which we named nuc-3 . NUC-3 directly repressed the expression of genes involved in phosphate acquisition and liberation after an extended period of phosphate starvation. Additionally, NUC-3 directly repressed expression of the cyclin-dependent kinase inhibitor nuc-2 . Thus, through the combination of NUC-3 direct repression of genes in the phosphate starvation response and nuc-2 , an activator of the phosphate starvation response, NUC-3 serves to act as a brake on the phosphate starvation response after an extended period of phosphate starvation. This braking mechanism could reduce transcription, a phosphate-intensive process, in conditions when phosphate is limiting. IMPORTANCE Fungi evolved regulatory networks to respond to available nutrients. Phosphate is frequently a limiting nutrient for fungi critical for many cellular functions, including nucleic acid and phospholipid biosynthesis, cell signaling, and energy metabolism. The fungal response to phosphate limitation is important in interactions with plants and animals. We investigated the global transcriptional response to phosphate starvation and the role of a major transcriptional regulator, NUC-1, in the model filamentous fungus Neurospora crassa . Our data shows NUC-1 is a bifunctional transcription factor that directly activates phosphate acquisition genes, while directly repressing genes associated with phosphate-intensive processes. NUC-1 indirectly regulates an uncharacterized transcription factor, which we named nuc-3 . NUC-3 directly represses phosphate acquisition genes and nuc-2 , an activator of the phosphate starvation response, during extended periods of phosphate starvation. Thus, NUC-3 acts as a brake on the phosphate starvation response to reduce phosphate-intensive activities, like transcriptional activation, when phosphate starvation persists.
Collapse
|
3
|
Choi HK, Zhu C. Catch Bonds in Immunology. Annu Rev Immunol 2025; 43:641-666. [PMID: 40085844 DOI: 10.1146/annurev-immunol-082423-035904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Catch bonds are molecular bonds that last longer under force than slip bonds, which become shorter-lived under force. Although catch bonds were initially discovered in studies of leukocyte and bacterial adhesions two decades ago, they have since been found in many other contexts, including platelet binding to blood vessel walls during clotting, structural support within the cell and between cells, force transmission in the cell's machineries for motility and mechanotransduction, viral infection of host cells, and immunoreceptor mechanosensing. Catch bonds are strengthened by increasing force, which induces structural changes in one or both interacting molecules either locally or allosterically to enable additional contacts at their binding interface, thus lengthening bond lifetimes. They can be modeled by the kinetics of a system escaping from the energy well(s) of the bound state(s) over the energy barrier(s) to the free state by traversing along the dissociation path(s) across a hilly energy landscape modulated by force. Catch bond studies are important for understanding the mechanics of biological systems and developing treatment strategies for infectious diseases, immune disorders, cancer, and other ailments.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea;
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zhang Z, Xia Y, Wang Z, Sun Y, Pu D, He Y, Liu R, Zhang Y, Liu Y, Yu J, Ning S, Feng B, Wang Y, Wang N. Ddx21 mutant peptide is an effective neoantigen in prophylactic lung cancer vaccines and activates long-term anti-tumor immunity. Front Immunol 2025; 16:1500417. [PMID: 39981234 PMCID: PMC11839773 DOI: 10.3389/fimmu.2025.1500417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Lung cancer is the leading cause of cancer-related death worldwide, and its morbidity and mortality are increasing. Although low-dose CT lung cancer screening has been shown to reduce lung cancer mortality, its adoption rate is limited and the pace of its promotion is slow, highlighting the urgent need for more effective prevention measures. Prophylactic vaccines play a crucial role in cancer prevention. Our previous studies indicated that mice immunized with a prophylactic vaccine based on lung cancer cell lines KPL 160302S, derived from early-stage murine lung cancer tissues, exhibited a significantly extended survival period, with a strong anti-tumor immune response. While the vaccine based on KPL 160424S, derived from advanced-stage murine lung cancer tissues, failed to extend survival time and demonstrated limited capacity to stimulate anti-tumor immunity. Methods To investigate the fundamental reason for the difference between KPL 160302S and KPL 160424S vaccines, we employed bioinformatics methods and immune related experiments to explore the effects and mechanisms of the screened neoantigens. Results Our findings demonstrated that immunization with the Ddx21 mutant peptide (Ddx21MT), unique to KPL 160302S, could significantly increase the proportion of central memory T cells (TCM) in mice and activate anti-tumor immunity. Discussion These results suggest that the Ddx21MT is a highly effective neoantigen that can activate anti-tumor immunity, which can serve as an important component in developing a lung cancer vaccine and is expected to be used in combination with other immunotherapy approaches.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimeng Xia
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhihong Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaxing Sun
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Pu
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yijia He
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruixian Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junzhi Yu
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyang Ning
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Na Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
6
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Cheng R, Tang X, Zhao Q, Wang Y, Chen W, Wang G, Wang C, Mwangi J, Lu Q, Tadese DA, Zhao X, Ou C, Lai R. Transferrin Disassociates TCR from CD3 Signaling Apparatus to Promote Metastasis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0578. [PMID: 39810853 PMCID: PMC11731779 DOI: 10.34133/research.0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Immune recognition and activation by the peptide-laden major histocompatibility complex-T cell receptor (TCR)-CD3 complex is essential for anti-tumor immunity. Tumors may escape immune surveillance by dissembling the complex. Here, we report that transferrin, which is overexpressed in patients with liver metastasis, disassociates TCR from the CD3 signaling apparatus by targeting the constant domain (CD) of T cell receptor α (TCRα), consequently suppresses T cell activation, and inhibits anti-metastatic and anti-tumor immunity. In mouse models of melanoma and lymphoma, transferrin overexpression exacerbates liver metastasis, while its knockdown, antibody, designed peptides, and CD mutation interfering with transferrin-TCRα interaction inhibit metastasis. This work reveals a novel strategy of tumor evasion of immune surveillance by blocking the coupling between TCRs and the CD3 signaling apparatus to suppress TCR activation. Given the conservation of CD and transferrin up-regulation in metastatic tumors, the strategy might be a common metastatic mechanism. Targeting transferrin-TCRα holds promise for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ruomei Cheng
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiaopeng Tang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiyu Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yuming Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650108, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - Gan Wang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - James Mwangi
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiumin Lu
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dawit Adisu Tadese
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xudong Zhao
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Caiwen Ou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ren Lai
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Snyder LF, O’Brien EM, Zhao J, Liang J, Bruce BJ, Zhang Y, Zhu W, Cassier TJ, Schnicker NJ, Zhou X, Gordân R, He BZ. Divergence in a Eukaryotic Transcription Factor's co-TF Dependence Involves Multiple Intrinsically Disordered Regions Affecting Activation and Autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.20.590343. [PMID: 39253425 PMCID: PMC11383300 DOI: 10.1101/2024.04.20.590343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Combinatorial control by multiple transcription factors (TFs) is a hallmark of eukaryotic gene regulation. Despite its prevalence and crucial roles in enhancing specificity and integrating information, the mechanisms behind why eukaryotic TFs depend on one another, and whether such interdependence evolves, are not well understood. We exploit natural variation in co-TF dependence in the yeast phosphate starvation (PHO) response to address this question. In the model yeast Saccharomyces cerevisiae, the main TF, Pho4, relies on the co-TF Pho2 to regulate ~28 genes. In a related yeast pathogen, Candida glabrata, its Pho4 exhibits significantly reduced Pho2 dependence and has an expanded target set of ~70 genes. Biochemical analyses showed C. glabrata Pho4 (CgPho4) binds to the same consensus motif with 3-4-fold higher affinity than ScPho4 does. A machine-learning-based prediction and yeast one-hybrid assay identified two Intrinsically Disordered Regions (IDRs) in CgPho4 that boost the activity of the main activation domain but showed little to no activity on their own. We also found evidence for autoinhibition behind the co-TF dependence in ScPho4. An IDR in ScPho4 next to its DNA binding domain was found to act as a double-edged sword: it both allows for enhanced activity with Pho2, and inhibits Pho4's activity without Pho2. This study provides a detailed molecular picture of how co-TF dependence is mediated and how its evolution, mainly driven by IDR divergence, can lead to significant rewiring of the regulatory network.
Collapse
Affiliation(s)
- Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | | | - Jia Zhao
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jinye Liang
- Department of Biology, University of Iowa, Iowa City, IA
| | - Baylee J. Bruce
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Yuning Zhang
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
| | - Wei Zhu
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
| | | | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Xu Zhou
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Raluca Gordân
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
- Department of Computer Science, Duke University, Durham, NC
- Department of Cell Biology, Duke University, Durham, NC
| | - Bin Z. He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Mallis RJ, Brazin KN, Duke‐Cohan JS, Akitsu A, Stephens HM, Chang‐Gonzalez AC, Masi DJ, Kirkpatrick EH, Holliday EL, Feng Y, Zienkiewicz KJ, Lee JJ, Cinella V, Uberoy KI, Tan K, Wagner G, Arthanari H, Hwang W, Lang MJ, Reinherz EL. Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation. Immunol Rev 2025; 329:e13432. [PMID: 39745432 PMCID: PMC11744257 DOI: 10.1111/imr.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025]
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan S. Duke‐Cohan
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Aoi Akitsu
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanna M. Stephens
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Daniel J. Masi
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yinnian Feng
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Vincenzo Cinella
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kaveri I. Uberoy
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kemin Tan
- Structural Biology Center, X‐Ray Science Division, Advanced Photon SourceArgonne National LaboratoryLemontIllinoisUSA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Wonmuk Hwang
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Physics and AstronomyTexas A&M UniversityCollege StationTexasUSA
- Center for AI and Natural SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
| | - Matthew J. Lang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Gray GI, Chukwuma PC, Eldaly B, Perera WWJG, Brambley CA, Rosales TJ, Baker BM. The Evolving T Cell Receptor Recognition Code: The Rules Are More Like Guidelines. Immunol Rev 2025; 329:e13439. [PMID: 39804137 PMCID: PMC11771984 DOI: 10.1111/imr.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work. Here we explore our evolving understanding of TCR recognition, illustrating how structural and biophysical investigations regularly uncover complex phenomena that push against paradigms and expand our understanding of how TCRs bind to and discriminate between peptide/MHC complexes. We discuss the implications of these findings for basic, translational, and predictive immunology, including the challenges in accounting for the inherent adaptability, flexibility, and occasional biophysical sloppiness that characterize TCR recognition.
Collapse
MESH Headings
- Humans
- Animals
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Peptides/immunology
- Peptides/metabolism
- T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Major Histocompatibility Complex
- Protein Conformation
Collapse
Affiliation(s)
- George I. Gray
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - P. Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Bassant Eldaly
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - W. W. J. Gihan Perera
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Haper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
11
|
Abdelfattah NS, Kula T, Elledge SJ. T-Switch: A specificity-based engineering platform for developing safe and effective T cell therapeutics. Immunity 2024; 57:2945-2958.e5. [PMID: 39631392 DOI: 10.1016/j.immuni.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Many promising targets for adoptive T cell therapy (ACT) are self-antigens, but self-reactive T cells are generally eliminated during thymic selection or diverted to regulatory phenotypes. To bypass T cell tolerance and obtain potent and safe T cell therapeutics, we developed T-Switch, an in vitro T cell receptor (TCR) engineering platform for the creation, modification, and comprehensive profiling of TCRs that can target self-antigens. T-Switch first expands T cells that recognize a "foreign" peptide closely related to a self-antigen. The fine specificity of the TCR is then modified by directed evolution of the peptide binding region to switch its specificity to the self-antigen of interest. We applied T-Switch to engineer synthetic TCRs reactive to a tumor-associated self-antigen, validated the safety and efficacy of this approach, and detected no off-target recognition as measured against the human proteome. Thus, T-Switch represents a resource for the creation of collections of highly sensitive synthetic TCRs for T cell-based immunotherapies.
Collapse
Affiliation(s)
- Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kapetanovic E, Weber CR, Bruand M, Pöschl D, Kucharczyk J, Hirth E, Dietsche C, Khan R, Wagner B, Belli O, Vazquez-Lombardi R, Castellanos-Rueda R, Di Roberto RB, Kalinka K, Raess L, Ly K, Rai S, Dittrich PS, Platt RJ, Oricchio E, Reddy ST. Engineered allogeneic T cells decoupling T-cell-receptor and CD3 signalling enhance the antitumour activity of bispecific antibodies. Nat Biomed Eng 2024; 8:1665-1681. [PMID: 39322719 PMCID: PMC11668682 DOI: 10.1038/s41551-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation. In mice with CD19+ tumour xenografts, treatment with the engineered human cells in combination with blinatumomab (a clinically approved biAb) led to the recognition and clearance of tumour cells in the absence of detectable alloreactivity. Our findings support the development of immunotherapies combining biAbs and 'off-the-shelf' allogeneic T cells.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- T-Lymphocytes/immunology
- Signal Transduction/drug effects
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Lymphocyte Activation/drug effects
- Cell Line, Tumor
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Engineering/methods
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Xenograft Model Antitumor Assays
- Allogeneic Cells/immunology
Collapse
Affiliation(s)
- Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel Pöschl
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Riyaz Khan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Kalinka
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Luca Raess
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Ly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shivam Rai
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
13
|
Henderson J, Nagano Y, Milighetti M, Tiffeau-Mayer A. Limits on inferring T cell specificity from partial information. Proc Natl Acad Sci U S A 2024; 121:e2408696121. [PMID: 39374400 PMCID: PMC11494314 DOI: 10.1073/pnas.2408696121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
A key challenge in molecular biology is to decipher the mapping of protein sequence to function. To perform this mapping requires the identification of sequence features most informative about function. Here, we quantify the amount of information (in bits) that T cell receptor (TCR) sequence features provide about antigen specificity. We identify informative features by their degree of conservation among antigen-specific receptors relative to null expectations. We find that TCR specificity synergistically depends on the hypervariable regions of both receptor chains, with a degree of synergy that strongly depends on the ligand. Using a coincidence-based approach to measuring information enables us to directly bound the accuracy with which TCR specificity can be predicted from partial matches to reference sequences. We anticipate that our statistical framework will be of use for developing machine learning models for TCR specificity prediction and for optimizing TCRs for cell therapies. The proposed coincidence-based information measures might find further applications in bounding the performance of pairwise classifiers in other fields.
Collapse
Affiliation(s)
- James Henderson
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| | - Yuta Nagano
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Division of Medicine, University College London, LondonWC1E 6BT, United Kingdom
| | - Martina Milighetti
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Cancer Institute, University College London, LondonWC1E 6DD, United Kingdom
| | - Andreas Tiffeau-Mayer
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Liu T, Wu G, Gudd CLC, Trovato FM, Barbera T, Liu Y, Triantafyllou E, McPhail MJW, Thursz MR, Khamri W. Cis-interaction between CD52 and T cell receptor complex interferes with CD4 + T cell activation in acute decompensation of cirrhosis. EBioMedicine 2024; 108:105336. [PMID: 39276679 PMCID: PMC11418137 DOI: 10.1016/j.ebiom.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Immune dysfunction contributes to a high rate of infection in patients with acute decompensation of cirrhosis. CD52 is a glycoprotein prominently expressed in lymphocytes. Immune regulation by CD52 may be involved in adaptive immune dysfunction in cirrhosis. This study aimed to investigate the function of CD52 on CD4+ T cells on the blood of patients with acute decompensation of cirrhosis. METHODS The expression of CD52 in the peripheral blood lymphocytes of 49 patients with cirrhosis was investigated using flow cytometry and transcriptomics. Potential cis-membrane ligands of CD52 were discovered via proximity labelling followed by proteomics. The function of CD52 on antigen-specific activation of CD4+ T cells was examined using flow cytometry in CD52 CRISPR-Cas9 knockout primary T cells. FINDINGS CD52 expression was elevated in CD4+ T cells in acute decompensation of cirrhosis, and this elevation was correlated with increased disease severity and mortality. Components of the T cell receptor complex including TCRβ, CD3γ and CD3ε were identified and validated as cis-membrane ligands of CD52. Knockout of CD52 promoted antigen-specific activation, proliferation, and pro-inflammatory cytokine secretion. INTERPRETATION Membrane bound CD52 demonstrated cis-interaction with the T cell receptor and served as a dynamic regulator of antigen-specific activation of CD4+ T cells. The upregulation of CD52 in the periphery of acute decompensation of cirrhosis hinders the recognition of the T cell receptor by MHC, contributing to impaired T cell function. The development of an alternative anti-CD52 antibody is required to restore T cell function and prevent infections in cirrhosis. FUNDING This study was supported by the NIHR Imperial Biomedical Research Centre, Institute for Translational Medicine and Therapeutics (P74713), Wellcome Trust (218304/Z/19/Z), and Medical Research Council (MR/X009904/1 and MR/R014019/1).
Collapse
Affiliation(s)
- Tong Liu
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cathrin L C Gudd
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Francesca M Trovato
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Thomas Barbera
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Mark J W McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Wafa Khamri
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
16
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
17
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a novel NES class recognized by exportin Msn5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607649. [PMID: 39211127 PMCID: PMC11361136 DOI: 10.1101/2024.08.12.607649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
|
18
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Oyama K, Ueda T. Relationship between protein conformational stability and its immunogenicity when administering antigens to mice using adjuvants-Analysis employed the CH2 domain in human antibodies. PLoS One 2024; 19:e0307320. [PMID: 39038003 PMCID: PMC11262634 DOI: 10.1371/journal.pone.0307320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Antigen-presenting cells (APCs) play a crucial role in the immune system by breaking down antigens into peptide fragments that subsequently bind to major histocompatibility complex (MHC) molecules. Previous studies indicate that stable proteins can impede CD4+ T cell stimulation by hindering antigen processing and presentation. Conversely, certain proteins require stabilization in order to activate the immune response. Several factors, including the characteristics of the protein and the utilization of different adjuvants in animal experiments, may contribute to this disparity. In this study, we investigated the impact of adjuvants on antigen administration in mice, specifically focusing on the stability of the CH2 domain. Consequently, the CH2 domain induced a stronger IgG response in comparison to the stabilized one when using Alum and PBS (without adjuvant). On the other hand, animal experiment using Freund's adjuvant showed the opposite results. These findings indicate the significance of considering the intrinsic conformational stability of a protein when eliciting its immunogenicity, particularly within the context of vaccine development.
Collapse
Affiliation(s)
- Kosuke Oyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Zhanzak Z, Cina D, Johnson AC, Larsen CP. Implications of MHC-restricted immunopeptidome in transplantation. Front Immunol 2024; 15:1436233. [PMID: 39035001 PMCID: PMC11257886 DOI: 10.3389/fimmu.2024.1436233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The peptide presentation by donor and recipient major histocompatibility complex (MHC) molecules is the major driver of T-cell responses in transplantation. In this review, we address an emerging area of interest, the application of immunopeptidome in transplantation, and describe the potential opportunities that exist to use peptides for targeting alloreactive T cells. The immunopeptidome, the set of peptides presented on an individual's MHC, plays a key role in immune surveillance. In transplantation, the immunopeptidome is heavily influenced by MHC-derived peptides, delineating a key subset of the diverse peptide repertoire implicated in alloreactivity. A better understanding of the immunopeptidome in transplantation has the potential to open up new approaches to identify, characterize, longitudinally quantify, and therapeutically target donor-specific T cells and ultimately support more personalized immunotherapies to prevent rejection and promote allograft tolerance.
Collapse
Affiliation(s)
- Zhuldyz Zhanzak
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Davide Cina
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Aileen C. Johnson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Gupta S, Sgourakis NG. A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597418. [PMID: 38895339 PMCID: PMC11185663 DOI: 10.1101/2024.06.04.597418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Peptides presented by class I major histocompatibility complex (MHC-I) proteins provide biomarkers for therapeutic targeting using T cell receptors (TCRs), TCR-mimicking antibodies (TMAs), or other engineered protein binders. Despite the extreme sequence diversity of the Human Leucocyte Antigen (HLA, the human MHC), a given TCR or TMA is restricted to recognize epitopic peptides in the context of a limited set of different HLA allotypes. Here, guided by our analysis of 96 TCR:pHLA complex structures in the Protein Data Bank (PDB), we identify TCR contact residues and classify 148 common HLA allotypes into T-cell cross-reactivity groups (T-CREGs) on the basis of their interaction surface features. Insights from our work have actionable value for resolving MHC-I restriction of TCRs, guiding therapeutic expansion of existing therapies, and informing the selection of peptide targets for forthcoming immunotherapy modalities.
Collapse
|
22
|
Zou JL, Chen KX, Wang XJ, Lu ZC, Wu XH, Wu YD. Structure-Based Rational and General Strategy for Stabilizing Single-Chain T-Cell Receptors to Enhance Affinity. J Med Chem 2024; 67:7635-7646. [PMID: 38661304 DOI: 10.1021/acs.jmedchem.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The T-cell receptor (TCR) is a crucial molecule in cellular immunity. The single-chain T-cell receptor (scTCR) is a potential format in TCR therapeutics because it eliminates the possibility of αβ-TCR mispairing. However, its poor stability and solubility impede the in vitro study and manufacturing of therapeutic applications. In this study, some conserved structural motifs are identified in variable domains regardless of germlines and species. Theoretical analysis helps to identify those unfavored factors and leads to a general strategy for stabilizing scTCRs by substituting residues at exact IMGT positions with beneficial propensities on the consensus sequence of germlines. Several representative scTCRs are displayed to achieve stability optimization and retain comparable binding affinities with the corresponding αβ-TCRs in the range of μM to pM. These results demonstrate that our strategies for scTCR engineering are capable of providing the affinity-enhanced and specificity-retained format, which are of great value in facilitating the development of TCR-related therapeutics.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Protein Stability
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Amino Acid Sequence
- Models, Molecular
- Protein Engineering
- Protein Binding
Collapse
Affiliation(s)
- Jia-Ling Zou
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | | | | | | | - Xian-Hui Wu
- Tianmu Institute of Health, Changzhou 213399, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Scott D, Singer DS. Introducing Five New Cancer Grand Challenges Teams. Cancer Discov 2024; 14:559-562. [PMID: 38446429 DOI: 10.1158/2159-8290.cd-24-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
SUMMARY Cancer Grand Challenges is an international funding initiative that aims to unite the world's best scientists to tackle some of cancer's toughest problems by funding team science on a global scale. Here, we discuss the five newly funded teams and the challenges they will address over the coming years.
Collapse
Affiliation(s)
- David Scott
- Cancer Grand Challenges, Cancer Research UK, London, United Kingdom
| | | |
Collapse
|
24
|
Kocyła AM, Czogalla A, Wessels I, Rink L, Krężel A. A combined biochemical and cellular approach reveals Zn 2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure 2024; 32:292-303.e7. [PMID: 38157858 DOI: 10.1016/j.str.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.
Collapse
Affiliation(s)
- Anna M Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
25
|
Manske K, Dreßler L, Fräßle SP, Effenberger M, Tschulik C, Cletiu V, Benke E, Wagner M, Schober K, Müller TR, Stemberger C, Germeroth L, Busch DH, Poltorak MP. Miniaturized CAR knocked onto CD3ε extends TCR function with CAR specificity under control of endogenous TCR signaling cascade. J Immunol Methods 2024; 526:113617. [PMID: 38215900 DOI: 10.1016/j.jim.2024.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Immunotherapy using TCR and especially CAR transgenic T cells is a rapidly advancing field with the potential to become standard of care for the treatment of multiple diseases. While all current FDA approved CAR T cell products are generated using lentiviral gene transfer, extensive work is put into CRISPR/Cas mediated gene delivery to develop the next generation of safer and more potent cell products. One limitation of all editing systems is the size restriction of the knock-in cargo. Targeted integration under control of an endogenous promotor and/or signaling cascades opens the possibility to reduce CAR gene size to absolute minimum. Here we demonstrate that a first-generation CAR payload can be reduced to its minimum component - the antigen-binding domain - by targeted integration under control of the CD3ε promoter generating a CAR-CD3ε fusion protein that exploits the endogenous TCR signaling cascade. Miniaturizing CAR payload in this way results in potent CAR activity while simultaneously retaining the primary antigen recognition function of the TCR. Introducing CAR-specificity using a CAR binder only while maintaining endogenous TCR function may be an appealing design for future autologous CAR T cell therapies.
Collapse
Affiliation(s)
- Katrin Manske
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Lisa Dreßler
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Simon P Fräßle
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany.
| | - Manuel Effenberger
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Claudia Tschulik
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Vlad Cletiu
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Eileen Benke
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Michaela Wagner
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Kilian Schober
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Thomas R Müller
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Christian Stemberger
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Lothar Germeroth
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Mateusz P Poltorak
- Juno Therapeutics GmbH, A Bristol-Myers Squibb Company, Grillparzerstr. 10, Munich 81675, Germany; Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| |
Collapse
|
26
|
Srivastava PK. Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines. J Clin Invest 2024; 134:e176740. [PMID: 38426497 PMCID: PMC10904052 DOI: 10.1172/jci176740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
A proportion of somatic mutations in tumors create neoepitopes that can prime T cell responses that target the MHC I-neoepitope complexes on tumor cells, mediating tumor control or rejection. Despite the compelling centrality of neoepitopes to cancer immunity, we know remarkably little about what constitutes a neoepitope that can mediate tumor control in vivo and what distinguishes such a neoepitope from the vast majority of similar candidate neoepitopes that are inefficacious in vivo. Studies in mice as well as clinical trials have begun to reveal the unexpected paradoxes in this area. Because cancer neoepitopes straddle that ambiguous ground between self and non-self, some rules that are fundamental to immunology of frankly non-self antigens, such as viral or model antigens, do not appear to apply to neoepitopes. Because neoepitopes are so similar to self-epitopes, with only small changes that render them non-self, immune response to them is regulated at least partially the way immune response to self is regulated. Therefore, neoepitopes are viewed and understood here through the clarifying lens of negative thymic selection. Here, the emergent questions in the biology and clinical applications of neoepitopes are discussed critically and a mechanistic and testable framework that explains the complexity and translational potential of these wonderful antigens is proposed.
Collapse
|
27
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Koyama K, Hashimoto K, Nagao C, Mizuguchi K. Attention network for predicting T-cell receptor-peptide binding can associate attention with interpretable protein structural properties. FRONTIERS IN BIOINFORMATICS 2023; 3:1274599. [PMID: 38170146 PMCID: PMC10759225 DOI: 10.3389/fbinf.2023.1274599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding how a T-cell receptor (TCR) recognizes its specific ligand peptide is crucial for gaining an insight into biological functions and disease mechanisms. Despite its importance, experimentally determining TCR-peptide-major histocompatibility complex (TCR-pMHC) interactions is expensive and time-consuming. To address this challenge, computational methods have been proposed, but they are typically evaluated by internal retrospective validation only, and few researchers have incorporated and tested an attention layer from language models into structural information. Therefore, in this study, we developed a machine learning model based on a modified version of Transformer, a source-target attention neural network, to predict the TCR-pMHC interaction solely from the amino acid sequences of the TCR complementarity-determining region (CDR) 3 and the peptide. This model achieved competitive performance on a benchmark dataset of the TCR-pMHC interaction, as well as on a truly new external dataset. Additionally, by analyzing the results of binding predictions, we associated the neural network weights with protein structural properties. By classifying the residues into large- and small-attention groups, we identified statistically significant properties associated with the largely attended residues such as hydrogen bonds within CDR3. The dataset that we created and the ability of our model to provide an interpretable prediction of TCR-peptide binding should increase our knowledge about molecular recognition and pave the way for designing new therapeutics.
Collapse
Affiliation(s)
- Kyohei Koyama
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Osaka, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kosuke Hashimoto
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Chioko Nagao
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Osaka, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Liu L, Yoon CW, Yuan Z, Guo T, Qu Y, He P, Yu X, Zhu Z, Limsakul P, Wang Y. Cellular and molecular imaging of CAR-T cell-based immunotherapy. Adv Drug Deliv Rev 2023; 203:115135. [PMID: 37931847 PMCID: PMC11052581 DOI: 10.1016/j.addr.2023.115135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy. This review summarizes the signaling network and the cellular and molecular imaging tools and platforms that are utilized in CAR-T cell-based immune therapies, covering both in vitro and in vivo studies. Firstly, we provide an overview of the existing understanding of the activation and cytotoxic mechanisms of CAR-T cells, compared to the mechanism of T cell receptor (TCR) signaling pathways. We further describe the commonly employed tools for live cell imaging, coupled with recent research progress, with a focus on genetically encoded fluorescent proteins (FPs) and biosensors. We then discuss the utility of diverse in vivo imaging modalities, including fluorescence and bioluminescence imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and photoacoustic (PA) imaging, for noninvasive monitoring of CAR-T cell dynamics within tumor tissues, thereby providing critical insights into therapy's strengths and weaknesses. Lastly, we discuss the current challenges and future directions of CAR-T cell therapy from the imaging perspective. We foresee that a comprehensive and integrative approach to CAR-T cell imaging will enable the development of more effective treatments for solid tumors in the future.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhou Yuan
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ziyue Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Li T, Luo R, Su L, Lv F, Mei L, Yu Y. Advanced Materials and Delivery Systems for Enhancement of Chimeric Antigen Receptor Cells. SMALL METHODS 2023; 7:e2300880. [PMID: 37653606 DOI: 10.1002/smtd.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Indexed: 09/02/2023]
Abstract
Chimeric antigen receptor (CAR) cell therapy is a great success and breakthrough in immunotherapy. However, there are still lots of barriers to its wide use in clinical, including long time consumption, high cost, and failure against solid tumors. For these challenges, researches are deplored to explore CAR cells to more appliable products in clinical. This minireview focuses on the advanced non-viral materials for CAR-T transfection ex vivo with better performance, delivery systems combined with other therapy for enhancement of CAR-T therapy in solid tumors. In addition, the targeted delivery platform for CAR cells in vivo generation as a breakthrough technology as its low cost and convenience. In the end, the prospective direction and future of CAR cell therapy are discussed.
Collapse
Affiliation(s)
- Tingxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ran Luo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lina Su
- Department of Pharmacy, Qujing Medical College, Qujing, Yunnan, 655000, P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yongkang Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
31
|
Boughter CT, Meier-Schellersheim M. Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions. eLife 2023; 12:e90681. [PMID: 37861280 PMCID: PMC10631762 DOI: 10.7554/elife.90681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells are critically important components of the adaptive immune system primarily responsible for identifying and responding to pathogenic challenges. This recognition of pathogens is driven by the interaction between membrane-bound T cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules. The formation of the TCR-peptide-MHC complex (TCR-pMHC) involves interactions among germline-encoded and hypervariable amino acids. Germline-encoded and hypervariable regions can form contacts critical for complex formation, but only interactions between germline-encoded contacts are likely to be shared across many of all the possible productive TCR-pMHC complexes. Despite this, experimental investigation of these interactions have focused on only a small fraction of the possible interaction space. To address this, we analyzed every possible germline-encoded TCR-MHC contact in humans, thereby generating the first comprehensive characterization of these largely antigen-independent interactions. Our computational analysis suggests that germline-encoded TCR-MHC interactions that are conserved at the sequence level are rare due to the high amino acid diversity of the TCR CDR1 and CDR2 loops, and that such conservation is unlikely to dominate the dynamic protein-protein binding interface. Instead, we propose that binding properties such as the docking orientation are defined by regions of biophysical compatibility between these loops and the MHC surface.
Collapse
Affiliation(s)
- Christopher T Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
32
|
Huang S, Shahine A, Cheng TY, Chen YL, Ng SW, Balaji GR, Farquhar R, Gras S, Hardman CS, Altman JD, Tahiri N, Minnaard AJ, Ogg GS, Mayfield JA, Rossjohn J, Moody DB. CD1 lipidomes reveal lipid-binding motifs and size-based antigen-display mechanisms. Cell 2023; 186:4583-4596.e13. [PMID: 37725977 PMCID: PMC10591967 DOI: 10.1016/j.cell.2023.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.
Collapse
Affiliation(s)
- Shouxiong Huang
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Ling Chen
- Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Soo Weei Ng
- Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK
| | - Gautham R. Balaji
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Clare S. Hardman
- Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK
| | - John D. Altman
- Emory Vaccine Center, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Nabil Tahiri
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Adriaan J. Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Graham S. Ogg
- Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Jacob A. Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
33
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
34
|
Fan Q, Li M, Zhao W, Zhang K, Li M, Li W. Hyper α2,6-Sialylation Promotes CD4 + T-Cell Activation and Induces the Occurrence of Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302607. [PMID: 37424034 PMCID: PMC10502867 DOI: 10.1002/advs.202302607] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Indexed: 07/11/2023]
Abstract
α2,6-sialylation, catalyzed by α2,6-sialyltransferase (ST6GAL1), plays a pivotal role in immune responses. However, the role of ST6GAL1 in the pathogenesis of ulcerative colitis (UC) remains unknown. ST6GAL1 mRNA is highly expressed in UC tissues compared with the corresponding adjacent normal tissues, and α2,6-sialylation is significantly increased in the colon tissues of patients with UC. The expression of ST6GAL1 and proinflammatory cytokines, such as interleukin (IL)-2, IL-6, IL-17, and interferon-gamma, is also increased. The number of CD4+ T cells increases in UC patients. St6gal1 gene knockout (St6gal1-/- ) rats are established by clustered regularly interspaced short palindromic repeats (CRISPR)-associated gene knockout system. St6gal1 deficiency reduces the levels of pro-inflammatory cytokines and alleviates colitis symptoms in UC model rats. Ablation of α2,6-sialylation inhibits the transport of the TCR to lipid rafts and suppresses CD4+ T-cell activation. The attenuation of TCR signaling downregulates the expression of NF-κB in ST6GAL1-/- CD4+ T-cells. Moreover, NF-κB could bind to the ST6GAL1 promoter to increase its transcription. Ablation of ST6GAL1 downregulates the expression of NF-κB and reduces the production of proinflammatory cytokines to relieve UC pathogenesis, which is a potential novel target for the clinical treatment of UC.
Collapse
Affiliation(s)
- Qingjie Fan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouGuangdong515041China
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Mechou Li
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Weiwei Zhao
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Kaixin Zhang
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Ming Li
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouGuangdong515041China
| |
Collapse
|
35
|
Du Y, Qiu L, Tan W. DNA nanostructure-programmed intermembrane spacing to modulate T-cell immunity. Clin Transl Med 2023; 13:e1379. [PMID: 37598404 PMCID: PMC10440056 DOI: 10.1002/ctm2.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Yulin Du
- The Key Laboratory of Zhejiang Province for Aptamers and TheranosticsZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiangChina
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunanChina
| | - Liping Qiu
- The Key Laboratory of Zhejiang Province for Aptamers and TheranosticsZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiangChina
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunanChina
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and TheranosticsZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiangChina
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunanChina
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
36
|
Du Y, Lyu Y, Lin J, Ma C, Zhang Q, Zhang Y, Qiu L, Tan W. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering. NATURE NANOTECHNOLOGY 2023; 18:818-827. [PMID: 36894782 DOI: 10.1038/s41565-023-01333-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
How the engagement of a T-cell receptor to antigenic peptide-loaded major histocompatibility complex on antigen-presenting cells (APCs) initiates intracellular signalling cascades in T cells is not well understood. In particular, the dimension of the cellular contact zone is regarded as a determinant, but its influence remains controversial. This is due to the need for appropriate strategies for manipulating intermembrane spacing between the APC-T-cell interfaces without involving protein modification. Here we describe a membrane-anchored DNA nanojunction with distinct sizes to extend, maintain and shorten the APC-T-cell interface down to 10 nm. Our results suggest that the axial distance of the contact zone is critical in T-cell activation, presumably by modulating protein reorganization and mechanical force. Notably, we observe the promotion of T-cell signalling by shortening the intermembrane distance.
Collapse
Affiliation(s)
- Yulin Du
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Chunran Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
37
|
Saotome K, Dudgeon D, Colotti K, Moore MJ, Jones J, Zhou Y, Rafique A, Yancopoulos GD, Murphy AJ, Lin JC, Olson WC, Franklin MC. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat Commun 2023; 14:2401. [PMID: 37100770 PMCID: PMC10132440 DOI: 10.1038/s41467-023-37532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
The recognition of antigenic peptide-MHC (pMHC) molecules by T-cell receptors (TCR) initiates the T-cell mediated immune response. Structural characterization is key for understanding the specificity of TCR-pMHC interactions and informing the development of therapeutics. Despite the rapid rise of single particle cryoelectron microscopy (cryoEM), x-ray crystallography has remained the preferred method for structure determination of TCR-pMHC complexes. Here, we report cryoEM structures of two distinct full-length α/β TCR-CD3 complexes bound to their pMHC ligand, the cancer-testis antigen HLA-A2/MAGEA4 (230-239). We also determined cryoEM structures of pMHCs containing MAGEA4 (230-239) peptide and the closely related MAGEA8 (232-241) peptide in the absence of TCR, which provided a structural explanation for the MAGEA4 preference displayed by the TCRs. These findings provide insights into the TCR recognition of a clinically relevant cancer antigen and demonstrate the utility of cryoEM for high-resolution structural analysis of TCR-pMHC interactions.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | - Jennifer Jones
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yi Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | |
Collapse
|
38
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
39
|
Wang Y, Chen C. DNA nanostructure-enabled precise control over the intermembrane spacing between cells. Sci Bull (Beijing) 2023; 68:871-873. [PMID: 37045663 DOI: 10.1016/j.scib.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
40
|
Thomas C, Tampé R. Structure and mechanism of immunoreceptors: New horizons in T cell and B cell receptor biology and beyond. Curr Opin Struct Biol 2023; 80:102570. [PMID: 36940642 DOI: 10.1016/j.sbi.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Immunoreceptors, also named non-catalytic tyrosine-phosphorylated receptors, are a large class of leukocyte cell-surface proteins critically involved in innate and adaptive immune responses. Their most characteristic defining feature is a shared signal transduction machinery where binding events of cell surface-anchored ligands to the small extracellular receptor domains are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs initiating downstream signal transduction cascades. Despite their central importance to immunology, the molecular mechanism of how ligand binding activates the receptors and results in robust intracellular signaling has remained enigmatic. Recent breakthroughs in our understanding of the architecture and triggering mechanism of immunoreceptors come from cryogenic electron microscopy studies of the B cell and T cell antigen receptors.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
41
|
Morita D, Asa M, Sugita M. Engagement with the TCR induces plasticity in antigenic ligands bound to MHC class I and CD1 molecules. Int Immunol 2023; 35:7-17. [PMID: 36053252 DOI: 10.1093/intimm/dxac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Complementarity-determining regions (CDRs) of αβ T-cell receptors (TCRs) sense peptide-bound MHC (pMHC) complexes via chemical interactions, thereby mediating antigen specificity and MHC restriction. Flexible finger-like movement of CDR loops contributes to the establishment of optimal interactions with pMHCs. In contrast, peptide ligands captured in MHC molecules are considered more static because of the rigid hydrogen-bond network that stabilizes peptide ligands in the antigen-binding groove of MHC molecules. An array of crystal structures delineating pMHC complexes in TCR-docked and TCR-undocked forms is now available, which enables us to assess TCR engagement-induced conformational changes in peptide ligands. In this short review, we overview conformational changes in MHC class I-bound peptide ligands upon TCR docking, followed by those for CD1-bound glycolipid ligands. Finally, we analyze the co-crystal structure of the TCR:lipopeptide-bound MHC class I complex that we recently reported. We argue that TCR engagement-induced conformational changes markedly occur in lipopeptide ligands, which are essential for exposure of a primary T-cell epitope to TCRs. These conformational changes are affected by amino acid residues, such as glycine, that do not interact directly with TCRs. Thus, ligand recognition by specific TCRs involves not only T-cell epitopes but also non-epitopic amino acid residues. In light of their critical function, we propose to refer to these residues as non-epitopic residues affecting ligand plasticity and antigenicity (NR-PA).
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minori Asa
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Gerber HP, Presta LG. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front Oncol 2022; 12:1027548. [PMID: 36338746 PMCID: PMC9635445 DOI: 10.3389/fonc.2022.1027548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
Collapse
|
43
|
Patarroyo ME, Bermudez A, Alba MP, Patarroyo MA, Suarez C, Aza-Conde J, Moreno-Vranich A, Vanegas M. Stereo electronic principles for selecting fully-protective, chemically-synthesised malaria vaccines. Front Immunol 2022; 13:926680. [DOI: 10.3389/fimmu.2022.926680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility class II molecule-peptide-T-cell receptor (MHCII-p-TCR) complex-mediated antigen presentation for a minimal subunit-based, multi-epitope, multistage, chemically-synthesised antimalarial vaccine is essential for inducing an appropriate immune response. Deep understanding of this MHCII-p-TCR complex’s stereo-electronic characteristics is fundamental for vaccine development. This review encapsulates the main principles for achieving such epitopes’ perfect fit into MHC-II human (HLADRβ̞1*) or Aotus (Aona DR) molecules. The enormous relevance of several amino acids’ physico-chemical characteristics is analysed in-depth, as is data regarding a 26.5 ± 2.5Å distance between the farthest atoms fitting into HLA-DRβ1* structures’ Pockets 1 to 9, the role of polyproline II-like (PPIIL) structures having their O and N backbone atoms orientated for establishing H-bonds with specific HLA-DRβ1*-peptide binding region (PBR) residues. The importance of residues having specific charge and orientation towards the TCR for inducing appropriate immune activation, amino acids’ role and that of structures interfering with PPIIL formation and other principles are demonstrated which have to be taken into account when designing immune, protection-inducing peptide structures (IMPIPS) against diseases scourging humankind, malaria being one of them.
Collapse
|
44
|
Sušac L, Vuong MT, Thomas C, von Bülow S, O'Brien-Ball C, Santos AM, Fernandes RA, Hummer G, Tampé R, Davis SJ. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 2022; 185:3201-3213.e19. [PMID: 35985289 PMCID: PMC9630439 DOI: 10.1016/j.cell.2022.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
The T cell receptor (TCR) expressed by T lymphocytes initiates protective immune responses to pathogens and tumors. To explore the structural basis of how TCR signaling is initiated when the receptor binds to peptide-loaded major histocompatibility complex (pMHC) molecules, we used cryogenic electron microscopy to determine the structure of a tumor-reactive TCRαβ/CD3δγε2ζ2 complex bound to a melanoma-specific human class I pMHC at 3.08 Å resolution. The antigen-bound complex comprises 11 subunits stabilized by multivalent interactions across three structural layers, with clustered membrane-proximal cystines stabilizing the CD3-εδ and CD3-εγ heterodimers. Extra density sandwiched between transmembrane helices reveals the involvement of sterol lipids in TCR assembly. The geometry of the pMHC/TCR complex suggests that efficient TCR scanning of pMHC requires accurate pre-positioning of T cell and antigen-presenting cell membranes. Comparisons of the ligand-bound and unliganded receptors, along with molecular dynamics simulations, indicate that TCRs can be triggered in the absence of spontaneous structural rearrangements.
Collapse
Affiliation(s)
- Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Mai T Vuong
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ricardo A Fernandes
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
45
|
Wegrecki M, Ocampo TA, Gunasinghe SD, von Borstel A, Tin SY, Reijneveld JF, Cao TP, Gully BS, Le Nours J, Moody DB, Van Rhijn I, Rossjohn J. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Nat Commun 2022; 13:3872. [PMID: 35790773 PMCID: PMC9256601 DOI: 10.1038/s41467-022-31443-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
CD1a is a monomorphic antigen-presenting molecule on dendritic cells that presents lipids to αβ T cells. Whether CD1a represents a ligand for other immune receptors remains unknown. Here we use CD1a tetramers to show that CD1a is a ligand for Vδ1+ γδ T cells. Functional studies suggest that two γδ T cell receptors (TCRs) bound CD1a in a lipid-independent manner. The crystal structures of three Vγ4Vδ1 TCR-CD1a-lipid complexes reveal that the γδ TCR binds at the extreme far side and parallel to the long axis of the β-sheet floor of CD1a's antigen-binding cleft. Here, the γδ TCR co-recognises the CD1a heavy chain and β2 microglobulin in a manner that is distinct from all other previously observed γδ TCR docking modalities. The 'sideways' and lipid antigen independent mode of autoreactive CD1a recognition induces TCR clustering on the cell surface and proximal T cell signalling as measured by CD3ζ phosphorylation. In contrast with the 'end to end' binding of αβ TCRs that typically contact carried antigens, autoreactive γδ TCRs support geometrically diverse approaches to CD1a, as well as antigen independent recognition.
Collapse
Affiliation(s)
- Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shin Yi Tin
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
46
|
Kobayashi E, Jin A, Hamana H, Shitaoka K, Tajiri K, Kusano S, Yokoyama S, Ozawa T, Obata T, Muraguchi A, Kishi H. Rapid cloning of antigen-specific T-cell receptors by leveraging the cis activation of T cells. Nat Biomed Eng 2022; 6:806-818. [PMID: 35393565 DOI: 10.1038/s41551-022-00874-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023]
Abstract
It is commonly understood that T cells are activated via trans interactions between antigen-specific T-cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules on antigen-presenting cells. By analysing a large number of T cells at the single-cell level on a microwell array, we show that T-cell activation can occur via cis interactions (where TCRs on the T cell interact with the antigenic peptides presented on MHC class-I molecules on the same cell), and that such cis activation can be used to detect antigen-specific T cells and clone their TCR within 4 d. We used the detection-and-cloning system to clone a tumour-antigen-specific TCR from peripheral blood mononuclear cells of healthy donors. TCR cloning by leveraging the cis activation of T cells may facilitate the development of TCR-engineered T cells for cancer therapy.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Aishun Jin
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Department of Immunology, Chongqing Medical University, Chongqing, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kiyomi Shitaoka
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Department of Immunology, Hiroshima University, Hiroshima, Japan
| | - Kazuto Tajiri
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- The Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Seisuke Kusano
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsutomu Obata
- Toyama Industrial Technology Research and Development Center, Takaoka, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan.
| |
Collapse
|
47
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
48
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
49
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
50
|
Yewdell JW. MHC Class I Immunopeptidome: Past, Present, and Future. Mol Cell Proteomics 2022; 21:100230. [PMID: 35395404 PMCID: PMC9243166 DOI: 10.1016/j.mcpro.2022.100230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy. Concise history of the discoveries leading to the molecular explanation for the phenomenon of the MHC class I–restricted nature of T-cell recognition. Historical review of how MS became a critical technique for defining MHC class I–associated peptides and understanding how peptides are generated from proteins biosynthesized by the antigen-presenting cell. Critical review of recent findings linking the translatome to the MHC class I immunopeptidome and the controversy regarding contribution of proteasome-mediated peptide splicing to the immunopeptidome. Speculative discussion of the future contributions of MS to understanding the generation of the MHC class I immunopeptidome.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| |
Collapse
|