1
|
Yassouf MY, Kinoshita A, Hasan MM, Li TS. Improved transcriptome assembly and functional annotation of Pleurodeles waltl for regeneration research. PLoS One 2025; 20:e0323196. [PMID: 40367087 PMCID: PMC12077673 DOI: 10.1371/journal.pone.0323196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/03/2025] [Indexed: 05/16/2025] Open
Abstract
In this study, we present an updated transcriptome assembly for the Iberian ribbed newt, Pleurodeles waltl (P. waltl), a widely used model organism in regeneration research. The existing publicly available transcriptome for this species is limited by the inclusion of only three libraries from the limb and two from the heart, tissues of particular interest for regeneration studies. Additionally, the previous annotation was limited, reducing the utility of the dataset for further in-depth research. To provide a more complete transcriptome with a more comprehensive annotation, we utilized 58 previously published and 9 newly sequenced libraries, expanding the available transcriptomic data for key tissues, especially limb and heart tissues. Our assessment demonstrates that the new assembly offers a more comprehensive representation of reads and proteins compared to previous versions. Furthermore, we significantly improved the functional annotation by using the Trinotate pipeline, which includes the identification of complete ORFs, Pfam motifs, gene names, GO terms, and KEGG Orthology, facilitating more robust transcriptomic analyses. We also examined various stages of limb regeneration and development, gaining insights into the key signaling pathways involved. This work provides a valuable resource for researchers investigating the molecular mechanisms underlying P. waltl's regenerative abilities, enabling more detailed gene expression studies and broader biological insights.
Collapse
Affiliation(s)
- Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan.
| | - Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| |
Collapse
|
2
|
Walker SE, Yu K, Burgess S, Echeverri K. Neuronal activation in the axolotl brain promotes tail regeneration. NPJ Regen Med 2025; 10:22. [PMID: 40341072 PMCID: PMC12062227 DOI: 10.1038/s41536-025-00413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The axolotl retains a remarkable capacity for regenerative repair and is one of the few vertebrate species capable of regenerating its brain and spinal cord after injury. To date, studies investigating axolotl spinal cord regeneration have placed particular emphasis on understanding how cells immediately adjacent to the injury site respond to damage to promote regenerative repair. How neurons outside of this immediate injury site respond to an injury remains unknown. Here, we identify a population of dpErk+/etv1+ glutamatergic neurons in the axolotl telencephalon that are activated in response to injury and are essential for tail regeneration. Furthermore, these neurons project to the hypothalamus where they upregulate the neuropeptide neurotensin in response to injury. Together, these findings identify a unique population of neurons in the axolotl brain whose activation is necessary for successful tail regeneration, and sheds light on how neurons outside of the immediate injury site respond to an injury.
Collapse
Affiliation(s)
- S E Walker
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA
| | - K Yu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA.
| |
Collapse
|
3
|
Bothe V, Müller H, Shubin N, Fröbisch N. Effects of life history strategies and habitats on limb regeneration in plethodontid salamanders. Dev Dyn 2025; 254:396-419. [PMID: 39301774 PMCID: PMC12047434 DOI: 10.1002/dvdy.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Salamanders are the only tetrapods that exhibit the ability to fully regenerate limbs. The axolotl, a neotenic salamander, has become the model organism for regeneration research. Great advances have been made providing a detailed understanding of the morphological and molecular processes involved in limb regeneration. However, it remains largely unknown how limb regeneration varies across salamanders and how factors like variable life histories, ecologies, and limb functions have influenced and shaped regenerative capacities throughout evolution. RESULTS This study focuses on six species of plethodontid salamanders representing distinct life histories and habitats. Specimens were examined for regeneration ability after bite injuries as well as after controlled amputations. Morphological investigations revealed great regenerative abilities in all investigated species and frequent anatomical limb anomalies. Correlations were observed with respect to speed of regeneration and habitat. CONCLUSIONS Investigating regeneration in non-model salamander taxa is essential for disentangling shared features of the regeneration process versus those that may be more taxon-specific. Gaining insights into variable aspects of regeneration under natural conditions and after conspecific biting rather than controlled amputations adds important new datapoints for understanding the evolutionary framework of regeneration and provides a broader context for interpreting findings made in the model organism axolotl.
Collapse
Affiliation(s)
- Vivien Bothe
- Museum für Naturkunde BerlinLeibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of BiologyHumboldt University BerlinBerlinGermany
| | - Hendrik Müller
- Zentralmagazin Naturwissenschaftlicher SammlungenMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Neil Shubin
- Department of Organismal Biology & AnatomyThe University of ChicagoChicagoIllinoisUSA
| | - Nadia Fröbisch
- Museum für Naturkunde BerlinLeibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of BiologyHumboldt University BerlinBerlinGermany
| |
Collapse
|
4
|
Rouzbahani M, Ghanaati H. Intra-Arterial Stem Cell Injection for Treating Various Diseases: A New Frontier in Interventional Radiology. Cardiovasc Intervent Radiol 2025; 48:288-296. [PMID: 39789253 DOI: 10.1007/s00270-024-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
Collapse
Affiliation(s)
- Maedeh Rouzbahani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kirby CS, Islam N, Wier E, Alphonse MP, Sweren E, Wang G, Liu H, Kim D, Li A, Lee SS, Overmiller AM, Xue Y, Reddy S, Archer NK, Miller LS, Yu J, Huang W, Jones JW, Kim S, Kane MA, Silverman RH, Garza LA. RNase L represses hair follicle regeneration through altered innate immune signaling. J Clin Invest 2025; 135:e172595. [PMID: 39903537 PMCID: PMC11910212 DOI: 10.1172/jci172595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of proregeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human participants following laser rejuvenation treatment and compared them with mice with enhanced wound-induced hair neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L's known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36-dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L-activated caspase-1 restrains the proregenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA-seq and spatial transcriptomic profiling, we confirmed OAS & IL-36 genes to be highly expressed at the site of wounding and elevated in Rnasel-/- mouse wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional trade off that tempers immune hyperactivation during viral infection at the cost of inhibiting regeneration.
Collapse
Affiliation(s)
- Charles S. Kirby
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nasif Islam
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Dongwon Kim
- Department of Dermatology and
- Department of Biochemical Engineering, College of Science and Technology, Dongseo University, Busan, South Korea
| | - Ang Li
- Department of Dermatology and
| | | | - Andrew M. Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sashank Reddy
- Department of Plastic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Dermatology and
- Department of Environment Science and Biotechnology, College of Medical Science, Jeonju University, Jeonju, South Korea
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luis A. Garza
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Erickson JR, Walker SE, Arenas Gomez CM, Echeverri K. Sall4 regulates downstream patterning genes during limb regeneration. Dev Biol 2024; 515:151-159. [PMID: 39067503 PMCID: PMC11325254 DOI: 10.1016/j.ydbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Many salamanders can completely regenerate a fully functional limb. Limb regeneration is a carefully coordinated process involving several defined stages. One key event during the regeneration process is the patterning of the blastema to inform cells of what they must differentiate into. Although it is known that many genes involved in the initial development of the limb are re-used during regeneration, the exact molecular circuitry involved in this process is not fully understood. Several large-scale transcriptional profiling studies of axolotl limb regeneration have identified many transcription factors that are up-regulated after limb amputation. Sall4 is a transcription factor that has been identified to play essential roles in maintaining cells in an undifferentiated state during development and also plays a unique role in limb development. Inactivation of Sall4 during limb bud development results in defects in anterior-posterior patterning of the limb. Sall4 has been found to be up-regulated during limb regeneration in both Xenopus and salamanders, but to date it function has been untested. We confirmed that Sall4 is up-regulated during limb regeneration in the axolotl using qRT-PCR and identified that it is present in the skin cells and also in cells within the blastema. Using CRISPR technology we microinjected gRNAs specific for Sall4 complexed with cas9 protein into the blastema to specifically knockout Sall4 in blastema cells only. This resulted in limb regenerate defects, including missing digits, fusion of digit elements, and defects in the radius and ulna. This suggests that during regeneration Sall4 may play a similar role in regulating the specification of anterior-proximal skeletal elements.
Collapse
Affiliation(s)
- J R Erickson
- Department of Genetics, Dell Biology and Development, Stell Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - S E Walker
- Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA
| | - C M Arenas Gomez
- Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA
| | - K Echeverri
- Department of Genetics, Dell Biology and Development, Stell Cell Institute, University of Minnesota, Minneapolis, MN, USA; Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA.
| |
Collapse
|
7
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
8
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
9
|
Schuez M, Kurth T, Currie JD, Sandoval-Guzmán T. Embryonic Tissue and Blastema Transplantations. Methods Mol Biol 2023; 2562:235-247. [PMID: 36272080 DOI: 10.1007/978-1-0716-2659-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Embryo grafts have been an experimental pillar in developmental biology, and particularly, in amphibian biology. Grafts have been essential in constructing fate maps of different cell populations and migratory patterns. Likewise, autografts and allografts in older larvae or adult salamanders have been widely used to disentangle mechanisms of regeneration. The combination of transgenesis and grafting has widened even more the application of this technique.In this chapter, we provide a detailed protocol for embryo transplants in the axolotl (Ambystoma mexicanum ). The location and stages to label connective tissue, muscle, or blood vessels in the limb and blood cells in the whole animal. However, the potential of embryo transplants is enormous and impossible to cover in one chapter. Furthermore, we provide a protocol for blastema transplantation as an example of allograft in older larvae.
Collapse
Affiliation(s)
- Maritta Schuez
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Joshua D Currie
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Tatiana Sandoval-Guzmán
- Medical Faculty: Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Muscle Regeneration in Holothurians without the Upregulation of Muscle Genes. Int J Mol Sci 2022; 23:ijms232416037. [PMID: 36555677 PMCID: PMC9785333 DOI: 10.3390/ijms232416037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The holothurian Eupentacta fraudatrix is capable of fully restoring its muscles after transverse dissection. Although the regeneration of these structures is well studied at the cellular level, the molecular basis of the process remains poorly understood. To identify genes that may be involved in the regulation of muscle regeneration, the transcriptome of the longitudinal muscle band of E. fraudatrix has been sequenced at different time periods post-injury. An analysis of the map of biological processes and pathways has shown that most genes associated with myogenesis decrease their expression during the regeneration. The only exception is the genes united by the GO term "heart valve development". This may indicate the antiquity of mechanisms of mesodermal structure transformation, which was co-opted into various morphogeneses in deuterostomes. Two groups of genes that play a key role in the regeneration have been analyzed: transcription factors and matrix metalloproteinases. A total of six transcription factor genes (Ef-HOX5, Ef-ZEB2, Ef-RARB, Ef-RUNX1, Ef-SOX17, and Ef-ZNF318) and seven matrix metalloproteinase genes (Ef-MMP11, Ef-MMP13, Ef-MMP13-1, Ef-MMP16-2, Ef-MMP16-3, Ef-MMP24, and Ef-MMP24-1) showing differential expression during myogenesis have been revealed. The identified genes are assumed to be involved in the muscle regeneration in holothurians.
Collapse
|
11
|
Actin cable formation and epidermis-dermis positional relationship during complete skin regeneration. Sci Rep 2022; 12:15913. [PMID: 36151111 PMCID: PMC9508246 DOI: 10.1038/s41598-022-18175-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Up to a certain developmental stage, a fetus can completely regenerate wounds in the skin. To clarify the mechanism of fetal skin regeneration, identifying when the skin switches from fetal-type wound regeneration to adult-type wound repair is necessary. We hypothesized that this switch occurs at several time points and that complete skin regeneration requires epidermal–dermal interactions and the formation of actin cables. We compared normal skin and wound morphology at each developmental stage. We examined two parameters: epidermal texture and dermal structure. We found that the three-dimensional structure of the skin was completely regenerated in full-thickness skin incisions made before embryonic day (E) 13. However, the skin texture did not regenerate in wounds made after E14. We also found that the dermal structure regenerates up to E16, but wounds created after E17 heal as scars with dermal fibrosis. By controlling the activity of AMP-activated protein kinase and altering actin cable formation, we could regulate scar formation in utero. These findings may contribute to therapies that allow complete skin regeneration without scarring.
Collapse
|
12
|
Su F, Yang H, Sun L. A Review of Histocytological Events and Molecular Mechanisms Involved in Intestine Regeneration in Holothurians. BIOLOGY 2022; 11:1095. [PMID: 35892951 PMCID: PMC9332576 DOI: 10.3390/biology11081095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
Most species of the class Holothuroidea are able to regenerate most of their internal organs following a typical evisceration process, which is a unique mechanism that allows sea cucumbers to survive in adverse environments. In this review, we compare autotomy among different type of sea cucumber and summarize the histocytological events that occur during the five stages of intestinal regeneration. Multiple cytological activities, such as apoptosis and dedifferentiation, take place during wound healing and anlage formation. Many studies have focused on the molecular regulation mechanisms that underlie regeneration, and herein we describe the techniques that have been used as well as the development-related signaling pathways and key genes that are significantly expressed during intestinal regeneration. Future analyses of the underlying mechanisms responsible for intestinal regeneration should include mapping at the single-cell level. Studies of visceral regeneration in echinoderms provide a unique perspective for understanding whole-body regeneration or appendage regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| |
Collapse
|
13
|
NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration. Nat Commun 2021; 12:6336. [PMID: 34732706 PMCID: PMC8566576 DOI: 10.1038/s41467-021-26422-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC. Some fish can regenerate appendages by formation of a structure called the blastema. Here, the authors use single-cell RNA sequencing to characterize the cells required for blastema formation and fin regeneration and identified neural crest cells that orchestrate regeneration via the NRG1/ErbB axis
Collapse
|
14
|
Kyakuno M, Nakamori R, Tazawa I, Uemasu H, Namba N, Tsunekawa N, Noce T, Satoh Y, Takeuchi T, Hayashi T. Photoperiod-independent testicular development in the model newt Pleurodeles waltl. Dev Growth Differ 2021; 63:277-284. [PMID: 34133763 DOI: 10.1111/dgd.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Urodele amphibian newts have unique biological properties in male gametogenesis, in addition to their extreme regenerative capacity. Male newts are able to regenerate new testes even after reaching sexual maturity and can possess multiple testes. Notably, these animals maintain primordial germ cell-like cells in a tissue adjacent to the testis. Spermatogenesis proceeds while synchronizing in a region-specific manner in the testis. However, the newt species that have been used most commonly require 2-3 years to achieve sexual maturity, and spermatogenesis in these species shows seasonality. These traits have restricted the use of newts for studies on testicular development and spermatogenesis, and testis development in newts remains poorly characterized. Recently, the Iberian ribbed newt Pleurodeles waltl has been established as an emerging model organism. P. waltl reaches sexual maturity more quick after birth than do other newts and is capable of breeding year-round. Thus, P. waltl is expected to serve as an appealing experimental model for studying the mechanisms of male gametogenesis in the urodeles. In the present study, we use P. waltl to describe the entire developmental process of the newt testis from primordial gonad to maturity. Notably, the mature testes show synchronized progression of spermatogenesis along the anteroposterior axis. Additionally, we demonstrate that the process of spermatogenesis in P. waltl proceeds irrespective of day length. Our results show that P. waltl newts are a suitable model for investigating the process of testicular development. We also expect that these results will be useful for the maintenance of P. waltl bioresources.
Collapse
Affiliation(s)
- Mitsuki Kyakuno
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Rei Nakamori
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hitoshi Uemasu
- Division of Pediatrics and Perinatology, School of Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, School of Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Naoki Tsunekawa
- Collage of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Japan
| | - Yukio Satoh
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
15
|
Sader F, Roy S. Tgf-β superfamily and limb regeneration: Tgf-β to start and Bmp to end. Dev Dyn 2021; 251:973-987. [PMID: 34096672 DOI: 10.1002/dvdy.379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Axolotls represent a popular model to study how nature solved the problem of regenerating lost appendages in tetrapods. Our work over many years focused on trying to understand how these animals can achieve such a feat and not end up with a scarred up stump. The Tgf-β superfamily represents an interesting family to target since they are involved in wound healing in adults and pattern formation during development. This family is large and comprises Tgf-β, Bmps, activins and GDFs. In this review, we present work from us and others on Tgf-β & Bmps and highlight interesting observations between these two sub-families. Tgf-β is important for the preparation phase of regeneration and Bmps for the redevelopment phase and they do not overlap with one another. We present novel data showing that the Tgf-β non-canonical pathway is also not active during redevelopment. Finally, we propose a molecular model to explain how Tgf-β and Bmps maintain distinct windows of expression during regeneration in axolotls.
Collapse
Affiliation(s)
- Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Huang T, Zuo L, Walczyńska KS, Zhu M, Liang Y. Essential roles of matrix metalloproteinases in axolotl digit regeneration. Cell Tissue Res 2021; 385:105-113. [PMID: 33783606 DOI: 10.1007/s00441-021-03434-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
Among vertebrates, urodele amphibians possess a unique ability to regenerate various body parts including limbs. However, reports of their digit regeneration remain scarce, especially information about the related genes. In this study, it was evident that matrix metalloproteinases (mmps) including mmp9, mmp3/10a, and mmp3/10b, which play a crucial role in tissue remodeling, are highly expressed during early stages of digit regeneration in axolotl. Using in situ hybridization, we revealed that wound epidermis and blastema are two major origins of the MMPs during the regeneration process. Additionally, we found that the inhibition of MMPs with GM6001 (a wide-spectrum inhibitor of MMPs) in vivo after amputation disturbed normal digit regeneration process and resulted in malformed regenerates. Furthermore, inhibition of MMPs hindered blastema formation and decreased cell apoptosis at early stages in the digit regenerates. All these points suggest that MMPs are required for digit regeneration, as they play a significant role in the regulation of blastema formation.
Collapse
Affiliation(s)
- Tianyue Huang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zuo
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Katarzyna S Walczyńska
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mengying Zhu
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yujun Liang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
17
|
Corradetti B, Dogra P, Pisano S, Wang Z, Ferrari M, Chen SH, Sidman RL, Pasqualini R, Arap W, Cristini V. Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective: Comparing the regenerative potential of mammalian embryos and urodeles to develop effective strategies against human cancer. Bioessays 2021; 43:e2000339. [PMID: 33751590 DOI: 10.1002/bies.202000339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Here we review and discuss the link between regeneration capacity and tumor suppression comparing mammals (embryos versus adults) with highly regenerative vertebrates. Similar to mammal embryo morphogenesis, in amphibians (essentially newts and salamanders) the reparative process relies on a precise molecular and cellular machinery capable of sensing abnormal signals and actively reprograming or eliminating them. As the embryo's evil twin, tumor also retains common functional attributes. The immune system plays a pivotal role in maintaining a physiological balance to provide surveillance against tumor initiation or to support its initiation and progression. We speculate that susceptibility to cancer development in adult mammals may be determined by the loss of an advanced regenerative capability during evolution and believe that gaining mechanistic insights into how regenerative capacity linked to tumor suppression is postnatally lost in mammals might illuminate an as yet unrecognized route to cancer treatment.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Texas A&M Health Science Center, College of Medicine, 8446 Riverside Pkwy, Bryan, TX, 77807, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Mauro Ferrari
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, Texas, USA.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
|
19
|
Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death Differ 2021; 28:1110-1125. [PMID: 33116295 PMCID: PMC7937690 DOI: 10.1038/s41418-020-00640-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
While the capacity to regenerate tissues or limbs is limited in mammals, including humans, axolotls are able to regrow entire limbs and major organs after incurring a wound. The wound blastema has been extensively studied in limb regeneration. However, due to the inadequate characterization of ECM and cell subpopulations involved in the regeneration process, the discovery of the key drivers for human limb regeneration remains unknown. In this study, we applied large-scale single-cell RNA sequencing to classify cells throughout the adult axolotl limb regeneration process, uncovering a novel regeneration-specific mitochondria-related cluster supporting regeneration through energy providing and the ECM secretion (COL2+) cluster contributing to regeneration through cell-cell interactions signals. We also discovered the dedifferentiation and re-differentiation of the COL1+/COL2+ cellular subpopulation and exposed a COL2-mitochondria subcluster supporting the musculoskeletal system regeneration. On the basis of these findings, we reconstructed the dynamic single-cell transcriptome of adult axolotl limb regenerative process, and identified the novel regenerative mitochondria-related musculoskeletal populations, which yielded deeper insights into the crucial interactions between cell clusters within the regenerative microenvironment.
Collapse
|
20
|
Abstract
Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure. A key role of the SASP is the recruitment of immune cells to the site of injury and the subsequent elimination of senescent cells. Among these cell types are macrophages, which have well-documented regulatory roles in all stages of regeneration and repair. However, while the role of senescent cells and macrophages in this process is starting to be explored, the specific interactions between these cell types and how these are important in the different stages of injury/reparative response still require further investigation. In this review, we consider the current literature regarding the interaction of these cell types, how their cooperation is important for regeneration and repair, and what questions remain to be answered to advance the field.
Collapse
|
21
|
Lieggi C, Kalueff AV, Lawrence C, Collymore C. The Influence of Behavioral, Social, and Environmental Factors on Reproducibility and Replicability in Aquatic Animal Models. ILAR J 2020; 60:270-288. [PMID: 32400880 PMCID: PMC7743897 DOI: 10.1093/ilar/ilz019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The publication of reproducible, replicable, and translatable data in studies utilizing animal models is a scientific, practical, and ethical necessity. This requires careful planning and execution of experiments and accurate reporting of results. Recognition that numerous developmental, environmental, and test-related factors can affect experimental outcomes is essential for a quality study design. Factors commonly considered when designing studies utilizing aquatic animal species include strain, sex, or age of the animal; water quality; temperature; and acoustic and light conditions. However, in the aquatic environment, it is equally important to consider normal species behavior, group dynamics, stocking density, and environmental complexity, including tank design and structural enrichment. Here, we will outline normal species and social behavior of 2 commonly used aquatic species: zebrafish (Danio rerio) and Xenopus (X. laevis and X. tropicalis). We also provide examples as to how these behaviors and the complexity of the tank environment can influence research results and provide general recommendations to assist with improvement of reproducibility and replicability, particularly as it pertains to behavior and environmental complexity, when utilizing these popular aquatic models.
Collapse
Affiliation(s)
- Christine Lieggi
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Hospital for Special Surgery, New York, New York
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China, and Ural Federal University, Ekaterinburg, Russia
| | | | | |
Collapse
|
22
|
Mashkouli M, Aghaei M, Mofid MR. Purification of Soluble Membrane-Bound Ambystoma mexicanum Epidermal Lipoxygenase from E. coli and Its Growth Effect on Human Fetal Foreskin Fibroblast. Protein J 2020; 39:377-382. [PMID: 32285244 DOI: 10.1007/s10930-020-09898-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoxygenases are non-heme iron-containing lipid dioxygenases enzymes that catalyze the hydroperoxidation of lipids. The Mexican axolotl (Ambystoma mexicanum) is a prominent source of the enzyme with a regeneration capacity in limbs. It has been shown that transfected human osteosarcoma and keratinocyte cells with epidermal lipoxygenase (LOXe) have an increased rate of cell migration. In the present study, LOXe, a peripheral membrane protein, was produced in Escherichia coli. The enzyme was purified using different detergents, anionic solutions, and gel filtration chromatography. Kinetic assay of the enzyme activity was carried out by the spectroscopy method using arachidonic acid as a substrate. Finally, the enzyme was characterized and its growth effect on human fibroblast cells was examined by MTT viability assay. Enzyme kinetic parameters including Km of 90.4 µM and Vmax of 2.63 IU were determined for LOXe. The enzyme with 0.1 nM end concentration promoted the growth of 5000 cells/well human fibroblast cells up to 11% (P < 0.01). In the present study, we introduce an E. coli expression system to produce an excessive amount of soluble LOXe and the efficient purification method to provide a soluble and active form of LOXe that is effective in stimulating human fibroblast cell proliferation.
Collapse
Affiliation(s)
- Maryam Mashkouli
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
23
|
Yoshida K, Kawakami K, Abe G, Tamura K. Zebrafish can regenerate endoskeleton in larval pectoral fin but the regenerative ability declines. Dev Biol 2020; 463:110-123. [PMID: 32422142 DOI: 10.1016/j.ydbio.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/12/2023]
Abstract
We show for the first time endoskeletal regeneration in the developing pectoral fin of zebrafish. The developing pectoral fin contains an aggregation plate of differentiated chondrocytes (endochondral disc; primordium for endoskeletal components, proximal radials). The endochondral disc can be regenerated after amputation in the middle of the disc. The regenerated disc sufficiently forms endoskeletal patterns. Early in the process of regenerating the endochondral disc, epithelium with apical ectodermal ridge (AER) marker expression rapidly covers the amputation plane, and mesenchymal cells start to actively proliferate. Taken together with re-expression of a blastema marker gene, msxb, and other developmental genes, it is likely that regeneration of the endochondral disc recaptures fin development as epimorphic limb regeneration does. The ability of endoskeletal regeneration declines during larval growth, and adult zebrafish eventually lose the ability to regenerate endoskeletal components such that amputated endoskeletons become enlarged. Endoskeletal regeneration in the zebrafish pectoral fin will serve as a new model system for successful appendage regeneration in mammals.
Collapse
Affiliation(s)
- Keigo Yoshida
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
24
|
Abstract
The spectrum of ischemic heart diseases, encompassing acute myocardial infarction to heart failure, represents the leading cause of death worldwide. Although extensive progress in cardiovascular diagnoses and therapy has been made, the prevalence of the disease continues to increase. Cardiac regeneration has a promising perspective for the therapy of heart failure. Recently, extracellular matrix (ECM) has been shown to play an important role in cardiac regeneration and repair after cardiac injury. There is also evidence that the ECM could be directly used as a drug to promote cardiomyocyte proliferation and cardiac regeneration. Increasing evidence supports that applying ECM biomaterials to maintain heart function recovery is an important approach to apply the concept of cardiac regenerative medicine to clinical practice in the future. Here, we will introduce the essential role of cardiac ECM in cardiac regeneration and summarize the approaches of delivering ECM biomaterials to promote cardiac repair in this review.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
25
|
The potential role of Krüppel-like factor 13 (Aj-klf13) in the intestine regeneration of sea cucumber Apostichopus japonicus. Gene 2020; 735:144407. [DOI: 10.1016/j.gene.2020.144407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
|
26
|
Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol 2019; 100:109-121. [PMID: 31831357 DOI: 10.1016/j.semcdb.2019.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Skin wounds are among the most common injuries in animals and humans. Vertebrate skin is composed of an epidermis and dermis. After a deep skin injury in mammals, the wound heals, but the dermis cannot regenerate. Instead, collagenous scar tissue forms to fill the gap in the dermis, but the scar does not function like the dermis and often causes disfiguration. In contrast, in non-amniote vertebrates, including fish and amphibians, the dermis and skin derivatives are regenerated after a deep skin injury, without a recognizable scar remaining. Furthermore, skin regeneration can be compared with a higher level of organ regeneration represented by limb regeneration in these non-amniotes, as fish, anuran amphibians (frogs and toads), and urodele amphibians (newts and salamanders) have a high capacity for organ regeneration. Comparative studies of skin regeneration together with limb or other organ regeneration could reveal how skin regeneration is stepped up to a higher level of regeneration. The long history of regenerative biology research has revealed that fish, anurans, and urodeles have their own strengths as models for regeneration studies, and excellent model organisms of these non-amniote vertebrates that are suitable for molecular genetic studies are now available. Here, we summarize the advantages of fish, anurans, and urodeles for skin regeneration studies with special reference to three model organisms: zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and Iberian ribbed newt (Pleurodele waltl). All three of these animals quickly cover skin wounds with the epidermis (wound epidermis formation) and regenerate the dermis and skin derivatives as adults. The availability of whole genome sequences, transgenesis, and genome editing with these models enables cell lineage tracing and the use of human disease models in skin regeneration phenomena, for example. Zebrafish present particular advantages in genetics research (e.g., human disease model and Cre-loxP system). Amphibians (X. laevis and P. waltl) have a skin structure (keratinized epidermis) common with humans, and skin regeneration in these animals can be stepped up to limb regeneration, a higher level of regeneration.
Collapse
|
27
|
Identification and characterization of POU class V family genes in Japanese red bellied newt, Cynops pyrrhogaster. ZYGOTE 2019; 27:329-336. [PMID: 31412969 DOI: 10.1017/s0967199419000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammalian Pou5f1 encodes the POU family class V (POU-V) transcription factor which is essential for the pluripotency of embryonic cells and germ cells. In vertebrates, various POU-V family genes have been identified and classified into the POU5F1 family or its paralogous POU5F3 family. In this study, we cloned two cDNAs named CpPou5f1 and CpPou5f3, which encode POU-V family proteins of the Japanese red bellied newt Cynops pyrrhogaster. In the predicted amino acid sequence encoded by CpPou5f1, the typical MAGH sequence at the N-terminus and deletion of arginine at the fifth position of POU-homeodomain were recognized, but not in the sequence encoded by CpPou5f3. Phylogenetic analysis using Clustal Omega software indicated that CpPou5f1 and CpPou5f3 are classified into the clade of the POU5F1 and POU5F3 families, respectively. In a real-time polymerase chain reaction (RT-PCR) analysis, the marked gene expression of CpPou5f1 was observed during oogenesis and early development up to the tail-bud stage, whereas weak gene expression of CpPou5f3 was detected only in the early stages of oogenesis and gastrula. In adult organs, CpPou5f1 was expressed only in the ovary, while gene expression of CpPou5f3 was recognized in various organs. A regeneration experiment using larval forelimb revealed that transient gene expression of CpPou5f1 occurred at the time of wound healing, followed by gene activation of CpPou5f3 during the period of blastema formation. These results suggest that CpPou5f1 and CpPou5f3 might play different roles in embryogenesis and limb regeneration.
Collapse
|
28
|
Perry BW, Andrew AL, Mostafa Kamal AH, Card DC, Schield DR, Pasquesi GIM, Pellegrino MW, Mackessy SP, Chowdhury SM, Secor SM, Castoe TA. Multi-species comparisons of snakes identify coordinated signalling networks underlying post-feeding intestinal regeneration. Proc Biol Sci 2019; 286:20190910. [PMID: 31288694 DOI: 10.1098/rspb.2019.0910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several snake species that feed infrequently in nature have evolved the ability to massively upregulate intestinal form and function with each meal. While fasting, these snakes downregulate intestinal form and function, and upon feeding restore intestinal structure and function through major increases in cell growth and proliferation, metabolism and upregulation of digestive function. Previous studies have identified changes in gene expression that underlie this regenerative growth of the python intestine, but the unique features that differentiate this extreme regenerative growth from non-regenerative post-feeding responses exhibited by snakes that feed more frequently remain unclear. Here, we leveraged variation in regenerative capacity across three snake species-two distantly related lineages ( Crotalus and Python) that experience regenerative growth, and one ( Nerodia) that does not-to infer molecular mechanisms underlying intestinal regeneration using transcriptomic and proteomic approaches. Using a comparative approach, we identify a suite of growth, stress response and DNA damage response signalling pathways with inferred activity specifically in regenerating species, and propose a hypothesis model of interactivity between these pathways that may drive regenerative intestinal growth in snakes.
Collapse
Affiliation(s)
- Blair W Perry
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Audra L Andrew
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Abu Hena Mostafa Kamal
- 2 Department of Chemistry and Biochemistry, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Daren C Card
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Drew R Schield
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Giulia I M Pasquesi
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Mark W Pellegrino
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Stephen P Mackessy
- 3 School of Biological Sciences, University of Northern Colorado , 501 20th Street, Greeley, CO 80639 , USA
| | - Saiful M Chowdhury
- 2 Department of Chemistry and Biochemistry, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Stephen M Secor
- 4 Department of Biological Sciences, University of Alabama , Box 870344, Tuscaloosa, AL 35487 , USA
| | - Todd A Castoe
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| |
Collapse
|
29
|
|
30
|
Chou J, Ferris AC, Chen T, Seok R, Yoon D, Suzuki Y. Roles of Polycomb group proteins Enhancer of zeste (E(z)) and Polycomb (Pc) during metamorphosis and larval leg regeneration in the flour beetle Tribolium castaneum. Dev Biol 2019; 450:34-46. [PMID: 30851270 DOI: 10.1016/j.ydbio.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022]
Abstract
Many organisms both undergo dramatic morphological changes during post-embryonic development and also regenerate lost structures, but the roles of epigenetic regulators in such processes are only beginning to be understood. In the present study, the functions of two histone modifiers were examined during metamorphosis and larval limb regeneration in the red flour beetle Tribolium castaneum. Polycomb (Pc), a member of Polycomb repressive complex 1 (PRC1), and Enhancer of zeste (E(z)), a member of Polycomb repressive complex 2 (PRC2), were silenced in larvae using RNA interference. In the absence of Pc, the head appendages of adults transformed into a leg-like morphology, and the legs and wings assumed a metathoracic identity, indicating that Pc acts to specify proper segmental identity. Similarly, silencing of E(z) led to homeotic transformation of legs and wings. Additional defects were also observed in limb patterning as well as eye morphogenesis, indicating that PcG proteins play critical roles in imaginal precursor cells. In addition, larval legs and antennae failed to re-differentiate when either Pc or E(z) was knocked down, indicating that histone modification is necessary for proper blastema growth and differentiation. These findings indicate that PcG proteins play extensive roles in postembryonic plasticity of imaginal precursor cells.
Collapse
Affiliation(s)
- Jacquelyn Chou
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Alex C Ferris
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Teresa Chen
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Ruth Seok
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Denise Yoon
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA.
| |
Collapse
|
31
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
32
|
Chromatin dynamics underlying the precise regeneration of a vertebrate limb - Epigenetic regulation and cellular memory. Semin Cell Dev Biol 2019; 97:16-25. [PMID: 30991117 DOI: 10.1016/j.semcdb.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Wound healing, tissue regeneration, and organ regrowth are all regeneration phenomena observed in vertebrates after an injury. However, the ability to regenerate differs greatly among species. Mammals can undergo wound healing and tissue regeneration, but cannot regenerate an organ; for example, they cannot regrow an amputated limb. In contrast, amphibians and fish have much higher capabilities for organ-level regeneration. In addition to medical studies and those in conventional mammalian models such as mice, studies in amphibians and fish have revealed essential factors for and mechanisms of regeneration, including the regrowth of a limb, tail, or fin. However, the molecular nature of the cellular memory needed to precisely generate a new appendage from an amputation site is not fully understood. Recent reports have indicated that organ regeneration is closely related to epigenetic regulation. For example, the methylation status of genomic DNA is related to the expression of regeneration-related genes, and histone-modification enzymes are required to control the chromatin dynamics for regeneration. A proposed mechanism of cellular memory involving an inheritable system of epigenetic modification led us to hypothesize that epigenetic regulation forms the basis for cellular memory in organ regeneration. Here we summarize the current understanding of the role of epigenetic regulation in organ regeneration and discuss the relationship between organ regeneration and epigenetic memory.
Collapse
|
33
|
Aedo G, Miranda M, Chávez MN, Allende ML, Egaña JT. A Reliable Preclinical Model to Study the Impact of Cigarette Smoke in Development and Disease. ACTA ACUST UNITED AC 2019; 80:e78. [PMID: 31058471 DOI: 10.1002/cptx.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The World Health Organization has estimated that, worldwide, cigarette smoking has caused more than 100 million deaths in the last century, a number that is expected to increase in the future. Understanding cigarette smoke toxicity is key for research and development of proper public health policies. The current challenge is to establish a reliable preclinical model to evaluate the effects of cigarette smoke. In this work, we describe a simple method that allows for quantifying the toxic effects of cigarette smoke using zebrafish. Here, viability of larvae and adult fish, as well as the effects of cigarette smoke extracts on vascular development and tissue regeneration, can be easily assayed. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Geraldine Aedo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Advanced Center for Chronic Disease, Center for Molecular Studies of the Cell, Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Myra N Chávez
- FONDAP Advanced Center for Chronic Disease, Center for Molecular Studies of the Cell, Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José T Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Suzuki Y, Chou J, Garvey SL, Wang VR, Yanes KO. Evolution and Regulation of Limb Regeneration in Arthropods. Results Probl Cell Differ 2019; 68:419-454. [PMID: 31598866 DOI: 10.1007/978-3-030-23459-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration has fascinated both scientists and non-scientists for centuries. Many organisms can regenerate, and arthropod limbs are no exception although their ability to regenerate is a product shaped by natural and sexual selection. Recent studies have begun to uncover cellular and molecular processes underlying limb regeneration in several arthropod species. Here we argue that an evo-devo approach to the study of arthropod limb regeneration is needed to understand aspects of limb regeneration that are conserved and divergent. In particular, we argue that limbs of different species are comprised of cells at distinct stages of differentiation at the time of limb loss and therefore provide insights into regeneration involving both stem cell-like cells/precursor cells and differentiated cells. In addition, we review recent studies that demonstrate how limb regeneration impacts the development of the whole organism and argue that studies on the link between local tissue damage and the rest of the body should provide insights into the integrative nature of development. Molecular studies on limb regeneration are only beginning to take off, but comparative studies on the mechanisms of limb regeneration across various taxa should not only yield interesting insights into development but also answer how this remarkable ability evolved across arthropods and beyond.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| | - Jacquelyn Chou
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Sarah L Garvey
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Victoria R Wang
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Katherine O Yanes
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
35
|
Wang D, Ba H, Li C, Zhao Q, Li C. Proteomic Analysis of Plasma Membrane Proteins of Antler Stem Cells Using Label-Free LC⁻MS/MS. Int J Mol Sci 2018; 19:3477. [PMID: 30400663 PMCID: PMC6275008 DOI: 10.3390/ijms19113477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Deer antlers are unusual mammalian organs that can fully regenerate after annual shedding. Stem cells resident in the pedicle periosteum (PPCs) provide the main cell source for antler regeneration. Central to various cellular processes are plasma membrane proteins, but the expression of these proteins has not been well documented in antler regeneration. In the present study, plasma membrane proteins of PPCs and facial periosteal cells (FPCs) were analyzed using label-free liquid chromatography⁻mass spetrometry (LC⁻MS/MS). A total of 1739 proteins were identified. Of these proteins, 53 were found solely in the PPCs, 100 solely in the FPCs, and 1576 co-existed in both PPCs and FPCs; and 39 were significantly up-regulated in PPCs and 49 up-regulated in FPCs. In total, 226 gene ontology (GO) terms were significantly enriched from the differentially expressed proteins (DEPs). Five clusters of biological processes from these GO terms comprised responses to external stimuli, signal transduction, membrane transport, regulation of tissue regeneration, and protein modification processes. Further studies are required to demonstrate the relevancy of these DEPs in antler stem cell biology and antler regeneration.
Collapse
Affiliation(s)
- Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Chenguang Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Quanmin Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- Department of Biology, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
36
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
37
|
Allen PJ, Baumgartner W, Brinkman E, DeVries RJ, Stewart HA, Aboagye DL, Ramee SW, Ciaramella MA, Culpepper CM, Petrie-Hanson L. Fin healing and regeneration in sturgeon. JOURNAL OF FISH BIOLOGY 2018; 93:917-930. [PMID: 30198116 DOI: 10.1111/jfb.13794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Pectoral fin healing in fin spines and rays were examined in juvenile Atlantic sturgeon Acipenser oxyrinchus oxyrinchus following three different sampling techniques (n = 8-9 fish per treatment): entire leading fin spine removed, a 1-2 cm portion removed near the point of articulation, or a 1-2 cm portion removed from a secondary fin ray. Also, to determine whether antibiotic treatment influences healing, an additional group of fish (n = 8) was not given an injection of an oxytetracycline (OTC)-based antibiotic following removal of the entire leading fin spine. Following fin sampling, fish from different treatments were mixed equally between three large (4,000 I) recirculating systems and fin-ray healing and mortality were monitored over a 12 month period. To assess healing, blood samples were collected at 4 months to measure immune system responses, radiographs were taken at 4, 8 and 12 months to assess the degree of calcification in regions of damaged fins and fins were analyzed histologically at 12 months. Fish grew from a mean weight of 1.8 to 3.2 kg during the experiment and survival was near 100% in all treatments, with only one fish dying of unknown causes. Leukocyte counts, an indication of health status and survival were similar among treatments and in groups with or without antibiotic injection. Radiographs revealed mineralization took longer in fish with the entire leading fin spine removed and was the slowest near the point of articulation, presumably due to the greater structural support for the pectoral fin at this location. Histological sampling indicated spines and rays had similar healing patterns. Following injury, an orderly matrix of collagen bundles and many evenly spaced scleroblasts were present, transitioning to Sharpey fibres, with concentric layers forming lamellar bone. Healing and mineralization were characterized as periosteal osteogenesis and included embedded osteocytes surrounded by an osteoid seam. Chondroid formation was apparent in a few fractures not associated with treatments. The duration of time for external wound healing and internal mineralization of spines and rays depended on the fin treatment, with the slowest healing observed in fish with the most tissue removed, the entire leading fin spine.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Wes Baumgartner
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Erin Brinkman
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Robert J DeVries
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Heather A Stewart
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Daniel L Aboagye
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Shane W Ramee
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Michael A Ciaramella
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Charlie M Culpepper
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi
| | - Lora Petrie-Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
38
|
Singh BN, Weaver CV, Garry MG, Garry DJ. Hedgehog and Wnt Signaling Pathways Regulate Tail Regeneration. Stem Cells Dev 2018; 27:1426-1437. [PMID: 30003832 DOI: 10.1089/scd.2018.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urodele amphibians have a tremendous capacity for the regeneration of appendages, including limb and tail, following injury. While studies have focused on the cellular and morphological changes during appendicular regeneration, the signaling mechanisms that govern these cytoarchitectural changes during the regenerative response are unclear. In this study, we describe the essential role of hedgehog (Hh) and Wnt signaling pathways following tail amputation in the newt. Quantitative PCR studies revealed that members of both the Hh and Wnt signaling pathways, including the following: shh, ihh, ptc-1, wnt-3a, β-catenin, axin2, frizzled (frzd)-1, and frzd-2 transcripts, were induced following injury. Continuous pharmacological-mediated inhibition of Hh signaling resulted in spike-like regenerates with no evidence of tissue patterning, whereas activation of Hh signaling enhanced the regenerative process. Pharmacological-mediated temporal inhibition experiments demonstrated that the Hh-mediated patterning of the regenerating tail occurs early during regeneration and Hh signals are continuously required for proliferation of the blastemal progenitors. BrdU incorporation and PCNA immunohistochemical studies demonstrated that Hh signaling regulates the cellular proliferation of the blastemal cells following amputation. Similarly, Wnt inhibition resulted in perturbed regeneration, whereas its activation promoted tail regeneration. Using an inhibitor-activator strategy, we demonstrated that the Wnt pathway is likely to be upstream of the Hh pathway and together these signaling pathways function in a coordinated manner to facilitate tail regeneration. Mechanistically, the Wnt signaling pathway activated the Hh signaling pathway that included ihh and ptc-1 during the tail regenerative process. Collectively, our results demonstrate the absolute requirement of signaling pathways that are essential in the regulation of tail regeneration.
Collapse
Affiliation(s)
- Bhairab N Singh
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Cyprian V Weaver
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Mary G Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
39
|
Shibata E, Liu Z, Kawasaki T, Sakai N, Kawakami A. Robust and local positional information within a fin ray directs fin length during zebrafish regeneration. Dev Growth Differ 2018; 60:354-364. [PMID: 29992536 DOI: 10.1111/dgd.12558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
It has been proposed that cells are regulated to form specific morphologies and sizes according to positional information. However, the entity and nature of positional information have not been fully understood yet. The zebrafish caudal fin has a characteristic V-shape; dorsal and ventral fin rays are longer than the central ones. This fin shape regenerates irrespective of the sites or shape of fin amputation. It is thought that reformation of tissue occurs according to positional information. In this study, we developed a novel transplantation procedure for grafting a whole fin ray to an ectopic position and examined whether the information that specifies fin length exists within each fin ray. Intriguingly, when long and short fin rays were swapped, they regenerated to form longer or shorter fin rays than the adjacent host fin rays, respectively. Further, the abnormal fin ray lengths were maintained for a long time, more than 5 months, and after further re-amputation. In contrast to intra-fin grafting, when fin ray grafting was performed between fish, cells in the grafts disappeared due to immune rejection, and the grafted fin rays adapted to the host position to form a normal fin. Together, our data suggest that the information that directs fin length does exist in cells within a single fin ray and that it has a robust property-it is stable for a long time and is hard to rewrite. Our study highlighted a novel positional information mechanism for directing regenerating fin length.
Collapse
Affiliation(s)
- Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Zhengcheng Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Noriyuki Sakai
- Genetic Strains Research Center, National Institute of Genetics, and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
40
|
Yokoyama H, Kudo N, Todate M, Shimada Y, Suzuki M, Tamura K. Skin regeneration of amphibians: A novel model for skin regeneration as adults. Dev Growth Differ 2018; 60:316-325. [DOI: 10.1111/dgd.12544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori Japan
| | - Nanako Kudo
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori Japan
| | - Momoko Todate
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori Japan
| | - Yuri Shimada
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori Japan
| | - Makoto Suzuki
- Division of Morphogenesis; National Institute for Basic Biology; National Institutes of Natural Sciences; Okazaki Aichi Japan
- Department of Basic Biology; School of Life Science; the Graduate University of Advanced Studies; Hayama Kanagawa Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
| |
Collapse
|
41
|
Fan SMY, Tsai CF, Yen CM, Lin MH, Wang WH, Chan CC, Chen CL, Phua KKL, Pan SH, Plikus MV, Yu SL, Chen YJ, Lin SJ. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials 2018; 167:121-131. [PMID: 29567388 PMCID: PMC6050066 DOI: 10.1016/j.biomaterials.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
Organ development is a sophisticated process of self-organization. However, despite growing understanding of the developmental mechanisms, little is known about how to reactivate them postnatally for regeneration. We found that treatment of adult non-hair fibroblasts with cell-free extract from embryonic skin conferred upon them the competency to regenerate hair follicles. Proteomics analysis identified three secreted proteins enriched in the embryonic skin, apolipoprotein-A1, galectin-1 and lumican that together were essential and sufficient to induce new hair follicles. These 3 proteins show a stage-specific co-enrichment in the perifolliculogenetic embryonic dermis. Mechanistically, exposure to embryonic skin extract or to the combination of the 3 proteins altered the gene expression to an inductive hair follicle dermal papilla fibroblast-like profile and activated Igf and Wnt signaling, which are crucial for the regeneration process. Therefore, a cocktail of organ-specific extracellular proteins from the embryonic environment can render adult cells competent to re-engage in developmental interactions for organ neogenesis. Identification of factors that recreate the extracellular context of respective developing tissues can become an important strategy to promote regeneration in adult organs.
Collapse
Affiliation(s)
- Sabrina Mai-Yi Fan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Feng Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chien-Mei Yen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei-Hung Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Chan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Lung Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kyle K L Phua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
42
|
Murawala H, Patel S, Ranadive I, Desai I, Balakrishnan S. Variation in expression and activity pattern of mmp2 and mmp9 on different time scales in the regenerating caudal fin of Poecilia latipinna. JOURNAL OF FISH BIOLOGY 2018; 92:1604-1619. [PMID: 29633266 DOI: 10.1111/jfb.13618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Alteration in the expression pattern of matrix metalloproteinase (MMP)2 and MMP9 was studied in the regenerating caudal fin of Poecilia latipinna immediately following amputation until the new tissues gained structural integrity. Timed expression pattern of these two MMPs was studied at enzyme, transcript as well as protein levels. Additionally, both the gelatinases were localized in the regenerating caudal fin during three specific stages of regeneration. The results revealed a progressive increase in the expression of MMP2 starting at 1 h post amputation (hpa), indicating its possible role in the remodelling of extracellular matrix early on during caudal-fin regeneration. Nevertheless, a reduction in transcript level expression of MMP2 at 6 hpa and 12 hpa stages, points towards a possible transcriptional regulation, to further moderate its activity. As observed in the case of MMP2, expression of MMP9 too increased from 1 hpa and remained elevated until 5 dpa. However, the active MMP9 revealed its presence only 12 hpa onwards. Moreover, both the gelatinases were localised in the apical epithelial cap and in the progress zone at wound epithelium (1 dpa) and blastema (60 hpa) stages respectively. Further, during early differentiation stage (5 dpa), high intensities of MMP2 and MMP9 were localized in the newly formed actinotrichia as compared with the tissue proximal to it. Based on the results, it could be construed that the controlled up-regulation of MMP2 and MMP9 from 1 hpa until the early differentiation stage ensures a regulated digestion of extracellular matrix, perhaps to facilitate the recruitment, proliferation, morphogenesis and re-patterning of resident stem cells during caudal fin regeneration in P. latipinna.
Collapse
Affiliation(s)
- H Murawala
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - S Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar, Anand, 388120, Gujarat, India
| | - S Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
43
|
Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Semin Immunol 2018; 36:45-55. [PMID: 29550156 DOI: 10.1016/j.smim.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS). In turn, tissue repair offers a very important test case for assessing the usefulness of the concept of robustness, and identifying different varieties of robustness.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Department of Rheumatology, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
44
|
Zhang M, Yang L, Yuan F, Chen Y, Lin G. Dicer inactivation stimulates limb regeneration ability in Xenopus laevis. Wound Repair Regen 2018; 26:46-53. [PMID: 29453851 DOI: 10.1111/wrr.12619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
The ontogenetic decline of regeneration capacity in the anuran amphibian Xenopus makes it an excellent model for regeneration studies. However, the cause of the regeneration ability decline is not fully understood. MicroRNAs regulate animal development and have been indicated in various regeneration situations. However, little is known about the role of microRNAs during limb regeneration in Xenopus. This study investigates the effect of Dicer, an enzyme responsible for microRNA maturation, on limb development and regeneration in Xenopus. Dicer is expressed in the developing Xenopus limbs and is up-regulated after limb amputation during both regeneration-competent and regeneration-deficient stages of tadpole development. Inactivation of Dicer in early (NF stage 53) tadpole limb buds leads to shorter tibulare/fibulare formation but does not affect limb regeneration. However, in late-stage, regeneration-deficient tadpole limbs (NF stage 57), Dicer inactivation restores the regeneration blastema and stimulates limb regeneration. Thus, our results demonstrated that Xenopus limb regeneration can be stimulated by the inactivation of Dicer in nonregenerating tadpoles, indicating that microRNAs present in late-stage tadpole limbs may be involved in the ontogenetic decline of limb regeneration in Xenopus.
Collapse
Affiliation(s)
- Mengshi Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Li Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Feng Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ying Chen
- Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Gufa Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Londono R, Sun AX, Tuan RS, Lozito TP. TISSUE REPAIR AND EPIMORPHIC REGENERATION: AN OVERVIEW. CURRENT PATHOBIOLOGY REPORTS 2018; 6:61-69. [PMID: 29967714 PMCID: PMC6025457 DOI: 10.1007/s40139-018-0161-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF THE REVIEW This manuscript discusses wound healing as a component of epimorphic regeneration and the role of the immune system in this process. RECENT FINDINGS Epimorphic regeneration involves formation of a blastema, a mass of undifferentiated cells capable of giving rise to the regenerated tissues. The apical epithelial cap plays an important role in blastemal formation. SUMMARY True regeneration is rarely observed in mammals. With the exception of transgenic strains, tissue repair in mammals usually leads to non-functional fibrotic tissue formation. In contrast, a number of lower order species including planarians, salamanders, and reptiles, have the ability to overcome the burden of scarring and tissue loss through complex adaptations that allow them to regenerate various anatomic structures through epimorphic regeneration. Blastemal cells have been suggested to originate via various mechanisms including de-differentiation, transdifferentiation, migration of pre-existing adult stem cell niches, and combinations of these.
Collapse
Affiliation(s)
- Ricardo Londono
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron X. Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas P. Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Feng Y, Feng J, Zheng H, Wang W, Chen F, Yu Y, Cui J. Molecular cloning, characterization, and expression analysis of the three cysteine and glycine-rich protein genes in the Chinese fire-bellied newt Cynops orientalis. Gene 2018; 647:226-234. [PMID: 29317320 DOI: 10.1016/j.gene.2018.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
The cysteine- and glycine-rich protein (CRP) family members, including the cysteine- and glycine-rich protein 1 (CSRP1), cysteine- and glycine-rich protein 2 (CSRP2), and the cysteine- and glycine-rich protein 3 (CSRP3), have exhibited various cellular functions during cell development and differentiation. However, the sequences of the three CSRP genes and their functions are still poorly understood in newts. In this study, we cloned the complete open reading frame (ORF) sequences of the three CSRP genes from the Chinese fire-bellied newt, Cynops orientalis (C. orientalis). The complete ORF sequences of Co-CSRP1, Co-CSRP2, and Co-CSRP3 were 582, 582, and 576bp, respectively, and encoded 193, 193, and 191 amino acids, respectively. The deduced amino acid sequences of the three CRP members showed high similarities with that of other species, particularly, with amphibians. Co-CSRP1 was highly expressed in the kidney, limb, and stomach, however, the expression was low in the spleen, heart, intestine, liver, and tail (P<0.05). The mRNA expression of Co-CSRP2 was higher in the kidney and heart than that in other organs (P<0.05). It was observed that Co-CSRP3 was only expressed in the heart, limb, and tail. The mRNA expression of Co-CSRP1 and Co-CSRP3 was lower in the digits in comparison to other limb segments. However, there was no significant difference of Co-CSRP2 mRNA expression in the four limb segments. The Co-CSRP1 and Co-CSRP2 mRNA expressions were significantly increased, whereas the expression of Co-CSRP3 was remarkably decreased during the limb regeneration. This study will provide useful information for further elucidating the role of Co-CSRP genes during newt limb regeneration.
Collapse
Affiliation(s)
- Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Juantao Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanxue Zheng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wenjun Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China.
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China.
| |
Collapse
|
47
|
Elewa A, Wang H, Talavera-López C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao Z, Zamani N, Abbas Y, Abdullayev I, Sandberg R, Grabherr M, Andersson B, Simon A. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun 2017; 8:2286. [PMID: 29273779 PMCID: PMC5741667 DOI: 10.1038/s41467-017-01964-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Salamanders exhibit an extraordinary ability among vertebrates to regenerate complex body parts. However, scarce genomic resources have limited our understanding of regeneration in adult salamanders. Here, we present the ~20 Gb genome and transcriptome of the Iberian ribbed newt Pleurodeles waltl, a tractable species suitable for laboratory research. We find that embryonic stem cell-specific miRNAs mir-93b and mir-427/430/302, as well as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded dramatically in the Pleurodeleswaltl genome and are co-expressed during limb regeneration. Moreover, we find that a family of salamander methyltransferases is expressed specifically in adult appendages. Using CRISPR/Cas9 technology to perturb transcription factors, we demonstrate that, unlike the axolotl, Pax3 is present and necessary for development and that contrary to mammals, muscle regeneration is normal without functional Pax7 gene. Our data provide a foundation for comparative genomic studies that generate models for the uneven distribution of regenerative capacities among vertebrates. The Iberian ribbed newt Pleurodeles waltl has a wide spectrum of regeneration abilities. Here, Elewa et al. sequence its ~20 Gb genome and transcriptome to investigate the molecular features underlying its regenerative capacities.
Collapse
Affiliation(s)
- Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| | - Heng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,The Francis Crick Institute, NW1 1AT, London, UK
| | - Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - L Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - May Penrad-Mobayed
- Institut Jacques Monod, CNRS & University Paris-Diderot, Paris, 75205, France
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Neda Zamani
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Yamen Abbas
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Ilgar Abdullayev
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| |
Collapse
|
48
|
Louie KW, Saera-Vila A, Kish PE, Colacino JA, Kahana A. Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. BMC Genomics 2017; 18:854. [PMID: 29121865 PMCID: PMC5680785 DOI: 10.1186/s12864-017-4236-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. RESULTS Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. CONCLUSIONS Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.
Collapse
Affiliation(s)
- Ke'ale W Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
49
|
Simkin J, Sammarco MC, Marrero L, Dawson LA, Yan M, Tucker C, Cammack A, Muneoka K. Macrophages are required to coordinate mouse digit tip regeneration. Development 2017; 144:3907-3916. [PMID: 28935712 DOI: 10.1242/dev.150086] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022]
Abstract
In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Luis Marrero
- Morphology and Imaging Core Laboratory, Louisiana Health Sciences Center, New Orleans, LA 70112, USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,Department of Veterinary Physiology and Pathology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,Department of Veterinary Physiology and Pathology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Catherine Tucker
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Alex Cammack
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA .,Department of Veterinary Physiology and Pathology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
50
|
Abstract
FOXN1 is a prodifferentiation transcription factor in the skin epithelium. Recently, it has also emerged as an important player in controlling the skin wound healing process, as it actively participates in reepithelialization and is thought to be responsible for scar formation. FOXN1 positivity is also a feature of pigmented keratinocytes, including nevi, and FOXN1 is an attribute of benign epithelial tumors. The lack of FOXN1 favors the skin regeneration process displayed by nude mice, pointing to FOXN1 as a switch between regeneration and reparative processes. The stem cell niche provides a functional source of cells after the loss of tissue following wounding. The involvement of prodifferentiation factors in the regulation of this pool of stem cells is suggested. However, the exact mechanism is still under question, and we speculate that the FOXN1 transcription factor is involved in this process. This review analyzes the pleiotropic effects of FOXN1 in the skin, its function in the tumorigenesis process, and its potential role in depletion of the stem cell niche after injury, as well as its suggested mechanistic role, acting in a cell-autonomous and a non-cell-autonomous manner during skin self-renewal.
Collapse
|