1
|
Chaubey M, Gao H, Lavine CL, Seaman MS, Chen B, Chou JJ. Specific Interactions between HIV-1 Env Cytoplasmic Tail and Gag Matrix Domain Probed by NMR. J Am Chem Soc 2025. [PMID: 40365918 DOI: 10.1021/jacs.5c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion during viral entry. Incorporation of a sufficient number of Envs during viral assembly is critical for viral infectivity. It has long been suggested that the interaction between Env and the matrix domain (MA) of the Gag polyprotein plays an important role in recruiting Envs to the site of viral assembly on the plasma membrane, but direct biochemical and structural evidence is lacking for such an interaction in the context of a membrane-like environment. Here, we report specific structural contacts between the cytoplasmic tail (CT) of the trimeric HIV-1 Env in bicelles and the trimeric MA. Using a combination of measurements of NMR chemical shift perturbation, intermolecular paramagnetic relaxation enhancements, and microscale thermophoresis, we found that, in DMPC-DHPC bicelles that mimic a lipid bilayer, the trimeric baseplate formed by the CT specifically interacted with the trimeric MA via mostly electrostatic interactions involving acidic residues of the CT and positively charged patches of the MA. Nonconservative substitution of these previously unrecognized acidic residues in Env resulted in drastically reduced viral infectivity. Our findings, together with early genetic and biochemical studies, indicate that specific interactions between the CT of Env and MA play a structural role during HIV-1 assembly.
Collapse
Affiliation(s)
- Manish Chaubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hailong Gao
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Bing Chen
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. Analysis of Factors That Regulate HIV-1 Fusion in Reverse. Viruses 2025; 17:472. [PMID: 40284914 PMCID: PMC12030895 DOI: 10.3390/v17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI)-anchored CD4 variant and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long-chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights into factors that influence envelope protein functions.
Collapse
Affiliation(s)
| | | | | | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; (A.A.); (R.L.B.); (F.G.T.)
| |
Collapse
|
3
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. ANALYSIS OF FACTORS THAT REGULATE HIV-1 FUSION IN REVERSE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642481. [PMID: 40161791 PMCID: PMC11952479 DOI: 10.1101/2025.03.10.642481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI) anchored CD4 variant, and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights as to factors that influence envelope protein functions.
Collapse
|
4
|
King HAD, Brammer D, Lewitus E, Fennessey CM, Manalang KM, Shrader HR, Andrew S, Kuri P, Lind M, Pham P, Sanders-Buell E, Bai H, Mason R, Song K, McCarthy E, Helmold Hait S, Todd JP, Pegu A, Foulds KE, Lifson JD, Keele BF, Rolland M, Roederer M, Bolton DL. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc Natl Acad Sci U S A 2025; 122:e2404767122. [PMID: 39883843 PMCID: PMC11804569 DOI: 10.1073/pnas.2404767122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination. Each mAb was administered at 15 mg/kg, and both mAb-treated groups received ITS103.01, a highly potent CD4-binding site targeting antibody. mAb treatment delayed viral rebound, lowered rebound viremia setpoint and viral diversity, and extended animal lifespan. Compared to controls, for which viremia rebounded 2 wk following ATI, mAb infusion delayed rebound for both groups (P = 0.0003). Animals that received the 4-mAb regimen rebounded 3 to 6 wk post-ATI while the 2-mAb regimen rebounded 5 to 22 wk post-ATI. Envelope escape mutations emerged in rebound virus of mAb-treated animals that abrogated neutralization by ITS103.01, the most potent in the cocktail. These data demonstrate in vivo antiviral activity of SIV mAbs in the context of ATI via immune pressure dominated by the most potent mAb and highlight their potential in adjunctive therapeutic studies.
Collapse
Affiliation(s)
- Hannah A. D. King
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel Brammer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Lewitus
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kimberly M. Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hannah R. Shrader
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shayne Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Phillip Kuri
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Matthew Lind
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Phuc Pham
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Hongjun Bai
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| |
Collapse
|
5
|
Pincus SH, Cole FM, Ober K, Tokmina-Lukaszewska M, Marcotte T, Kovacs EW, Zhu T, Khasanov A, Copié V, Peters T. Conjugation of anti-HIV gp41 monoclonal antibody to a drug capable of targeting resting lymphocytes produces an effective cytotoxic anti-HIV immunoconjugate. J Virol 2024; 98:e0064724. [PMID: 39283123 PMCID: PMC11494876 DOI: 10.1128/jvi.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/11/2024] [Indexed: 10/23/2024] Open
Abstract
HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Tamera Marcotte
- Animal Resource Center, Montana State University, Bozeman, Montana, USA
| | | | - Tong Zhu
- Levena Biopharma, San Diego, California, USA
| | | | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Second site reversion of HIV-1 envelope protein baseplate mutations maps to the matrix protein. J Virol 2024; 98:e0174223. [PMID: 38193694 PMCID: PMC10878238 DOI: 10.1128/jvi.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
8
|
Kibria MG, Lavine CL, Tang W, Wang S, Gao H, Shi W, Zhu H, Voyer J, Rits‐Volloch S, Keerti, Bi C, Peng H, Wesemann DR, Lu J, Xie H, Seaman MS, Chen B. Antibody-mediated SARS-CoV-2 entry in cultured cells. EMBO Rep 2023; 24:e57724. [PMID: 38277394 PMCID: PMC10702815 DOI: 10.15252/embr.202357724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 01/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by first engaging its cellular receptor angiotensin converting enzyme 2 (ACE2) to induce conformational changes in the virus-encoded spike protein and fusion between the viral and target cell membranes. Here, we report that certain monoclonal neutralizing antibodies against distinct epitopic regions of the receptor-binding domain of the spike can replace ACE2 to serve as a receptor and efficiently support membrane fusion and viral infectivity in vitro. These receptor-like antibodies can function in the form of a complex of their soluble immunoglobulin G with Fc-gamma receptor I, a chimera of their antigen-binding fragment with the transmembrane domain of ACE2 or a membrane-bound B cell receptor, indicating that ACE2 and its specific interaction with the spike protein are dispensable for SARS-CoV-2 entry. These results suggest that antibody responses against SARS-CoV-2 may help expand the viral tropism to otherwise nonpermissive cell types with potential implications for viral transmission and pathogenesis.
Collapse
Affiliation(s)
- Md Golam Kibria
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Christy L Lavine
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringMDUSA
| | | | - Hailong Gao
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Wei Shi
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of MedicineBostonMAUSA
| | - Jewel Voyer
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
| | | | - Keerti
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's HospitalRagon Institute of MGH, MIT and HarvardBostonMAUSA
| | - Caihong Bi
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's HospitalRagon Institute of MGH, MIT and HarvardBostonMAUSA
| | - Hanqin Peng
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's HospitalRagon Institute of MGH, MIT and HarvardBostonMAUSA
| | - Jianming Lu
- Codex BioSolutions, Inc.RockvilleMDUSA
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown UniversityWashingtonDCUSA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringMDUSA
| | - Michael S Seaman
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Bing Chen
- Division of Molecular MedicineBoston Children's HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Pincus SH, Stackhouse M, Watt C, Ober K, Cole FM, Chen HC, Smith III AB, Peters T. Soluble CD4 and low molecular weight CD4-mimetic compounds sensitize cells to be killed by anti-HIV cytotoxic immunoconjugates. J Virol 2023; 97:e0115423. [PMID: 37772823 PMCID: PMC10617435 DOI: 10.1128/jvi.01154-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Megan Stackhouse
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith III
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
10
|
Luo H, Lv L, Yi J, Zhou Y, Liu C. Establishment of Replication Deficient Vesicular Stomatitis Virus for Studies of PEDV Spike-Mediated Cell Entry and Its Inhibition. Microorganisms 2023; 11:2075. [PMID: 37630636 PMCID: PMC10457912 DOI: 10.3390/microorganisms11082075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes. Pseudotyped viral particles featuring the PEDV S protein are valuable tools for investigating virus entry, identifying neutralizing antibodies, and developing small molecules to impede virus replication. In this study, we used a codon-optimized PEDV S protein to generate recombinant pseudotyped vesicular stomatitis virus (VSV) particles (rVSV-ΔG-EGFP-S). The full-length S protein was efficiently incorporated into VSV particles. The S protein pseudotyped VSV exhibited infectivity towards permissive cell lines of PEDV. Moreover, we identified a new permissive cell line, JHH7, which showed robust support for PEDV replication. In contrast to the SARS-CoV-2 spike protein, the removal of amino acids from the cytoplasmic tail resulted in reduced efficiency of viral pseudotyping. Furthermore, we demonstrated that 25-hydroxycholesterol inhibited rVSV-ΔG-EGFP-S entry, while human APN facilitated rVSV-ΔG-EGFP-S entry through the use of ANPEP knockout Huh7 cells. Finally, by transducing swine intestinal organoids with the rVSV-ΔG-EGFP-S virus, we observed efficient infection of the swine intestinal organoids by the PEDV spike-pseudotyped VSV. Our work offers valuable tools for studying the cellular entry of PEDV and developing interventions to curb its transmission.
Collapse
Affiliation(s)
- Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Jingxuan Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Tong T, D’Addabbo A, Xu J, Chawla H, Nguyen A, Ochoa P, Crispin M, Binley JM. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog 2023; 19:e1011452. [PMID: 37549185 PMCID: PMC10434953 DOI: 10.1371/journal.ppat.1011452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.
Collapse
Affiliation(s)
- Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jiamin Xu
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert Nguyen
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Paola Ochoa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
12
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Shi W, Cai Y, Zhu H, Peng H, Voyer J, Rits-Volloch S, Cao H, Mayer ML, Song K, Xu C, Lu J, Zhang J, Chen B. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. Nature 2023; 619:403-409. [PMID: 37285872 DOI: 10.1038/s41586-023-06273-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.
Collapse
Affiliation(s)
- Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- CSL Seqirus, Waltham, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jewel Voyer
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Hong Cao
- Codex BioSolutions, Rockville, MD, USA
| | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Klug G, Cole FM, Hicar MD, Watt C, Peters T, Pincus SH. Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1. Vaccines (Basel) 2023; 11:vaccines11040829. [PMID: 37112741 PMCID: PMC10144985 DOI: 10.3390/vaccines11040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
We are developing cytotoxic immunoconjugates (CICs) targeting the envelope protein (Env) of the Human Immunodeficiency Virus, type 1 (HIV) to purge the persistent reservoirs of viral infection. We have previously studied the ability of multiple monoclonal antibodies (mAbs) to deliver CICs to an HIV-infected cell. We have found that CICs targeted to the membrane-spanning gp41 domain of Env are most efficacious, in part because their killing is enhanced in the presence of soluble CD4. The ability of a mAb to deliver a CIC does not correlate with its ability to neutralize nor mediate Ab-dependent cellular cytotoxicity. In the current study, we seek to define the most effective anti-gp41 mAbs for delivering CICs to HIV-infected cells. To do this, we have evaluated a panel of human anti-gp41 mAbs for their ability to bind and kill two different Env-expressing cell lines: persistently infected H9/NL4-3 and constitutively transfected HEK293/92UG. We measured the binding and cytotoxicity of each mAb in the presence and absence of soluble CD4. We found that mAbs to the immunodominant helix-loop-helix region (ID-loop) of gp41 are most effective, whereas neutralizing mAbs to the fusion peptide, gp120/gp41 interface, and the membrane proximal external region (MPER) are relatively ineffective at delivering CICs. There was only a weak correlation between antigen exposure and killing activity. The results show that the ability to deliver an effective IC and neutralization are distinct functions of mAbs.
Collapse
Affiliation(s)
- Grant Klug
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Frances M Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, NY 14203, USA
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth H Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
15
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology 2023; 579:54-66. [PMID: 36603533 PMCID: PMC10003682 DOI: 10.1016/j.virol.2022.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Trimers of the HIV-1 envelope (Env) protein perform receptor binding and virus-cell fusion functions during the virus life cycle. The cytoplasmic tail (CT) of Env forms an unusual baseplate structure, and is palmitoylated, rich in arginines, carries trafficking motifs, binds cholesterol, and interacts with host proteins. To dissect CT activities, we examined a panel of Env variants, including CT truncations, mutations, and an extension. We found that whereas all variants could replicate in permissive cells, viruses with CT truncations or baseplate mutations were defective in restrictive cells. We also identified a determinant in HIV-1 amphotericin sensitivity, and characterized variants that escape amphotericin inhibition via viral protease-mediated CT cleavage. Results additionally showed that full-length, his tagged Env can oligomerize and be co-assembled with CT truncations that delete portions of the baseplate, host protein binding sites, and trafficking signals. Our observations illuminate novel aspects of HIV-1 CT structure, interactions, and functions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA.
| |
Collapse
|
16
|
Zhang H, Deng T, Fang Q, Li S, Gao S, Jiang W, Chen G, Yu K, Zhou L, Li T, Zheng Q, Yu H, Li S, Xia N, Gu Y. Endodomain truncation of the HIV-1 envelope protein improves the packaging efficiency of pseudoviruses. Virology 2022; 574:1-8. [PMID: 35858511 DOI: 10.1016/j.virol.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
HIV-1 remains one of the most devastating infectious pathogens without available vaccines. A valid neutralization assay using multiple representative virus strains is prerequisite for antibody response analysis in HIV-1 vaccine development, where HIV pseudoviruses (PsVs) commonly serve as surrogate agents for the authentic HIV, offering a safer manipulation in Biosafety Level 2+. However, PsV production is of low efficiency and is unstable in this field. Here, we optimize PsV production conditions via the use of alternative host cells, packaging ratios and gene truncation. We show that a 153-aa truncation of the endodomain substantially enhances the packaging efficiency of HIV PsVs, providing 4 to 25 times higher infection titers than the full-length Env. Further, we obtained a robust HIV-1 PsV panel covering 12 representative global strains for neutralization assay testing. This work sheds light on how to optimize HIV PsV packaging, and provides functional insight into the cytoplasmic domain of HIV-1.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianjiao Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaoyong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuangquan Gao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenling Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gege Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kunyu Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, Fujian, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
17
|
HIV-1 mutants expressing B cell clonogenic matrix protein p17 variants are increasing their prevalence worldwide. Proc Natl Acad Sci U S A 2022; 119:e2122050119. [PMID: 35763571 PMCID: PMC9271197 DOI: 10.1073/pnas.2122050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In the combined antiretroviral therapy era, lymphomas still represent the most frequent cause of death in HIV-1-infected patients. We expand previous observations dealing with the prevalence of HIV-1 matrix protein p17 variants (vp17s), characterized by peculiar amino acid insertions and endowed of B cell clonogenic activity, in HIV-1 patients with lymphoma as compared with patients without lymphoma. We show that the prevalence of HIV-1 mutants expressing vp17s is increasing worldwide over time. Moreover, we describe a cluster of HIV-1 mutants expressing a B cell clonogenic vp17 and highlight that insertions can be fixed and that viruses displaying clonogenic vp17s are actively spreading. This knowledge advocates for an extensive genomic surveillance program to monitor the evolution of such mutant virions worldwide. AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)–infected patients. In particular, non-Hodgkin’s lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1–infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1–infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.
Collapse
|
18
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of SARS-CoV-2 Omicron subvariant BA.2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35547850 DOI: 10.1101/2022.04.28.489772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.
Collapse
|
19
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Zhang J, Cai Y, Lavine CL, Peng H, Zhu H, Anand K, Tong P, Gautam A, Mayer ML, Rits-Volloch S, Wang S, Sliz P, Wesemann DR, Yang W, Seaman MS, Lu J, Xiao T, Chen B. Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Rep 2022; 39:110729. [PMID: 35452593 PMCID: PMC8995406 DOI: 10.1016/j.celrep.2022.110729] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, 250 Longwood Avenue, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA
| | - Shaowei Wang
- Codex BioSolutions, Inc., 12358 Parklawn Drive, Rockville, MD 20852, USA
| | - Piotr Sliz
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 12358 Parklawn Drive, Rockville, MD 20852, USA; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Scott TA, Supramaniam A, Idris A, Cardoso AA, Shrivastava S, Kelly G, Grepo NA, Soemardy C, Ray RM, McMillan NA, Morris KV. Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2. Mol Ther Methods Clin Dev 2022; 24:355-366. [PMID: 35127966 PMCID: PMC8806709 DOI: 10.1016/j.omtm.2022.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19, urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to neutralize SARS-CoV-2, which consists of extracellular vesicles (EVs) containing a novel fusion tetraspanin protein, CD63, embedded within an anti-CoV-2 nanobody. These anti-CoV-2-enriched EVs bind SARS-CoV-2 spike protein at the receptor-binding domain (RBD) site and can functionally neutralize SARS-CoV-2. This work demonstrates an innovative EV-targeting platform that can be employed to target and inhibit the early stages of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tristan A. Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Angelo A. Cardoso
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Surya Shrivastava
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Nicole A. Grepo
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Roslyn M. Ray
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Nigel A.J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Brisbane 4222, Australia
| |
Collapse
|
22
|
Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA, Hodge EA, Zwick MB, Lee KK. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 2022; 185:641-653.e17. [PMID: 35123651 PMCID: PMC9000915 DOI: 10.1016/j.cell.2022.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus N Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob T Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Zhang J, Xiao T, Cai Y, Lavine CL, Peng H, Zhu H, Anand K, Tong P, Gautam A, Mayer ML, Walsh RM, Rits-Volloch S, Wesemann DR, Yang W, Seaman MS, Lu J, Chen B. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 2021; 374:1353-1360. [PMID: 34698504 PMCID: PMC10763652 DOI: 10.1126/science.abl9463] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Christy L. Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Megan L. Mayer
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Duane R. Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Road, N.W., Washington, D.C. 20057, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| |
Collapse
|
24
|
Truncation of the Cytoplasmic Tail of Equine Infectious Anemia Virus Increases Virion Production by Improving Env Cleavage and Plasma Membrane Localization. J Virol 2021; 95:e0108721. [PMID: 34495693 PMCID: PMC8577380 DOI: 10.1128/jvi.01087-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Envelope glycoproteins (Envs) of lentiviruses harbor unusually long cytoplasmic tails (CTs). Natural CT truncations always occur in vitro and are accompanied by attenuated virulence, but their effects on viral replication have not been fully elucidated. The Env in equine infectious anemia virus (EIAV) harbors the longest CT in the lentiviral family, and a truncated CT was observed in a live attenuated vaccine. This study demonstrates that CT truncation significantly increased EIAV production, as determined by comparing the virion yields from EIAV infectious clones in the presence and absence of the CT. A significant increase in a cleaved product from the CT-truncated Env precursor, but not the full-length Env, was observed. We further confirmed that the presence of the CT inhibited the cleavage of the Env precursor and found that a functional domain located at the C terminus was responsible for this function. Moreover, CT-truncated Env was mainly localized at the plasma membrane (PM), while full-length Env was mainly localized in the cytoplasm. The CT truncation caused a dramatic reduction in the endocytosis of Env. These results suggest that the CT can modulate the processing and trafficking of EIAV Env and thus regulate EIAV replication. IMPORTANCE The mature lentivirus envelope glycoprotein (Env) is composed of a surface unit (SU) and a transmembrane unit (TM), which are cleaved products of the Env precursor. After mature Env is heterodimerically formed from the cleavage of the Env precursor, it is trafficked to the plasma membrane (PM) for incorporation and virion assembly. Env harbors a long cytoplasmic tail (CT), which has been increasingly found to play multiple roles in the Env biological cycle. Here, we revealed for the first time that the CT of equine infectious anemia virus (EIAV) Env inhibits cleavage of the Env precursor. Simultaneously, the CT promoted Env endocytosis, resulting in weakened Env localization at the PM. We also validated that the CT could significantly decrease EIAV production. These findings suggest that the CT regulates the processing and trafficking of EIAV Env to balance virion production.
Collapse
|
25
|
Chen HY, Huang C, Tian L, Huang X, Zhang C, Llewellyn GN, Rogers GL, Andresen K, O’Gorman MRG, Chen YW, Cannon PM. Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. J Virol 2021; 95:e0096621. [PMID: 34495700 PMCID: PMC8549521 DOI: 10.1128/jvi.00966-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein's function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.
Collapse
Affiliation(s)
- Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Lu Tian
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chennan Zhang
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - George N. Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kevin Andresen
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles/Keck School of Medicine of USC, Los Angeles, California, USA
| | - Maurice R. G. O’Gorman
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles/Keck School of Medicine of USC, Los Angeles, California, USA
| | - Ya-Wen Chen
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Zhang J, Xiao T, Cai Y, Lavine CL, Peng H, Zhu H, Anand K, Tong P, Gautam A, Mayer ML, Walsh RM, Rits-Volloch S, Wesemann DR, Yang W, Seaman MS, Lu J, Chen B. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34426810 DOI: 10.1101/2021.08.17.456689] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.
Collapse
|
27
|
HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Curr Opin Virol 2021; 50:59-68. [PMID: 34390925 DOI: 10.1016/j.coviro.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence resonance energy transfer (smFRET) imaging allows observation of these conformational changes on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, some of which inhibit the entry process. The Env structure or its dynamics may determine the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env conformation changes on virus particles and inhibition of Env activities by virion-incorporated host transmembrane proteins.
Collapse
|
28
|
Pincus SH, Craig RB, Weachter L, LaBranche CC, Nabi R, Watt C, Raymond M, Peters T, Song K, Maresh GA, Montefiori DC, Kozlowski PA. Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity. Vaccines (Basel) 2021; 9:vaccines9070774. [PMID: 34358190 PMCID: PMC8310024 DOI: 10.3390/vaccines9070774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
We have constructed bispecific immunoglobulin-like immunoadhesins that bind to both the HIV-envelope glycoproteins: gp120 and gp41. These immunoadhesins have N terminal domains of human CD4 engrafted onto the N-terminus of the heavy chain of human anti-gp41 mAb 7B2. Binding of these constructs to recombinant Env and their antiviral activities were compared to that of the parental mAbs and CD4, as well as to control mAbs. The CD4/7B2 constructs bind to both gp41 and gp140, as well as to native Env expressed on the surface of infected cells. These constructs deliver cytotoxic immunoconjugates to HIV-infected cells, but not as well as a mixture of 7B2 and sCD4, and opsonize for antibody-mediated phagocytosis. Most surprisingly, given that 7B2 neutralizes weakly, if at all, is that the chimeric CD4/7B2 immunoadhesins exhibit broad and potent neutralization of HIV, comparable to that of well-known neutralizing mAbs. These data add to the growing evidence that enhanced neutralizing activity can be obtained with bifunctional mAbs/immunoadhesins. The enhanced neutralization activity of the CD4/7B2 chimeras may result from cross-linking of the two Env subunits with subsequent inhibition of the pre-fusion conformational events that are necessary for entry.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
- Correspondence:
| | - Ryan B. Craig
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
- Department of Pathology, Tulane University, New Orleans, LA 70112, USA
| | - Lauren Weachter
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - Celia C. LaBranche
- Department of Surgery, Duke University, Durham, NC 27707, USA; (C.C.L.); (D.C.M.)
| | - Rafiq Nabi
- Department of Microbiology, Immunology, and Parasitology, LSU School of Medicine, New Orleans, LA 70112, USA; (R.N.); (P.A.K.)
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Mark Raymond
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA; (C.W.); (M.R.); (T.P.)
| | - Kejing Song
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - Grace A. Maresh
- Research Institute for Children, Children’s Hospital, New Orleans, LA 70118, USA; (R.B.C.); (L.W.); (K.S.); (G.A.M.)
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, NC 27707, USA; (C.C.L.); (D.C.M.)
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, LSU School of Medicine, New Orleans, LA 70112, USA; (R.N.); (P.A.K.)
| |
Collapse
|
29
|
Cai Y, Zhang J, Xiao T, Lavine CL, Rawson S, Peng H, Zhu H, Anand K, Tong P, Gautam A, Lu S, Sterling SM, Walsh RM, Rits-Volloch S, Lu J, Wesemann DR, Yang W, Seaman MS, Chen B. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 2021; 373:642-648. [PMID: 34168070 PMCID: PMC9245151 DOI: 10.1126/science.abi9745] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022]
Abstract
As battles to contain the COVID-19 pandemic continue, attention is focused on emerging variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that have been deemed variants of concern because they are resistant to antibodies elicited by infection or vaccination or they increase transmissibility or disease severity. Three papers used functional and structural studies to explore how mutations in the viral spike protein affect its ability to infect host cells and to evade host immunity. Gobeil et al. looked at a variant spike protein involved in transmission between minks and humans, as well as the B1.1.7 (alpha), B.1.351 (beta), and P1 (gamma) spike variants; Cai et al. focused on the alpha and beta variants; and McCallum et al. discuss the properties of the spike protein from the B1.1.427/B.1.429 (epsilon) variant. Together, these papers show a balance among mutations that enhance stability, those that increase binding to the human receptor ACE2, and those that confer resistance to neutralizing antibodies. —VV Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo–electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.
Collapse
Affiliation(s)
- Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shaun Rawson
- SBGrid Consortium, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Pei Tong
- Division of Allergy and Immunology and Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Avneesh Gautam
- Division of Allergy and Immunology and Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Shen Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | - Duane R Wesemann
- Division of Allergy and Immunology and Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115, USA. .,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| |
Collapse
|
30
|
Marziali F, Cimarelli A. Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells 2021; 10:cells10051171. [PMID: 34065027 PMCID: PMC8151167 DOI: 10.3390/cells10051171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-1 is a complex retrovirus that is adapted to replicate in cells of the immune system. To do so, HIV-1, like other viruses, developed strategies to use several cellular processes to its advantage, but had also to come to terms with an arsenal of cellular innate defense proteins, or antiviral factors, that target more or less efficiently, virtually every step of the virus replicative cycle. Among antiviral restriction factors, the family of interferon-induced transmembrane proteins (IFITMs) has emerged as a crucial component of cellular innate defenses for their ability to interfere with both early and late phases of viral replication by inhibiting cellular and viral membranes fusion. Here, we review the enormous advances made since the discovery of IFITMs as interferon-regulated genes more than thirty years ago, with a particular focus on HIV-1 and on the elements that modulate its susceptibility or resistance towards members of this family. Given the recent advances of the field in the elucidation of the mechanism of IFITM inhibition and on the mechanism(s) of viral resistance, we expect that future years will bring novel insights into the definition of the multiple facets of IFITMs and on their possible use for novel therapeutical approaches.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
31
|
Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. J Virol 2021; 95:JVI.00044-21. [PMID: 33727331 PMCID: PMC8139703 DOI: 10.1128/jvi.00044-21] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge.IMPORTANCESARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field.
Collapse
|
32
|
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 2021; 372:525-530. [PMID: 33727252 PMCID: PMC8139424 DOI: 10.1126/science.abf2303] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Alec N Woosley
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Piotr Sliz
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Ray RM, Hansen AH, Taskova M, Jandl B, Hansen J, Soemardy C, Morris KV, Astakhova K. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein J Org Chem 2021; 17:891-907. [PMID: 33981364 PMCID: PMC8093553 DOI: 10.3762/bjoc.17.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
Lipid nanoparticles (LNPs) constitute a facile and scalable approach for delivery of payloads to human cells. LNPs are relatively immunologically inert and can be produced in a cost effective and scalable manner. However, targeting and delivery of LNPs across the blood–brain barrier (BBB) has proven challenging. In an effort to target LNPs composed of an ionizable cationic lipid (DLin-MC3-DMA), cholesterol, the phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG 2000) to particular cell types, as well as to generate LNPs that can cross the BBB, we developed and assessed two approaches. The first was centered on the BBB-penetrating trans-activator of transcription (Tat) peptide or the peptide T7, and the other on RNA aptamers targeted to glycoprotein gp160 from human immunodeficiency virus (HIV) or C-C chemokine receptor type 5 (CCR5), a HIV-1 coreceptor. We report herein a CCR5-selective RNA aptamer that acts to facilitate entry through a simplified BBB model and that drives the uptake of LNPs into CCR5-expressing cells, while the gp160 aptamer did not. We further observed that the addition of cell-penetrating peptides, Tat and T7, did not increase BBB penetration above the aptamer-loaded LNPs alone. Moreover, we found that these targeted LNPs exhibit low immunogenic and low toxic profiles and that targeted LNPs can traverse the BBB to potentially deliver drugs into the target tissue. This approach highlights the usefulness of aptamer-loaded LNPs to increase target cell specificity and potentially deliverability of central-nervous-system-active RNAi therapeutics across the BBB.
Collapse
Affiliation(s)
- Roslyn M Ray
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | | | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Citra Soemardy
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Kevin V Morris
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America.,School of Medical Sciences, Griffith University, Gold Coast, Australia 4222.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
34
|
HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021; 13:v13050735. [PMID: 33922579 PMCID: PMC8146413 DOI: 10.3390/v13050735] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.
Collapse
|
35
|
Piai A, Fu Q, Sharp AK, Bighi B, Brown AM, Chou JJ. NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. J Am Chem Soc 2021; 143:6609-6615. [PMID: 33882664 DOI: 10.1021/jacs.1c01762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion and viral entry. The membrane-interacting regions of the Env, including the membrane-proximal external region (MPER), the transmembrane domain (TMD), and the cytoplasmic tail (CT), not only are essential for fusion and Env incorporation but also can strongly influence the antigenicity of the Env. Previous studies have incrementally revealed the structures of the MPER, the TMD, and the KS-LLP2 regions of the CT. Here, we determined the NMR structure of the full-length CT using a protein fragment comprising the TMD and the CT in bicelles that mimic a lipid bilayer, and by integrating the new NMR data and those acquired previously on other gp41 fragments, we derived a model of the entire membrane-interacting region of the Env. The structure shows that the CT forms a large trimeric baseplate around the TMD trimer, and by residing in the headgroup region of the lipid bilayer, the baseplate causes severe exclusion of lipid in the cytoleaflet of the bilayer. All-atom molecular dynamics simulations showed that the overall structure of the MPER-TMD-CT can be stable in a viral membrane and that a concerted movement of the KS-LLP2 region compensates for the lipid exclusion in order to maintain both structure and membrane integrity. Our structural and simulation results provide a framework for future research to manipulate the membrane structure to modulate the antigenicity of the Env for vaccine development and for mutagenesis studies for investigating membrane fusion and Env interaction with the matrix proteins.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Beatrice Bighi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Cai Y, Zhang J, Xiao T, Lavine CL, Rawson S, Peng H, Zhu H, Anand K, Tong P, Gautam A, Lu S, Sterling SM, Walsh RM, Rits-Volloch S, Lu J, Wesemann DR, Yang W, Seaman MS, Chen B. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33880477 DOI: 10.1101/2021.04.13.439709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.
Collapse
|
37
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Urak RZ, Soemardy C, Ray R, Li S, Shevchenko G, Scott T, Lim L, Wang X, Morris KV. Conditionally Replicating Vectors Mobilize Chimeric Antigen Receptors against HIV. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:285-294. [PMID: 33102620 PMCID: PMC7569266 DOI: 10.1016/j.omtm.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) is an attractive target for chimeric antigen receptor (CAR) therapy. CAR T cells have proved remarkably potent in targeted killing of cancer cells, and we surmised that CAR T cells could prove useful in eradicating HIV-infected cells. Toward this goal, we interrogate several neutralizing single-chain variable fragments (scFvs) that target different regions of the HIV envelope glycoprotein, gp120. We find here that CAR T cells with scFv from NIH45-46 antibody demonstrated the highest cytotoxicity. Although NIH45-46 CAR T cells are capable of eliminating antigen-expressing cells, we wanted to address HIV reactivation from ex vivo culture of HIV patient-derived CAR T cells. In order to capitalize on the HIV reactivation, we developed a conditionally replicating lentiviral vector (crLV). The crLV can hijack HIV machinery, forming a chimeric lentivirus (LV) instead of HIV and delivered to uninfected cells. We find that CAR T cells generated with crLVs have similar CAR-mediated functionality as traditional CARs. We also demonstrate crLVs' capability of expanding CAR percentage and protecting CD4 CAR T cell in HIV donors. Collectively, we demonstrate here that the novel crLV NIH45-46 CAR can serve as a strategy to combat HIV, as well as overcome HIV reactivation in CD4+ CAR T cells.
Collapse
Affiliation(s)
- Ryan Z Urak
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Roslyn Ray
- City of Hope Center for Gene and Cell Therapy, Duarte, CA, USA
| | - Shirley Li
- City of Hope Center for Gene and Cell Therapy, Duarte, CA, USA
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Tristan Scott
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Laura Lim
- Department of Hematology and Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Kevin V Morris
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Hematological Malignancy and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA.,School of Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| |
Collapse
|
39
|
Chambers JP, Yu J, Valdes JJ, Arulanandam BP. SARS-CoV-2, Early Entry Events. J Pathog 2020; 2020:9238696. [PMID: 33299610 PMCID: PMC7707962 DOI: 10.1155/2020/9238696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Viruses are obligate intracellular parasites, and host cell entry is the first step in the viral life cycle. The SARS-CoV-2 (COVID-19) entry process into susceptible host tissue cells is complex requiring (1) attachment of the virus via the conserved spike (S) protein receptor-binding motif (RBM) to the host cell angiotensin-converting-enzyme 2 (ACE2) receptor, (2) S protein proteolytic processing, and (3) membrane fusion. Spike protein processing occurs at two cleavage sites, i.e., S1/S2 and S2'. Cleavage at the S1/S2 and S2' sites ultimately gives rise to generation of competent fusion elements important in the merging of the host cell and viral membranes. Following cleavage, shedding of the S1 crown results in significant conformational changes and fusion peptide repositioning for target membrane insertion and fusion. Identification of specific protease involvement has been difficult due to the many cell types used and studied. However, it appears that S protein proteolytic cleavage is dependent on (1) furin and (2) serine protease transmembrane protease serine 2 proteases acting in tandem. Although at present not clear, increased SARS-CoV-2 S receptor-binding motif binding affinity and replication efficiency may in part account for observed differences in infectivity. Cleavage of the ACE2 receptor appears to be yet another layer of complexity in addition to forfeiture and/or alteration of ACE2 function which plays an important role in cardiovascular and immune function.
Collapse
Affiliation(s)
- James P. Chambers
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jieh Yu
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - James J. Valdes
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- MSI STEM Research and Development Consortium, Washington, DC, USA
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
40
|
Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. J Virol 2020; 94:JVI.00958-20. [PMID: 32817216 DOI: 10.1128/jvi.00958-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule viral entry inhibitors, such as BMS-626529 (BMS-529), allosterically block CD4 binding to HIV-1 envelope (Env) and inhibit CD4-induced structural changes in Env trimers. Here, we show that the binding of BMS-529 to clade C soluble chimeric gp140 SOSIP (ch.SOSIP) and membrane-bound trimers with intact transmembrane domain (gp150) prevented trimer conformational transitions and enhanced their immunogenicity. When complexed to BMS-529, ch.SOSIP trimers retained their binding to broadly neutralizing antibodies (bNAbs) and to their unmutated common ancestor (UCA) antibodies, while exposure of CD4-induced (CD4i) non-bNAb epitopes was inhibited. BMS-529-complexed gp150 trimers in detergent micelles, which were isolated from CHO cells, bound to bNAbs, including UCA and intermediates of the CD4 binding site (bs) CH103 bNAb lineage, and showed limited exposure of CD4i epitopes and a glycosylation pattern with a preponderance of high-mannose glycans. In rabbits, BMS-529-complexed V3 glycan-targeting ch.SOSIP immunogen induced in the majority of immunized animals higher neutralization titers against both autologous and select high mannose-bearing heterologous tier 2 pseudoviruses than those immunized with the noncomplexed ch.SOSIP. In rhesus macaques, BMS-529 complexed to CD4 bs-targeting ch.SOSIP immunogen induced stronger neutralization against tier 2 pseudoviruses bearing high-mannose glycans than noncomplexed ch.SOSIP trimer immunogen. When immunized with gp150 complexed to BMS-529, rhesus macaques showed neutralization against tier 2 pseudoviruses with targeted glycan deletion and high-mannose glycan enrichment. These results demonstrated that stabilization of Env trimer conformation with BMS-529 improved the immunogenicity of select chimeric SOSIP trimers and elicited tier 2 neutralizing antibodies of higher potency than noncomplexed trimers.IMPORTANCE Soluble forms of HIV-1 envelope trimers exhibit conformational heterogeneity and undergo CD4-induced (CD4i) exposure of epitopes of non-neutralizing antibodies that can potentially hinder induction of broad neutralizing antibody responses. These limitations have been mitigated through recent structure-guided approaches and include trimer-stabilizing mutations that resist trimer conformational transition and exposure of CD4i epitopes. The use of small-molecule viral inhibitors that allosterically block CD4 binding represents an alternative strategy for stabilizing Env trimer in the pre-CD4-triggered state of both soluble and membrane-bound trimers. In this study, we report that the viral entry inhibitor BMS-626529 restricts trimer conformational transition and improves the immunogenicity of select Env trimer immunogens.
Collapse
|
41
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
42
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020; 369:1586-1592. [PMID: 32694201 PMCID: PMC7464562 DOI: 10.1126/science.abd4251] [Citation(s) in RCA: 889] [Impact Index Per Article: 177.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Intervention strategies are urgently needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here, we report two cryo-electron microscopy structures derived from a preparation of the full-length S protein, representing its prefusion (2.9-angstrom resolution) and postfusion (3.0-angstrom resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- SBGrid Consortium, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Case JB, Rothlauf PW, Chen RE, Liu Z, Zhao H, Kim AS, Bloyet LM, Zeng Q, Tahan S, Droit L, Ilagan MXG, Tartell MA, Amarasinghe G, Henderson JP, Miersch S, Ustav M, Sidhu S, Virgin HW, Wang D, Ding S, Corti D, Theel ES, Fremont DH, Diamond MS, Whelan SPJ. Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host Microbe 2020; 28:475-485.e5. [PMID: 32735849 PMCID: PMC7332453 DOI: 10.1016/j.chom.2020.06.021] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, which engages with host ACE2 receptor for entry. Using an infectious molecular clone of vesicular stomatitis virus (VSV) expressing eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput-imaging-based neutralization assay at biosafety level 2. We also developed a focus-reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. Comparing the neutralizing activities of various antibodies and ACE2-Fc soluble decoy protein in both assays revealed a high degree of concordance. These assays will help define correlates of protection for antibody-based countermeasures and vaccines against SARS-CoV-2. Additionally, replication-competent VSV-eGFP-SARS-CoV-2 provides a tool for testing inhibitors of SARS-CoV-2 mediated entry under reduced biosafety containment.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma Xenia G Ilagan
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael A Tartell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Gaya Amarasinghe
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey P Henderson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Mart Ustav
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Sachdev Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | | | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Inc., CH-6500, Bellinzona, Switzerland
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daved H Fremont
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
44
|
Luque FJ, Camarasa MJ. HIV-1 Envelope Spike MPER: From a Vaccine Target to a New Druggable Pocket for Novel and Effective Fusion Inhibitors. ChemMedChem 2020; 16:105-107. [PMID: 33428329 DOI: 10.1002/cmdc.202000411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Here we highlight a sound and unique work reported by Chen and co-workers entitled "HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes" (Xiao et al., Nat. Chem. Biol. 2020, 16, 529). In this article, the authors identify, by means of a clever antibody-guided strategy, several small molecules as fusion inhibitors of HIV-1 replication acting at the membrane proximal external region (MPER) of the HIV-1 envelope (Env) spike. MPER, which was previously recognized as a vaccine target, emerges as a novel druggable target for the discovery of HIV-1 fusion inhibitors. The compounds (exemplified by dequalinium and dequalinium-inspired analogues) prevent the conformational changes of Env from the prefusion species to the intermediate states required for membrane fusion. This work not only paves the way to novel, specific and useful anti-HIV-1 inhibitors, but also discloses new therapeutic strategies against other infectious diseases.
Collapse
Affiliation(s)
- Francisco Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació I Gastronomía, Institut de Biomedicina (IBUB) and Institut de Química Teórica I Computacional (IQTCUB), Facultat de Farmàcia i Ciències de l'Alimentació, Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 6, 28006, Madrid, Spain
| |
Collapse
|
45
|
Case JB, Rothlauf PW, Chen RE, Liu Z, Zhao H, Kim AS, Bloyet LM, Zeng Q, Tahan S, Droit L, Ilagan MXG, Tartell MA, Amarasinghe G, Henderson JP, Miersch S, Ustav M, Sidhu S, Virgin HW, Wang D, Ding S, Corti D, Theel ES, Fremont DH, Diamond MS, Whelan SP. Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. SSRN 2020:3606354. [PMID: 32714117 PMCID: PMC7366811 DOI: 10.2139/ssrn.3606354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune γ-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARSCoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W. Rothlauf
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haiyan Zhao
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis-Marie Bloyet
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen Tahan
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma. Xenia G. Ilagan
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael A. Tartell
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Gaya Amarasinghe
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey P. Henderson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Mart Ustav
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Sachdev Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | | | - David Wang
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Inc., CH-6500, Bellinzona, Switzerland
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daved H. Fremont
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P.J. Whelan
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511401 DOI: 10.1101/2020.05.18.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune γ-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.
Collapse
|
47
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511405 DOI: 10.1101/2020.05.16.099317] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ongoing SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic has created urgent needs for intervention strategies to control the crisis. The spike (S) protein of the virus forms a trimer and catalyzes fusion between viral and target cell membranes - the first key step of viral infection. Here we report two cryo-EM structures, both derived from a single preparation of the full-length S protein, representing the prefusion (3.1Å resolution) and postfusion (3.3Å resolution) conformations, respectively. The spontaneous structural transition to the postfusion state under mild conditions is independent of target cells. The prefusion trimer forms a tightly packed structure with three receptor-binding domains clamped down by a segment adjacent to the fusion peptide, significantly different from recently published structures of a stabilized S ectodomain trimer. The postfusion conformation is a rigid tower-like trimer, but decorated by N-linked glycans along its long axis with almost even spacing, suggesting possible involvement in a mechanism protecting the virus from host immune responses and harsh external conditions. These findings advance our understanding of how SARS-CoV-2 enters a host cell and may guide development of vaccines and therapeutics.
Collapse
|
48
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS, Chou JJ, Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 2020; 16:529-537. [PMID: 32152540 PMCID: PMC7723321 DOI: 10.1038/s41589-020-0496-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Pan J, Peng H, Chen B, Harrison SC. Cryo-EM Structure of Full-length HIV-1 Env Bound With the Fab of Antibody PG16. J Mol Biol 2020; 432:1158-1168. [PMID: 31931014 DOI: 10.1016/j.jmb.2019.11.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
The HIV-1 envelope protein (Env) is the target of neutralizing antibodies and the template for vaccine immunogen design. The dynamic conformational equilibrium of trimeric Env influences its antigenicity and potential immunogenicity. Antibodies that bind at the trimer apex stabilize a "closed" conformation characteristic of the most difficult to neutralize isolates. A goal of vaccine development is therefore to mimic the closed conformation in a designed immunogen. A disulfide-stabilized, trimeric Env ectodomain-the "SOSIP" construct-has many of the relevant properties; it is also particularly suitable for structure determination. Some single-molecule studies have, however, suggested that the SOSIP trimer is not a good representation of Env on the surface of a virion or an infected cell. We isolated Env (fully cleaved to gp120 and gp41) from the surface of expressing cells using tagged, apex-binding Fab PG16 and determined the structure of the PG16-Env complex by cryo-EM to an overall resolution of 4.6 Å. Placing the only purification tag on the Fab ensured that the isolated Env was continuously stabilized in its closed, native conformation. The Env structure in this complex corresponds closely to the SOSIP structures determined by both x-ray crystallography and cryo-EM. Although the membrane-interacting elements are not resolved in our reconstruction, we can make inferences about the connection between ectodomain and membrane-proximal external region (MPER) by reference to the published cryo-tomography structure of an Env "spike" and the NMR structure of the MPER-transmembrane segment. We discuss these results in view of the conflicting interpretations in the literature.
Collapse
Affiliation(s)
- Junhua Pan
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Hanqin Peng
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Bing Chen
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|