1
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Pratt MR. Photocrosslinking and capture for the analysis of carbohydrate-dependent interactions. Bioorg Med Chem Lett 2025; 117:130077. [PMID: 39710139 PMCID: PMC11745908 DOI: 10.1016/j.bmcl.2024.130077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Carbohydrates play crucial roles in biological systems, including by mediating cell and protein interactions. The complexity and transient nature of carbohydrate-dependent interactions pose significant challenges for their characterization, as traditional techniques often fail to capture these low-affinity binding events. This review highlights the increasing utility of photocrosslinkers in studying carbohydrate-mediated interactions. Photocrosslinkers, such as aryl azides, benzophenones, and diazirines, allow for the capture of fleeting interactions by forming covalent bonds upon UV irradiation, enabling the downstream application of standard biochemical techniques. I discuss the three primary strategies for incorporating photocrosslinkers: synthetic small molecules, metabolic labeling, and exo-enzymatic labeling. I predict that the continued development and application of these methodologies will enhance our understanding of glycan-mediated interactions and their implications in health and disease.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Beresford-Jones BS, Suyama S, Clare S, Soderholm A, Xia W, Sardar P, Lee J, Harcourt K, Lawley TD, Pedicord VA. Enterocloster clostridioformis protects against Salmonella pathogenesis and modulates epithelial and mucosal immune function. MICROBIOME 2025; 13:61. [PMID: 40022210 PMCID: PMC11869688 DOI: 10.1186/s40168-025-02050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Promoting resistance to enteric pathogen infection is a core function of the gut microbiota; however, many of the specific host-commensal interactions that mediate this protection remain uncharacterised. To address this knowledge gap, we monocolonised germ-free mice with mouse-derived commensal microbes to screen for microbiota-induced resistance to Salmonella Typhimurium infection. RESULTS We identified Enterocloster clostridioformis as a protective species against S. Typhimurium infection. E. clostridioformis selectively upregulates resistin-like molecule β and cell cycle pathway expression at the level of caecal epithelial cells and increases T-regulatory cells in the underlying mucosal immune system, potentially contributing to reduced infection-induced pathology. CONCLUSIONS We highlight novel mechanisms of host-microbe interactions that can mediate microbiota-induced resistance to acute salmonellosis. In the backdrop of increasing antibiotic resistance, this study identifies novel potential avenues for further research into protective host responses against enteric infections and could lead to new therapeutic approaches. Video Abstract.
Collapse
Affiliation(s)
- Benjamin S Beresford-Jones
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Satoshi Suyama
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Simon Clare
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amelia Soderholm
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Wangmingyu Xia
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Puspendu Sardar
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Junhee Lee
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Harcourt
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Trevor D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Virginia A Pedicord
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
4
|
Lakemeyer M, Latorre R, Blazkova K, Jensen D, Wood HM, Shakil N, Thomas SC, Saxena D, Mulpuri Y, Poolman D, de Haro PD, Keller LJ, Reed DE, Schmidt BL, Lomax AE, Bunnett NW, Bogyo M. Identification of a secreted protease from Bacteroides fragilis that induces intestinal pain and inflammation by cleavage of PAR 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633241. [PMID: 39868234 PMCID: PMC11761754 DOI: 10.1101/2025.01.15.633241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protease-activated receptor 2 (PAR2) is a central regulator of intestinal barrier function, inflammation and pain. Upregulated intestinal proteolysis and PAR2-signaling are implicated in inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS). To identify potential bacterial regulators of PAR2 activity, we developed a functional assay for PAR2 processing and used it to screen conditioned media from a library of diverse gut commensal microbes. We found that multiple bacteria secrete proteases that cleave host PAR2. Using chemoproteomic profiling with a covalent irreversible inhibitor, we identified a previously uncharacterized Bacteroides fragilis serine protease Bfp1, and showed that it cleaves and activates PAR2 in multicellular and murine models. PAR2 cleavage by Bfp1 disrupts the intestinal barrier, sensitizes nociceptors, and triggers colonic inflammation and abdominal pain. Collectively, our findings uncover Bfp1-mediated PAR2-processing as a new axis of host-commensal-interaction in the gut that has the potential to be targeted for therapeutic intervention in IBD or IBS.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena; Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena; Jena, Germany
- Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Kristyna Blazkova
- Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA
| | - Dane Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
- Translational Research Center, College of Dentistry, New York University; New York, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research; New York, USA
| | - Hannah M Wood
- Gastrointestinal Diseases Research Unit, Queen's University; Kingston, Ontario, Canada
| | - Nayab Shakil
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena; Jena, Germany
| | - Scott C Thomas
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
| | - Yatendra Mulpuri
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
| | - David Poolman
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Paz Duran de Haro
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
- Translational Research Center, College of Dentistry, New York University; New York, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research; New York, USA
| | - Laura J Keller
- Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University; Kingston, Ontario, Canada
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
- Translational Research Center, College of Dentistry, New York University; New York, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research; New York, USA
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University; Kingston, Ontario, Canada
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
5
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
6
|
Yang X, Hang HC. Chemical genetic approaches to dissect microbiota mechanisms in health and disease. Science 2024; 386:eado8548. [PMID: 39541443 DOI: 10.1126/science.ado8548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Advances in genomics, proteomics, and metabolomics have revealed associations between specific microbiota species in health and disease. However, the precise mechanism(s) of action for many microbiota species and molecules have not been fully elucidated, limiting the development of microbiota-based diagnostics and therapeutics. In this Review, we highlight innovative chemical and genetic approaches that are enabling the dissection of microbiota mechanisms and providing causation in health and disease. Although specific microbiota molecules and mechanisms have begun to emerge, new approaches are still needed to go beyond phenotypic associations and translate microbiota discoveries into actionable targets and therapeutic leads to prevent and treat diseases.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Viau C, Nouar A, Xia J. Use of Caenorhabditis elegans to Unravel the Tripartite Interaction of Kynurenine Pathway, UPR mt and Microbiome in Parkinson's Disease. Biomolecules 2024; 14:1370. [PMID: 39595547 PMCID: PMC11591651 DOI: 10.3390/biom14111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The model organism Caenorhabditis elegans and its relationship with the gut microbiome are gaining traction, especially for the study of neurodegenerative diseases such as Parkinson's Disease (PD). Gut microbes are known to be able to alter kynurenine metabolites in the host, directly influencing innate immunity in C. elegans. While the mitochondrial unfolded protein response (UPRmt) was first characterized in C. elegans in 2007, its relevance in host-microbiome interactions has only become apparent in recent years. In this review, we provide novel insights into the current understanding of the microbiome-gut-brain axis with a focus on tripartite interactions between the UPRmt, kynurenine pathway, and microbiome in C. elegans, and explore their relationships for PD remediations.
Collapse
Affiliation(s)
- Charles Viau
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
| | - Alyssa Nouar
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Lin X, He K, Gu Z, Zhao X. Emerging chemophysiological diversity of gut microbiota metabolites. Trends Pharmacol Sci 2024; 45:824-838. [PMID: 39129061 DOI: 10.1016/j.tips.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.
Collapse
Affiliation(s)
- Xiaorong Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaixin He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaohui Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Zhou T, Du Z, Luo Z, Li X, Wu D, Huang Y, Yong K, Yao X, Shen L, Yu S, Yan Z, Cao S. Alteration of Fecal Microbiota, Fecal Metabolites, and Serum Metabolites in Dairy Cows with Pre-Retained Placenta. Metabolites 2024; 14:386. [PMID: 39057709 PMCID: PMC11279091 DOI: 10.3390/metabo14070386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Retained placenta (RP) affects lactation and fertility in dairy cows and causes economic losses to the dairy industry. Therefore, screening for early warning of this disease is important. This study used multi omics techniques to reveal the metabolic differences of dairy cows before RP onset and to find potential warning markers. Fecal samples and serum samples of 90 healthy Holstein cows were collected 7 days pre-calving; 10 healthy and 10 RP cows were enrolled according to normal expulsion of fetal membranes after calving. Fecal samples were subjected to 16S rRNA sequencing and untargeted metabolomics analysis, while plasma was analyzed using targeted metabolomics. Pathogenic bacteria levels increased in the intestines of cows with RP compared to those in healthy cows. Lipid metabolites constituted the largest proportion of differential metabolites between feces and plasma. Six potential warning markers for RP in cows were identified, including two fecal microbiomics markers (Oscillospiraceae UCG-005 and Escherichia-Shigella), one fecal untargeted metabolomics marker (N-acetylmuramic acid), and three plasma targeted metabolomics markers (glycylcholic acid-3 sulfate, 7-ketolithocholic acid, and 12-ketolithocholic acid). These biomarkers can predict RP occurrence in the early perinatal period. These results lay a theoretical foundation for early nutritional intervention and pathogenesis research in dairy cows.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Lanzhou Institute of Animal Husbandry and Veterinary Pharmaceutical, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Lanzhou Institute of Animal Husbandry and Veterinary Pharmaceutical, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100000, China
| | - Dan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixin Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Kang Yong
- Department of Animal Husbandry & Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404105, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zuoting Yan
- Lanzhou Institute of Animal Husbandry and Veterinary Pharmaceutical, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Klupt S, Fam KT, Zhang X, Chodisetti PK, Mehmood A, Boyd T, Grotjahn D, Park D, Hang HC. Secreted antigen A peptidoglycan hydrolase is essential for Enterococcus faecium cell separation and priming of immune checkpoint inhibitor therapy. eLife 2024; 13:RP95297. [PMID: 38857064 PMCID: PMC11164530 DOI: 10.7554/elife.95297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.
Collapse
Affiliation(s)
- Steven Klupt
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Xing Zhang
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | | | - Abeera Mehmood
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
| | - Tumara Boyd
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Danielle Grotjahn
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Donghyun Park
- Department of Integrative Structural & Computational Biology, Scripps ResearchLa JollaUnited States
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps ResearchLa JollaUnited States
- Department of Chemistry, Scripps ResearchLa JollaUnited States
| |
Collapse
|
11
|
Hao F, Liu H, Qi B. Bacterial peptidoglycan acts as a digestive signal mediating host adaptation to diverse food resources in C. elegans. Nat Commun 2024; 15:3286. [PMID: 38627398 PMCID: PMC11021419 DOI: 10.1038/s41467-024-47530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Food availability and usage is a major adaptive force for the successful survival of animals in nature, yet little is known about the specific signals that activate the host digestive system to allow for the consumption of varied foods. Here, by using a food digestion system in C. elegans, we discover that bacterial peptidoglycan (PGN) is a unique food signal that activates animals to digest inedible food. We identified that a glycosylated protein, Bacterial Colonization Factor-1 (BCF-1), in the gut interacts with bacterial PGN, leading to the inhibition of the mitochondrial unfolded protein response (UPRmt) by regulating the release of Neuropeptide-Like Protein (NLP-3). Interestingly, activating UPRmt was found to hinder food digestion, which depends on the innate immune p38 MAPK/PMK-1 pathway. Conversely, inhibiting PMK-1 was able to alleviate digestion defects in bcf-1 mutants. Furthermore, we demonstrate that animals with digestion defects experience reduced natural adaptation capabilities. This study reveals that PGN-BCF-1 interaction acts as "good-food signal" to promote food digestion and animal growth, which facilitates adaptation of the host animals by increasing ability to consume a wide range of foods in their natural environment.
Collapse
Affiliation(s)
- Fanrui Hao
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Huimin Liu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
12
|
Klupt S, Fam KT, Zhang X, Chodisetti PK, Mehmood A, Boyd T, Grotjahn D, Park D, Hang HC. Secreted antigen A peptidoglycan hydrolase is essential for Enterococcus faecium cell separation and priming of immune checkpoint inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567738. [PMID: 38014356 PMCID: PMC10680833 DOI: 10.1101/2023.11.19.567738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Enterococcus faecium is a microbiota species in humans that can modulate host immunity1, but has also acquired antibiotic resistance and is a major cause of hospital-associated infections2. Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity3-5 and immune checkpoint inhibitor antitumor activity6. However, the functions of SagA in E. faecium were unknown. Here we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, plasmid-based expression of SagA, but not its catalytically-inactive mutant, restored ΔsagA growth, production of active muropeptides and NOD2 activation. SagA is therefore essential for E. faecium growth, stress resistance and activation of host immunity.
Collapse
Affiliation(s)
- Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Contributed equally
| | - Pavan Kumar Chodisetti
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Abeera Mehmood
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Tumara Boyd
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Danielle Grotjahn
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Donghyun Park
- Department of Integrative Structural & Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Wheeler R, Gomperts Boneca I. The hidden base of the iceberg: gut peptidoglycome dynamics is foundational to its influence on the host. Gut Microbes 2024; 16:2395099. [PMID: 39239828 PMCID: PMC11382707 DOI: 10.1080/19490976.2024.2395099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
The intestinal microbiota of humans includes a highly diverse range of bacterial species. All these bacteria possess a cell wall, composed primarily of the macromolecule peptidoglycan. As such, the gut also harbors an abundant and varied peptidoglycome. A remarkable range of host physiological pathways are regulated by peptidoglycan fragments that originate from the gut microbiota and enter the host system. Interactions between the host system and peptidoglycan can influence physiological development and homeostasis, promote health, or contribute to inflammatory disease. Underlying these effects is the interplay between microbiota composition and enzymatic processes that shape the intestinal peptidoglycome, dictating the types of peptidoglycan generated, that subsequently cross the gut barrier. In this review, we highlight and discuss the hidden and emerging functional aspects of the microbiome, i.e. the hidden base of the iceberg, that modulate the composition of gut peptidoglycan, and how these fundamental processes are drivers of physiological outcomes for the host.
Collapse
Affiliation(s)
- Richard Wheeler
- Institut Pasteur, Université Paris Cité, Paris, France
- Hauts-de-Seine, Arthritis Research and Development, Neuilly-sur-Seine, France
| | | |
Collapse
|
15
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
16
|
Carlson SL, Mathew L, Savage M, Kok K, Lindsay JO, Munro CA, McCarthy NE. Mucosal Immunity to Gut Fungi in Health and Inflammatory Bowel Disease. J Fungi (Basel) 2023; 9:1105. [PMID: 37998910 PMCID: PMC10672531 DOI: 10.3390/jof9111105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
The gut microbiome is a diverse microbial community composed of bacteria, viruses, and fungi that plays a major role in human health and disease. Dysregulation of these gut organisms in a genetically susceptible host is fundamental to the pathogenesis of inflammatory bowel disease (IBD). While bacterial dysbiosis has been a predominant focus of research for many years, there is growing recognition that fungal interactions with the host immune system are an important driver of gut inflammation. Candida albicans is likely the most studied fungus in the context of IBD, being a near universal gut commensal in humans and also a major barrier-invasive pathogen. There is emerging evidence that intra-strain variation in C. albicans virulence factors exerts a critical influence on IBD pathophysiology. In this review, we describe the immunological impacts of variations in C. lbicans colonisation, morphology, genetics, and proteomics in IBD, as well as the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sean L. Carlson
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Liya Mathew
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Savage
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - James O. Lindsay
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
17
|
Montassier E, Kitsios GD, Radder JE, Le Bastard Q, Kelly BJ, Panzer A, Lynch SV, Calfee CS, Dickson RP, Roquilly A. Robust airway microbiome signatures in acute respiratory failure and hospital-acquired pneumonia. Nat Med 2023; 29:2793-2804. [PMID: 37957375 DOI: 10.1038/s41591-023-02617-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023]
Abstract
Respiratory microbial dysbiosis is associated with acute respiratory distress syndrome (ARDS) and hospital-acquired pneumonia (HAP) in critically ill patients. However, we lack reproducible respiratory microbiome signatures that can increase our understanding of these conditions and potential treatments. Here, we analyze 16S rRNA sequencing data from 2,177 respiratory samples collected from 1,029 critically ill patients (21.7% with ARDS and 26.3% with HAP) and 327 healthy controls, sourced from 17 published studies. After data harmonization and pooling of individual patient data, we identified microbiota signatures associated with ARDS, HAP and prolonged mechanical ventilation. Microbiota signatures for HAP and prolonged mechanical ventilation were characterized by depletion of a core group of microbes typical of healthy respiratory samples, and the ARDS microbiota signature was distinguished by enrichment of potentially pathogenic respiratory microbes, including Pseudomonas and Staphylococcus. Using machine learning models, we identified clinically informative, three- and four-factor signatures that predicted ARDS, HAP and prolonged mechanical ventilation with relatively high accuracy (area under the curve of 0.751, 0.72 and 0.727, respectively). We validated the signatures in an independent prospective cohort of 136 patients on mechanical ventillation and found that patients with microbiome signatures associated with ARDS, HAP or prolonged mechanical ventilation had longer times to successful extubation than patients lacking these signatures (hazard ratios of 1.56 (95% confidence interval (CI) 1.07-2.27), 1.51 (95% CI 1.02-2.23) and 1.50 (95% CI 1.03-2.18), respectively). Thus, we defined and validated robust respiratory microbiome signatures associated with ARDS and HAP that may help to identify promising targets for microbiome therapeutic modulation in critically ill patients.
Collapse
Affiliation(s)
- Emmanuel Montassier
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, Nantes, France.
- Service des Urgences, Nantes Université, CHU Nantes, Nantes, France.
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah E Radder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Brendan J Kelly
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariane Panzer
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, Nantes, France.
- Service d'Anesthesie Réanimation, Nantes Université, CHU Nantes, Nantes, France.
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Yin R, Wang T, Dai H, Han J, Sun J, Liu N, Dong W, Zhong J, Liu H. Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms. Protein Cell 2023; 14:776-785. [PMID: 37013853 PMCID: PMC10599643 DOI: 10.1093/procel/pwad016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.
Collapse
Affiliation(s)
- Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhao X, Stein KR, Chen V, Griffin ME, Lairson LL, Hang HC. Chemoproteomics reveals microbiota-derived aromatic monoamine agonists for GPRC5A. Nat Chem Biol 2023; 19:1205-1214. [PMID: 37248411 DOI: 10.1038/s41589-023-01328-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The microbiota generates diverse metabolites to modulate host physiology and disease, but their protein targets and mechanisms of action have not been fully elucidated. To address this challenge, we explored microbiota-derived indole metabolites and developed photoaffinity chemical reporters for proteomic studies. We identified many potential indole metabolite-interacting proteins, including metabolic enzymes, transporters, immune sensors and G protein-coupled receptors. Notably, we discovered that aromatic monoamines can bind the orphan receptor GPRC5A and stimulate β-arrestin recruitment. Metabolomic and functional profiling also revealed specific amino acid decarboxylase-expressing microbiota species that produce aromatic monoamine agonists for GPRC5A-β-arrestin recruitment. Our analysis of synthetic aromatic monoamine derivatives identified 7-fluorotryptamine as a more potent agonist of GPRC5A. These results highlight the utility of chemoproteomics to identify microbiota metabolite-interacting proteins and the development of small-molecule agonists for orphan receptors.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York City, NY, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
20
|
Jang KK, Heaney T, London M, Ding Y, Putzel G, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Zhou C, Podkowik M, Arguelles N, Srivastava A, Shopsin B, Torres VJ, Keestra-Gounder AM, Pironti A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe 2023; 31:1450-1468.e8. [PMID: 37652008 PMCID: PMC10502928 DOI: 10.1016/j.chom.2023.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
Affiliation(s)
- Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Heaney
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mariya London
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Frank Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying-Han Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sakteesh Gurunathan
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chaoting Zhou
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Natalia Arguelles
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anusha Srivastava
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - A Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Wang B, Zhou Y, Wang Q, Xu S, Wang F, Yue M, Zeng Z, Li W. Lactiplantibacillus plantarum Lac16 Attenuates Enterohemorrhagic Escherichia coli O157:H7 Infection by Inhibiting Virulence Traits and Improving Intestinal Epithelial Barrier Function. Cells 2023; 12:1438. [PMID: 37408272 DOI: 10.3390/cells12101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Large-scale use of antimicrobials in agriculture and medicine contributes to antibiotic residues in raw foods, the spread of antimicrobial resistance (AMR) and drug pollution, which seriously threatens human health and imposes significant economic burdens on society, suggesting the need for novel therapeutic options that prevent or control zoonoses. In this study, four probiotics were selected to assess their capability to alleviate pathogen-induced damage. Results showed that a simulated gastrointestinal juice and bile tolerated L. plantarum Lac16 with high lactic acid secretion can significantly inhibit the growth of multiple zoonotic pathogens. Lac16 also significantly inhibited the biofilm formation and mRNA expression of virulence traits (genes related to virulence, toxins, flagella biogenesis and motility, antibiotic resistance, biofilm formation and AI-2 quorum sensing) of enterohemorrhagic E. coli O157:H7 (EHEC). Furthermore, Lac16 and Lac26 significantly protected C. elegans against zoonotic pathogen-induced (EHEC, S. typhimurium, C. perfringens) deaths. Moreover, Lac16 significantly promoted epithelial repair and ameliorated lipopolysaccharide (LPS)-induced intestinal epithelial apoptosis and barrier dysfunction by activating the Wnt/β-catenin signaling pathway, and markedly reduced LPS-induced inflammatory responses by inhibiting the TLR4/MyD88 signaling pathway. The present results indicate that Lac16 attenuates enterohemorrhagic E. coli infection-induced damage by inhibiting key virulence traits of E. coli, promoting epithelial repair and improving intestinal epithelial barrier function, which may be mediated by the activated Wnt/β-catenin signaling pathway and the inhibited TLR4/MyD88 signaling pathway of the intestinal epithelium.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310012, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Zhonghua Zeng
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| |
Collapse
|
22
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Yang XJ, Wang XH, Yang MY, Ren HY, Chen H, Zhang XY, Liu QF, Yang G, Yang Y, Yang XJ. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol 2023; 29:2034-2049. [PMID: 37155528 PMCID: PMC10122787 DOI: 10.3748/wjg.v29.i13.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology. AIM To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology. METHODS Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups. RESULTS In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05). CONCLUSION TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Hong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ming-Yue Yang
- Department of Emergency Medicine, Affiliated Hospital of Jining Medical University, Jining 272030, Shandong Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Hui Chen
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qin-Fu Liu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ge Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- Department of Critical Care Medicine, Southeast University School of Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
24
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
25
|
Jang KK, Heaney T, London M, Ding Y, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Marijke Keestra-Gounder A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526128. [PMID: 36778381 PMCID: PMC9915521 DOI: 10.1101/2023.01.29.526128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium ( Efm ) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA. Microbiota sensing by NOD2 in myeloid cells mediated IL-1β secretion and increased the proportion of IL-22-producing CD4 + T helper cells and innate lymphoid cells. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
|
26
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
27
|
SAITO R, SATO N, OKINO Y, WANG DS, SEO G. Bacillus subtilis TO-A extends the lifespan of Caenorhabditis elegans. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:124-130. [PMID: 37016687 PMCID: PMC10067327 DOI: 10.12938/bmfh.2022-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Clostridium butyricum TO-A, Enterococcus faecium T-110, and Bacillus subtilis TO-A are sold as oral probiotic preparations and reportedly exhibit many beneficial effects on the health of hosts, including humans and livestock. In this study, we compared the ability of these clinically applied probiotic bacteria with Escherichia coli OP50 in extending the lifespan of Caenorhabditis elegans. To compare the C. elegans lifespan-extending effects of the three bacteria, experiments were performed using a nematode growth medium containing a small amount of trypticase soy agar. The maximum lifespans of worms fed C. butyricum TO-A, E. faecium T-110, or B. subtilis TO-A increased by 11, 12, and 26%, respectively, compared with worms fed E. coli OP50. In addition, we conducted a metabolomic analysis of methanol extracts of B. subtilis TO-A cells, which exhibited the strongest lifespan-extending effect on C. elegans among the probiotic bacteria tested in this study. As a result, 59 candidate substances involved in extending the lifespan of C. elegans were identified in B. subtilis TO-A cells.
Collapse
Affiliation(s)
- Ryuichi SAITO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Naoki SATO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Yoichi OKINO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Dian-Sheng WANG
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Genichiro SEO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| |
Collapse
|
28
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Zhao X, Yang X, Hang HC. Chemoproteomic Analysis of Microbiota Metabolite-Protein Targets and Mechanisms. Biochemistry 2022; 61:2822-2834. [PMID: 34989554 PMCID: PMC9256862 DOI: 10.1021/acs.biochem.1c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The microbiota have emerged as an important factor in host physiology, disease, and response to therapy. These diverse microbes (bacteria, virus, fungi, and protists) encode unique functions and metabolites that regulate intraspecies and interspecies interactions. While the mechanisms of some microbiota species and metabolites have been elucidated, the diversity and abundance of different microbiota species and their associated pathways suggest many more metabolites and mechanisms of action remain to be discovered. In this Perspective, we highlight how the advances in chemical proteomics have provided new opportunities to elucidate the molecular targets of specific microbiota metabolites and reveal new mechanisms of action. The continued development of specific microbiota metabolite reporters and more precise proteomic methods should reveal new microbiota mechanisms of action, therapeutic targets, and biomarkers for a variety of human diseases.
Collapse
|
30
|
Xie Y, Wang L, Yang Y, Zha L, Zhang J, Rong K, Tang W, Zhang J. Antibacterial and anti-biofilm activity of diarylureas against Enterococcus faecium by suppressing the gene expression of peptidoglycan hydrolases and adherence. Front Microbiol 2022; 13:1071255. [PMID: 36590419 PMCID: PMC9797508 DOI: 10.3389/fmicb.2022.1071255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Enterococcus faecium (E. faecium) is a clinical multidrug-resistant pathogen causing life-threatening infection, which makes it important to discover antibacterial agents with novel scaffolds and unique mechanism. In this study, the diarylurea scaffold was found to have potent antibacterial effect on E. faecium. Diarylurea ZJ-2 with benign drug-like property exhibited potent antibacterial and anti-biofilm activity through inhibiting the genes expression of NlpC/p60 hydrolase-secreted antigen A (sagA) and autolysins (atlA), down-regulating the expression of biofilm adherence related genes aggregation substance (agg), enterococcal surface protein (esp) against E. faecium. Moreover, ZJ-2 can be docked into SagA to inhibit daughter cell separation. In a mouse model of abdominal infection, ZJ-2 decreased the bacterial load and the level of IL-6 and TNF-α in a time-dependent manner. Overall, these findings indicated that diarylurea ZJ-2 has the potential to be developed as a therapeutic agent to treat drug-resistant enterococci and biofilm-related infections.
Collapse
Affiliation(s)
- Yunfeng Xie
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Lei Wang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yang Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Liang Zha
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiazhen Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, China,*Correspondence: Wenjian Tang,
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, China,Jing Zhang,
| |
Collapse
|
31
|
Gao J, Zhao X, Hu S, Huang Z, Hu M, Jin S, Lu B, Sun K, Wang Z, Fu J, Weersma RK, He X, Zhou H. Gut microbial DL-endopeptidase alleviates Crohn's disease via the NOD2 pathway. Cell Host Microbe 2022; 30:1435-1449.e9. [PMID: 36049483 DOI: 10.1016/j.chom.2022.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
The pattern-recognition receptor NOD2 senses bacterial muropeptides to regulate host immunity and maintain homeostasis. Loss-of-function mutations in NOD2 are associated with Crohn's disease (CD), but how the variations in microbial factors influence NOD2 signaling and host pathology is elusive. We demonstrate that the Firmicutes peptidoglycan remodeling enzyme, DL-endopeptidase, increased the NOD2 ligand level in the gut and impacted colitis outcomes. Metagenomic analyses of global cohorts (n = 857) revealed that DL-endopeptidase gene abundance decreased globally in CD patients and negatively correlated with colitis. Fecal microbiota from CD patients with low DL-endopeptidase activity predisposed mice to colitis. Administering DL-endopeptidase, but not an active site mutant, alleviated colitis via the NOD2 pathway. Therapeutically restoring NOD2 ligands with a DL-endopeptidase-producing Lactobacillus salivarius strain or mifamurtide, a clinical analog of muramyl dipeptide, exerted potent anti-colitis effects. Our study suggests that the depletion of DL-endopeptidase contributes to CD pathogenesis through NOD2 signaling, providing a therapeutically modifiable target.
Collapse
Affiliation(s)
- Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Zhenhe Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Mengyao Hu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Shaoqin Jin
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Kai Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510515, China
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands.
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China; Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
32
|
Griffin ME, Hang HC. Microbial mechanisms to improve immune checkpoint blockade responsiveness. Neoplasia 2022; 31:100818. [PMID: 35816968 PMCID: PMC9284443 DOI: 10.1016/j.neo.2022.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
The human microbiota acts as a diverse source of molecular cues that influence the development and homeostasis of the immune system. Beyond endogenous roles in the human holobiont, host-microbial interactions also alter outcomes for immune-related diseases and treatment regimens. Over the past decade, sequencing analyses of cancer patients have revealed correlations between microbiota composition and the efficacy of cancer immunotherapies such as checkpoint inhibitors. However, very little is known about the exact mechanisms that link specific microbiota with patient responses, limiting our ability to exploit these microbial agents for improved oncology care. Here, we summarize current progress towards a molecular understanding of host-microbial interactions in the context of checkpoint inhibitor immunotherapies. By highlighting the successes of a limited number of studies focused on identifying specific, causal molecules, we underscore how the exploration of specific microbial features such as proteins, enzymes, and metabolites may translate into precise and actionable therapies for personalized patient care in the clinic.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037.
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037; Department of Chemistry, Scripps Research, La Jolla, CA 92037.
| |
Collapse
|
33
|
Vidal-Veuthey B, González D, Cárdenas JP. Role of microbial secreted proteins in gut microbiota-host interactions. Front Cell Infect Microbiol 2022; 12:964710. [PMID: 35967863 PMCID: PMC9373040 DOI: 10.3389/fcimb.2022.964710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian gut microbiota comprises a variety of commensals including potential probiotics and pathobionts, influencing the host itself. Members of the microbiota can intervene with host physiology by several mechanisms, including the secretion of a relatively well-reported set of metabolic products. Another microbiota influence mechanism is the use of secreted proteins (i.e., the secretome), impacting both the host and other community members. While widely reported and studied in pathogens, this mechanism remains understood to a lesser extent in commensals, and this knowledge is increasing in recent years. In the following minireview, we assess the current literature covering different studies, concerning the functions of secretable proteins from members of the gut microbiota (including commensals, pathobionts, and probiotics). Their effect on host physiology and health, and how these effects can be harnessed by postbiotic products, are also discussed.
Collapse
Affiliation(s)
- Boris Vidal-Veuthey
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- *Correspondence: Juan P. Cárdenas,
| |
Collapse
|
34
|
Gaio D, DeMaere MZ, Anantanawat K, Eamens GJ, Falconer L, Chapman TA, Djordjevic S, Darling AE. Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLoS One 2022; 17:e0270372. [PMID: 35749534 PMCID: PMC9232140 DOI: 10.1371/journal.pone.0270372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Intensive farming practices can increase exposure of animals to infectious agents against which antibiotics are used. Orally administered antibiotics are well known to cause dysbiosis. To counteract dysbiotic effects, numerous studies in the past two decades sought to understand whether probiotics are a valid tool to help re-establish a healthy gut microbial community after antibiotic treatment. Although dysbiotic effects of antibiotics are well investigated, little is known about the effects of intramuscular antibiotic treatment on the gut microbiome and a few studies attempted to study treatment effects using phylogenetic diversity analysis techniques. In this study we sought to determine the effects of two probiotic- and one intramuscularly administered antibiotic treatment on the developing gut microbiome of post-weaning piglets between their 3rd and 9th week of life. Shotgun metagenomic sequences from over 800 faecal time-series samples derived from 126 post-weaning piglets and 42 sows were analysed in a phylogenetic framework. Differences between individual hosts such as breed, litter, and age, were found to be important contributors to variation in the community composition. Host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The post-weaning pig gut microbiome appeared to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life. Treatment effects of the antibiotic and probiotic treatments were found but were subtle and included a higher representation of Mollicutes associated with intramuscular antibiotic treatment, and an increase of Lactobacillus associated with probiotic treatment. The discovery of correlations between experimental factors and microbial community composition is more commonly addressed with OTU-based methods and rarely analysed via phylogenetic diversity measures. The latter method, although less intuitive than the former, suffers less from library size normalization biases, and it proved to be instrumental in this study for the discovery of correlations between microbiome composition and host-, and treatment factors.
Collapse
Affiliation(s)
- Daniela Gaio
- iThree Institute, University of Technology Sydney, Ultimo, Australia
- * E-mail:
| | | | - Kay Anantanawat
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Graeme J. Eamens
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Linda Falconer
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Steven Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Aaron E. Darling
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
35
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
36
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
37
|
Zhang ZJ, Lehmann CJ, Cole CG, Pamer EG. Translating Microbiome Research From and To the Clinic. Annu Rev Microbiol 2022; 76:435-460. [DOI: 10.1146/annurev-micro-041020-022206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has elucidated the influence of the gut microbiota on human health and disease susceptibility and resistance. We review recent clinical and laboratory-based experimental studies associating the gut microbiota with certain human diseases. We also highlight ongoing translational advances that manipulate the gut microbiota to treat human diseases and discuss opportunities and challenges in translating microbiome research from and to the bedside. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Cody G. Cole
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric G. Pamer
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine and Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Kawanabe-Matsuda H, Takeda K, Nakamura M, Makino S, Karasaki T, Kakimi K, Nishimukai M, Ohno T, Omi J, Kano K, Uwamizu A, Yagita H, Boneca IG, Eberl G, Aoki J, Smyth MJ, Okumura K. Dietary Lactobacillus-Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discov 2022; 12:1336-1355. [PMID: 35180303 PMCID: PMC9662940 DOI: 10.1158/2159-8290.cd-21-0929] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/20/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Microbes and their byproducts have been reported to regulate host health and immune functions. Here we demonstrated that microbial exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 (EPS-R1) induced CCR6+ CD8+ T cells of mice and humans. In mice, ingestion of EPS-R1 augmented antitumor effects of anti-CTLA-4 or anti-PD-1 monoclonal antibody against CCL20-expressing tumors, in which infiltrating CCR6+ CD8+ T cells were increased and produced IFNγ accompanied by a substantial immune response gene expression signature maintaining T-cell functions. Of note, the antitumor adjuvant effect of EPS-R1 was also observed in germ-free mice. Furthermore, the induction of CCR6 expression was mediated through the phosphorylated structure in EPS-R1 and a lysophosphatidic acid receptor on CD8+ T cells. Overall, we find that dietary EPS-R1 consumption induces CCR6+ CD8+ T cells in Peyer's patches, favoring a tumor microenvironment that augments the therapeutic effect of immune-checkpoint blockade depending on CCL20 production by tumors. SIGNIFICANCE Gut microbiota- and probiotic-derived metabolites are attractive agents to augment the efficacy of immunotherapies. Here we demonstrated that dietary consumption of Lactobacillus-derived exopolysaccharide induced CCR6+ CD8+ T cells in Peyer's patches and improved the tumor microenvironment to augment the therapeutic effects of immune-checkpoint blockade against CCL20-producing tumors. See related commentary by Di Luccia and Colonna, p. 1189. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Hirotaka Kawanabe-Matsuda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Corresponding Author: Kazuyoshi Takeda, Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: 81-3-5802-1591; E-mail:
| | - Marie Nakamura
- Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Seiya Makino
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit of Biology and Genetics of Bacterial Cell Wall, Paris, France. INSERM, Équipe Avenir, Paris, France
| | - Gérard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
39
|
Li C, Liang Y, Qiao Y. Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation. Front Microbiol 2022; 13:863407. [PMID: 35531300 PMCID: PMC9073088 DOI: 10.3389/fmicb.2022.863407] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut is the natural habitat for trillions of microorganisms, known as the gut microbiota, which play indispensable roles in maintaining host health. Defining the underlying mechanistic basis of the gut microbiota-host interactions has important implications for treating microbiota-associated diseases. At the fundamental level, the gut microbiota encodes a myriad of microbial enzymes that can modify various dietary precursors and host metabolites and synthesize, de novo, unique microbiota-derived metabolites that traverse from the host gut into the blood circulation. These gut microbiota-derived metabolites serve as key effector molecules to elicit host responses. In this review, we summarize recent studies in the understanding of the major classes of gut microbiota-derived metabolites, including short-chain fatty acids (SCFAs), bile acids (BAs) and peptidoglycan fragments (PGNs) on their regulatory effects on host functions. Elucidation of the structures and biological activities of such gut microbiota-derived metabolites in the host represents an exciting and critical area of research.
Collapse
|
40
|
Sang Y, Ren J, Aballay A. The transcription factor HLH-26 controls probiotic-mediated protection against intestinal infection through up-regulation of the Wnt/BAR-1 pathway. PLoS Biol 2022; 20:e3001581. [PMID: 35263319 PMCID: PMC8936500 DOI: 10.1371/journal.pbio.3001581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/21/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Probiotics play a critical role in the control of host intestinal microbial balance, protecting the host from gastrointestinal pathogens, modulating the host immune response, and decreasing host susceptibility to infection. To understand the mechanism underlying the protective effect of probiotics against infections through immune regulation, we examined protection against Salmonella enterica infection following exposure to nonpathogenic Enterococcus faecium in the nematode Caenorhabditis elegans. We found that the transcription factor HLH-26, a REF-1 family member of basic helix-loop-helix transcription factors, was required in the intestine for E. faecium-mediated protection of C. elegans against a lethal S. enterica infection. In addition, we uncovered that defense response genes controlled by the canonical Wnt/BAR-1 pathway were activated upon exposure to E. faecium in an HLH-26-dependent manner. Our findings highlight a role for REF-1/HLH-26 in the control of the Wnt/BAR-1 pathway in probiotic-mediated protection against gut infection.
Collapse
Affiliation(s)
- Yu Sang
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jie Ren
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ding Z, Wang W, Zhang K, Ming F, Yangdai T, Xu T, Shi H, Bao Y, Yao H, Peng H, Han C, Jiang W, Liu J, Hou X, Lin R. Novel scheme for non-invasive gut bioinformation acquisition with a magnetically controlled sampling capsule endoscope. Gut 2021; 70:2297-2306. [PMID: 33452177 DOI: 10.1136/gutjnl-2020-322465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Intestinal flora and metabolites are associated with multiple systemic diseases. Current approaches for acquiring information regarding microbiota/metabolites have limitations. We aimed to develop a precise magnetically controlled sampling capsule endoscope (MSCE) for the convenient, non-invasive and accurate acquisition of digestive bioinformation for disease diagnosis and evaluation. DESIGN The MSCE and surgery were both used for sampling both jejunal and ileal GI content in the control and antibiotic-induced diarrhoea groups. The GI content was then used for microbiome profiling and metabolomics profiling. RESULTS Compared with surgery, our data showed that the MSCE precisely acquired data regarding the intestinal flora and metabolites, which was effectively differentiated in different intestinal regions and disease models. Using MSCE, we detected a dramatic decrease in the abundance of Bacteroidetes, Patescibacteria and Actinobacteria and hippuric acid levels, as well as an increase in the abundance of Escherichia-Shigella and the 2-pyrrolidinone levels were detected in the antibiotic-induced diarrhoea model by MSCE. MSCE-mediated sampling revealed specific gut microbiota/metabolites including Enterococcus, Lachnospiraceae, acetyl-L-carnitine and succinic acid, which are related to metabolic diseases, cancers and nervous system disorders. Additionally, the MSCE exhibited good sealing characteristics with no contamination after sampling. CONCLUSIONS We present a newly developed MSCE that can non-invasively and accurately acquire intestinal bioinformation via direct visualization under magnetic control, which may further aid in disease prevention, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Zhen Ding
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanhua Ming
- R&D department, ANKON Technologies, Wuhan, China
| | | | - Tao Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Shi
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Bao
- R&D department, ANKON Technologies, Wuhan, China
| | - Hailing Yao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Peng
- R&D department, ANKON Technologies, Wuhan, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Emerging technologies and infection models in cellular microbiology. Nat Commun 2021; 12:6764. [PMID: 34799563 PMCID: PMC8604907 DOI: 10.1038/s41467-021-26641-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
The field of cellular microbiology, rooted in the co-evolution of microbes and their hosts, studies intracellular pathogens and their manipulation of host cell machinery. In this review, we highlight emerging technologies and infection models that recently promoted opportunities in cellular microbiology. We overview the explosion of microscopy techniques and how they reveal unprecedented detail at the host-pathogen interface. We discuss the incorporation of robotics and artificial intelligence to image-based screening modalities, biochemical mapping approaches, as well as dual RNA-sequencing techniques. Finally, we describe chips, organoids and animal models used to dissect biophysical and in vivo aspects of the infection process. As our knowledge of the infected cell improves, cellular microbiology holds great promise for development of anti-infective strategies with translational applications in human health.
Collapse
|
43
|
Tan CY, Ramirez ZE, Surana NK. A Modern-World View of Host-Microbiota-Pathogen Interactions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1710-1718. [PMID: 34544813 DOI: 10.4049/jimmunol.2100215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The microbiota-the diverse set of commensal microbes that normally colonize humans-represents the first line of defense against infectious diseases. In this review, we summarize the direct and indirect mechanisms by which the microbiota modulates susceptibility to, and severity of, infections, with a focus on immunological mechanisms. Moreover, we highlight some of the ways that modern-world lifestyles have influenced the structure-function relationship between the microbiota and infectious diseases. Ultimately, understanding how the microbiota influences infectious risks will facilitate development of microbiota-derived therapeutics that bolster host defenses.
Collapse
Affiliation(s)
- Chin Yee Tan
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Zeni E Ramirez
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Neeraj K Surana
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC; .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and.,Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
44
|
Poluektova EU, Danilenko VN. Probiotic Bacteria in the Correction of Depression Symptoms, Their Active Genes and Proteins. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542109009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Arukha AP, Freguia CF, Mishra M, Jha JK, Kariyawasam S, Fanger NA, Zimmermann EM, Fanger GR, Sahay B. Lactococcus lactis Delivery of Surface Layer Protein A Protects Mice from Colitis by Re-Setting Host Immune Repertoire. Biomedicines 2021; 9:1098. [PMID: 34572293 PMCID: PMC8470720 DOI: 10.3390/biomedicines9091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn's disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.
Collapse
Affiliation(s)
- Ananta Prasad Arukha
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Meerambika Mishra
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| | - Jyoti K. Jha
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Subhashinie Kariyawasam
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ellen M. Zimmermann
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL 32608, USA;
| | - Gary R. Fanger
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| |
Collapse
|
46
|
Griffin ME, Espinosa J, Becker JL, Luo JD, Carroll TS, Jha JK, Fanger GR, Hang HC. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 2021; 373:1040-1046. [PMID: 34446607 DOI: 10.1126/science.abc9113] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The antitumor efficacy of cancer immunotherapy can correlate with the presence of certain bacterial species within the gut microbiome. However, many of the molecular mechanisms that influence host response to immunotherapy remain elusive. In this study, we show that members of the bacterial genus Enterococcus improve checkpoint inhibitor immunotherapy in mouse tumor models. Active enterococci express and secrete orthologs of the NlpC/p60 peptidoglycan hydrolase SagA that generate immune-active muropeptides. Expression of SagA in nonprotective E. faecalis was sufficient to promote immunotherapy response, and its activity required the peptidoglycan sensor NOD2. Notably, SagA-engineered probiotics or synthetic muropeptides also augmented anti-PD-L1 antitumor efficacy. Taken together, our data suggest that microbiota species with specialized peptidoglycan remodeling activity and muropeptide-based therapeutics may enhance cancer immunotherapy and could be leveraged as next-generation adjuvants.
Collapse
Affiliation(s)
- Matthew E Griffin
- Departments of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.,Bioinformatics Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.,Departments of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Departments of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jessica L Becker
- Departments of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jyoti K Jha
- Rise Therapeutics, 1405 Research Blvd. Suite 220, Rockville, MD 20850, USA
| | - Gary R Fanger
- Rise Therapeutics, 1405 Research Blvd. Suite 220, Rockville, MD 20850, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA. .,Departments of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Chen V, Griffin ME, Maguin P, Varble A, Hang HC. RecT Recombinase Expression Enables Efficient Gene Editing in Enterococcus spp. Appl Environ Microbiol 2021; 87:e0084421. [PMID: 34232061 PMCID: PMC8388837 DOI: 10.1128/aem.00844-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecium is a ubiquitous Gram-positive bacterium that has been recovered from the environment, food, and microbiota of mammals. Commensal strains of E. faecium can confer beneficial effects on host physiology and immunity, but antibiotic usage has afforded antibiotic-resistant and pathogenic isolates from livestock and humans. However, the dissection of E. faecium functions and mechanisms has been restricted by inefficient gene-editing methods. To address these limitations, here, we report that the expression of E. faecium RecT recombinase significantly improves the efficiency of recombineering technologies in both commensal and antibiotic-resistant strains of E. faecium and other Enterococcus species such as E. durans and E. hirae. Notably, the expression of RecT in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 and guide RNAs (gRNAs) enabled highly efficient scarless single-stranded DNA recombineering to generate specific gene-editing mutants in E. faecium. Moreover, we demonstrate that E. faecium RecT expression facilitated chromosomal insertions of double-stranded DNA templates encoding antibiotic-selectable markers to generate gene deletion mutants. As a further proof of principle, we use CRISPR-Cas9-mediated recombineering to knock out both sortase A genes in E. faecium for downstream functional characterization. The general RecT-mediated recombineering methods described here should significantly enhance genetic studies of E. faecium and other closely related species for functional and mechanistic studies. IMPORTANCE Enterococcus faecium is widely recognized as an emerging public health threat with the rise of drug resistance and nosocomial infections. Nevertheless, commensal Enterococcus strains possess beneficial health functions in mammals to upregulate host immunity and prevent microbial infections. This functional dichotomy of Enterococcus species and strains highlights the need for in-depth studies to discover and characterize the genetic components underlying its diverse activities. However, current genetic engineering methods in E. faecium still require passive homologous recombination from plasmid DNA. This involves the successful cloning of multiple homologous fragments into a plasmid, introducing the plasmid into E. faecium, and screening for double-crossover events that can collectively take up to multiple weeks to perform. To alleviate these challenges, we show that RecT recombinase enables the rapid and efficient integration of mutagenic DNA templates to generate substitutions, deletions, and insertions in the genomic DNA of E. faecium. These improved recombineering methods should facilitate functional and mechanistic studies of Enterococcus.
Collapse
Affiliation(s)
- Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| |
Collapse
|
48
|
Succession of Intestinal Microbial Structure of Giant Pandas ( Ailuropoda melanoleuca) during Different Developmental Stages and Its Correlation with Cellulase Activity. Animals (Basel) 2021; 11:ani11082358. [PMID: 34438815 PMCID: PMC8388744 DOI: 10.3390/ani11082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Giant pandas (Ailuropoda melanoleuca) are endangered animals and are uniquely inhabitant in China. These rare animals have gradually developed bamboo-eating adaptability through persistent evolution. Intestinal microbes play an important role in the digestion, absorption, metabolism, and development of giant pandas especially by facilizing the degradation of bamboo polysaccharides such as cellulose. Currently, genes directly related to cellulose degradation have not been identified in the genome of giant panda, and cellulose digestion is therefore likely dependent on intestinal microbes. This study analyzed the changes in intestinal microbial structure of giant pandas (cubs, sub-adults, and adults) in different developmental stages. The impact was also assessed with the changes in food composition probed into the succession regularity of intestinal microbes and the activities of intestinal flora on the digestion and utilization of cellulose in bamboo. Abstract The interaction between intestinal microbial flora and giant pandas (Ailuropoda melanoleuca) is indispensable for the healthy development of giant pandas. In this study, we analysed the diversity of bacteria and fungi in the intestines of six giant pandas (two pandas in each development stage) with a high-throughput sequencing technique to expand the relative variation in abundance of dominant microbes and potential cellulose-degradation genera in the intestines of the giant pandas and to explore the correlation between dominant microbial genera in the intestines and cellulose digestion activities of giant pandas. The results showed that the intestinal bacterial diversity of young giant pandas was higher than that of sub-adult and adult giant pandas, and Shannon’s diversity index was about 2.0. The intestinal bacterial diversity of giant pandas from sub-adult to adult (mature stage) stage showed an increasing trend, but the intestinal fungal diversity showed no considerable regular relations with their ages. The microbial composition and abundance of giant pandas changed in different developmental stages. Pearson correlation analysis and path analysis showed that there was a close relationship between the dominant microbes in the intestines of giant pandas, and the interaction between microbial genera might affect the cellulose digestion ability of giant pandas. Generally, the digestibility of cellulose degraders in pandas was still insufficient, with low enzymic activity and immature microbial structure. Therefore, the utilization and digestion of bamboo cellulose still might not be a main source of energy for pandas.
Collapse
|
49
|
Mørch MGM, Møller KV, Hesselager MO, Harders RH, Kidmose CL, Buhl T, Fuursted K, Bendixen E, Shen C, Christensen LG, Poulsen CH, Olsen A. The TGF-β ligand DBL-1 is a key player in a multifaceted probiotic protection against MRSA in C. elegans. Sci Rep 2021; 11:10717. [PMID: 34021197 PMCID: PMC8139972 DOI: 10.1038/s41598-021-89831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Worldwide the increase in multi-resistant bacteria due to misuse of traditional antibiotics is a growing threat for our health. Finding alternatives to traditional antibiotics is thus timely. Probiotic bacteria have numerous beneficial effects and could offer safer alternatives to traditional antibiotics. Here, we use the nematode Caenorhabditis elegans (C. elegans) to screen a library of different lactobacilli to identify potential probiotic bacteria and characterize their mechanisms of action. We show that pretreatment with the Lactobacillus spp. Lb21 increases lifespan of C. elegans and results in resistance towards pathogenic methicillin-resistant Staphylococcus aureus (MRSA). Using genetic analysis, we find that Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-β signaling pathway in C. elegans. This response is evolutionarily conserved as we find that Lb21 also induces the TGF-β pathway in porcine epithelial cells. We further characterize the host responses in an unbiased proteome analysis and identify 474 proteins regulated in worms fed Lb21 compared to control food. These include fatty acid CoA synthetase ACS-22, aspartic protease ASP-6 and vitellogenin VIT-2 which are important for Lb21-mediated MRSA resistance. Thus, Lb21 exerts its probiotic effect on C. elegans in a multifactorial manner. In summary, our study establishes a mechanistic basis for the antimicrobial potential of lactobacilli.
Collapse
Affiliation(s)
- Maria G M Mørch
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katrine V Møller
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Rikke H Harders
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caroline L Kidmose
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Therese Buhl
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Chong Shen
- Gut Immunology Lab, Health & Biosciences , IFF , Brabrand , Denmark
| | | | | | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
50
|
The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients 2021; 13:nu13051591. [PMID: 34068669 PMCID: PMC8150869 DOI: 10.3390/nu13051591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic bacteria are widely accepted as therapeutic agents against inflammatory bowel diseases for their immunostimulating effects. In the last decade, more evidence has emerged supporting the positive effects of probiotics on the course of neurodegenerative and psychiatric diseases. This brief review summarizes the data from clinical studies of probiotics possessing antidepressant properties and focuses on the potential genes and proteins underlying these mechanisms. Data from small-sample placebo-controlled pilot studies indicate that certain strains of bacteria can significantly reduce the symptoms of depression, especially in depressed patients. Despite the disparity between studies attempting to pinpoint the bacterial putative genes and proteins accounting for these mechanisms, they ultimately show that bacteria are a potential source of metabiotics—microbial metabolites or structural components. Since the constituents of cells—namely, secreted proteins, peptides and cell wall components—are most likely to be entangled in the gut–brain axis, they can serve as starting point in the search for probiotics with concrete properties.
Collapse
|