1
|
Han S, Ye X, Zhou X, Liu Z, Guo Y, Wang M, Ji W, Wang Y, Du J. Solid-state spin coherence time approaching the physical limit. SCIENCE ADVANCES 2025; 11:eadr9298. [PMID: 40020055 PMCID: PMC11870053 DOI: 10.1126/sciadv.adr9298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Extending the coherence time of quantum systems to their physical limit is a long-standing pursuit and critical for developing quantum science and technology. By characterizing all the microscopic noise sources of the electronic spin [nitrogen-vacancy (NV) center] in diamonds using complete noise spectroscopy, we observe a previously unforeseen noise spectrum manifested as the empirical limit ([Formula: see text]) that has puzzled researchers for decades in various solid-state systems. By implementing a corresponding dynamical decoupling strategy, we are able to surpass the empirical limit and approach the upper physical limit T2 = 2T1 for NVs, from room temperature down to 220 kelvin. Our observations, including the independence across different spatial sites and its dependence on temperature in the same way as spin-lattice relaxation, suggest an emerging decoherence mechanism dominated by spin-lattice interaction. These results provide a unified and universal strategy for characterizing and controlling microscopic noises, thereby paving the way for achieving the physical limit in various solid-state systems.
Collapse
Affiliation(s)
- Shuo Han
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Xiangyu Ye
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Xu Zhou
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhaoxin Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Yuhang Guo
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Mengqi Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Wentao Ji
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Briegel KD, von Grafenstein NR, Draeger JC, Blümler P, Allert RD, Bucher DB. Optical widefield nuclear magnetic resonance microscopy. Nat Commun 2025; 16:1281. [PMID: 39900906 PMCID: PMC11790880 DOI: 10.1038/s41467-024-55003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025] Open
Abstract
Microscopy enables detailed visualization and understanding of minute structures or processes. While cameras have significantly advanced optical, infrared, and electron microscopy, imaging nuclear magnetic resonance (NMR) signals on a camera has remained elusive. Here, we employ nitrogen-vacancy centers in diamond as a quantum sensor, which converts NMR signals into optical signals that are subsequently captured by a high-speed camera. Unlike traditional magnetic resonance imaging, our method records the NMR signal over a wide field of view in real space. We demonstrate that our optical widefield NMR microscopy can image NMR signals in microfluidic structures with a ~10 μm resolution across a ~235 × 150 μm2 area. Crucially, each camera pixel records an NMR spectrum providing multicomponent information about the signal's amplitude, phase, local magnetic field strengths, and gradients. The fusion of optical microscopy and NMR techniques enables multifaceted imaging applications in the physical and life sciences.
Collapse
Affiliation(s)
- Karl D Briegel
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748, Garching bei München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany
| | - Nick R von Grafenstein
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748, Garching bei München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany
| | - Julia C Draeger
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748, Garching bei München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany
| | - Peter Blümler
- University of Mainz, Institute of Physics, Staudingerweg 7, 55128, Mainz, Germany
| | - Robin D Allert
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748, Garching bei München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany
| | - Dominik B Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748, Garching bei München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany.
| |
Collapse
|
3
|
Sarkar A, Jones ZR, Parashar M, Druga E, Akkiraju A, Conti S, Krishnamoorthi P, Nachuri S, Aman P, Hashemi M, Nunn N, Torelli MD, Gilbert B, Wilson KR, Shenderova OA, Tanjore D, Ajoy A. High-precision chemical quantum sensing in flowing monodisperse microdroplets. SCIENCE ADVANCES 2024; 10:eadp4033. [PMID: 39661672 PMCID: PMC11633744 DOI: 10.1126/sciadv.adp4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence. Using this method, paramagnetic ions in droplets are detected with low limit-of-detection using small analyte volumes, with exceptional measurement stability over >103 s. In addition, these droplets are used as microconfinement chambers by co-encapsulating ND quantum sensors with various analytes such as single cells, suggesting wide-ranging applications including single-cell metabolomics and real-time intracellular measurements from bioreactors. Important advances are enabled by this work, including portable chemical testing devices, amplification-free chemical assays, and chemical imaging tools for probing reactions within microenvironments.
Collapse
Affiliation(s)
- Adrisha Sarkar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zachary R. Jones
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Madhur Parashar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amala Akkiraju
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Conti
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pranav Krishnamoorthi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srisai Nachuri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Parker Aman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mohammad Hashemi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Nunn
- Adamas Nanotechnologies Inc., Raleigh, NC 27617, USA
| | | | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
4
|
Hu Z, He Z, Wang Q, Chou CT, Hou JT, Liu L. Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems. NANO LETTERS 2024; 24:15731-15737. [PMID: 39613752 DOI: 10.1021/acs.nanolett.4c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.
Collapse
Affiliation(s)
- Zhongqiang Hu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhiping He
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qiuyuan Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chung-Tao Chou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Justin T Hou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luqiao Liu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Fang HH, Wang XJ, Marie X, Sun HB. Quantum sensing with optically accessible spin defects in van der Waals layered materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:303. [PMID: 39496613 PMCID: PMC11535532 DOI: 10.1038/s41377-024-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
Collapse
Affiliation(s)
- Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institut Universitaire de France, 75231, Paris, France
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Hermann JC, Rizzato R, Bruckmaier F, Allert RD, Blank A, Bucher DB. Extending radiowave frequency detection range with dressed states of solid-state spin ensembles. NPJ QUANTUM INFORMATION 2024; 10:103. [PMID: 39469426 PMCID: PMC11512814 DOI: 10.1038/s41534-024-00891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/15/2024] [Indexed: 10/30/2024]
Abstract
Quantum sensors using solid-state spin defects excel in the detection of radiofrequency (RF) fields, serving various applications in communication, ranging, and sensing. For this purpose, pulsed dynamical decoupling (PDD) protocols are typically applied, which enhance sensitivity to RF signals. However, these methods are limited to frequencies of a few megahertz, which poses a challenge for sensing higher frequencies. We introduce an alternative approach based on a continuous dynamical decoupling (CDD) scheme involving dressed states of nitrogen vacancy (NV) ensemble spins driven within a microwave resonator. We compare the CDD methods to established PDD protocols and demonstrate the detection of RF signals up to ~85 MHz, about ten times the current limit imposed by the PDD approach under identical conditions. Implementing the CDD method in a heterodyne/synchronized protocol combines the high-frequency detection with high spectral resolution. This advancement extends to various domains requiring detection in the high frequency (HF) and very high frequency (VHF) ranges of the RF spectrum, including spin sensor-based magnetic resonance spectroscopy at high magnetic fields.
Collapse
Affiliation(s)
- Jens C. Hermann
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748 Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, 80799 Germany
| | - Roberto Rizzato
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748 Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, 80799 Germany
| | - Fleming Bruckmaier
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748 Germany
- QuantumDiamonds GmbH, Friedenstr. 6, München, 81671 Germany
| | - Robin D. Allert
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748 Germany
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000 Israel
| | - Dominik B. Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748 Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München, 80799 Germany
| |
Collapse
|
7
|
Stern HL, M Gilardoni C, Gu Q, Eizagirre Barker S, Powell OFJ, Deng X, Fraser SA, Follet L, Li C, Ramsay AJ, Tan HH, Aharonovich I, Atatüre M. A quantum coherent spin in hexagonal boron nitride at ambient conditions. NATURE MATERIALS 2024; 23:1379-1385. [PMID: 38769205 PMCID: PMC11442369 DOI: 10.1038/s41563-024-01887-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration-ideally under ambient conditions-hold great promise for the implementation of quantum networks and sensors. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here we report quantum coherent control under ambient conditions of a single-photon-emitting defect spin in a layered van der Waals material, namely, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is predominantly governed by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results serve to introduce a new platform to realize a room-temperature spin qubit coupled to a multiqubit quantum register or quantum sensor with nanoscale sample proximity.
Collapse
Affiliation(s)
- Hannah L Stern
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Photon Science Institute and Department of Physics and Department of Chemistry, The University of Manchester, Manchester, UK.
| | | | - Qiushi Gu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Oliver F J Powell
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd, Cambridge, UK
| | - Xiaoxi Deng
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Louis Follet
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Chi Li
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Andrew J Ramsay
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd, Cambridge, UK
| | - Hark Hoe Tan
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Budakian R, Finkler A, Eichler A, Poggio M, Degen CL, Tabatabaei S, Lee I, Hammel PC, Eugene SP, Taminiau TH, Walsworth RL, London P, Bleszynski Jayich A, Ajoy A, Pillai A, Wrachtrup J, Jelezko F, Bae Y, Heinrich AJ, Ast CR, Bertet P, Cappellaro P, Bonato C, Altmann Y, Gauger E. Roadmap on nanoscale magnetic resonance imaging. NANOTECHNOLOGY 2024; 35:412001. [PMID: 38744268 DOI: 10.1088/1361-6528/ad4b23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.
Collapse
Affiliation(s)
- Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Amit Finkler
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Eichler
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Martino Poggio
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Christian L Degen
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Inhee Lee
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - P Chris Hammel
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - S Polzik Eugene
- Niels Bohr Institute, University of Copenhagen, 17, Copenhagen, 2100, Denmark
| | - Tim H Taminiau
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
| | - Ronald L Walsworth
- University of Maryland 2218 Kim Engineering Building, College Park, MD 20742, United States of America
| | - Paz London
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ania Bleszynski Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
- Quantum Information Science Program, CIFAR, 661 University Ave., Toronto, ON M5G 1M1, Canada
| | - Arjun Pillai
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics, Ulm University, Ulm, 89081, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christian R Ast
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Patrice Bertet
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Paola Cappellaro
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America
| | - Cristian Bonato
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| | - Yoann Altmann
- Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Erik Gauger
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
9
|
Hu Z, He J, Ye R, Lin X, Zhou F, Xu N. Suppressing Thermal Noise to Sub-Millikelvin Level in a Single-Spin Quantum System Using Realtime Frequency Tracking. MICROMACHINES 2024; 15:911. [PMID: 39064422 PMCID: PMC11278624 DOI: 10.3390/mi15070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.
Collapse
Affiliation(s)
- Zhiyi Hu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China;
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Runchuan Ye
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Xue Lin
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Feifei Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| |
Collapse
|
10
|
Patel RN, Fishman REK, Huang TY, Gusdorff JA, Fehr DA, Hopper DA, Breitweiser SA, Porat B, Flatté ME, Bassett LC. Room Temperature Dynamics of an Optically Addressable Single Spin in Hexagonal Boron Nitride. NANO LETTERS 2024; 24:7623-7628. [PMID: 38860722 DOI: 10.1021/acs.nanolett.4c01333] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.
Collapse
Affiliation(s)
- Raj N Patel
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rebecca E K Fishman
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tzu-Yung Huang
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jordan A Gusdorff
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David A Fehr
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, United States
| | - David A Hopper
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Alex Breitweiser
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin Porat
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael E Flatté
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lee C Bassett
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Jing R, Lu X, Wang J, Xiong J, Qiao Y, Zhang R, Yu Z. CeO 2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310926. [PMID: 38239093 DOI: 10.1002/smll.202310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Indexed: 06/27/2024]
Abstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Collapse
Affiliation(s)
- Run Jing
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
12
|
Hesselmeier E, Kuna P, Knolle W, Kaiser F, Son NT, Ghezellou M, Ul-Hassan J, Vorobyov V, Wrachtrup J. High-Fidelity Optical Readout of a Nuclear-Spin Qubit in Silicon Carbide. PHYSICAL REVIEW LETTERS 2024; 132:180804. [PMID: 38759189 DOI: 10.1103/physrevlett.132.180804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Quantum state readout is a key requirement for a successful qubit platform. In this work, we demonstrate a high-fidelity quantum state readout of a V2 center nuclear spin based on a repetitive readout technique. We demonstrate up to 99.5% readout fidelity and 99% for state preparation. Using this efficient readout, we initialize the nuclear spin by measurement and demonstrate its Rabi and Ramsey nutation. Finally, we use the nuclear spin as a long-lived memory for quantum sensing application of a weakly coupled diatomic nuclear-spin bath.
Collapse
Affiliation(s)
- Erik Hesselmeier
- 3rd Institute of Physics, IQST, and Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Pierre Kuna
- 3rd Institute of Physics, IQST, and Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Wolfgang Knolle
- Department of Sensoric Surfaces and Functional Interfaces, Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Florian Kaiser
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
- University of Luxembourg, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nguyen Tien Son
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Misagh Ghezellou
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jawad Ul-Hassan
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Vadim Vorobyov
- 3rd Institute of Physics, IQST, and Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, IQST, and Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for solid state physics, Stuttgart, Germany
| |
Collapse
|
13
|
Rodgers LVH, Nguyen ST, Cox JH, Zervas K, Yuan Z, Sangtawesin S, Stacey A, Jaye C, Weiland C, Pershin A, Gali A, Thomsen L, Meynell SA, Hughes LB, Jayich ACB, Gui X, Cava RJ, Knowles RR, de Leon NP. Diamond surface functionalization via visible light-driven C-H activation for nanoscale quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2316032121. [PMID: 38451945 PMCID: PMC10945787 DOI: 10.1073/pnas.2316032121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.
Collapse
Affiliation(s)
- Lila V. H. Rodgers
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - James H. Cox
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - Kalliope Zervas
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Zhiyang Yuan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Sorawis Sangtawesin
- School of Physics, Suranaree University of Technology, Nakhon Ratchasima30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima30000, Thailand
| | - Alastair Stacey
- School of Physics, University of Melbourne, Parkville, VIC3010, Australia
- School of Science, RMIT University, Melbourne, VIC3000, Australia
| | - Cherno Jaye
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Conan Weiland
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Anton Pershin
- HUN-REN Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, BudapestH-1525, Hungary
- MTA-WFK Lendület “Momentum” Semiconductor Nanostructures Research Group, BudapestH-1525, Hungary
| | - Adam Gali
- HUN-REN Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, BudapestH-1525, Hungary
- MTA-WFK Lendület “Momentum” Semiconductor Nanostructures Research Group, BudapestH-1525, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, BudapestH-1111, Hungary
| | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC3168, Australia
| | - Simon A. Meynell
- Physics Department, University of California, Santa Barbara, CA93106
| | - Lillian B. Hughes
- Materials Department, University of California, Santa Barbara, CA93106
| | | | - Xin Gui
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - Robert J. Cava
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | | | - Nathalie P. de Leon
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| |
Collapse
|
14
|
Hu Z, Jiang F, He J, Dai Y, Wang Y, Xu N, Du J. Four-Order Power Reduction in Nanoscale Electron-Nuclear Double Resonance with a Nitrogen-Vacancy Center in Diamonds. NANO LETTERS 2024; 24:2846-2852. [PMID: 38391130 DOI: 10.1021/acs.nanolett.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Detecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower. Meanwhile, the microwave-induced broadening to the line-width of the spectroscopy is significantly canceled, and we achieve a nuclear-spin spectrum with a resolution down to 2.1 kHz under a magnetic field at 1840 Gs. The spectral resolution can be further improved by upgrading the experimental control precision. This scheme can also be used in sensing microwave fields and can be extended to a wide range of applications in the future.
Collapse
Affiliation(s)
- Zhiyi Hu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Fengjian Jiang
- School of Information Engineering, Huangshan University, Huangshan 245041, China
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yulin Dai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangfeng Du
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Hesselmeier E, Kuna P, Takács I, Ivády V, Knolle W, Son NT, Ghezellou M, Ul-Hassan J, Dasari D, Kaiser F, Vorobyov V, Wrachtrup J. Qudit-Based Spectroscopy for Measurement and Control of Nuclear-Spin Qubits in Silicon Carbide. PHYSICAL REVIEW LETTERS 2024; 132:090601. [PMID: 38489642 DOI: 10.1103/physrevlett.132.090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024]
Abstract
Nuclear spins with hyperfine coupling to single electron spins are highly valuable quantum bits. Here we probe and characterize the particularly rich nuclear-spin environment around single silicon vacancy color centers (V2) in 4H-SiC. By using the electron spin-3/2 qudit as a four level sensor, we identify several sets of ^{29}Si and ^{13}C nuclear spins through their hyperfine interaction. We extract the major components of their hyperfine coupling via optical detected nuclear magnetic resonance, and assign them to shells in the crystal via the density function theory simulations. We utilize the ground-state level anticrossing of the electron spin for dynamic nuclear polarization and achieve a nuclear-spin polarization of up to 98±6%. We show that this scheme can be used to detect the nuclear magnetic resonance signal of individual spins and demonstrate their coherent control. Our work provides a detailed set of parameters and first steps for future use of SiC as a multiqubit memory and quantum computing platform.
Collapse
Affiliation(s)
- Erik Hesselmeier
- 3rd Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Pierre Kuna
- 3rd Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart, Germany
| | - István Takács
- Eötvös Loránd University, Egyetem tér 1-3, H-1053 Budapest, Hungary
- MTA-ELTE Lendület "Momentum" NewQubit Research Group, Pázmány Péter, Sétány 1/A, 1117 Budapest, Hungary
| | - Viktor Ivády
- Eötvös Loránd University, Egyetem tér 1-3, H-1053 Budapest, Hungary
- MTA-ELTE Lendület "Momentum" NewQubit Research Group, Pázmány Péter, Sétány 1/A, 1117 Budapest, Hungary
- Department of Physics, Chemistry and Biology, Linköping University, Olaus Magnus väg, 583 30 Linköping, Sweden
| | - Wolfgang Knolle
- Department of Sensoric Surfaces and Functional Interfaces, Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Nguyen Tien Son
- Department of Physics, Chemistry and Biology, Linköping University, Olaus Magnus väg, 583 30 Linköping, Sweden
| | - Misagh Ghezellou
- Department of Physics, Chemistry and Biology, Linköping University, Olaus Magnus väg, 583 30 Linköping, Sweden
| | - Jawad Ul-Hassan
- Department of Physics, Chemistry and Biology, Linköping University, Olaus Magnus väg, 583 30 Linköping, Sweden
| | - Durga Dasari
- 3rd Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Florian Kaiser
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
- University of Luxembourg, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Vadim Vorobyov
- 3rd Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for solid state physics, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Teraji T, Shinei C, Masuyama Y, Miyakawa M, Taniguchi T. Nitrogen concentration control during diamond growth for NV - centre formation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20220322. [PMID: 38043575 DOI: 10.1098/rsta.2022.0322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/25/2023] [Indexed: 12/05/2023]
Abstract
Negatively charged nitrogen-vacancy (NV-) centres formed in diamond crystals are point defects that have potential applications in various quantum devices such as highly sensitive magnetic sensors. To improve the sensitivity of magnetic sensors using NV- centres, it is essential to precisely control the nitrogen concentration in the crystals. In this paper, we demonstrated that nitrogen concentration in diamond can be controlled with high precision for the following two representative growth methods. One is the high-pressure/high-temperature (HPHT) synthesis method and the other is the chemical vapour deposition (CVD) method. The nitrogen concentration of HPHT-grown diamond decreased semi-logarithmically with increasing contents of titanium or aluminium as nitrogen getter materials. The nitrogen concentration of CVD-grown diamond increased linearly with increasing the flow rate ratio of nitrogen to carbon. NV- centres were formed by controlling the total fluence of electron beams so that approximately 20% of the nitrogen became NV- centres. The coherence time of electron spin of NV- centres obtained by the Hahn-echo pulse sequence T2 of these diamond crystals was inversely proportional to the nitrogen concentration. A comparison of T2 of the NV- centres for HPHT-synthesized and CVD-grown diamonds showed no significant difference between them. This article is part of the Theo Murphy meeting issue 'Diamond for quantum applications'.
Collapse
Affiliation(s)
- T Teraji
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - C Shinei
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Y Masuyama
- Quantum Materials and Applications Research Center, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - M Miyakawa
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
17
|
Zhou H, Martin LS, Tyler M, Makarova O, Leitao N, Park H, Lukin MD. Robust Higher-Order Hamiltonian Engineering for Quantum Sensing with Strongly Interacting Systems. PHYSICAL REVIEW LETTERS 2023; 131:220803. [PMID: 38101374 DOI: 10.1103/physrevlett.131.220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling. We present a simple physical picture demonstrating the origin of this limitation, and further formalize these considerations in terms of concise higher-order decoupling rules. We then show how these limitations can be surpassed by identifying a novel sequence building block, in which the signal period matches twice the echo period. Using these decoupling rules and the resulting sequence building block, we experimentally demonstrate significant improvements in dynamical decoupling timescales and magnetic field sensitivity, opening the door for new applications in quantum sensing and quantum many-body physics.
Collapse
Affiliation(s)
- Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leigh S Martin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew Tyler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Oksana Makarova
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nathaniel Leitao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
18
|
Staudenmaier N, Vijayakumar-Sreeja A, Genov G, Cohen D, Findler C, Lang J, Retzker A, Jelezko F, Oviedo-Casado S. Optimal Sensing Protocol for Statistically Polarized Nano-NMR with NV Centers. PHYSICAL REVIEW LETTERS 2023; 131:150801. [PMID: 37897751 DOI: 10.1103/physrevlett.131.150801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/29/2023] [Indexed: 10/30/2023]
Abstract
Diffusion noise represents a major constraint to successful liquid state nano-NMR spectroscopy. Using the Fisher information as a faithful measure, we theoretically calculate and experimentally show that phase sensitive protocols are superior in most experimental scenarios, as they maximize information extraction from correlations in the sample. We derive the optimal experimental parameters for quantum heterodyne detection (Qdyne) and present the most accurate statistically polarized nano-NMR Qdyne detection experiments to date, leading the way to resolve chemical shifts and J couplings at the nanoscale.
Collapse
Affiliation(s)
- Nicolas Staudenmaier
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Genko Genov
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Cohen
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Christoph Findler
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Diatope GmbH, Buchenweg 23, 88444 Ummendorf, Germany
| | - Johannes Lang
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Diatope GmbH, Buchenweg 23, 88444 Ummendorf, Germany
| | - Alex Retzker
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- AWS Center for Quantum Computing, Pasadena 91125, California, USA
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Santiago Oviedo-Casado
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- Área de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena E-30202, Spain
| |
Collapse
|
19
|
Ronceray N, You Y, Glushkov E, Lihter M, Rehl B, Chen TH, Nam GH, Borza F, Watanabe K, Taniguchi T, Roke S, Keerthi A, Comtet J, Radha B, Radenovic A. Liquid-activated quantum emission from pristine hexagonal boron nitride for nanofluidic sensing. NATURE MATERIALS 2023; 22:1236-1242. [PMID: 37652991 PMCID: PMC10533396 DOI: 10.1038/s41563-023-01658-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.
Collapse
Affiliation(s)
- Nathan Ronceray
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Yi You
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, Zagreb, Croatia
| | - Benjamin Rehl
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tzu-Heng Chen
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gwang-Hyeon Nam
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Fanny Borza
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ashok Keerthi
- National Graphene Institute, The University of Manchester, Manchester, UK
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Jean Comtet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, Paris, France
| | - Boya Radha
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
20
|
Shams M, Choudhari J, Reyes K, Prentzas S, Gapizov A, Shehryar A, Affaf M, Grezenko H, Gasim RW, Mohsin SN, Rehman A, Rehman S. The Quantum-Medical Nexus: Understanding the Impact of Quantum Technologies on Healthcare. Cureus 2023; 15:e48077. [PMID: 38046499 PMCID: PMC10689891 DOI: 10.7759/cureus.48077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 12/05/2023] Open
Abstract
In a world characterized by rapid technological evolution, the integration of quantum technologies into the realm of healthcare has emerged as a transformative force. This narrative review explores the journey of quantum innovations in medicine, delving into the fundamental principles of quantum mechanics that underpin quantum computing, sensing, and communication. From the birth of quantum theory to the advent of practical quantum applications, we journey through historical milestones that have paved the way for a quantum-powered future in healthcare. The narrative unfolds to reveal the profound implications of quantum technologies in healthcare, ranging from accelerated drug discovery and genomic analysis to secure data transmission and telemedicine. Real-world case studies illuminate successful applications, while the review addresses the ethical, societal, and regulatory considerations that accompany this quantum revolution. As we peer into the future, we contemplate the challenges that lie ahead and offer recommendations for researchers and policymakers to forge a harmonious and equitable synergy between quantum and medicine. In a world where innovation outpaces the tick of the clock, this narrative review serves as a timely guide for those poised to shape the quantum healthcare landscape, where precision and compassion converge and the possibilities are limitless.
Collapse
Affiliation(s)
| | - Jinal Choudhari
- Family Medicine, Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | | | - Sophia Prentzas
- Internal Medicine, American University of Antigua, Osbourn, ATG
| | | | | | - Maryam Affaf
- Internal Medicine, Women's Medical and Dental College, Abbottabad, PAK
| | - Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Rayan W Gasim
- Internal Medicine, University of Khartoum, Khartoum, SDN
| | - Syed Naveed Mohsin
- Orthopeadics, St. James Hospital, Dublin, IRL
- General Surgery, Cavan General Hospital, Cavan, IRL
| | | | - Shehryar Rehman
- Internal Medicine, Al Assad University Hospital, Damascus, SYR
| |
Collapse
|
21
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
22
|
Xu C, Ren Z, Zhou H, Zhou J, Ho CP, Wang N, Lee C. Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. LIGHT, SCIENCE & APPLICATIONS 2023; 12:154. [PMID: 37357238 DOI: 10.1038/s41377-023-01186-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Circular dichroism (CD) spectroscopy has been widely demonstrated for detecting chiral molecules. However, the determination of chiral mixtures with various concentrations and enantiomeric ratios can be a challenging task. To solve this problem, we report an enhanced vibrational circular dichroism (VCD) sensing platform based on plasmonic chiral metamaterials, which presents a 6-magnitude signal enhancement with a selectivity of chiral molecules. Guided by coupled-mode theory, we leverage both in-plane and out-of-plane symmetry-breaking structures for chiral metamaterial design enabled by a two-step lithography process, which increases the near-field coupling strengths and varies the ratio between absorption and radiation loss, resulting in improved chiral light-matter interaction and enhanced molecular VCD signals. Besides, we demonstrate the thin-film sensing process of BSA and β-lactoglobulin proteins, which contain secondary structures α-helix and β-sheet and achieve a limit of detection down to zeptomole level. Furthermore, we also, for the first time, explore the potential of enhanced VCD spectroscopy by demonstrating a selective sensing process of chiral mixtures, where the mixing ratio can be successfully differentiated with our proposed chiral metamaterials. Our findings improve the sensing signal of molecules and expand the extractable information, paving the way toward label-free, compact, small-volume chiral molecule detection for stereochemical and clinical diagnosis applications.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chong Pei Ho
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Nan Wang
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- NUS Graduate School for Integrative Science and Engineering Program (ISEP), National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
23
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
24
|
Xu N, Zhou F, Ye X, Lin X, Chen B, Zhang T, Yue F, Chen B, Wang Y, Du J. Noise Prediction and Reduction of Single Electron Spin by Deep-Learning-Enhanced Feedforward Control. NANO LETTERS 2023; 23:2460-2466. [PMID: 36942925 DOI: 10.1021/acs.nanolett.2c03449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noise-induced control imperfection is an important problem in applications of diamond-based nanoscale sensing, where measurement-based strategies are generally utilized to correct low-frequency noises in realtime. However, the spin-state readout requires a long time due to the low photon-detection efficiency. This inevitably introduces a delay in the noise-reduction process and limits its performance. Here we introduce the deep learning approach to relax this restriction by predicting the trend of noise and compensating for the delay. We experimentally implement feedforward quantum control of the nitrogen-vacancy center in diamond to protect its spin coherence and improve the sensing performance against noise. The new approach effectively enhances the decoherence time of the electron spin, which enables exploration of more physics from its resonant spectroscopy. A theoretical model is provided to explain the improvement. This scheme could be applied in general sensing schemes and extended to other quantum systems.
Collapse
Affiliation(s)
- Nanyang Xu
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 311000, China
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Feifei Zhou
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 311000, China
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xiangyu Ye
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
| | - Xue Lin
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 311000, China
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Bao Chen
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 311000, China
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Ting Zhang
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Feng Yue
- Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei 230009, China
| | - Bing Chen
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Li Z, Zhang N, Guo J, Guo Q, Yu T, Zhang M, Wang G, Gao X, Zhang X. Orientation of the NV centers are determined using the cylindrical vector beam array. OPTICS EXPRESS 2023; 31:9299-9307. [PMID: 37157502 DOI: 10.1364/oe.483191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The determination of nitrogen-vacancy centers plays an important role in quantum information sensing. Efficiently and rapidly determining the orientation of multiple nitrogen-vacancy center s in a low-concentration diamond is challenging due to its size. Here, we solve this scientific problem by using an azimuthally polarized beam array as the incident beam. In this paper, the optical pen is used to modulate the position of beam array to excite distinctive fluorescence characterizing multiple and different orientations of nitrogen-vacancy centers. The important result is that in a low concentration diamond layer, the orientation of multiple NV centers can be judged except when they are too close within the diffraction limit. Hence, this efficient and rapid method has a good application prospect in quantum information sensing.
Collapse
|
26
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
27
|
Broadband microwave detection using electron spins in a hybrid diamond-magnet sensor chip. Nat Commun 2023; 14:490. [PMID: 36717574 PMCID: PMC9887009 DOI: 10.1038/s41467-023-36146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Quantum sensing has developed into a main branch of quantum science and technology. It aims at measuring physical quantities with high resolution, sensitivity, and dynamic range. Electron spins in diamond are powerful magnetic field sensors, but their sensitivity in the microwave regime is limited to a narrow band around their resonance frequency. Here, we realize broadband microwave detection using spins in diamond interfaced with a thin-film magnet. A pump field locally converts target microwave signals to the sensor-spin frequency via the non-linear spin-wave dynamics of the magnet. Two complementary conversion protocols enable sensing and high-fidelity spin control over a gigahertz bandwidth, allowing characterization of the spin-wave band at multiple gigahertz above the sensor-spin frequency. The pump-tunable, hybrid diamond-magnet sensor chip opens the way for spin-based gigahertz material characterizations at small magnetic bias fields.
Collapse
|
28
|
Zhang C, Zhang J, Widmann M, Benke M, Kübler M, Dasari D, Klotz T, Gizzi L, Röhrle O, Brenner P, Wrachtrup J. Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications. Front Neurosci 2023; 16:1034391. [PMID: 36726853 PMCID: PMC9885266 DOI: 10.3389/fnins.2022.1034391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Magnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT / Hz -range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, University of Stuttgart, Stuttgart, Germany,Quantum Technology R&D Center, Beijing Automation Control Equipment Institute, Beijing, China,*Correspondence: Chen Zhang ✉
| | - Jixing Zhang
- Institute of Physics, University of Stuttgart, Stuttgart, Germany
| | - Matthias Widmann
- Institute of Physics, University of Stuttgart, Stuttgart, Germany
| | - Magnus Benke
- Institute of Physics, University of Stuttgart, Stuttgart, Germany
| | - Michael Kübler
- Institute of Physics, University of Stuttgart, Stuttgart, Germany
| | - Durga Dasari
- Institute of Physics, University of Stuttgart, Stuttgart, Germany
| | - Thomas Klotz
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany,Department of Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Philipp Brenner
- ZEISS Innovation Hub @ KIT, Eggenstein-Leopoldshafen, Germany
| | - Jörg Wrachtrup
- Institute of Physics, University of Stuttgart, Stuttgart, Germany,Jörg Wrachtrup ✉
| |
Collapse
|
29
|
Liu KS, Ma X, Rizzato R, Semrau AL, Henning A, Sharp ID, Fischer RA, Bucher DB. Using Metal-Organic Frameworks to Confine Liquid Samples for Nanoscale NV-NMR. NANO LETTERS 2022; 22:9876-9882. [PMID: 36480706 DOI: 10.1021/acs.nanolett.2c03069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomic-scale magnetic field sensors based on nitrogen vacancy (NV) defects in diamonds are an exciting platform for nanoscale nuclear magnetic resonance (NMR) spectroscopy. The detection of NMR signals from a few zeptoliters to single molecules or even single nuclear spins has been demonstrated using NV centers close to the diamond surface. However, fast molecular diffusion of sample molecules in and out of the nanoscale detection volumes impedes their detection and limits current experiments to solid-state or highly viscous samples. Here, we show that restricting diffusion by confinement enables nanoscale NMR spectroscopy of liquid samples. Our approach uses metal-organic frameworks (MOF) with angstrom-sized pores on a diamond chip to trap sample molecules near the NV centers. This enables the detection of NMR signals from a liquid sample, which would not be detectable without confinement. These results set the route for nanoscale liquid-phase NMR with high spectral resolution.
Collapse
Affiliation(s)
- Kristina S Liu
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| | - Xiaoxin Ma
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| | - Roberto Rizzato
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| | - Anna L Semrau
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| | - Alex Henning
- Walter Schottky Institute and Physics Department, Technical University of Munich, 85748Garching, Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technical University of Munich, 85748Garching, Germany
| | - Roland A Fischer
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| | - Dominik B Bucher
- Department of Chemistry, Technical University of Munich, 85748Garching, Germany
| |
Collapse
|
30
|
Tobalina A, Munuera-Javaloy C, Torrontegui E, Muga JG, Casanova J. Tailored ion beam for precise colour centre creation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210271. [PMID: 36335951 DOI: 10.1098/rsta.2021.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We present an invariant-based quantum control scheme leading to a highly monochromatic ion beam from a Paul trap. Our protocol is implementable by supplying the segmented electrodes in the trap with voltages of the order of volts. This mitigates the impact of fluctuations in previous designs and leads to a low-dispersion beam of ions. Moreover, our proposal does not rely on sympathetically cooling ions, which bypasses the need of loading different species in the trap-namely, the propelled ion and, e.g. a [Formula: see text] to exert sympathetic cooling-significantly incrementing the repetition rate of the launching procedure. Our scheme is based on an invariant operator linear in position and momentum, which enables us to control the average extraction energy and the outgoing momentum spread. In addition, we propose a sequential operation to tailor the transversal properties of the beam before the ejection to minimize the impact spot and to increase the lateral resolution of the implantation. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.
Collapse
Affiliation(s)
- A Tobalina
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao 48080, Spain
- EHU Quantum Center, University of the Basque Country UPV/EHU, Leioa, Spain
| | - C Munuera-Javaloy
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao 48080, Spain
- EHU Quantum Center, University of the Basque Country UPV/EHU, Leioa, Spain
| | - E Torrontegui
- Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés 28911, Spain
- Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain
| | - J G Muga
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao 48080, Spain
- EHU Quantum Center, University of the Basque Country UPV/EHU, Leioa, Spain
| | - J Casanova
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao 48080, Spain
- EHU Quantum Center, University of the Basque Country UPV/EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
31
|
Qureshi SA, Hsiao WWW, Hussain L, Aman H, Le TN, Rafique M. Recent Development of Fluorescent Nanodiamonds for Optical Biosensing and Disease Diagnosis. BIOSENSORS 2022; 12:1181. [PMID: 36551148 PMCID: PMC9775945 DOI: 10.3390/bios12121181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 05/24/2023]
Abstract
The ability to precisely monitor the intracellular temperature directly contributes to the essential understanding of biological metabolism, intracellular signaling, thermogenesis, and respiration. The intracellular heat generation and its measurement can also assist in the prediction of the pathogenesis of chronic diseases. However, intracellular thermometry without altering the biochemical reactions and cellular membrane damage is challenging, requiring appropriately biocompatible, nontoxic, and efficient biosensors. Bright, photostable, and functionalized fluorescent nanodiamonds (FNDs) have emerged as excellent probes for intracellular thermometry and magnetometry with the spatial resolution on a nanometer scale. The temperature and magnetic field-dependent luminescence of naturally occurring defects in diamonds are key to high-sensitivity biosensing applications. Alterations in the surface chemistry of FNDs and conjugation with polymer, metallic, and magnetic nanoparticles have opened vast possibilities for drug delivery, diagnosis, nanomedicine, and magnetic hyperthermia. This study covers some recently reported research focusing on intracellular thermometry, magnetic sensing, and emerging applications of artificial intelligence (AI) in biomedical imaging. We extend the application of FNDs as biosensors toward disease diagnosis by using intracellular, stationary, and time-dependent information. Furthermore, the potential of machine learning (ML) and AI algorithms for developing biosensors can revolutionize any future outbreak.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Lal Hussain
- Department of Computer Science and Information Technology, King Abdullah Campus Chatter Kalas, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
- Department of Computer Science and Information Technology, Neelum Campus, University of Azad Jammu and Kashmir, Athmuqam 13230, Pakistan
| | - Haroon Aman
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
- National Institute of Lasers and Optronics College, PIEAS, Islamabad 45650, Pakistan
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Muhammad Rafique
- Department of Physics, King Abdullah Campus Chatter Kalas, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| |
Collapse
|
32
|
Dasari DBR, Yang S, Chakrabarti A, Finkler A, Kurizki G, Wrachtrup J. Anti-Zeno purification of spin baths by quantum probe measurements. Nat Commun 2022; 13:7527. [PMID: 36473849 PMCID: PMC9726817 DOI: 10.1038/s41467-022-35045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
The quantum Zeno and anti-Zeno paradigms have thus far addressed the evolution control of a quantum system coupled to an immutable bath via non-selective measurements performed at appropriate intervals. We fundamentally modify these paradigms by introducing, theoretically and experimentally, the concept of controlling the bath state via selective measurements of the system (a qubit). We show that at intervals corresponding to the anti-Zeno regime of the system-bath exchange, a sequence of measurements has strongly correlated outcomes. These correlations can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. The purified bath state persists long after the measurements are completed. Such purification enables the exploitation of spin baths as long-lived quantum memories or as quantum-enhanced sensors. The experiment involved a repeatedly probed defect center dephased by a nuclear spin bath in a diamond at low-temperature.
Collapse
Affiliation(s)
- Durga Bhaktavatsala Rao Dasari
- grid.5719.a0000 0004 1936 97133.Physics Institute, Center for Applied Quantum Technologies, IQST, University of Stuttgart, Stuttgart, 70569 Germany
| | - Sen Yang
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Arnab Chakrabarti
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Finkler
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gershon Kurizki
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Jörg Wrachtrup
- grid.5719.a0000 0004 1936 97133.Physics Institute, Center for Applied Quantum Technologies, IQST, University of Stuttgart, Stuttgart, 70569 Germany ,grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Stuttgart, Germany
| |
Collapse
|
33
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
34
|
Janitz E, Herb K, Völker LA, Huxter WS, Degen CL, Abendroth JM. Diamond surface engineering for molecular sensing with nitrogen-vacancy centers. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:13533-13569. [PMID: 36324301 PMCID: PMC9521415 DOI: 10.1039/d2tc01258h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/06/2022] [Indexed: 05/20/2023]
Abstract
Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen-vacancy (NV) center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality. Notably, near-surface defects facilitate detection of the minute magnetic fields generated by nuclear or electron spins outside of the diamond crystal, such as those in chemisorbed and physisorbed molecules. However, the promise of NV centers is hindered by a severe degradation of critical sensor properties, namely charge stability and spin coherence, near surfaces (< ca. 10 nm deep). Moreover, applications in the chemical sciences require methods for covalent bonding of target molecules to diamond with robust control over density, orientation, and binding configuration. This forward-looking Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules. We outline the diamond surface properties that are advantageous for NV-sensing applications, and discuss strategies to mitigate deleterious effects while simultaneously providing avenues for chemical attachment. Finally, we present an outlook on emerging applications in which the unprecedented sensitivity and spatial resolution of NV-based sensing could provide unique insight into chemically functionalized surfaces at the single-molecule level.
Collapse
Affiliation(s)
- Erika Janitz
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Laura A Völker
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - William S Huxter
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - John M Abendroth
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
35
|
Abendroth JM, Herb K, Janitz E, Zhu T, Völker LA, Degen CL. Single-Nitrogen-Vacancy NMR of Amine-Functionalized Diamond Surfaces. NANO LETTERS 2022; 22:7294-7303. [PMID: 36069765 DOI: 10.1021/acs.nanolett.2c00533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nuclear magnetic resonance (NMR) imaging with shallow nitrogen-vacancy (NV) centers in diamond offers an exciting route toward sensitive and localized chemical characterization at the nanoscale. Remarkable progress has been made to combat the degradation in coherence time and stability suffered by near-surface NV centers using suitable chemical surface termination. However, approaches that also enable robust control over adsorbed molecule density, orientation, and binding configuration are needed. We demonstrate a diamond surface preparation for mixed nitrogen- and oxygen-termination that simultaneously improves NV center coherence times for <10 nm-deep emitters and enables direct and recyclable chemical functionalization via amine-reactive cross-linking. Using this approach, we probe single NV centers embedded in nanopillar waveguides to perform 19F NMR sensing of covalently bound fluorinated molecules with detection on the order of 100 molecules. This work signifies an important step toward nuclear spin localization and structure interrogation at the single-molecule level.
Collapse
Affiliation(s)
- John M Abendroth
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Erika Janitz
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Tianqi Zhu
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Laura A Völker
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
36
|
Sahin O, de Leon Sanchez E, Conti S, Akkiraju A, Reshetikhin P, Druga E, Aggarwal A, Gilbert B, Bhave S, Ajoy A. High field magnetometry with hyperpolarized nuclear spins. Nat Commun 2022; 13:5486. [PMID: 36123342 PMCID: PMC9485171 DOI: 10.1038/s41467-022-32907-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
Quantum sensors have attracted broad interest in the quest towards sub-micronscale NMR spectroscopy. Such sensors predominantly operate at low magnetic fields. Instead, however, for high resolution spectroscopy, the high-field regime is naturally advantageous because it allows high absolute chemical shift discrimination. Here we demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized 13C nuclear spins in diamond. They are initialized by Nitrogen Vacancy (NV) centers and protected along a transverse Bloch sphere axis for minute-long periods. When exposed to a time-varying (AC) magnetic field, they undergo secondary precessions that carry an imprint of its frequency and amplitude. For quantum sensing at 7T, we demonstrate detection bandwidth up to 7 kHz, a spectral resolution < 100mHz, and single-shot sensitivity of 410pT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$/\sqrt{{{{{{{{\rm{Hz}}}}}}}}}$$\end{document}/Hz. This work anticipates opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds and suggests applications of dynamic nuclear polarization (DNP) in quantum sensing. Quantum sensors based on NV centers in diamond find applications in high spatial resolution NMR spectroscopy, but their operation is typically limited to low fields. Sahin et al. demonstrate a high-field sensor based on nuclear spins in diamond, where NV centers play a supporting role in optical initialization.
Collapse
Affiliation(s)
- Ozgur Sahin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | | | - Sophie Conti
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Amala Akkiraju
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Paul Reshetikhin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Aakriti Aggarwal
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sunil Bhave
- OxideMEMS Lab, Purdue University, West Lafayette, IN, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
37
|
Quantum nonlinear spectroscopy of single nuclear spins. Nat Commun 2022; 13:5318. [PMID: 36085280 PMCID: PMC9463177 DOI: 10.1038/s41467-022-32610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional nonlinear spectroscopy, which use classical probes, can only access a limited set of correlations in a quantum system. Here we demonstrate that quantum nonlinear spectroscopy, in which a quantum sensor and a quantum object are first entangled and the sensor is measured along a chosen basis, can extract arbitrary types and orders of correlations in a quantum system. We measured fourth-order correlations of single nuclear spins that cannot be measured in conventional nonlinear spectroscopy, using sequential weak measurement via a nitrogen-vacancy center in diamond. The quantum nonlinear spectroscopy provides fingerprint features to identify different types of objects, such as Gaussian noises, random-phased AC fields, and quantum spins, which would be indistinguishable in second-order correlations. This work constitutes an initial step toward the application of higher-order correlations to quantum sensing, to examining the quantum foundation (by, e.g., higher-order Leggett-Garg inequality), and to studying quantum many-body physics. Signals that look the same from their low-order correlations can often be distinguished by looking at higher-order ones. Here, the authors exploit the sensitivity of quantum nonlinear spectroscopy to fourth-order correlations to identify Gaussian noises, random-phased AC fields, and quantum spins.
Collapse
|
38
|
Allert RD, Briegel KD, Bucher DB. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem Commun (Camb) 2022; 58:8165-8181. [PMID: 35796253 PMCID: PMC9301930 DOI: 10.1039/d2cc01546c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Quantum technologies have seen a rapid developmental surge over the last couple of years. Though often overshadowed by quantum computation, quantum sensors show tremendous potential for widespread applications in chemistry and biology. One system stands out in particular: the nitrogen-vacancy (NV) center in diamond, an atomic-sized sensor allowing the detection of nuclear magnetic resonance (NMR) signals at unprecedented length scales down to a single proton. In this article, we review the fundamentals of NV center-based quantum sensing and its distinct impact on nano- and microscale NMR spectroscopy. Furthermore, we highlight possible future applications of this novel technology ranging from energy research, materials science, to single-cell biology, and discuss the associated challenges of these rapidly developing NMR sensors.
Collapse
Affiliation(s)
- Robin D Allert
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Karl D Briegel
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Dominik B Bucher
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
39
|
Cui H, Glidle A, Cooper JM. Tracking Molecular Diffusion across Biomaterials' Interfaces Using Stimulated Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31586-31593. [PMID: 35801584 PMCID: PMC9305705 DOI: 10.1021/acsami.2c04444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The determination of molecular diffusion across biomaterial interfaces, including those involving hydrogels and tissues remains important, underpinning the understanding of a broad range of processes including, for example, drug delivery. Current techniques using Raman spectroscopy have previously been established as a method to quantify diffusion coefficients, although when using spontaneous Raman spectroscopy, the signal can be weak and dominated by interferences such as background fluorescence (including biological autofluoresence). To overcome these issues, we demonstrate the use of the stimulated Raman scattering technique to obtain measurements in soft tissue samples that have good signal-to-noise ratios and are largely free from fluorescence interference. As a model illustration of a small metabolite/drug molecule being transported through tissue, we use deuterated (d7-) glucose and monitor the Raman C-D band in a spectroscopic region free from other Raman bands. The results show that although mass transport follows a diffusion process characterized by Fick's laws within hydrogel matrices, more complex mechanisms appear within tissues.
Collapse
Affiliation(s)
- Han Cui
- Beijing
Key Lab for Precision Optoelectronic Measurement Instrument and Technology,
School of Optics and Photonics, Beijing
Institute of Technology, Beijing 100081, China
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Andrew Glidle
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Jonathan M. Cooper
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
40
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
41
|
Son HE, Ryu JY, Lee K, Choi YI, Kim MS, Park I, Shin GT, Kim H, Ahn C, Kim S, Chin HJ, Na KY, Chae DW, Ahn S, Hwang SS, Jeong JC. The importance of muscle mass in predicting intradialytic hypotension in patients undergoing maintenance hemodialysis. Kidney Res Clin Pract 2022; 41:611-622. [PMID: 35545221 PMCID: PMC9576459 DOI: 10.23876/j.krcp.21.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
Background Patients undergoing hemodialysis are susceptible to sarcopenia. As intracellular reservoirs of water, skeletal muscles are important contributors to intradialytic hypotension. This study was designed to determine the role of skeletal muscle mass in intradialytic hypotension. Methods In a cross-sectional study, the body composition of 177 patients was measured immediately after hemodialysis using bioelectrical impedance analysis. The parameters measured were skeletal muscle mass, intracellular and extracellular water contents, total body water, and cell-membrane functionality (in phase angle at 50 kHz). Data from laboratory tests, chest radiography, measurements of handgrip strength and mid-arm circumference, and questionnaires were collected. The main outcome was intradialytic hypotension, defined as more than two episodes of hypotension (systolic blood pressure of <90 mmHg) with intervention over the 3 months following enrollment. Logistic regression models including each parameter related to sarcopenia were compared with a clinical model. Results Patients with a low ratio of skeletal muscle mass to dry body weight (SMM/WT) had a higher rate of intradialytic hypotension (41%). Most low-SMM/WT patients were female, obese, diabetic, and had a lower handgrip strength compared with the other patients. In the high-SMM/WT group, the risk of intradialytic hypotension was lower, with an odds ratio of 0.08 (95% confidence interval [CI], 0.02-0.28) and adjusted odds ratio of 0.06 (95% CI, 0.01-0.29). Conclusion Measurement and maintenance of skeletal muscle can help prevent intradialytic hypotension in frail patients undergoing hemodialysis.
Collapse
Affiliation(s)
- Hyung Eun Son
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Young Ryu
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyunghoon Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | | | - Myeong Sung Kim
- Gojan Myeong Internal Medicine Clinic, Ansan, Republic of Korea
| | - Inwhee Park
- Division of Nephrology, Department of Internal Medicine, Ajou University Hospital, Suwon, Republic of Korea.,Department of Internal Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gyu Tae Shin
- Division of Nephrology, Department of Internal Medicine, Ajou University Hospital, Suwon, Republic of Korea.,Department of Internal Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Heungsoo Kim
- Division of Nephrology, Department of Internal Medicine, Ajou University Hospital, Suwon, Republic of Korea.,Department of Internal Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Curie Ahn
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sejoong Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Jun Chin
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Young Na
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Wan Chae
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Sik Hwang
- Department of Public Health Science, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jong Cheol Jeong
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
43
|
Wang L, Xia Y, Ho W. Atomic-scale quantum sensing based on the ultrafast coherence of an H 2 molecule in an STM cavity. Science 2022; 376:401-405. [PMID: 35446636 DOI: 10.1126/science.abn9220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A scanning tunneling microscope (STM) combined with a pump-probe femtosecond terahertz (THz) laser can enable coherence measurements of single molecules. We report THz pump-probe measurements that demonstrate quantum sensing based on a hydrogen (H2) molecule in the cavity created with an STM tip near a surface. Atomic-scale spatial and femtosecond temporal resolutions were obtained from this quantum coherence. The H2 acts as a two-level system, with its coherent superposition exhibiting extreme sensitivity to the applied electric field and the underlying atomic composition of the copper nitride (Cu2N) monolayer islands grown on a Cu(100) surface. We acquired time-resolved images of THz rectification of H2 over Cu2N islands for variable pump-probe delay times to visualize the heterogeneity of the chemical environment at sub-angstrom scale.
Collapse
Affiliation(s)
- Likun Wang
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - Yunpeng Xia
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.,Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
45
|
Cujia KS, Herb K, Zopes J, Abendroth JM, Degen CL. Parallel detection and spatial mapping of large nuclear spin clusters. Nat Commun 2022; 13:1260. [PMID: 35273190 PMCID: PMC8913684 DOI: 10.1038/s41467-022-28935-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Nuclear magnetic resonance imaging (MRI) at the atomic scale offers exciting prospects for determining the structure and function of individual molecules and proteins. Quantum defects in diamond have recently emerged as a promising platform towards reaching this goal, and allowed for the detection and localization of single nuclear spins under ambient conditions. Here, we present an efficient strategy for extending imaging to large nuclear spin clusters, fulfilling an important requirement towards a single-molecule MRI technique. Our method combines the concepts of weak quantum measurements, phase encoding and simulated annealing to detect three-dimensional positions from many nuclei in parallel. Detection is spatially selective, allowing us to probe nuclei at a chosen target radius while avoiding interference from strongly-coupled proximal nuclei. We demonstrate our strategy by imaging clusters containing more than 20 carbon-13 nuclear spins within a radius of 2.4 nm from single, near-surface nitrogen-vacancy centers at room temperature. The radius extrapolates to 5-6 nm for 1H. Beside taking an important step in nanoscale MRI, our experiment also provides an efficient tool for the characterization of large nuclear spin registers in the context of quantum simulators and quantum network nodes.
Collapse
Affiliation(s)
- K S Cujia
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093, Zurich, Switzerland. .,IT'IS Foundation, Zeughausstrasse 43, 8004, Zurich, Switzerland.
| | - K Herb
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093, Zurich, Switzerland.
| | - J Zopes
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093, Zurich, Switzerland. .,Ansys Switzerland GmbH, Technoparkstrasse 1, 8005, Zurich, Switzerland.
| | - J M Abendroth
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093, Zurich, Switzerland.
| | - C L Degen
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093, Zurich, Switzerland. .,Quantum Center, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
46
|
Biocompatible surface functionalization architecture for a diamond quantum sensor. Proc Natl Acad Sci U S A 2022; 119:2114186119. [PMID: 35193961 PMCID: PMC8872777 DOI: 10.1073/pnas.2114186119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 01/02/2023] Open
Abstract
Diamond-based quantum sensing enables nanoscale measurements of biological systems with unprecedented sensitivity. Potential applications of this emerging technology range from the investigation of fundamental biological processes to the development of next-generation medical diagnostics devices. One of the main challenges faced by bioquantum sensing is the need to interface quantum sensors with biological target systems. Specifically, such an interface needs to maintain the highly fragile quantum states of our sensor and at the same time be able to fish intact biomolecules out of solution and immobilize them on our quantum sensor surface. Our work overcomes these challenges by combining tools from quantum engineering, single-molecule biophysics, and material processing. Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.
Collapse
|
47
|
Abstract
NMR is a noninvasive, molecular-level spectroscopic technique widely used for chemical characterization. However, it lacks the sensitivity to probe the small number of spins at surfaces and interfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect NMR signals from chemically modified thin films. To demonstrate the method's capabilities, aluminum oxide layers, common supports in catalysis and materials science, are prepared by atomic layer deposition and are subsequently functionalized by phosphonate chemistry to form self-assembled monolayers. The surface NV-NMR technique detects spatially resolved NMR signals from the monolayer, indicates chemical binding, and quantifies molecular coverage. In addition, it can monitor in real time the formation kinetics at the solid-liquid interface. With our approach, we show that NV quantum sensors are a surface-sensitive NMR tool with femtomole sensitivity for in situ analysis in catalysis, materials, and biological research.
Collapse
|
48
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
49
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
50
|
Soshenko VV, Bolshedvorskii SV, Rubinas O, Sorokin VN, Smolyaninov AN, Vorobyov VV, Akimov AV. Nuclear Spin Gyroscope based on the Nitrogen Vacancy Center in Diamond. PHYSICAL REVIEW LETTERS 2021; 126:197702. [PMID: 34047600 DOI: 10.1103/physrevlett.126.197702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/07/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
A rotation sensor is one of the key elements of inertial navigation systems and compliments most cell phone sensor sets used for various applications. Currently, inexpensive and efficient solutions are mechanoelectronic devices, which nevertheless lack long-term stability. Realization of rotation sensors based on spins of fundamental particles may become a drift-free alternative to such devices. Here, we carry out a proof-of-concept experiment, demonstrating rotation measurements on a rotating setup utilizing nuclear spins of an ensemble of nitrogen vacancy centers as a sensing element with no stationary reference. The measurement is verified by a commercially available microelectromechanical system gyroscope.
Collapse
Affiliation(s)
- Vladimir V Soshenko
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
- LLC Sensor Spin Technologies, The Territory of Skolkovo Innovation Center, Street Nobel b.7, Moscow 143026, Russia
| | - Stepan V Bolshedvorskii
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
- LLC Sensor Spin Technologies, The Territory of Skolkovo Innovation Center, Street Nobel b.7, Moscow 143026, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| | - Olga Rubinas
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
- LLC Sensor Spin Technologies, The Territory of Skolkovo Innovation Center, Street Nobel b.7, Moscow 143026, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| | - Vadim N Sorokin
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
| | - Andrey N Smolyaninov
- LLC Sensor Spin Technologies, The Territory of Skolkovo Innovation Center, Street Nobel b.7, Moscow 143026, Russia
| | - Vadim V Vorobyov
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
- 3rd Institut of Physics, IQST and Centre for Applied Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany
| | - Alexey V Akimov
- P. N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991, Russia
- Texas A&M University, 4242 TAMU, College Station, Texas 77843, USA
| |
Collapse
|