1
|
Satbhai KM, Marques ES, Ranjan R, Timme-Laragy AR. Single-cell RNA sequencing reveals tissue-specific transcriptomic changes induced by perfluorooctanesulfonic acid (PFOS) in larval zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137515. [PMID: 39947082 PMCID: PMC12038816 DOI: 10.1016/j.jhazmat.2025.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 04/16/2025]
Abstract
Perfluorooctanesulfonic acid (PFOS) elicits adverse effects on numerous organs and developmental processes but the mechanisms underlying these effects are not well understood. Here, we use single-cell RNA-sequencing to assess tissue-specific transcriptomic changes in zebrafish (Danio rerio) larvae exposed to 16 µM PFOS or dimethylsulfoxide (0.01 %) from 3-72 h post fertilization (hpf). Data analysis was multi-pronged and included pseudo-bulk, untargeted clustering, informed pathway queries, and a cluster curated for hepatocyte biomarkers (fabp10a, and apoa2). Overall, 8.63 % (2390/27698) genes were significantly differentially expressed. Results from untargeted analysis revealed 22 distinct clusters that were manually annotated to specific tissues using a weight-of-evidence approach. The clusters with the highest number of significant differentially expressed genes (DEGs) were digestive organs, muscle, and otolith. Additionally, we assessed the distribution of pathway-specific genes known to be involved in PFOS toxicity: the PPAR pathway, β-oxidation of fatty acids, the Nfe2l2 pathway, and epigenetic modifications by DNA methylation, across clusters and identified the blood-related tissue to be the most sensitive. The curated hepatocyte cluster showed 220 significant DEGs and was enriched for the Notch signaling pathway. These findings provide insights into both established and novel sensitive target tissues and molecular mechanisms of developmental toxicity of PFOS.
Collapse
Affiliation(s)
- Kruuttika M Satbhai
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Ishiguro S, Ishida K, Sakata RC, Ichiraku M, Takimoto R, Yogo R, Kijima Y, Mori H, Tanaka M, King S, Tarumoto S, Tsujimura T, Bashth O, Masuyama N, Adel A, Toyoshima H, Seki M, Oh JH, Archambault AS, Nishida K, Kondo A, Kuhara S, Aburatani H, Klein Geltink RI, Yamamoto T, Shakiba N, Takashima Y, Yachie N. A multi-kingdom genetic barcoding system for precise clone isolation. Nat Biotechnol 2025:10.1038/s41587-025-02649-1. [PMID: 40399693 DOI: 10.1038/s41587-025-02649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2025] [Indexed: 05/23/2025]
Abstract
Cell-tagging strategies with DNA barcodes have enabled the analysis of clone size dynamics and clone-restricted transcriptomic landscapes in heterogeneous populations. However, isolating a target clone that displays a specific phenotype from a complex population remains challenging. Here we present a multi-kingdom genetic barcoding system, CloneSelect, which enables a target cell clone to be triggered to express a reporter gene for isolation through barcode-specific CRISPR base editing. In CloneSelect, cells are first stably tagged with DNA barcodes and propagated so that their subpopulation can be subjected to a given experiment. A clone that shows a phenotype or genotype of interest at a given time can then be isolated from the initial or subsequent cell pools stored during the experiment using CRISPR base editing. CloneSelect is scalable and compatible with single-cell RNA sequencing. We demonstrate the versatility of CloneSelect in human embryonic kidney 293T cells, mouse embryonic stem cells, human pluripotent stem cells, yeast cells and bacterial cells.
Collapse
Affiliation(s)
- Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Rina C Sakata
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Minori Ichiraku
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ren Takimoto
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rina Yogo
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yusuke Kijima
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hideto Mori
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan
| | - Mamoru Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Samuel King
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoko Tarumoto
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Omar Bashth
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanami Masuyama
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Arman Adel
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiromi Toyoshima
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ju Hee Oh
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne-Sophie Archambault
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Keiji Nishida
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Satoru Kuhara
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ramon I Klein Geltink
- BC Children's Hospital Research Institute, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Nika Shakiba
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Osaka, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
4
|
Zhang Y, Wang J, Fang H, Hu S, Yang B, Zhou J, Grifone R, Li P, Lu T, Wang Z, Zhang C, Huang Y, Wu D, Gong Q, Shi DL, Li A, Shao M. Rbm24a dictates mRNA recruitment for germ granule assembly in zebrafish. EMBO J 2025:10.1038/s44318-025-00442-z. [PMID: 40281355 DOI: 10.1038/s44318-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The germ granules are ribonucleoprotein (RNP) biomolecular condensates that determine the fate of primordial germ cells (PGCs) and serve as a model for studying RNP granule assembly. Here, we show that the maternal RNA-binding protein Rbm24a is a key factor governing the specific sorting of mRNAs into germ granules. Mechanistically, Rbm24a interacts with the germ plasm component Buc to dictate the specific recruitment of germ plasm mRNAs into phase-separated condensates. Germ plasm particles lacking Rbm24a and mRNAs fail to undergo kinesin-dependent transport toward cleavage furrows where small granules fuse into large aggregates. Therefore, the loss of maternal Rbm24a causes a complete degradation of the germ plasm and the disappearance of PGCs. These findings demonstrate that the Rbm24a/Buc complex functions as a nucleating organizer of germ granules, highlighting an emerging mechanism for RNA-binding proteins in reading and recruiting RNA components into a phase-separated protein scaffold.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Shuqi Hu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiayi Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Raphaëlle Grifone
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France
| | - Panfeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Zhengyang Wang
- Shandong University Taishan College, 266237, Qingdao, China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 524045, Zhanjiang, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France.
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China.
- Shandong University-Yuanchen Joint Biomedical Technology Laboratory, 266237, Qingdao, China.
| |
Collapse
|
5
|
de Haan S, He J, Corbat AA, Belicova L, Ratz M, Vinsland E, Frisén J, Kelley MW, Andersson ER. Ectoderm barcoding reveals neural and cochlear compartmentalization. Science 2025; 388:60-68. [PMID: 40179197 DOI: 10.1126/science.adq9248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Placodes and the neural crest are defining features of vertebrates. In this study, we investigate their lineages in mice using in utero approaches. We demonstrated that nanoinjection at embryonic day 7.5 targeted the ectoderm, including the future nervous system, placodes, and neural crest, allowing highly efficient manipulation of the future nervous system and inner ear. By using heritable DNA barcodes and high-throughput next-generation single-cell lineage tracing, we elucidated convergent differentiation pathways and identified distinct nervous system-, neural crest-, and otic placode-derived lineages. Clonal analyses identified early neural and cochlear compartmentalization, linking differentiated cell types to their progenitors or cellular siblings. This provides foundational insights for neuroscience and developmental biology.
Collapse
Affiliation(s)
- Sandra de Haan
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Agustin A Corbat
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Lenka Belicova
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Elin Vinsland
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Yang W, Peng M, Wang Y, Zhang X, Li W, Zhai X, Wu Z, Hu P, Chen L. Deletion of hepcidin disrupts iron homeostasis and hematopoiesis in zebrafish embryogenesis. Development 2025; 152:dev204307. [PMID: 40110772 DOI: 10.1242/dev.204307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Iron is essential for cell growth and hematopoiesis, which is regulated by hepcidin (hamp). However, the role of hamp in zebrafish hematopoiesis remains unclear. Here, we have created a stable hamp knockout zebrafish model using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 system (CRISPR/Cas9 system). Our study revealed that hamp deletion led to maternal iron overload in embryos, significantly downregulating hemoglobin genes and reducing hemoglobin content. Single-cell RNA sequencing identified abnormal expression patterns in blood progenitor cells, with a specific progenitor subtype showing increased ferroptosis and delayed development. By crossing hamp knockout zebrafish with a gata1+ line (blood cells labeled fish line), we confirmed ferroptosis in blood progenitor cells. These findings underscore the crucial role of hamp in iron regulation and hematopoiesis, offering novel insights into developmental biology and potential therapeutic targets for blood disorders.
Collapse
Affiliation(s)
- Wenyi Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjian Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowen Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Montandon SA, Beaudier P, Ullate-Agote A, Helleboid PY, Kummrow M, Roig-Puiggros S, Jabaudon D, Andersson L, Milinkovitch MC, Tzika AC. Regulatory and disruptive variants in the CLCN2 gene are associated with modified skin color pattern phenotypes in the corn snake. Genome Biol 2025; 26:73. [PMID: 40140900 PMCID: PMC11948899 DOI: 10.1186/s13059-025-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Snakes exhibit a broad variety of adaptive colors and color patterns, generated by the spatial arrangement of chromatophores, but little is known of the mechanisms responsible for these spectacular traits. Here, we investigate a mono-locus trait with two recessive alleles, motley and stripe, that both cause pattern aberrations in the corn snake. RESULTS We use mapping-by-sequencing to identify the genomic interval where the causal mutations reside. With our differential gene expression analyses, we find that CLCN2 (Chloride Voltage-Gated Channel 2), a gene within the genomic interval, is significantly downregulated in Motley embryonic skin. Furthermore, we identify the stripe allele as the insertion of an LTR-retrotransposon in CLCN2, resulting in a disruptive mutation of the protein. We confirm the involvement of CLCN2 in color pattern formation by producing knock-out snakes that present a phenotype similar to Stripe. In humans and mice, disruption of CLCN2 results in leukoencephalopathy, as well as retinal and testes degeneration. Our single-cell transcriptomic analyses in snakes reveal that CLCN2 is indeed expressed in chromatophores during embryogenesis and in the adult brain, but the behavior and fertility of Motley and Stripe corn snakes are not impacted. CONCLUSIONS Our genomic, transcriptomic, and functional analyses identify a plasma membrane anion channel to be involved in color pattern development in snakes and show that an active LTR-retrotransposon might be a key driver of trait diversification in corn snakes.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Bracco Suisse S.A., Plan-les-Ouates, Switzerland
| | - Pierre Beaudier
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Athanasia C Tzika
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Pastor-Escuredo D, Lombardot B, Savy T, Boyreau A, Doursat R, Goicolea JM, Santos A, Bourgine P, del Álamo JC, Ledesma- Carbayo MJ, Peyriéras N. Unsupervised spatiotemporal classification of deformation patterns of embryonic tissues matches their fate map. iScience 2025; 28:111753. [PMID: 40124490 PMCID: PMC11926744 DOI: 10.1016/j.isci.2025.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/30/2022] [Accepted: 01/03/2025] [Indexed: 03/25/2025] Open
Abstract
During morphogenesis, embryonic tissues display fluid-like behavior with fluctuating strain rates. Digital cell lineages reconstructed from 4D images of developing zebrafish embryos are used to infer representative tissue deformation patterns and their association with developmental events. Finite deformation analysis along cell trajectories and unsupervised machine learning are applied to obtain reduced-order models condensing the collective cell motions, delineating tissue domains with distinct 4D biomechanical behavior. This reduced-order kinematic description is reproducible across specimens and matches fate maps of the zebrafish brain in wild-type and nodal pathway mutants (zoeptz57/tz57 ), shedding light into the morphogenetic defects causing these mutants' cyclopia. Furthermore, the inferred kinematic maps also match expression maps of the gene transcription factor goosecoid (gsc). In summary, this work introduces an objective analytical framework to systematically unravel the complex spatiotemporal patterns of embryonic tissue deformations and couple them with cell fate and gene expression maps.
Collapse
Affiliation(s)
- David Pastor-Escuredo
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Benoît Lombardot
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
| | - Thierry Savy
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- Matières et Systèmes Complexes (MSC) UMR7057, CNRS, Université Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Adeline Boyreau
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - René Doursat
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
| | - Jose M. Goicolea
- Computational Mechanics Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Andrés Santos
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul Bourgine
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- Matières et Systèmes Complexes (MSC) UMR7057, CNRS, Université Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Juan C. del Álamo
- Mechanical and Aerospace Engineering Department, University of California San Diego, La Jolla, CA 92093, USA
- Mechanical Engineering Department, University of Washington, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - María J. Ledesma- Carbayo
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nadine Peyriéras
- USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- Matières et Systèmes Complexes (MSC) UMR7057, CNRS, Université Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
9
|
Shen Q, Zhao F, Zhang N, Zheng L, Su D, Qian Y, Xin L, Mingxia S, Hongxu Z, Chen F, Qiu W, Liu D. Embryonic exposure of estrogen and BPA in zebrafish leads to ADHD-like and ASD-like phenotypes, respectively. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111293. [PMID: 40020986 DOI: 10.1016/j.pnpbp.2025.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Exposure to the estrogenic pollutant bisphenol A (BPA) during pregnancy and early childhood is a risk factor for numerous neurodevelopmental and psychiatric disorders in humans. To understand why early BPA exposure is associated with attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), we have analyzed a series of zebrafish behaviors, neurodevelopmental process, and gene expression profiles, after a moderate level of estrogen (17β-estradiol, E2, as a positive control) and BPA treatments during embryogenesis (2-48 h post fertilization). E2 exposure-caused hyperactivity was likely due to elevated expression of cyp19a1b since blocking aromatase activity rescued the defect. Furthermore, E2 exposure resulted in impulsive behaviors, perhaps due to a reduced expression of brain th (crucial for dopamine synthesis), resembling the ADHD phenotypes. However, the hyperactivity upon BPA exposure was due to a reduction of GABAergic neurons, particularly in the midbrain. BPA-exposed fish were less-social, with increased repetitive behaviors and escape rate (during strobe light stimulation), like the ASD phenotypes. Taking advantage of published single-cell and bulk RNA-sequencing data related to zebrafish BPA exposure, we uncovered that embryonic midbrain GABAergic neurons express less stmn1a upon BPA exposure. When stmn1a function was partially lost, 14-day post-fertilization larvae became less social, further stressing the ASD phenotype after BPA exposure. Upon embryonic E2 and BPA exposure, we have unexpectedly unveiled zebrafish ADHD-like and ASD-like phenotypes, respectively, suggesting that women of childbearing age should be cautious to use BPA and estrogen related products.
Collapse
Affiliation(s)
- Qiaosen Shen
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Feng Zhao
- School of Life Science, Southern University of Science and Technology, Shenzhen, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Na Zhang
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Ling Zheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dongmei Su
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Yongyi Qian
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Liu Xin
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Sun Mingxia
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Zhang Hongxu
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
10
|
Seim I, Grill SW. Empirical methods that provide physical descriptions of dynamic cellular processes. Biophys J 2025; 124:861-875. [PMID: 39639772 PMCID: PMC11947468 DOI: 10.1016/j.bpj.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
We review empirical methods that can be used to provide physical descriptions of dynamic cellular processes during development and disease. Our focus will be nonspatial descriptions and the inference of underlying interaction networks including cell-state lineages, gene regulatory networks, and molecular interactions in living cells. Our overarching questions are: How much can we learn from just observing? To what degree is it possible to infer causal and/or precise mathematical relationships from observations? We restrict ourselves to data sets arising from only observations, or experiments in which minimal perturbations have taken place to facilitate observation of the systems as they naturally occur. We discuss analysis perspectives in order from those offering the least descriptive power but requiring the least assumptions such as statistical associations. We end with those that are most descriptive, but require stricter assumptions and more previous knowledge of the systems such as causal inference and dynamical systems approaches. We hope to provide and encourage the use of a wide array of options for quantitative cell biologists to learn as much as possible from their observations at all stages of understanding of their system of interest. Finally, we provide our own recipe of how to empirically determine quantitative relationships and growth laws from live-cell microscopy data, the resultant predictions of which can then be verified with perturbation experiments. We also include an extended supplement that describes further inference algorithms and theory for the interested reader.
Collapse
Affiliation(s)
- Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Barraza-Flores P, Moghadaszadeh B, Lee W, Isaac B, Sun L, Hickey ET, Rockowitz S, Sliz P, Beggs AH. Zebrafish and cellular models of SELENON-Congenital myopathy exhibit novel embryonic and metabolic phenotypes. Skelet Muscle 2025; 15:7. [PMID: 40087793 PMCID: PMC11909958 DOI: 10.1186/s13395-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND SELENON-Congenital Myopathy (SELENON-CM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology may be non-specific, but commonly includes multiminicores or a dystrophic pattern. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency cause SELENON-CM remain poorly understood. A hurdle is the lack of cellular and animal models that show easily assayable phenotypes. METHODS Using CRISPR-Cas9 we generated three zebrafish models of SELENON-CM, which were then studied by spontaneous coiling, hatching, and activity assays. We also performed selenon coexpression analysis using a single cell RNAseq zebrafish embryo-atlas. SelN-deficient myoblasts were generated and assayed for glutathione, reactive oxygen species, carbonylation, and nytrosylation levels. Finally, we tested Selenon-deficient myoblasts' metabolism using a Seahorse cell respirometer. RESULTS We report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression of selenon and genes involved in the glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit altered glutathione and redox homeostasis, as well as abnormal patterns of energy metabolism, suggesting roles for SelN in these functions. CONCLUSIONS These data demonstrate a role for SelN in zebrafish early development and myoblast metabolism and provide a basis for cellular and animal model assays for SELENON-CM.
Collapse
Affiliation(s)
- Pamela Barraza-Flores
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Won Lee
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Biju Isaac
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Emily T Hickey
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Piotr Sliz
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
- Division of Molecular Medicine, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. Differentiation 2025; 143:100856. [PMID: 40154219 DOI: 10.1016/j.diff.2025.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Embryonic exposures to non-steroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
13
|
Andrews TGR, Priya R. The Mechanics of Building Functional Organs. Cold Spring Harb Perspect Biol 2025; 17:a041520. [PMID: 38886066 PMCID: PMC7616527 DOI: 10.1101/cshperspect.a041520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.
Collapse
Affiliation(s)
| | - Rashmi Priya
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
14
|
Liu C, Li X, Hu Q, Jia Z, Ye Q, Wang X, Zhao K, Liu L, Wang M. Decoding the blueprints of embryo development with single-cell and spatial omics. Semin Cell Dev Biol 2025; 167:22-39. [PMID: 39889540 DOI: 10.1016/j.semcdb.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Embryonic development is a complex and intricately regulated process that encompasses precise control over cell differentiation, morphogenesis, and the underlying gene expression changes. Recent years have witnessed a remarkable acceleration in the development of single-cell and spatial omic technologies, enabling high-throughput profiling of transcriptomic and other multi-omic information at the individual cell level. These innovations offer fresh and multifaceted perspectives for investigating the intricate cellular and molecular mechanisms that govern embryonic development. In this review, we provide an in-depth exploration of the latest technical advancements in single-cell and spatial multi-omic methodologies and compile a systematic catalog of their applications in the field of embryonic development. We deconstruct the research strategies employed by recent studies that leverage single-cell sequencing techniques and underscore the unique advantages of spatial transcriptomics. Furthermore, we delve into both the current applications, data analysis algorithms and the untapped potential of these technologies in advancing our understanding of embryonic development. With the continuous evolution of multi-omic technologies, we anticipate their widespread adoption and profound contributions to unraveling the intricate molecular foundations underpinning embryo development in the foreseeable future.
Collapse
Affiliation(s)
- Chang Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China
| | | | - Qinan Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zihan Jia
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Ye
- BGI Research, Hangzhou 310030, China; China Jiliang University, Hangzhou 310018, China
| | | | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
15
|
Morrison JA, Pushel I, McLennan R, McKinney MC, Gogol MM, Scott A, Krumlauf R, Kulesa PM. Comparative analysis of neural crest development in the chick and mouse. Dev Biol 2025; 519:142-149. [PMID: 39716593 DOI: 10.1016/j.ydbio.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
A core framework of the gene regulatory network (GRN) governing neural crest (NC) cell development has been generated by integrating separate inputs from diverse model organisms rather than direct comparison. This has limited insights into the diversity of genes in the NC cell GRN and extent of conservation of newly identified transcriptional signatures in cell differentiation and invasion. Here, we address this by leveraging the strengths and accessibility of the avian embryo to precise developmental staging by egg incubation and use an integrated analysis of chick (HH13) and mouse (E9.5) embryo tissue samples collected during NC cell migration into pharyngeal arches 1-2 (PA1 and PA2). We successfully identify a cluster of NC cells containing both mouse and chick cells that share expression of Lmo4, Tfap2B, Sox10, and Twist1, and distinct genes that lack known conserved roles in NC. Importantly, we discovered a cluster of cells exhibiting a conserved transcriptional signature associated with the NC cell migratory wavefront in both mouse and chick, including KAZALD1, BAMBI, DES, and GPC3. We confirm their expression is restricted to leader mouse NCs by multiplexed FISH. Together, these data offer novel insights into the transcriptional programs that underlie NC cell migration and establish the foundation for future comparative functional analyses.
Collapse
Affiliation(s)
| | - I Pushel
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA
| | - R McLennan
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA
| | | | - M M Gogol
- Stowers Institute for Medical Research, USA
| | - A Scott
- Stowers Institute for Medical Research, USA
| | - R Krumlauf
- Stowers Institute for Medical Research, USA; Department of Cell Biology & Physiology Faculty, Kansas University, Medical Center, USA
| | - P M Kulesa
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA.
| |
Collapse
|
16
|
Graham RE, Zheng R, Wagner J, Unciti-Broceta A, Hay DC, Forbes SJ, Gadd VL, Carragher NO. Single-cell morphological tracking of cell states to identify small-molecule modulators of liver differentiation. iScience 2025; 28:111871. [PMID: 39995868 PMCID: PMC11848441 DOI: 10.1016/j.isci.2025.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
We have developed a single-cell assay that combines Cell Painting-a morphological profiling assay-with trajectory inference analysis. We have applied this morphological trajectory inference to the bi-potent HepaRG liver progenitor cell line allowing us to track liver cell fate and map small-molecule-induced changes using a morphological atlas of liver cell differentiation. Our overarching goal is to demonstrate the potential of Cell Painting to study biological processes as continuous trajectories at the single-cell level, enhancing resolution and biological understanding. This work has identified small-molecule Src family kinase inhibitors that promote the differentiation of HepaRG cells toward a hepatocyte-like lineage as well as primary human hepatic progenitor cells toward a hepatocyte-like phenotype in vitro. These findings could significantly advance research on liver cell regeneration mechanisms and facilitate the development of cell-based and small-molecule therapies.
Collapse
Affiliation(s)
- Rebecca E. Graham
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Runshi Zheng
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jesko Wagner
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria L. Gadd
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| |
Collapse
|
17
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621122. [PMID: 39554061 PMCID: PMC11565853 DOI: 10.1101/2024.10.30.621122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryonic exposures to non-stseroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
18
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
19
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
20
|
Nandagopal S, Cha A, Jia BZ, Liao H, Comenho C, Lahav G, Wagner DE, Tsai TYC, Megason SG. Neural plate pre-patterning enables specification of intermediate neural progenitors in the spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632276. [PMID: 39829904 PMCID: PMC11741283 DOI: 10.1101/2025.01.09.632276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification. Systematic spatial analysis of transcription factor (TF) expression and signaling activity using a reference-based mapping approach shows that the neural plate is partitioned into a striking complexity of TF co-expression states that, in part, correspond to the activity of gastrulation signals such as FGF and Wnt that persist through axis extension. Using in toto analysis of cellular movement combined with fate mapping, we find that dbx1b-expressing intermediate progenitors (p0) originate from a neural-plate specific state characterized by transient co-expression of the TFs pax3a, olig4 and her3. Finally, we show that this state is defined by Wnt signaling in the posterior neural plate and that ectopic Wnt activation within pax3a/olig4+ cells is sufficient to promote dbx1b expression. Our data broadly support a model in which neural progenitor specification occurs through the sequential use of multiple signals to progressively diversify the neural tissue as it develops. This has implications for in vitro differentiation of spinal cord cell types and for understanding signal-based patterning in other developmental contexts.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Anna Cha
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Hongyu Liao
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Caroline Comenho
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Daniel E. Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean G. Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Zhong H, Han W, Gomez-Cabrero D, Tegner J, Gao X, Cui G, Aranda M. Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life. Nucleic Acids Res 2025; 53:gkae1316. [PMID: 39778870 PMCID: PMC11707536 DOI: 10.1093/nar/gkae1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/23/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Cross-species single-cell RNA-seq data hold immense potential for unraveling cell type evolution and transferring knowledge between well-explored and less-studied species. However, challenges arise from interspecific genetic variation, batch effects stemming from experimental discrepancies and inherent individual biological differences. Here, we benchmarked nine data-integration methods across 20 species, encompassing 4.7 million cells, spanning eight phyla and the entire animal taxonomic hierarchy. Our evaluation reveals notable differences between the methods in removing batch effects and preserving biological variance across taxonomic distances. Methods that effectively leverage gene sequence information capture underlying biological variances, while generative model-based approaches excel in batch effect removal. SATURN demonstrates robust performance across diverse taxonomic levels, from cross-genus to cross-phylum, emphasizing its versatility. SAMap excels in integrating species beyond the cross-family level, especially for atlas-level cross-species integration, while scGen shines within or below the cross-class hierarchy. As a result, our analysis offers recommendations and guidelines for selecting suitable integration methods, enhancing cross-species single-cell RNA-seq analyses and advancing algorithm development.
Collapse
Affiliation(s)
- Huawen Zhong
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Gomez-Cabrero
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Unit of Translational Bioinformatics, Navarrabiomed—Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jesper Tegner
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavagen 23A, SE-17165 Solna, Sweden
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Perens EA, Yelon D. Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification. Dev Biol 2025; 517:126-139. [PMID: 39307382 DOI: 10.1016/j.ydbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l - an early and essential driver of vessel and blood progenitor formation - was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by hand2, osr1, and npas4l. We find that npas4l and the IM marker pax2a are transiently co-expressed in the posterior lateral mesoderm, and npas4l is necessary to inhibit IM formation. Consistent with the expression of npas4l flanking the medial and lateral sides of the IM, our findings suggest roles for npas4l in defining the IM boundaries at each of these borders. At the lateral IM border, hand2 promotes and osr1 inhibits the formation of npas4l-expressing lateral vessel progenitors, and hand2 requires npas4l to inhibit IM formation and to promote vessel formation. Meanwhile, npas4l appears to have an additional role in suppressing IM fate at the medial border: npas4l loss-of-function enhances hand2 mutant IM defects and results in excess IM generated outside of the lateral hand2-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.
Collapse
Affiliation(s)
- Elliot A Perens
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, Division of Pediatric Nephrology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Merle C, Fre S. Recording Lineage History with Cellular Barcodes in the Mammary Epithelium and in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:77-94. [PMID: 39821021 DOI: 10.1007/978-3-031-70875-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time. We distinguish these two types of cellular barcoding as genetic or optical barcodes. Furthermore, transcribed cellular barcodes can integrate the lineage information with single-cell profiling of each barcoded cell. This enables the potential identification of specific markers or signalling pathways defining distinct stem cell states during development, but also signals promoting tumour growth and metastasis or conferring therapy resistance.In this chapter, we describe recent advances in cellular barcoding technologies and outline experimental and computational challenges. We discuss the biological questions that can be addressed using single-cell dynamic lineage tracing, with a focus on the study of cellular hierarchies in the mammary epithelium and in breast cancer.
Collapse
Affiliation(s)
- Candice Merle
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Silvia Fre
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
24
|
Fang W, Yang Y, Ji H, Kalhor R. Reconstructing Progenitor State Hierarchy and Dynamics Using Lineage Barcoding Data. Methods Mol Biol 2025; 2886:177-199. [PMID: 39745641 DOI: 10.1007/978-1-0716-4310-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Measurements of cell phylogeny based on natural or induced mutations, known as lineage barcodes, in conjunction with molecular phenotype have become increasingly feasible for a large number of single cells. In this chapter, we delve into Quantitative Fate Mapping (QFM) and its computational pipeline, which enables the interrogation of the dynamics of progenitor cells and their fate restriction during development. The methods described here include inferring cell phylogeny with the Phylotime model, and reconstructing progenitor state hierarchy, commitment time, population size, and commitment bias with the ICE-FASE algorithm. Evaluation of adequate sampling based on progenitor state coverage statistics is emphasized for interpreting the QFM results. Overall, this chapter describes a general framework for characterizing the dynamics of cell fate changes using lineage barcoding data.
Collapse
Affiliation(s)
- Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Yang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Molecular Biology & Genetics, Medicine, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Hirono N, Hashimoto M, Shimojo H, Sasaki H. Fate specification triggers a positive feedback loop of TEAD-YAP and NANOG to promote epiblast formation in preimplantation embryos. Development 2025; 152:dev203091. [PMID: 39629521 DOI: 10.1242/dev.203091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In preimplantation embryos, epiblast (EPI) fate specification from the inner cell mass is controlled by the segregation of NANOG and GATA6 expression. TEAD-YAP interaction is activated during EPI formation and is required for pluripotency factor expression. These events occur asynchronously with similar timing during EPI formation, and their relationship remains elusive. Here, we examined the relationship between NANOG-GATA6 and TEAD-YAP. The nuclear accumulation of YAP takes place only in EPI-specified cells, and a positive feedback loop operates between NANOG and TEAD-YAP. The effects of TEAD-YAP on SOX2 upregulation in EPI-specified cells are likely indirect. EPI fate specification also alters the response of Nanog, Sox2 and Cdx2 to TEAD-YAP. These results suggest that EPI-fate specification alters the transcriptional network from the morula-like to the EPI-specified state and activates TEAD-YAP to trigger a positive feedback loop with NANOG, which stabilizes the EPI fate. The coordinated occurrence of these processes in individual cells likely supports proper EPI formation under the condition of asynchronous EPI-fate specification.
Collapse
Affiliation(s)
- Naoki Hirono
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Nandagopal S, Terrio A, Vicente FZ, Megason SG, Jambhekar A, Lahav G. Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response. Cell Rep 2024; 43:115077. [PMID: 39671287 PMCID: PMC11774475 DOI: 10.1016/j.celrep.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024] Open
Abstract
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood. Here, we investigate the role of a network of basic-helix-loop-helix (bHLH) transcription factors in neural stem cells, which integrate leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) signaling to synergistically induce glial fibrillary acidic protein (GFAP), a key astrocyte-fate determinant. Using quantitative RNA-fluorescence in situ hybridization (FISH) and ectopic expression, we find that multiple bHLHs that promote alternative fates also repress GFAP but are all suppressed by BMP and, to a lesser extent, LIF. Mathematical modeling shows that synergy arises from this coordinated derepression of GFAP combined with its activation by LIF signaling. Finally, we determine how coordinated and tunable derepression results from extensive cross-regulation among bHLHs. Activation-derepression synergy could be broadly utilized to couple signaling and fate, particularly across the numerous developmental systems regulated by bHLH factors.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Alexsandra Terrio
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Fernando Z Vicente
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Zhang X, Huang Y, Yang Y, Wang QE, Li L. Advancements in prospective single-cell lineage barcoding and their applications in research. Genome Res 2024; 34:2147-2162. [PMID: 39572229 PMCID: PMC11694748 DOI: 10.1101/gr.278944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research. Additionally, the review navigates through critical considerations for successful experimental design in lineage tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, contributing to the ongoing advancement of scLT studies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, Florida 33620, USA;
| | - Yirui Huang
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yajing Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
28
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
29
|
VijayKumar S, Borja M, Neff N, Royer LA, Lange M. Maximizing single cell dissociation protocol for individual zebrafish embryo. MethodsX 2024; 13:102958. [PMID: 39329153 PMCID: PMC11426156 DOI: 10.1016/j.mex.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Single-cell sequencing has revolutionized our understanding of cellular heterogeneity and cell state, enabling investigations across diverse fields such as developmental biology, immunology, and cancer biology. However, obtaining a high-quality single-cell suspension is still challenging, particularly when starting with limited materials like Zebrafish embryos, a powerful animal model for studying developmental processes and human diseases. Here, we present an optimized protocol for isolating single cells from individual zebrafish embryos, offering a valuable resource for researchers interested in working with limited starting material. The protocol facilitates unique investigations utilizing individual embryos, such as inter-individual genetic differences and embryo-specific lineage tracing analysis. Using a refined single-cell isolation protocol alongside zebrafish as a model organism, researchers can access a resource for exploring the emergence of all types and states of cells, advancing our understanding of cellular processes and disease mechanisms.
Collapse
Affiliation(s)
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, USA
| | | | | |
Collapse
|
30
|
Adameyko I, Bakken T, Bhaduri A, Chhatbar C, Filbin MG, Gate D, Hochgerner H, Kim CN, Krull J, La Manno G, Li Q, Linnarsson S, Ma Q, Mayer C, Menon V, Nano P, Prinz M, Quake S, Walsh CA, Yang J, Bayraktar OA, Gokce O, Habib N, Konopka G, Liddelow SA, Nowakowski TJ. Applying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat Neurosci 2024; 27:2278-2291. [PMID: 39627588 PMCID: PMC11949301 DOI: 10.1038/s41593-024-01827-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Single-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chintan Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Chang Nam Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jordan Krull
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Patricia Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Hill-Terán G, Petrich J, Falcone Ferreyra ML, Aybar MJ, Coux G. Untangling Zebrafish Genetic Annotation: Addressing Complexities and Nomenclature Issues in Orthologous Evaluation of TCOF1 and NOLC1. J Mol Evol 2024; 92:744-760. [PMID: 39269459 DOI: 10.1007/s00239-024-10200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Treacher Collins syndrome (TCS) is a genetic disorder affecting facial development, primarily caused by mutations in the TCOF1 gene. TCOF1, along with NOLC1, play important roles in ribosomal RNA transcription and processing. Previously, a zebrafish model of TCS successfully recapitulated the main characteristics of the syndrome by knocking down the expression of a gene on chromosome 13 (coding for Uniprot ID B8JIY2), which was identified as the TCOF1 orthologue. However, database updates renamed this gene as nolc1 and the zebrafish database (ZFIN) identified a different gene on chromosome 14 as the TCOF1 orthologue (coding for Uniprot ID E7F9D9). NOLC1 and TCOF1 are large proteins with unstructured regions and repetitive sequences that complicate alignments and comparisons. Also, the additional whole genome duplication of teleosts sets further difficulty. In this study, we present evidence that endorses that NOLC1 and TCOF1 are paralogs, and that the zebrafish gene on chromosome 14 is a low-complexity LisH domain-containing factor that displays homology to NOLC1 but lacks essential sequence features to accomplish TCOF1 nucleolar functions. Our analysis also supports the idea that zebrafish, as has been suggested for other non-tetrapod vertebrates, lack the TCOF1 gene that is associated with tripartite nucleolus. Using BLAST searches in a group of teleost genomes, we identified fish-specific sequences similar to E7F9D9 zebrafish protein. We propose naming them "LisH-containing Low Complexity Proteins" (LLCP). Interestingly, the gene on chromosome 13 (nolc1) displays the sequence features, developmental expression patterns, and phenotypic impact of depletion that are characteristic of TCOF1 functions. These findings suggest that in teleost fish, the nucleolar functions described for both NOLC1 and TCOF1 mediated by their repeated motifs, are carried out by a single gene, nolc1. Our study, which is mainly based on computational tools available as free web-based algorithms, could help to solve similar conflicts regarding gene orthology in zebrafish.
Collapse
Affiliation(s)
- Guillermina Hill-Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
| | - Julieta Petrich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Maria Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica Química y Farmacia, Instituto de Biología "Dr. Francisco D. Barbieri", Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), CONICET, CCT-Rosario CONICET, Ocampo y Esmeralda, (S2000EZP), Rosario, Argentina.
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina.
| |
Collapse
|
32
|
Yao ZL, Wang X, Hu CL, Chen FX, Chen HJ, Jiang SJ, Zhao Y, Ji XS. A single-nucleus transcriptomic atlas characterizes cell types and their molecular features in the ovary of adult Nile tilapia. JOURNAL OF FISH BIOLOGY 2024; 105:1800-1810. [PMID: 39235098 DOI: 10.1111/jfb.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
In fish species, there is limited analysis of signature transcriptome profiles at the single-cell level in gonadal cells. Here, the molecular signatures of distinct ovarian cell categories in adult Nile tilapia (Oreochromis niloticus) were analysed using single-nucleus RNA sequencing (snRNA-seq). We identified four cell types (oogonia, oocytes, granulosa cell, and thecal cell) based on their specifically expressed genes and biological functions. Similarly, we found some key pathways involved in ovarian development that may affect germline-somatic interactions. A cell-to-cell communication network between the distinct cell types was constructed. We found that the bidirectional communication is mandatory for the development of germ cells and somatic cells in fish ovaries, and the granulosa cells and thecal cells play a central regulating role in the cell network in fish ovary. Additionally, we identified some novel candidate marker genes for various types of ovarian cells and also validated them using in situ hybridization. Our work reveals an ovarian atlas at the cellular and molecular levels and contributes to providing insights into oogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Zhi Lei Yao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- Library, Shandong Agricultural University, Tai'an, China
| | - Chun Lei Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Fu Xiao Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hong Ju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiang Shan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
33
|
Kwon EJ, Lee H, Shin U, Kim ES, Myung K, Kim J, Park JH, Kim K, Lee Y, Oh CK, Kim YH. Ionizing radiation inhibits zebrafish embryo hatching through induction of tissue inhibitors of metalloproteinases (TIMPs) expression. FEBS J 2024; 291:5470-5485. [PMID: 39547957 DOI: 10.1111/febs.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Ionizing radiation (IR) has garnered growing attention because of its biological effects on aquatic organisms and humans. Here, we identify the most impacted organs and uncover the molecular mechanisms causing the changes in the context of vertebrate development using single-cell RNA sequencing. Alterations in cellular composition and biological functions were explored using transcriptomic profiling of zebrafish embryos exposed to 5 Gy. Single-cell RNA sequencing analyses unveiled notable shifts in the proportions of brain/central nervous system and hatching gland clusters. Although IR exposure led to increased expression of hatching enzymes, a significant but mild delay in hatching was observed following 5 Gy IR exposure. Gene Ontology analysis showed an increased expression of tissue inhibitors of metalloproteinases (TIMPs), known as matrix metalloproteinase inhibitors, which was confirmed via whole-mount in situ hybridization. Correlation analysis linked TIMPs to transcription factors cebpb and cebpd, which were significantly correlated post-IR exposure. Although no morphological changes were observed in some organs, including the brain, the study reveals substantial alterations in developing vertebrates. Notably, despite increased hatching enzymes, elevated TIMPs in the hatching gland suggest a regulatory mechanism impacting hatching activity. This research contributes to comprehending the ecological repercussions of IR exposure, emphasizing the importance of safety measures for aquatic ecosystems and overall environmental health.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Unbum Shin
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Eun-Sun Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jeongmo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Kihun Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yoonsung Lee
- Research Institute of Clinical Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Korea
- Institute for Future Earth, Pusan National University, Busan, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
34
|
Kukreja K, Jia BZ, McGeary SE, Patel N, Megason SG, Klein AM. Cell state transitions are decoupled from cell division during early embryo development. Nat Cell Biol 2024; 26:2035-2045. [PMID: 39516639 DOI: 10.1038/s41556-024-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. Here, to determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues from early gastrulation to the end of segmentation. However, arresting cell division does slow down differentiation in some cell types, and it induces global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not, but show evidence of partial compensation. This work clarifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues.
Collapse
Affiliation(s)
- Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bill Z Jia
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Sean E McGeary
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nikit Patel
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Lange M, Granados A, VijayKumar S, Bragantini J, Ancheta S, Kim YJ, Santhosh S, Borja M, Kobayashi H, McGeever E, Solak AC, Yang B, Zhao X, Liu Y, Detweiler AM, Paul S, Theodoro I, Mekonen H, Charlton C, Lao T, Banks R, Xiao S, Jacobo A, Balla K, Awayan K, D'Souza S, Haase R, Dizeux A, Pourquie O, Gómez-Sjöberg R, Huber G, Serra M, Neff N, Pisco AO, Royer LA. A multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors. Cell 2024; 187:6742-6759.e17. [PMID: 39454574 DOI: 10.1016/j.cell.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/02/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Elucidating organismal developmental processes requires a comprehensive understanding of cellular lineages in the spatial, temporal, and molecular domains. In this study, we introduce Zebrahub, a dynamic atlas of zebrafish embryonic development that integrates single-cell sequencing time course data with lineage reconstructions facilitated by light-sheet microscopy. This atlas offers high-resolution and in-depth molecular insights into zebrafish development, achieved through the sequencing of individual embryos across ten developmental stages, complemented by reconstructions of cellular trajectories. Zebrahub also incorporates an interactive tool to navigate the complex cellular flows and lineages derived from light-sheet microscopy data, enabling in silico fate-mapping experiments. To demonstrate the versatility of our multimodal resource, we utilize Zebrahub to provide fresh insights into the pluripotency of neuro-mesodermal progenitors (NMPs) and the origins of a joint kidney-hemangioblast progenitor population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiang Zhao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Yang Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sheryl Paul
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | - Tiger Lao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sheng Xiao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Keir Balla
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Robert Haase
- Cluster of Excellence "Physics of Life," TU Dresden, Dresden, Germany
| | - Alexandre Dizeux
- Institute of Physics for Medicine Paris, ESPCI Paris-PSL, Paris, France
| | | | | | - Greg Huber
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mattia Serra
- University of California, San Diego, San Diego, CA, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | |
Collapse
|
36
|
Johal S, Elsayed R, Panfilio KA, Nelson AC. The molecular basis for functional divergence of duplicated SOX factors controlling endoderm formation and left-right patterning in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579092. [PMID: 39605568 PMCID: PMC11601245 DOI: 10.1101/2024.02.06.579092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endoderm, one of three primary germ layers of vertebrate embryos, makes major contributions to the respiratory and gastrointestinal tracts and associated organs, including liver and pancreas. In mammals, the transcription factor SOX17 is vital for endoderm organ formation and can induce endoderm progenitor identity. Duplication of ancestral sox17 in the teleost lineage produced the paralogues sox32 and sox17 in zebrafish. Sox32 is required for specification of endoderm and progenitors of the left-right organiser (Kupffer's Vesicle, KV), with Sox17 a downstream target of Sox32 that is implicated in further KV development. Phenotypic evidence therefore suggests functional similarities between zebrafish Sox32 and Sox17 and mammalian SOX17. Here, we directly compare these orthologues and paralogues, using the early zebrafish embryo as a biological platform for functional testing. Our results indicate that, unlike Sox32, human SOX17 cannot induce endoderm specification in zebrafish. Furthermore, using hybrid protein functional analyses, we show that Sox32 specificity for the endoderm gene regulatory network is linked to evolutionary divergence in its DNA-binding HMG domain from its paralogue Sox17. Additionally, changes in the C-terminal regions of Sox32 and Sox17 underpin their differing target specificities. Finally, we establish that specific conserved peptides in the C-terminal domain are essential for the role of Sox17 in establishing correct organ asymmetry. Overall, our results illuminate the molecular basis for functional divergence of Sox32 and Sox17 in vertebrate endoderm development and left-right patterning, and the evolution of SoxF transcription factor function.
Collapse
|
37
|
Kushawah G, Amaral DB, Hassan H, Gogol M, Nowotarski SH, Bazzini AA. Critical role of Spatio-Temporally Regulated Maternal RNAs in Zebrafish Embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622483. [PMID: 39574587 PMCID: PMC11580991 DOI: 10.1101/2024.11.07.622483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The maternal-to-zygotic transition shifts regulatory control from maternal to zygotic messenger RNAs (mRNA) through maternal mRNA degradation. While temporal aspects of maternal mRNA decay are known, spatial mechanisms remain underexplored. Using CRISPR-Cas9 and CRISPR-Cas13d systems, we functionally dissected the contribution of maternal versus zygotic fractions and overcame challenges of studying embryonic lethal genes. We identified differentially distributed maternal mRNAs in specific cells and evidenced the critical role of five maternal mRNAs, cth1, arl4d, abi1b, foxa and lhx1a, in embryogenesis. Further, we focused on the functionally uncharacterized cth1 gene, revealing its essential role in gametogenesis and embryogenesis. Cth1 acts as a spatio-temporal RNA decay factor regulating mRNA stability and accumulation of its targets in a spatio-temporal manner through 3'UTR recognition during early development. Furthermore, Cth1 3'UTR drives its spatio-temporal RNA localization. Our findings provide new insights into spatio-temporal RNA decay mechanisms and highlight dual CRISPR-Cas strategies in studying embryonic development.
Collapse
Affiliation(s)
- Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | | | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Morrison JA, Pushel I, McLennan R, McKinney MC, Gogol MM, Scott A, Krumlauf R, Kulesa PM. Comparative Analysis of Neural Crest Development in the Chick and Mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622355. [PMID: 39574664 PMCID: PMC11580915 DOI: 10.1101/2024.11.06.622355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A core framework of the gene regulatory network (GRN) governing neural crest (NC) cell development has been generated by integrating separate inputs from diverse model organisms rather than direct comparison. This has limited insights into the diversity of genes in the NC cell GRN and extent of conservation of newly identified transcriptional signatures in cell differentiation and invasion. Here, we address this by leveraging the strengths and accessibility of the avian embryo to precise developmental staging by egg incubation and use an integrated analysis of chick (HH13) and mouse (E9.5) embryo tissue samples collected during NC cell migration into pharyngeal arches 1-2 (PA1 and PA2). We successfully identify a cluster of NC cells containing both mouse and chick cells that share expression of Lmo4 , Tfap2B , Sox10 , and Twist1 , and distinct genes that lack known conserved roles in NC. Importantly, we discovered a cluster of cells exhibiting a conserved transcriptional signature associated with the NC cell migratory wavefront in both mouse and chick, including KAZALD1, BAMBI, DES, and GPC3. We confirm their expression is restricted to leader mouse NCs by multiplexed FISH. Together, these data offer novel insights into the transcriptional programs that underlie NC cell migration and establish the foundation for future comparative functional analyses.
Collapse
|
39
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
40
|
Reimão-Pinto MM, Behrens A, Forcelloni S, Fröhlich K, Kaya S, Nedialkova DD. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J 2024; 43:5747-5779. [PMID: 39402326 PMCID: PMC11574265 DOI: 10.1038/s44318-024-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Embryogenesis entails dramatic shifts in mRNA translation and turnover that reprogram gene expression during cellular proliferation and differentiation. Codon identity modulates mRNA stability during early vertebrate embryogenesis, but how the composition of tRNA pools is matched to translational demand is unknown. By quantitative profiling of tRNA repertoires in zebrafish embryos during the maternal-to-zygotic transition, we show that zygotic tRNA repertoires are established after the onset of gastrulation, succeeding the major wave of zygotic mRNA transcription. Maternal and zygotic tRNA pools are distinct, but their reprogramming does not result in a better match to the codon content of the zygotic transcriptome. Instead, we find that an increase in global translation at gastrulation sensitizes decoding rates to tRNA supply, thus destabilizing maternal mRNAs enriched in slowly translated codons. Translational activation and zygotic tRNA expression temporally coincide with an increase of TORC1 activity at gastrulation, which phosphorylates and inactivates the RNA polymerase III repressor Maf1a/b. Our data indicate that a switch in global translation, rather than tRNA reprogramming, determines the onset of codon-dependent maternal mRNA decay during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Selay Kaya
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, 85748, Garching, Germany.
| |
Collapse
|
41
|
Biran H, Hashimshony T, Lahav T, Efrat O, Mandel-Gutfreund Y, Yakhini Z. Detecting significant expression patterns in single-cell and spatial transcriptomics with a flexible computational approach. Sci Rep 2024; 14:26121. [PMID: 39478009 PMCID: PMC11525848 DOI: 10.1038/s41598-024-75314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Gene expression data holds the potential to shed light on multiple biological processes at once. However, data analysis methods for single cell sequencing mostly focus on finding cell clusters or the principal progression line of the data. Data analysis for spatial transcriptomics mostly addresses clustering and finding spatially variable genes. Existing data analysis methods are effective in finding the main data features, but they might miss less pronounced, albeit significant, processes, possibly involving a subset of the samples. In this work we present SPIRAL: Significant Process InfeRence ALgorithm. SPIRAL is based on Gaussian statistics to detect all statistically significant biological processes in single cell, bulk and spatial transcriptomics data. The algorithm outputs a list of structures, each defined by a set of genes working simultaneously in a specific population of cells. SPIRAL is unique in its flexibility: the structures are constructed by selecting subsets of genes and cells based on statistically significant and consistent differential expression. Every gene and every cell may be part of one structure, more or none. SPIRAL also provides several visual representations of structures and pathway enrichment information. We validated the statistical soundness of SPIRAL on synthetic datasets and applied it to single cell, spatial and bulk RNA-sequencing datasets. SPIRAL is available at https://spiral.technion.ac.il/ .
Collapse
Affiliation(s)
- Hadas Biran
- Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Or Efrat
- Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Mandel-Gutfreund
- Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zohar Yakhini
- Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
- Arazi School of Computer Science, Reichman University, Herzliya, Israel
| |
Collapse
|
42
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
43
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
44
|
Musser JM. Tripartite origin of the chordate brain. Nat Ecol Evol 2024; 8:1782-1783. [PMID: 39164590 DOI: 10.1038/s41559-024-02528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Affiliation(s)
- Jacob M Musser
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
45
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Ding Y, Zoppi G, Antonini G, Geiger R, deMello AJ. Robust Double Emulsions for Multicolor Fluorescence-Activated Cell Sorting. Anal Chem 2024; 96:14809-14818. [PMID: 39231502 PMCID: PMC11411495 DOI: 10.1021/acs.analchem.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events. Unfortunately, current droplet sorting instruments have significant limitations, most notably related to analytical throughput and complex operation. In contrast, commercial fluorescence-activated cell sorters offer superior speed, sensitivity, and multiplexing capabilities, although their use as droplet sorters is poorly defined and underutilized. Herein, we present a universally applicable and simple-to-implement workflow for generating double emulsions and performing multicolor cell sorting using a commercial FACS instrument. This workflow achieves a double emulsion detection rate exceeding 90%, enabling multicellular encapsulation and high-throughput immune cell activation sorting for the first time. We anticipate that the presented droplet sorting strategy will benefit cell biology laboratories by providing access to an advanced microfluidic toolbox with minimal effort and cost investment.
Collapse
Affiliation(s)
- Yun Ding
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Giada Zoppi
- Institute
for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Gaia Antonini
- Institute
for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Roger Geiger
- Institute
for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute
of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Andrew J. deMello
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Sashittal P, Zhang RY, Law BK, Strzalkowski A, Schmidt H, Bolondi A, Chan MM, Raphael BJ. Inferring cell differentiation maps from lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611835. [PMID: 39314473 PMCID: PMC11419031 DOI: 10.1101/2024.09.09.611835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During development, mulitpotent cells differentiate through a hierarchy of increasingly restricted progenitor cell types until they realize specialized cell types. A cell differentiation map describes this hierarchy, and inferring these maps is an active area of research spanning traditional single marker lineage studies to data-driven trajectory inference methods on single-cell RNA-seq data. Recent high-throughput lineage tracing technologies profile lineages and cell types at scale, but current methods to infer cell differentiation maps from these data rely on simple models with restrictive assumptions about the developmental process. We introduce a mathematical framework for cell differentiation maps based on the concept of potency, and develop an algorithm, Carta, that infers an optimal cell differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the trade-off between the complexity of the cell differentiation map and the number of unobserved cell type transitions on the lineage tree. We show that Carta more accurately infers cell differentiation maps on both simulated and real data compared to existing methods. In models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods including convergent differentiation of specialized cell types, progenitor differentiation dynamics, and the refinement of routes of differentiation via new intermediate progenitors.
Collapse
Affiliation(s)
- Palash Sashittal
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Richard Y. Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
| | - Benjamin K. Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | | - Henri Schmidt
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Adriano Bolondi
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics; 14195 Berlin, Germany
| | - Michelle M. Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | |
Collapse
|
48
|
Wang C, Wang X, Wang W, Chen Y, Chen H, Wang W, Ye T, Dong J, Sun C, Li X, Li C, Li J, Wang Y, Feng X, Ding H, Xu D, Shi J. Single‑cell RNA sequencing analysis of human embryos from the late Carnegie to fetal development. Cell Biosci 2024; 14:118. [PMID: 39267141 PMCID: PMC11395182 DOI: 10.1186/s13578-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The cell development atlas of transition stage from late Carnegie to fetal development (7-9 weeks) remain unclear. It can be seen that the early period of human embryos (7-9 weeks) is a critical research gap. Therefore, we employed single‑cell RNA sequencing to identify cell types and elucidate differentiation relationships. RESULTS The single‑cell RNA sequencing analysis determines eighteen cell clusters in human embryos during the 7-9 weeks period. We uncover two distinct pathways of cellular development and differentiation. Initially, mesenchymal progenitor cells differentiated into osteoblast progenitor cells and neural stem cells, respectively. Neural stem cells further differentiated into neurons. Alternatively, multipotential stem cells differentiated into adipocyte, hematopoietic stem cells and neutrophil, respectively. Additionally, COL1A2-(ITGA1 + ITGB1) mediated the cell communication between mesenchymal progenitor cells and osteoblast progenitor cells. NCAM1-FGFR1 facilitated the cell communication between mesenchymal progenitor cells and neural stem cells. Notably, NCAM1-NCAM1 as a major contributor mediated the cell communication between neural stem cells and neurons. Moreover, CGA-FSHR simultaneously mediated the communication between multipotential stem cells, adipocyte, hematopoietic stem cells and neutrophil. Distinct cell clusters activated specific transcription factors such as HIC1, LMX1B, TWIST1, and et al., which were responsible for their specific functions. These coregulators, such as HOXB13, VSX2, PAX5, and et al., may mediate cell development and differentiation in human embryos. CONCLUSIONS We provide the cell development atlas for human embryos (7-9 weeks). Two distinct cell development and differentiation pathways are revealed.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, 226018, Jiangsu, China
| | - Wenran Wang
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Yufei Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Hanqing Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weizhen Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chenliang Sun
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhong Li
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Jiaying Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yong Wang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hongping Ding
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China.
| | - Dawei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
49
|
Liu Z, Zeng H, Xiang H, Deng S, He X. Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis. J Genet Genomics 2024; 51:947-956. [PMID: 38621643 DOI: 10.1016/j.jgg.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology. However, existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis. A recently developed method, a substitution mutation-aided lineage-tracing system (SMALT), successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster. Here, we implement the SMALT system in zebrafish, recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos. Leveraging this system, we reconstruct four cell lineage trees for zebrafish fin cells, encompassing both original and regenerated fin. Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%. Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins. Through multiple times sampling germ cells from the same individual, we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors. Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues, providing valuable insights into development and disease in zebrafish.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Huimin Xiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Shanjun Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
50
|
Xu J, Liu S, Ai Y, Zhang Y, Li S, Li Y. Establishment and transcriptome analysis of single blastomere-derived cell lines from zebrafish. J Genet Genomics 2024; 51:957-969. [PMID: 39097227 DOI: 10.1016/j.jgg.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Maintaining chromosome euploidy in zebrafish embryonic cells is challenging because of the degradation of genomic integrity during cell passaging. In this study, we report the derivation of zebrafish cell lines from single blastomeres. These cell lines have a stable chromosome status attributed to BMP4 and exhibit continuous proliferation in vitro. Twenty zebrafish cell lines are successfully established from single blastomeres. Single-cell transcriptome sequencing analysis confirms the fidelity of gene expression profiles throughout long-term culturing of at least 45 passages. The long-term cultured cells are specialized into epithelial cells, exhibiting similar expression patterns validated by integrative transcriptomic analysis. Overall, this work provides a protocol for establishing zebrafish cell lines from single blastomeres, which can serve as valuable tools for in vitro investigations of epithelial cell dynamics in terms of life-death balance and cell fate determination during normal homeostasis.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yirui Ai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunbin Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shifeng Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yiping Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|