1
|
Voss JH, Koszegi Z, Yan Y, Shorter E, Grätz L, Lanner JT, Calebiro D, Schulte G. WNT-induced association of Frizzled and LRP6 is not sufficient for the initiation of WNT/β-catenin signaling. Nat Commun 2025; 16:4848. [PMID: 40413190 PMCID: PMC12103576 DOI: 10.1038/s41467-025-60096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
The Wingless/Int-1 (WNT) signaling network is essential to orchestrate central physiological processes such as embryonic development and tissue homeostasis. In the currently held tenet, WNT/β-catenin signaling is initiated by WNT-induced recruitment of Frizzleds (FZDs) and LRP5/6 followed by the formation of a multiprotein signalosome complex. Here, we use bioluminescence resonance energy transfer (BRET) to show that different WNT paralogs dynamically trigger FZD-LRP6 association. While WNT-induced receptor interaction was independent of C-terminal LRP6 phosphorylation, it was allosterically modulated by binding of the phosphoprotein Dishevelled (DVL) to FZD. WNT-16B emerged as a ligand of particular interest, as it efficiently promoted FZD-LRP6 association but, unlike WNT-3A, did not lead to WNT/β-catenin signaling. Transcriptomic analysis further revealed distinct transcriptional fingerprints of WNT-3A and WNT-16B stimulation in HEK293 cells. Additionally, single-molecule tracking demonstrated that, despite increasing FZD5 and LRP6 confinement, WNT-16B stimulation did not result in formation of higher-order receptor clusters, in contrast to WNT-3A. Our results suggest that FZD-WNT-LRP5/6 complex formation alone is not sufficient for the initiation of WNT/β-catenin signaling. Instead, we propose a two-step model, where initial ligand-induced FZD-LRP6 association must be followed by receptor clustering into higher-order complexes and subsequent phosphorylation of LRP6 for efficient activation of WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Zsombor Koszegi
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, B15 2TT, UK
| | - Yining Yan
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Emily Shorter
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Molecular Muscle Physiology & Pathophysiology, Biomedicum, S-17165, Stockholm, Sweden
| | - Lukas Grätz
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Molecular Muscle Physiology & Pathophysiology, Biomedicum, S-17165, Stockholm, Sweden
| | - Davide Calebiro
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, B15 2TT, UK
| | - Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden.
| |
Collapse
|
2
|
Chen F, Deng Z, Wang X, Liu Y, Zhao K, Zhang Y, He S, Ran R, Dong Y, Guo S, Zhou Y, Zhou B, Pang P, Ge W, Liu C, Shan H, He H. DDX24 spatiotemporally orchestrates VEGF and Wnt signaling during developmental angiogenesis. Proc Natl Acad Sci U S A 2025; 122:e2417445122. [PMID: 40339127 DOI: 10.1073/pnas.2417445122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/16/2025] [Indexed: 05/10/2025] Open
Abstract
Vascular development is a precisely controlled process, yet how it is spatiotemporally orchestrated remains enigmatic. We previously identified DEAD-box RNA helicase 24 (DDX24) as a pathogenic gene for multiorgan vascular anomalies. Here, we show that DDX24 is expressed in the endothelium during embryonic angiogenesis in zebrafish. DDX24 deficiency causes intersegmental vessel hyperbranching in the trunk, but inhibits central artery angiogenesis in the brain. Mechanistically, DDX24 deficiency enhances VEGFR2 expression by direct binding to its mRNA in nonbrain endothelial cells (ECs), while suppressing GPR124/RECK-mediated Wnt signaling in brain ECs. Additionally, spatial transcriptome analysis profiles DDX24-mediated crosstalk between ECs and neighboring cells. Finally, pharmacological targeting of these two pathways in a temporal manner can rescue the phenotypes induced by DDX24 deficiency. Overall, our findings highlight an essential role for DDX24 in the spatiotemporal regulation of developmental angiogenesis.
Collapse
Affiliation(s)
- Fangbin Chen
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaohua Deng
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xiaoming Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxuan Liu
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Zhang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Simeng He
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Rensen Ran
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yingying Dong
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shuang Guo
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yitong Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Bin Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Pengfei Pang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Chang Liu
- BGI Research, Shenzhen 518083, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
- Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China
| | - Hong Shan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Huanhuan He
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
3
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025; 301:108441. [PMID: 40127866 PMCID: PMC12059339 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) involved in planar cell polarity, primarily through recruitment of the signaling components disheveled (DVL) during vertebrate gastrulation and discs large homolog 1, implicated in cancer. Limited knowledge exists of the canonical G protein-coupled receptor pathways downstream of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the G protein-mediated signaling of ADGRA3. We designed ADGRA3 constructs based on transcript variant analysis in publicly available human liver and brain RNA-seq datasets. Cleavage in the GPCR autoproteolysis site (GPS) is an aGPCR hallmark; thus, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist (so-called stachel peptide), we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in planar cell polarity signaling through DVL recruitment, we investigated the G-protein signaling in the absence of DVL1-3 and found it sustained. No transcriptional activation was observed in an assay of downstream β-catenin activity. Collectively, this establishes classical G protein-mediated signaling for ADGRA3.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Harada A, Yasumizu Y, Harada T, Fumoto K, Sato A, Maehara N, Sada R, Matsumoto S, Nishina T, Takeda K, Morii E, Kayama H, Kikuchi A. Hypoxia-induced Wnt5a-secreting fibroblasts promote colon cancer progression. Nat Commun 2025; 16:3653. [PMID: 40246836 PMCID: PMC12006413 DOI: 10.1038/s41467-025-58748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Wnt5a, a representative Wnt ligand that activates the β-catenin-independent pathway, has been shown to promote tumorigenesis. However, it is unclear where Wnt5a is produced and how it affects colon cancer aggressiveness. In this study, we demonstrate that Wnt5a is expressed in fibroblasts near the luminal side of the tumor, and its depletion suppresses mouse colon cancer formation. To characterize the specific fibroblast subtype, a meta-analysis of human and mouse colon fibroblast single-cell RNA-seq data is performed. The results show that Wnt5a is expressed in hypoxia-induced inflammatory fibroblast (InfFib), accompanied by the activation of HIF2. Moreover, Wnt5a maintains InfFib through the suppression of angiogenesis mediated by soluble VEGF receptor1 (Flt1) secretion from endothelial cells, thereby inducing further hypoxia. InfFib also produces epiregulin, which promotes colon cancer growth. Here, we show that Wnt5a acts on endothelial cells, inducing a hypoxic environment that maintains InfFib, thereby contributing to colon cancer progression through InfFib.
Collapse
Affiliation(s)
- Akikazu Harada
- Center for Infectious Disease Education and Research (CiDER), The University of Osaka, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan.
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan.
| | - Yoshiaki Yasumizu
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan
- Laboratory of Experimental Immunology, WPI Frontier Immunology Research Center, The University of Osaka, Suita, Osaka, Japan
| | - Takeshi Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Akira Sato
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Natsumi Maehara
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Ryota Sada
- Center for Infectious Disease Education and Research (CiDER), The University of Osaka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Shinji Matsumoto
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Takashi Nishina
- Department of Biochemistry, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Kiyoshi Takeda
- Center for Infectious Disease Education and Research (CiDER), The University of Osaka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Frontier Immunology Research Center, The University of Osaka, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Mucosal Immunology, WPI Frontier Immunology Research Center, The University of Osaka, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, The University of Osaka, Suita, Osaka, Japan
| | - Akira Kikuchi
- Center for Infectious Disease Education and Research (CiDER), The University of Osaka, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita, Osaka, Japan.
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Li Y, Duan Y, Chu Q, Lv H, Li J, Guo X, Gao Y, Liu M, Tang W, Hu H, Liu H, Sun J, Wang X, Yi F. G-protein coupled receptor GPR124 protects against podocyte senescence and injury in diabetic kidney disease. Kidney Int 2025; 107:652-665. [PMID: 39828038 DOI: 10.1016/j.kint.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Although emerging studies highlight the pivotal role of podocyte senescence in the pathogenesis of diabetic kidney disease (DKD) and aging-related kidney diseases, therapeutic strategies for preventing podocyte senescence are still lacking. Here, we identified a previously unrecognized role of GPR124, a novel adhesion G protein-coupled receptor, in maintaining podocyte structure and function by regulation of cellular senescence in DKD. Podocyte GPR124 was significantly reduced in db/db diabetic (a type 2 diabetic mouse model) and streptozocin-induced diabetic mice (a type 1 diabetic model), which was further confirmed in kidney biopsies from patients with DKD. The level of GPR124 in glomeruli was positively correlated with the estimated glomerular filtration rate and negatively correlated with serum creatinine levels. Podocyte-specific deficiency of GPR124 significantly aggravated podocyte injury and proteinuria in the two models of diabetic mice. Moreover, GPR124 regulated podocyte senescence in both diabetic and aged mice. Mechanistically, GPR124 directly bound with vinculin and negatively regulated focal adhesion kinase (FAK) signaling, thereby mediating podocyte senescence and function. Importantly, overexpression of GPR124 or pharmacological inhibition of FAK protected against podocyte senescence and injury under diabetic conditions. Our studies suggest that targeting GPR124 may be an innovative therapeutic strategy for patients with DKD and aging-related kidney diseases.
Collapse
MESH Headings
- Podocytes/pathology
- Podocytes/metabolism
- Animals
- Cellular Senescence
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Humans
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/metabolism
- Mice
- Mice, Knockout
- Focal Adhesion Kinase 1/metabolism
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Proteinuria/pathology
- Proteinuria/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/metabolism
- Glomerular Filtration Rate
- Cells, Cultured
Collapse
Affiliation(s)
- Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yiqi Duan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qingqing Chu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiangyun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjiao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huili Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Zhang S, Chen Y, Lv Y, Feng Y, Gao C. Mitochondrial PGAM5 modulates methionine metabolism and feather follicle development by targeting Wnt/β-catenin signaling pathway in broiler chickens. J Anim Sci Biotechnol 2025; 16:35. [PMID: 40038789 DOI: 10.1186/s40104-025-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency. Methionine (Met) is an essential amino acid required for feather follicle development; yet the exact mechanism involved remains insufficiently understood. METHODS A total of 180 1-day-old broilers were selected and randomly divided into 3 treatments: control group (0.45% Met), Met-deficiency group (0.25% Met), and Met-rescue group (0.45% Met in the pre-trial period and 0.25% Met in the post-trial period). The experimental period lasted for 56 d, with a pre-trial period of 1-28 d and a post-trial period of 29-56 d. In addition, Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium. RESULTS Dietary Met-deficiency significantly (P < 0.05) reduced the ADG, ADFI and F/G, and inhibited feather follicle development. Met supplementation significantly (P < 0.05) improved growth performance and the feather growth in broilers. Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway (GSK-3β, CK1, Axin1, β-catenin, Active β-catenin, TCF4, and Cyclin D1). Compared with Met-deficiency group, Met-rescue significantly (P < 0.05) increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential, activated Wnt/β-catenin signaling pathway, and decreased the content of reactive oxygen species (P < 0.05). CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1, the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway, and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development. CONCLUSIONS PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway, and promotes feather follicle development and feather growth of broiler chickens through Met supplementation. These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yijun Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yaxue Lv
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqing Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Chunqi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Lehmann L, Groß VE, Behlendorf R, Prömel S. The N terminus-only function of adhesion GPCRs: emerging concepts. Trends Pharmacol Sci 2025; 46:231-248. [PMID: 39955242 DOI: 10.1016/j.tips.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play key roles in health and disease. They are unique in that they not only activate G-protein pathways but also have distinct functions that rely solely on their N termini, making them complex drug targets. To date there have been only descriptive observations about these enigmatic N terminus-only functions. Emerging evidence from several aGPCRs now indicates that these are a defining characteristic of these receptors that allows them to operate bidirectionally across environments. Recent advances in characterizing aGPCR splice variants and receptor structure have revealed the G protein-independent mechanisms that underlie their N terminus-only functions. This review consolidates current findings, explores how the N termini integrate functions, and identifies common principles across aGPCRs. We consider the therapeutic implications and discuss how specifically targeting N terminus functions provides a novel perspective on the pharmacological potential of aGPCRs.
Collapse
Affiliation(s)
- Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rene Behlendorf
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Qin Y, Liao S, Sun J, Ye H, Li J, Pan J, He J, Xia Z, Shao Y. RECK as a Potential Crucial Molecule for the Targeted Treatment of Sepsis. J Inflamm Res 2025; 18:1787-1813. [PMID: 39931174 PMCID: PMC11809362 DOI: 10.2147/jir.s501856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Reversion inducing cysteine rich protein with kazal motifs (RECK), a Kazal motif-containing protein, regulates pro-inflammatory cytokines production, migration of inflammatory cells, vascular endothelial growth factor (VEGF) and Wnt pathways and plays critical roles in septic inflammatory storms and vascular endothelial dysfunction. Recently, RECK has been defined as the negative regulator of adisintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs), which are both membrane "molecular scissors" and aggravate the poor prognosis of sepsis. To better understand the roles of RECK and the related mechanisms, we make here a systematic and in-depth review of RECK. We first summarize the findings on structural characteristics of RECK protein and the regulation at the transcription, post-transcription, or protein level of RECK. Then, we discuss the roles of RECK in inflammation, infection, and vascular injury by focusing on the RECK function on ADAMs and MMPs, as well as the pathways of VEGF, WNT, angiopoietin, and notch signaling. In conclusion, RECK participation as a guardian in the development of sepsis provides insight into the strategies of precisely intervening in RECK dysregulationfor the treatment of sepsis.
Collapse
Affiliation(s)
- Yuting Qin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Shuanglin Liao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jianbo Sun
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Huiyun Ye
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiafu Li
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiahui Pan
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang, Guangdong, People’s Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
- The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Wang B, He Z, Zhang M, Zhang R, Song Z, Li A, Hao T. Transcriptional Regulatory Network of the Embryonic Diapause Termination Process in Artemia. Genes (Basel) 2025; 16:175. [PMID: 40004504 PMCID: PMC11855619 DOI: 10.3390/genes16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Artemia is a typical animal used for the study of the diapause mechanism. The research on the regulation mechanism of diapause mainly focuses on the occurrence and maintenance of diapause. There are few studies on the mechanism of embryonic pause termination (EDT), especially for its transcriptional regulation mechanism. This study integrated transcriptional regulatory data from ATAC-seq and gene expression data from RNA-seq to explore the transcriptional regulatory mechanisms involved in the EDT process. Through integrated analysis, four important transcription factors (TFs), SVP, MYC, RXR, and SMAD6, were found to play a role in the EDT process, in which SVP, MYC, and RXR were upregulated, while SMAD6 was downregulated in the EDT stage. Through co-expression analysis, a transcription regulatory network for these four TFs was constructed and the functions of the TFs were analyzed. The expression of the TFs was further verified by RT-qPCR. Through functional analysis, SVP was found to be predominantly involved in cell adhesion and signal transduction. MYC probably played a role in protein binding. RXR may function in the process of RNA binding and the transfer of phosphorus-containing groups. Smad6 regulated the signal transduction, cell adhesion, and oxidation-reduction processes. The expression of the key TFs was verified by RT-qPCR. The results of this work provide important clues for the mechanism of transcriptional regulation in the EDT process of Artemia.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhen He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Mingzhi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ruiqi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhentao Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Anqi Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
10
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
11
|
Bruguera ES, Mahoney JP, Weis WI. The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling. eLife 2025; 13:RP96743. [PMID: 39745873 DOI: 10.7554/elife.96743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.
Collapse
Affiliation(s)
- Elise S Bruguera
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jacob P Mahoney
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - William I Weis
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
12
|
Lin WY, Dong YL, Lin Y, Sunchuri D, Guo ZL. Potential role of G protein‑coupled receptor 124 in cardiovascular and cerebrovascular disease (Review). Exp Ther Med 2025; 29:2. [PMID: 39534284 PMCID: PMC11552082 DOI: 10.3892/etm.2024.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptor 124 (GPR124) has a key role in regulating the proliferation and differentiation of endothelial cells, activating inflammatory bodies and promoting angiogenesis and other processes, thus affecting various pathological and physiological processes in the body. GPR124 is vital for promoting the development of the nervous system and maintaining the stability of the blood-brain barrier, and is also associated with cardiovascular and cerebrovascular diseases and cancer. This article will elaborate on the biological information regarding GPR124 published in recent years and its possible related signaling pathways in the field of diseases and provide a reference for further revealing the role of GPR124 in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Wan-Yun Lin
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu-Lei Dong
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yang Lin
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Zhu-Ling Guo
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
13
|
Du Q, Zhang M, Gao A, He T, Guo M. Epigenetic silencing ZSCAN23 promotes pancreatic cancer growth by activating Wnt signaling. Cancer Biol Ther 2024; 25:2302924. [PMID: 38226836 PMCID: PMC10793710 DOI: 10.1080/15384047.2024.2302924] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Du
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
14
|
Kinsolving J, Grätz L, Voss JH, Löw B, Shorter E, Jude B, Lanner JT, Löber S, Gmeiner P, Schulte G. A Putative Frizzled 7-Targeting Compound Acts as a Firefly Luciferase Inhibitor. J Med Chem 2024; 67:22332-22341. [PMID: 39670643 DOI: 10.1021/acs.jmedchem.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Frizzled family (FZD1-10) of G protein-coupled receptors regulates WNT signaling mediating proliferative input. Dysregulation of FZD7 and exaggerated WNT/β-catenin signaling is frequently observed in intestinal cancers. Therefore, it is attractive to develop therapeutics targeting FZD7 for cancer treatment. Structure-based virtual screening has identified compound 28, which inhibited WNT/β-catenin signaling based on the luciferase-based reporter gene TOPFlash assay. However, upon pharmacological validation, compound 28 rather acts as a potent Firefly luciferase (Fluc) inhibitor (IC50 = 30 nM), matching the reported IC50 for compound 28-mediated inhibition in the TOPFlash assay. Moreover, we employed Fluc-independent assays, a FZD7-focused bioluminescence resonance energy transfer biosensor and quantitative PCR, to emphasize the inability of compound 28 to inhibit the WNT-3A-induced conformational dynamics in FZD7 and transcription of Axin2, a WNT target gene. Thus, we underline the importance of counter screens to validate compounds that interfere with the detection technology used for compound screening.
Collapse
Affiliation(s)
- Julia Kinsolving
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Bente Löw
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | | | | | | | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| |
Collapse
|
15
|
Furtado J, Geraldo LH, Leser FS, Bartkowiak B, Poulet M, Park H, Robinson M, Pibouin-Fragner L, Eichmann A, Boyé K. Interplay between Netrin-1 and Norrin controls arteriovenous zonation of blood-retina barrier integrity. Proc Natl Acad Sci U S A 2024; 121:e2408674121. [PMID: 39693351 DOI: 10.1073/pnas.2408674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/26/2024] [Indexed: 12/20/2024] Open
Abstract
The integrity of the blood-retina barrier (BRB) is crucial for phototransduction and vision, by tightly restricting transport of molecules between the blood and surrounding neuronal cells. Breakdown of the BRB leads to the development of retinal diseases. Here, we show that Netrin-1/Unc5b and Norrin/Lrp5 signaling establish a zonated endothelial cell gene expression program that controls BRB integrity. Using single-cell RNA sequencing (scRNA-seq) of postnatal BRB-competent mouse retina endothelial cells (ECs), we identify >100 BRB genes encoding Wnt signaling components, tight junction proteins, and ion and nutrient transporters. We find that BRB gene expression is zonated across arteries, capillaries, and veins and regulated by opposing gradients of the Netrin-1 receptor Unc5b and Lrp5-β-catenin signaling between retinal arterioles and venules. Mice deficient for Ntn1 or Unc5b display more BRB leakage at the arterial end of the vasculature, while Lrp5 loss of function causes predominantly venular BRB leakage. ScRNA-seq of Ntn1 and Unc5b mutant ECs reveals down-regulated β-catenin signaling and BRB gene expression that is rescued by Ctnnb1 overactivation, along with BRB integrity. Mechanistically, we demonstrate that Netrin-1 and Norrin additively enhance β-catenin transcriptional activity and Lrp5 phosphorylation via the Discs large homologue 1 (Dlg1) scaffolding protein, and endothelial Lrp5-Unc5b function converges in protection of capillary BRB integrity. These findings explain how arteriovenous zonation is established and maintained in the BRB and reveal that BRB gene expression is regulated at the level of endothelial subtypes.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Luiz Henrique Geraldo
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Felipe Saceanu Leser
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Bartlomiej Bartkowiak
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06511
| | - Mathilde Poulet
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Hyojin Park
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Mark Robinson
- Center of Molecular and Cellular Oncology, Department of Internal Medicine, Yale University, School of Medicine, New Haven CT 06511
| | | | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Kevin Boyé
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| |
Collapse
|
16
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Javandoost E, Xiao F, Ming H, Fisher S, Marina A, De Repentigny Y, Kothary R, Azkargorta M, Elortza F, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Identification of the Wnt signal peptide that directs secretion on extracellular vesicles. SCIENCE ADVANCES 2024; 10:eado5914. [PMID: 39661666 PMCID: PMC11633749 DOI: 10.1126/sciadv.ado5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Wnt proteins are hydrophobic glycoproteins that are nevertheless capable of long-range signaling. We found that Wnt7a is secreted long distance on the surface of extracellular vesicles (EVs) following muscle injury. We defined a signal peptide region in Wnts required for secretion on EVs, termed exosome-binding peptide (EBP). Addition of EBP to an unrelated protein directed secretion on EVs. Palmitoylation and the signal peptide were not required for Wnt7a-EV secretion. Coatomer was identified as the EV-binding protein for the EBP. Analysis of cocrystal structures, binding thermodynamics, and mutagenesis found that a dilysine motif mediates EBP binding to coatomer with a conserved function across the Wnt family. We showed that EBP is required for Wnt7a bioactivity when expressed in vivo during regeneration. Overall, our study has elucidated the structural basis and singularity of Wnt secretion on EVs, alternatively to canonical secretion, opening avenues for innovative therapeutic targeting strategies and systemic protein delivery.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leandro G. Radusky
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Marie Esper
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Hong Ming
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Solomon Fisher
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael A. Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Koval A, Boudou C, Katanaev VL. Challenging Reported Frizzled-Targeting Compounds in Selective Assays Reveals Lack of Functional Inhibition and Claimed Profiles. ACS Pharmacol Transl Sci 2024; 7:4144-4154. [PMID: 39698282 PMCID: PMC11650735 DOI: 10.1021/acsptsci.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Selective inhibitors of Frizzled (FZD) GPCRs are highly sought after as potentially highly efficacious and safe treatments for cancer as well as tools in regenerative medicine and fundamental science. In recent years, there have been several reports claiming the identification of small molecule agents that are selective toward certain FZD proteins using a variety of approaches. However, the majority of these studies lacked a selective functional assay to validate their functionality. In this study, we describe the development and application of a selective assay for individual FZD proteins. Our findings indicate that the majority of reported compounds lack the capacity to inhibit the functioning of the claimed FZD proteins when stimulated by a Wnt ligand in the canonical pathway. Instead, the compounds demonstrate a broad range of off-target effects, including inhibition of downstream pathway component(s) (3235-0367, SRI35959, carbamazepine, niclosamide), lack of activity (FzM1), and surprising antagonism of firefly luciferase (F7H). The only compound that fulfills the expected selectivity profile is peptide Fz7-21. These results highlight the necessity of implementing rigorous testing of the screening-derived compounds in selective functional assays and are important for the field of drug discovery and development targeting the highly demanded Wnt-FZD pathway.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| |
Collapse
|
18
|
Sadanandan J, Thomas S, Mathew IE, Huang Z, Blackburn SL, Tandon N, Lokhande H, McCrea PD, Bresnick EH, Dash PK, McBride DW, Harmanci A, Ahirwar LK, Jose D, Dienel AC, Zeineddine HA, Hong S, Kumar T P. Key epigenetic and signaling factors in the formation and maintenance of the blood-brain barrier. eLife 2024; 12:RP86978. [PMID: 39670988 PMCID: PMC11643625 DOI: 10.7554/elife.86978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator's histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Iny Elizabeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Zhen Huang
- Departments of Neurology & Neuroscience, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | | | - Pierre D McCrea
- Department of Genetics, TheUniversity of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Arif Harmanci
- UTHealth School of Biomedical InformaticsHoustonUnited States
| | - Lalit K Ahirwar
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Dania Jose
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Ari C Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Peeyush Kumar T
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
19
|
Schmiege P, Li X. Clues into Wnt cell surface signalosomes and its biogenesis. Trends Biochem Sci 2024; 49:1042-1045. [PMID: 39443209 PMCID: PMC11624986 DOI: 10.1016/j.tibs.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Bruguera ES, Mahoney JP, Weis WI. The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578714. [PMID: 38352533 PMCID: PMC10862866 DOI: 10.1101/2024.02.03.578714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and Low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine-knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.
Collapse
Affiliation(s)
- Elise S Bruguera
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jacob P Mahoney
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - William I Weis
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
21
|
Lin H, Ma C, Zhuang X, Liu S, Liu D, Zhang M, Lu Y, Zhou G, Zhang C, Wang T, Zhang Z, Lv L, Zhang D, Ruan XZ, Xu Y, Chai R, Yu X, Sun JP, Chu B. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury. Cell Metab 2024; 36:2402-2418.e10. [PMID: 39389061 DOI: 10.1016/j.cmet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate most cellular responses to hormones, neurotransmitters, and environmental stimulants. However, whether GPCRs participate in tissue homeostasis through ferroptosis remains unclear. Here we identify that GPR56/ADGRG1 renders cells resistant to ferroptosis and deficiency of GPR56 exacerbates ferroptosis-mediated liver injury induced by doxorubicin (DOX) or ischemia-reperfusion (IR). Mechanistically, GPR56 decreases the abundance of phospholipids containing free polyunsaturated fatty acids (PUFAs) by promoting endocytosis-lysosomal degradation of CD36. By screening a panel of steroid hormones, we identified that 17α-hydroxypregnenolone (17-OH PREG) acts as an agonist of GPR56 to antagonize ferroptosis and efficiently attenuates liver injury before or after insult. Moreover, disease-associated GPR56 mutants were unresponsive to 17-OH PREG activation and insufficient to defend against ferroptosis. Together, our findings uncover that 17-OH PREG-GPR56 axis-mediated signal transduction works as a new anti-ferroptotic pathway to maintain liver homeostasis, providing novel insights into the potential therapy for liver injury.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Guangjian Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Tengwei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiong-Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Gheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Mental Disorders and Intelligent Control, Shandong University, Jinan 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
22
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
23
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
24
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
25
|
Grätz L, Voss JH, Schulte G. Class-Wide Analysis of Frizzled-Dishevelled Interactions Using BRET Biosensors Reveals Functional Differences among Receptor Paralogs. ACS Sens 2024; 9:4626-4636. [PMID: 39213612 PMCID: PMC11443525 DOI: 10.1021/acssensors.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wingless/Int-1 (WNT) signaling is mediated by WNT binding to 10 Frizzleds (FZD1-10), which propagate the signal inside the cell by interacting with different transducers, most prominently the phosphoprotein Dishevelled (DVL). Despite recent progress, questions about WNT/FZD selectivity and paralog-dependent differences in the FZD/DVL interaction remain unanswered. Here, we present a class-wide analysis of the FZD/DVL interaction using the DEP domain of DVL as a proxy in bioluminescence resonance energy transfer (BRET) techniques. Most FZDs engage in a constitutive high-affinity interaction with DEP. Stimulation of unimolecular FZD/DEP BRET sensors with different ligands revealed that most paralogs are dynamic in the FZD/DEP interface, showing distinct profiles in terms of ligand selectivity and signal kinetics. This study underlines mechanistic differences in terms of how allosteric communication between FZDs and their main signal transducer DVL occurs. Moreover, the unimolecular sensors represent the first receptor-focused biosensors to surpass the requirements for high-throughput screening, facilitating FZD-targeted drug discovery.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Jan H Voss
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| |
Collapse
|
26
|
Yu H, Kohno S, Voon DC, Hussein NH, Zhang Y, Nakayama J, Takegami Y, Takahashi C. RECK/GPR124-driven WNT signaling in pancreatic and gastric cancer cells. Cancer Sci 2024; 115:3013-3025. [PMID: 38923741 PMCID: PMC11462976 DOI: 10.1111/cas.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
RECK has been described to modulate extracellular matrix components through negative regulation of MMP activities. Recently, RECK was demonstrated to bind to an orphan G protein-coupled receptor GPR124 to mediate WNT7 signaling in nontumor contexts. Here, we attempted to clarify the role of RECK in driving WNT signaling in cancer cells. RECK and GPR124 formed a complex in 293T cells, and when both were expressed, WNT signaling was significantly enhanced in a WNT7-dependent manner. This cooperation was abolished when RECK mutants unable to bind to GPR124 were transduced. RECK stimulated the growth of KRAS-mutated pancreatic ductal adenocarcinoma (PDAC) cells with increased sensitivity to WNT inhibitor in a GPR124-dependent manner. A gastric cancer cell line SH10TC endogenously expresses both RECK and GPR124 under regular culture conditions. In this cell line, inhibited cell growth and WNT signaling as well as increased apoptosis in the GPR124 depletion was dominantly found over those in the RECK deletion. These findings suggest that RECK promotes tumor cell growth by positively modulating WNT signaling through GPR124. This study proposes that the RECK/GPR124 complex might be a good therapeutic target in PDAC and gastric cancer.
Collapse
Affiliation(s)
- Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Nada Hamdy Hussein
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yuanyuan Zhang
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Joji Nakayama
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
27
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
28
|
Kiper K, Mild B, Chen J, Yuan C, Wells EM, Zheng W, Freeman JL. Cerebral Vascular Toxicity after Developmental Exposure to Arsenic (As) and Lead (Pb) Mixtures. TOXICS 2024; 12:624. [PMID: 39330552 PMCID: PMC11435665 DOI: 10.3390/toxics12090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Arsenic (As) and lead (Pb) are environmental pollutants found in common sites linked to similar adverse health effects. This study determined driving factors of neurotoxicity on the developing cerebral vasculature with As and Pb mixture exposures. Cerebral vascular toxicity was evaluated at mixture concentrations of As and Pb representing human exposures levels (10 or 100 parts per billion; ppb; µg/L) in developing zebrafish by assessing behavior, morphology, and gene expression. In the visual motor response assay, hyperactivity was observed in all three outcomes in dark phases in larvae with exposure (1-120 h post fertilization, hpf) to 10 ppb As, 10 ppb Pb, or 10 ppb mix treatment. Time spent moving exhibited hyperactivity in dark phases for 100 ppb As and 100 ppb mix treatment groups only. A decreased brain length and ratio of brain length to total length in the 10 ppb mix group was measured with no alterations in other treatment groups or other endpoints (i.e., total larval length, head length, or head width). Alternatively, measurements of cerebral vasculature in the midbrain and cerebellum uncovered decreased total vascularization at 72 hpf in all treatment groups in the mesencephalon and in all treatment groups, except the 100 ppb Pb and 10 ppb As groups, in the cerebellum. In addition, decreased sprouting and branching occurred in the mesencephalon, while only decreased branching was measured in the cerebellum. The 10 ppb Pb group showed several cerebral vasculature modifications that were aligned with a specific gene expression alteration pattern different from other treatment groups. Additionally, the 100 ppb As group drove gene alterations, along with several other endpoints, for changes observed in the 100 ppb mix treatment group. Perturbations assessed in this study displayed non-linear concentration-responses, which are important to consider in environmental health outcomes for As and Pb neurotoxicity.
Collapse
Affiliation(s)
- Keturah Kiper
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Breeann Mild
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenny Chen
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ellen M. Wells
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
29
|
AlAbdi L, Rahbeeni Z, Maddirevula S, Helaby R, Abdulwahab F, Khan AO, Riley LG, Alhashem A, Chassaing N, Jamieson RV, Alkuraya FS. A founder variant expands the phenotype of WNT7B-related PDAC syndrome. Clin Genet 2024; 106:66-71. [PMID: 38417950 DOI: 10.1111/cge.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia, and Cardiac defects (PDAC) syndrome is a genetically heterogeneous multiple congenital malformation syndrome. Although pathogenic variants in RARB and STRA6 are established causes of PDAC, many PDAC cases remain unsolved at the molecular level. Recently, we proposed biallelic WNT7B variants as a novel etiology based on several families with typical features of PDAC syndrome albeit with variable expressivity. Here, we report three patients from two families that share a novel founder variant in WNT7B (c.739C > T; Arg247Trp). The phenotypic expression of this variant ranges from typical PDAC features to isolated genitourinary anomalies. Similar to previously reported PDAC-associated WNT7B variants, this variant was found to significantly impair WNT7B signaling activity further corroborating its proposed pathogenicity. This report adds further evidence to WNT7B-related PDAC and expands its variable expressivity.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, New South Wales, Australia
- Specialty of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Amal Alhashem
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Genetic and Metabolic, Sehha Virtual Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, Miao Y, Mierke S, Kalva S, Zhu H, Gu M, Vadivelu S, Zhong S, Huang LF, Guo Z. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31:818-833.e11. [PMID: 38754427 PMCID: PMC11162335 DOI: 10.1016/j.stem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
Collapse
Affiliation(s)
- Lan Dao
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhen You
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tianyang Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hui Zhu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Yoshida
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Mierke
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Srijan Kalva
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhakar Vadivelu
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - L Frank Huang
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Yuki K, Vallon M, Ding J, Rada CC, Tang AT, Vilches-Moure JG, McCormick AK, Henao Echeverri MF, Alwahabi S, Braunger BM, Ergün S, Kahn ML, Kuo CJ. GPR124 regulates murine brain embryonic angiogenesis and BBB formation by an intracellular domain-independent mechanism. Development 2024; 151:dev202794. [PMID: 38682276 PMCID: PMC11213517 DOI: 10.1242/dev.202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical β-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Vallon
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cara C. Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - José G. Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron K. McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria F. Henao Echeverri
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Saikia L, Gogoi B, Sen S, Tonk RK, Kumar D, Dutta PP. The recent update and advancements of natural products in targeting the Wnt/β-Catenin pathway for cancer prevention and therapeutics. Med Oncol 2024; 41:164. [PMID: 38816663 DOI: 10.1007/s12032-024-02387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
The Wnt/β-Catenin pathway (Wnt/β-CatP) is implicated in accelerating carcinogenesis and cancer progression, contributing to increased morbidity and treatment resistance. Even though it holds promise as a focus for cancer treatment, its intricate nature and diverse physiological effects pose significant challenges. Recent years have witnessed significant advancements in this domain, with numerous natural products demonstrating promising preclinical anti-tumor effects and identified as inhibitors of the Wnt/β-CatP through various upstream and downstream mechanisms. This study provides a comprehensive overview of the current landscape of Wnt/β-Cat-targeted cancer therapy, examining the impact of natural products on Wnt/β-Cat signaling in both cancer prevention and therapeutic contexts. A comprehensive search was conducted on scientific databases like SciFinder, PubMed, and Google Scholar to retrieve relevant literature on Wnt-signaling, natural products, β-Catenin (β-Cat), and cancer from 2020 to January 2024. As per the analysis of the relevant reference within the specified period, it has been noted that a total of 58 phytoconstituents, predominantly phenolics, followed by triterpenoids and several other classes, along with a limited number of plant extracts, have exhibited activity targeting the Wnt/β-CatP. Most β-Cat regulating modulators restrict cancer cell development by suppressing β-Cat expression, facilitating proteasomal degradation, and inhibiting nuclear translocation. Multiple approaches have been devised to block the activity of β-Cat in cancer therapy, a key factor in cancer progression, leading to the discovery of various Wnt/β-CatP regulators. However, their exploration remains limited, necessitating further research using clinical models for potential clinical use in cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India.
| |
Collapse
|
33
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
34
|
Nguyen N, Carpenter KA, Ensing J, Gilliland C, Rudisel EJ, Mu EM, Thurlow KE, Triche TJ, Grainger S. EGFR-dependent endocytosis of Wnt9a and Fzd9b promotes β-catenin signaling during hematopoietic stem cell development in zebrafish. Sci Signal 2024; 17:eadf4299. [PMID: 38626007 PMCID: PMC11103623 DOI: 10.1126/scisignal.adf4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.
Collapse
Affiliation(s)
- Nicole Nguyen
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kelsey A. Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emma J. Rudisel
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emily M. Mu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kate E. Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
- Van Andel Institute Graduate School, Grand Rapids, Michigan, 49503, USA
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| |
Collapse
|
35
|
Schevenels G, Cabochette P, America M, Vandenborne A, De Grande L, Guenther S, He L, Dieu M, Christou B, Vermeersch M, Germano RFV, Perez-Morga D, Renard P, Martin M, Vanlandewijck M, Betsholtz C, Vanhollebeke B. A brain-specific angiogenic mechanism enabled by tip cell specialization. Nature 2024; 628:863-871. [PMID: 38570687 PMCID: PMC11041701 DOI: 10.1038/s41586-024-07283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-β-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.
Collapse
Affiliation(s)
- Giel Schevenels
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Arnaud Vandenborne
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Line De Grande
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Marc Dieu
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Basile Christou
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Patricia Renard
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
36
|
Wu Z, Shen S, Mizikovsky D, Cao Y, Naval-Sanchez M, Tan SZ, Alvarez YD, Sun Y, Chen X, Zhao Q, Kim D, Yang P, Hill TA, Jones A, Fairlie DP, Pébay A, Hewitt AW, Tam PPL, White MD, Nefzger CM, Palpant NJ. Wnt dose escalation during the exit from pluripotency identifies tranilast as a regulator of cardiac mesoderm. Dev Cell 2024; 59:705-722.e8. [PMID: 38354738 DOI: 10.1016/j.devcel.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.
Collapse
Affiliation(s)
- Zhixuan Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanina D Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Kim
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Patrick P L Tam
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
38
|
Tran THN, Takada R, Krayukhina E, Maruno T, Mii Y, Uchiyama S, Takada S. Soluble Frizzled-related proteins promote exosome-mediated Wnt re-secretion. Commun Biol 2024; 7:254. [PMID: 38429359 PMCID: PMC10907715 DOI: 10.1038/s42003-024-05881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Wnt proteins are thought to be transported in several ways in the extracellular space. For instance, they are known to be carried by exosomes and by Wnt-carrier proteins, such as sFRP proteins. However, little is known about whether and/or how these two transport systems are related. Here, we show that adding sFRP1 or sFRP2, but not sFRP3 or sFRP4, to culture medium containing Wnt3a or Wnt5a increases re-secretion of exosome-loaded Wnt proteins from cells. This effect of sFRP2 is counteracted by heparinase, which removes sugar chains on heparan sulfate proteoglycans (HSPGs), but is independent of LRP5/6, Wnt co-receptors essential for Wnt signaling. Wnt3a and Wnt5a specifically dimerize with sFRP2 in culture supernatant. Furthermore, a Wnt3a mutant defective in heterodimerization with sFRP2 impairs the ability to increase exosome-mediated Wnt3a re-secretion. Based on these results, we propose that Wnt heterodimerization with its carrier protein, sFRP2, enhances Wnt accumulation at sugar chains on HSPGs on the cell surface, leading to increased endocytosis and exosome-mediated Wnt re-secretion. Our results suggest that the range of action of Wnt ligands is controlled by coordination of different transport systems.
Collapse
Affiliation(s)
- Thi Hong Nguyen Tran
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Elena Krayukhina
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Takahiro Maruno
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
39
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Granados AA, Kanrar N, Elowitz MB. Combinatorial expression motifs in signaling pathways. CELL GENOMICS 2024; 4:100463. [PMID: 38216284 PMCID: PMC10794782 DOI: 10.1016/j.xgen.2023.100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using single-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including TGF-β, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple components. Motif usage was weakly correlated between pathways in adult cell types and during dynamic developmental transitions. Together, these results suggest a mosaic view of cell type organization, in which different cell types operate many of the same pathways in distinct modes.
Collapse
Affiliation(s)
- Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nivedita Kanrar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
41
|
Kulke M, Kurtz E, Boren DM, Olson DM, Koenig AM, Hoffmann-Benning S, Vermaas JV. PLAT domain protein 1 (PLAT1/PLAFP) binds to the Arabidopsis thaliana plasma membrane and inserts a lipid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111900. [PMID: 37863269 DOI: 10.1016/j.plantsci.2023.111900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Robust agricultural yields depend on the plant's ability to fix carbon amid variable environmental conditions. Over seasonal and diurnal cycles, the plant must constantly adjust its metabolism according to available resources or external stressors. The metabolic changes that a plant undergoes in response to stress are well understood, but the long-distance signaling mechanisms that facilitate communication throughout the plant are less studied. The phloem is considered the predominant conduit for the bidirectional transport of these signals in the form of metabolites, nucleic acids, proteins, and lipids. Lipid trafficking through the phloem in particular attracted our attention due to its reliance on soluble lipid-binding proteins (LBP) that generate and solubilize otherwise membrane-associated lipids. The Phloem Lipid-Associated Family Protein (PLAFP) from Arabidopsis thaliana is generated in response to abiotic stress as is its lipid-ligand phosphatidic acid (PA). PLAFP is proposed to transport PA through the phloem in response to drought stress. To understand the interactions between PLAFP and PA, nearly 100 independent systems comprised of the protein and one PA, or a plasma membrane containing varying amounts of PA, were simulated using atomistic classical molecular dynamics methods. In these simulations, PLAFP is found to bind to plant plasma membrane models independent of the PA concentration. When bound to the membrane, PLAFP adopts a binding pose where W41 and R82 penetrate the membrane surface and anchor PLAFP. This triggers a separation of the two loop regions containing W41 and R82. Subsequent simulations indicate that PA insert into the β-sandwich of PLAFP, driven by interactions with multiple amino acids besides the W41 and R82 identified during the insertion process. Fine-tuning the protein-membrane and protein-PA interface by mutating a selection of these amino acids may facilitate engineering plant signaling processes by modulating the binding response.
Collapse
Affiliation(s)
- Martin Kulke
- Plant Research Laboratory, Michigan State University, East Lansing 48824, MI, USA
| | - Evan Kurtz
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA
| | - Duncan M Boren
- Plant Research Laboratory, Michigan State University, East Lansing 48824, MI, USA; Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA
| | - Dayna M Olson
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA
| | - Amanda M Koenig
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA
| | - Susanne Hoffmann-Benning
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA.
| | - Josh V Vermaas
- Plant Research Laboratory, Michigan State University, East Lansing 48824, MI, USA; Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, MI, USA.
| |
Collapse
|
42
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
43
|
Adediwura VA, Miao Y. Mechanistic Insights into Peptide Binding and Deactivation of an Adhesion G Protein-Coupled Receptor. Molecules 2023; 29:164. [PMID: 38202747 PMCID: PMC10780249 DOI: 10.3390/molecules29010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Adhesion G protein-coupled receptors (ADGRGs) play critical roles in the reproductive, neurological, cardiovascular, and endocrine systems. In particular, ADGRG2 plays a significant role in Ewing sarcoma cell proliferation, parathyroid cell function, and male fertility. In 2022, a cryo-EM structure was reported for the active ADGRG2 bound by an optimized peptide agonist IP15 and the Gs protein. The IP15 peptide agonist was also modified to antagonists 4PH-E and 4PH-D with mutations of the 4PH residue to Glu and Asp, respectively. However, experimental structures of inactive antagonist-bound ADGRs remain to be resolved, and the activation mechanism of ADGRs such as ADGRG2 is poorly understood. Here, we applied Gaussian accelerated molecular dynamics (GaMD) simulations to probe conformational dynamics of the agonist- and antagonist-bound ADGRG2. By performing GaMD simulations, we were able to identify important low-energy conformations of ADGRG2 in the active, intermediate, and inactive states, as well as explore the binding conformations of each peptide. Moreover, our simulations revealed critical peptide-receptor residue interactions during the deactivation of ADGRG2. In conclusion, through GaMD simulations, we uncovered mechanistic insights into peptide (agonist and antagonist) binding and deactivation of the ADGRG2. These findings will potentially facilitate rational design of new peptide modulators of ADGRG2 and other ADGRs.
Collapse
Affiliation(s)
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
44
|
Liu W, Hu B, Wang X, Huang E, Chen X, Chen L. GRIK1-AS1 deficiency accelerates endometriosis progression by boosting DNMT1-dependent SFRP1 promoter methylation in endometrial stromal cells. J Gene Med 2023; 25:e3557. [PMID: 37392032 DOI: 10.1002/jgm.3557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Endometriosis, a gynecological disease that affects up to 10% of women, is a major cause of pain and infertility. Deregulation of the epigenome is accountable for the onset and progression of endometriosis, although its exact mechanism is unknown. The purpose of the current study is to examine the role of the long non-coding RNA (lncRNA) GRIK1-AS1 in the epigenetic regulation of endometrial stromal cell proliferation and the development of endometriosis. METHODS Endometriosis datasets were screened to identify GRIKI-AS1 as dramatically declining in endometriosis. Gain or loss of function endometrial stromal cell (ESC) models were established. The anti-proliferation phenotype was investigated using in vitro and in vivo experiments. Epigenetic regulatory network analyses were conducted to suggest the intrinsic molecular mechanism. RESULTS With bioinformatic and clinical data, we observed that GRIK1-AS1 and SFRP1 were expressed at low levels in endometriosis. Overexpressed GRIK1-AS1 inhibited ESC proliferation, while SFRP1 knockdown rescued the antiproliferative ability of GRIK1-AS1. Specifically, methylation-dependent expression inhibition of SFRP1 was revealed in ESCs. Mechanistically, GRIK1-AS1 hampers the occupancy of DNMT1 in SRFP1 promoter, leading to hypomethylation of SFRP1 and upregulated SFRP1 expression, thereby potentially suppressing Wnt signaling and its adverse proliferative effect. Therapeutically, lentivirus-mediated upregulation of GRIK1-AS1 inhibited endometriosis disease progression in vivo. CONCLUSIONS Our study is a proof-of-concept demonstration for GRIKI-AS1-associated endometriosis pathogenesis and highlights a potential intervention target.
Collapse
Affiliation(s)
- Wei Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Hu
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erqing Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Donnenfield JI, Fleming BC, Proffen BL, Podury A, Murray MM. Microscopic and transcriptomic changes in porcine synovium one year following disruption of the anterior cruciate ligament. Osteoarthritis Cartilage 2023; 31:1554-1566. [PMID: 37742942 PMCID: PMC10841386 DOI: 10.1016/j.joca.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE There is no disease-modifying treatment for posttraumatic osteoarthritis (PTOA). This may be partly due to an incomplete understanding of synovitis, which has been causally linked to PTOA progression. The microscopic and transcriptomic changes in synovium seen in early- to mid-stage PTOA were evaluated to better characterize this knowledge gap. METHODS Seventy-two Yucatan minipigs underwent transection of the anterior cruciate ligament (ACL). Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair, followed by microscopic synovium evaluation and RNA-sequencing at 1, 4, and 52 weeks. Six additional subjects received no ligament transection and served as 1- and 4-week controls and 12 contralateral knees served as 52-week controls. RESULTS Synovial lining thickness, stromal cellularity, and overall microscopic synovitis reached their highest levels in the first few weeks following injury. Inflammatory infiltration continued to increase over the course of a year. Leaving the ACL transected, reconstructing the ligament, or repairing the ligament did not modulate synovitis development at 1, 4, or 52 weeks. Differential gene expression analysis of PTOA-affected synovium compared to control synovium revealed increased cell proliferation, angiogenesis, collagen breakdown, and diminished lipid metabolism at 1 and 4 weeks, and increased axonogenesis and focal adhesion with reduced immune activation at 52 weeks. CONCLUSIONS Synovitis was present one year after ACL injury and was not alleviated by surgical intervention. Gene expression in early synovitis was characterized by cell proliferation, angiogenesis, proteolysis, and reduced lipolysis, which was followed by nerve growth and cellular adhesion with less immune activation at 52 weeks.
Collapse
Affiliation(s)
- Jonah I Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA.
| | - Benedikt L Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Archana Podury
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | - Martha M Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Riquelme R, Li L, Gambrill A, Barria A. ROR2 homodimerization is sufficient to activate a neuronal Wnt/calcium signaling pathway. J Biol Chem 2023; 299:105350. [PMID: 37832874 PMCID: PMC10654037 DOI: 10.1016/j.jbc.2023.105350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.
Collapse
Affiliation(s)
- Raul Riquelme
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Laura Li
- Neuroscience Undergraduate Program, University of Washington, Seattle, Washington, USA
| | - Abigail Gambrill
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
48
|
Teo S, Bossio A, Stamatakou E, Pascual-Vargas P, Jones ME, Schuhmacher LN, Salinas PC. S-acylation of the Wnt receptor Frizzled-5 by zDHHC5 controls its cellular localization and synaptogenic activity in the rodent hippocampus. Dev Cell 2023; 58:2063-2079.e9. [PMID: 37557176 DOI: 10.1016/j.devcel.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/05/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Proper localization of receptors for synaptic organizing factors is crucial for synapse formation. Wnt proteins promote synapse assembly through Frizzled (Fz) receptors. In hippocampal neurons, the surface and synaptic localization of Fz5 is regulated by neuronal activity, but the mechanisms involved remain poorly understood. Here, we report that all Fz receptors can be post-translationally modified by S-acylation and that Fz5 is S-acylated on three C-terminal cysteines by zDHHC5. S-acylation is essential for Fz5 localization to the cell surface, axons, and presynaptic sites. Notably, S-acylation-deficient Fz5 is internalized faster, affecting its association with signalosome components at the cell surface. S-acylation-deficient Fz5 also fails to activate canonical and divergent canonical Wnt pathways. Fz5 S-acylation levels are regulated by the pattern of neuronal activity. In vivo studies demonstrate that S-acylation-deficient Fz5 expression fails to induce presynaptic assembly. Our studies show that S-acylation of Frizzled receptors is a mechanism controlling their localization and function.
Collapse
Affiliation(s)
- Samuel Teo
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Alessandro Bossio
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Eleanna Stamatakou
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Patricia Pascual-Vargas
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Megan E Jones
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Laura-Nadine Schuhmacher
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
49
|
Lin HH. Functional partnerships between GPI-anchored proteins and adhesion GPCRs. Bioessays 2023; 45:e2300115. [PMID: 37526334 DOI: 10.1002/bies.202300115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Specific extracellular interaction between glycophosphatidylinositol (GPI)-anchored proteins and adhesion G protein-coupled receptors (aGPCRs) plays an important role in unique biological functions. GPI-anchored proteins are derived from a novel post-translational modification of single-span membrane molecules, while aGPCRs are bona fide seven-span transmembrane proteins with a long extracellular domain. Although various members of the two structurally-distinct protein families are known to be involved in a wide range of biological processes, many remain as orphans. Interestingly, accumulating evidence has pointed to a complex interaction and functional synergy between these two protein families. I discuss herein current understanding of specific functional partnerships between GPI-anchored proteins and aGPCRs.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| |
Collapse
|
50
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|