1
|
Tai M, He Q, Lv P, Li W, Ling X, Li L, Guo M. Madecassoside alleviates PM 2.5-induced skin cell damage. Biochem Biophys Res Commun 2025; 770:151977. [PMID: 40378615 DOI: 10.1016/j.bbrc.2025.151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
With accelerated urbanization, air pollution has become an environmental problem that requires urgent resolution. Intensified inflammation, atopic dermatitis, and itchy skin have been reported in humans exposed to increasing PM2.5 concentrations. PM2.5 is the particulate matter whose aerodynamic equivalent diameter is less than or equal to 2.5 μm in ambient air. Madecassoside, a pentacyclic triterpenoid active component, which is found in and extracted from the plant Centella Asiatica, possesses unique pharmacological properties, such as anti-inflammatory activity, which are used to treat skin wounds. This study investigated the effects of madecassoside in terms of pyroptosis antagonism, cell membrane repair promotion, and skin barrier repair using THP-1 and HaCaT cells stimulated with PM2.5. We measured IL-1β and LDH contents in culture supernatants of THP-1 cells. The expressions of the proteins related to cell membrane repair and skin barrier repair were detected by western blotting, quantitative reverse transcription PCR and immunofluorescence. We found that madecassoside reduced the release of the inflammatory factor IL-1β and the lytic cell death marker lactate dehydrogenase and repaired PM2.5-induced gasdermin D-mediated cell membrane damage. Further, madecassoside may have the potential to promote skin barrier repair by alleviating skin barrier-related protein damage and nuclear transfer. Therefore, madecassoside possesses anti-PM2.5 stimulating activity through repairing gasdermin D-mediated cell membrane damage and possibly protecting the skin barrier, indicating that madecassoside has good anti-inflammatory repair efficacy.
Collapse
Affiliation(s)
- Meiling Tai
- Infinitus (China) Co.Ltd., Guangdong, Guangzhou, 510000, China
| | - Qiao He
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing, 100048, China; Beijing Key Lab of Plant Resource Research and Development, Beijing, 100048, China
| | - Pingping Lv
- Infinitus (China) Co.Ltd., Guangdong, Guangzhou, 510000, China
| | - Wanzhao Li
- Infinitus (China) Co.Ltd., Guangdong, Guangzhou, 510000, China
| | - Xiao Ling
- Beijing Lan Divine Technology Co.Ltd., Beijing, 100048, China
| | - Li Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing, 100048, China; Beijing Key Lab of Plant Resource Research and Development, Beijing, 100048, China
| | - Miaomiao Guo
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing, 100048, China; Beijing Key Lab of Plant Resource Research and Development, Beijing, 100048, China.
| |
Collapse
|
2
|
Yuan R, Zhang J, Zhou J, Cong Q. Recent progress and future challenges in structure-based protein-protein interaction prediction. Mol Ther 2025; 33:2252-2268. [PMID: 40195117 DOI: 10.1016/j.ymthe.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Protein-protein interactions (PPIs) play a fundamental role in cellular processes, and understanding these interactions is crucial for advances in both basic biological science and biomedical applications. This review presents an overview of recent progress in computational methods for modeling protein complexes and predicting PPIs based on 3D structures, focusing on the transformative role of artificial intelligence-based approaches. We further discuss the expanding biomedical applications of PPI research, including the elucidation of disease mechanisms, drug discovery, and therapeutic design. Despite these advances, significant challenges remain in predicting host-pathogen interactions, interactions between intrinsically disordered regions, and interactions related to immune responses. These challenges are worthwhile for future explorations and represent the frontier of research in this field.
Collapse
Affiliation(s)
- Rongqing Yuan
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Huang J, Zhang Y, Ren S, Wang Z, Jin X, Lu X, Zhang Y, Min X, Ge S, Zhang J, Xia N. MambaPhase: deep learning for liquid-liquid phase separation protein classification. Brief Bioinform 2025; 26:bbaf230. [PMID: 40421658 DOI: 10.1093/bib/bbaf230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/04/2025] [Accepted: 05/02/2025] [Indexed: 05/28/2025] Open
Abstract
Liquid-liquid phase separation plays a critical role in cellular processes, including protein aggregation and RNA metabolism, by forming membraneless subcellular structures. Accurate identification of phase-separated proteins is essential for understanding and controlling these processes. Traditional identification methods are effective but often costly and time-consuming. The recent machine learning methods have reduced these costs, but most models are restricted to classifying scaffold and client proteins with limited experimental conditions. To address this limitation, we developed a Mamba-based encoder using contrastive learning that incorporates separation probability, protein type, and experimental conditions. Our model achieved 95.2% accuracy in predicting phase-separated proteins and an ROCAUC score of 0.87 in classifying scaffold and client proteins. Further validation in the DgHBP-2 drug delivery system demonstrated its potential for condition modulation in drug development. This study provides an effective framework for the accurate identification and control of phase separation, facilitating advancements in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Jianwei Huang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Youli Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Shulin Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- Information and Networking Center, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Ziyang Wang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaocheng Jin
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaoli Lu
- Information and Networking Center, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Yu Zhang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaoping Min
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| |
Collapse
|
4
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
5
|
Avecilla AC, Thomas J, Quiroz FG. Genetically-Encoded Phase Separation Sensors Enable High-Fidelity Live-Cell Probing of Biomolecular Condensates. ACS Sens 2025; 10:1857-1869. [PMID: 39987501 PMCID: PMC11959610 DOI: 10.1021/acssensors.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Biomolecular condensates are membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically disordered proteins (IDPs) often function as condensate scaffolds, fueled by liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely susceptible to artifacts from tagging. Probing epidermal condensates in skin, we recently introduced genetically-encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. Departing from subcellular tracking of IDP-scaffolds, LLPS-sensors report on the assembly and liquid-like dynamics of their condensates. Here, we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in the early and late stages of intracellular phase separation. Benchmarking against scaffold-bound fluorescent reporters, we discovered that tunable ultraweak scaffold-sensor interactions uniquely enable the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa
Regina Chua Avecilla
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jeremy Thomas
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Zhang J, Dai W, Yang W, Luo W, Dong F, Hao J, Li RY, Xue C, Xie C, Sun L, Wang Y, Ding J, Song Z, Shen J, Ma Y, Ding Y, Zhang L, Zhang Z, Zhao Y, He X. Multimodal Profiling of Iron Heterogeneity at the Nanoscale. NANO LETTERS 2025; 25:5010-5018. [PMID: 40082277 DOI: 10.1021/acs.nanolett.5c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Life is inherently heterogeneous, and visualizing this heterogeneity in the spatial distribution of biometals offers valuable insights into various biological processes. While biometal mapping provides superior spatial resolution compared to other bioanalytical techniques, it alone cannot fully explain the functional roles of biometals in health and disease. In this study, we introduced a novel method using specially designed sample grids to facilitate beam-, X-ray-, and ion-beam-based imaging of biometals on the same tissue section. This innovative approach aligns and integrates nanoscale-resolved iron profiles across spatial, chemical, and isotopic dimensions. By combining these analyses, we achieved unprecedented spatial resolution and detail, revealing the complex regulatory framework of iron homeostasis in liver tissues following iron overload. These findings demonstrate that enhancing both the information content and spatial resolution of biometal analysis can overcome current limitations, providing new insights into the molecular mechanisms underlying biometal functions.
Collapse
Affiliation(s)
- Junzhe Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenhe Luo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengliang Dong
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Rui-Ying Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chaofan Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Changjian Xie
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Shen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Vashishtha S, Sabari BR. Disordered Regions of Condensate-promoting Proteins Have Distinct Molecular Signatures Associated with Cellular Function. J Mol Biol 2025; 437:168953. [PMID: 39826710 DOI: 10.1016/j.jmb.2025.168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Disordered regions of proteins play crucial roles in cellular functions through diverse mechanisms. Some disordered regions function by promoting the formation of biomolecular condensates through dynamic multivalent interactions. While many have assumed that interactions among these condensate-promoting disordered regions are non-specific, recent studies have shown that distinct sequence compositions and patterning lead to specific condensate compositions associated with cellular function. Despite in-depth characterization of several key examples, the full chemical diversity of condensate-promoting disordered regions has not been surveyed. Here, we define a list of disordered regions of condensate-promoting proteins to survey the relationship between sequence and function. We find that these disordered regions show amino acid biases associated with different cellular functions. These amino acid biases are evolutionarily conserved in the absence of positional sequence conservation. Overall, our analysis highlights the relationship between sequence features and function for condensate-promoting disordered regions. This analysis suggests that molecular signatures encoded within disordered regions could impart functional specificity.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Chen Z, Dragan M, Sun P, Haensel D, Vu R, Cui L, Zhu P, Yang N, Shi Y, Dai X. The AhR-Ovol1-Id1 regulatory axis in keratinocytes promotes epidermal and immune homeostasis in atopic dermatitis-like skin inflammation. Cell Mol Immunol 2025; 22:300-315. [PMID: 39939818 PMCID: PMC11868582 DOI: 10.1038/s41423-025-01264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
The skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonists have been approved by the FDA for psoriasis treatment and are in clinical trials for the treatment of atopic dermatitis (AD), but the underlying mechanism of action remains poorly defined. Here, we report that OVOL1/Ovol1 is a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 influences AhR-mediated regulation of keratinocyte gene expression and that OVOL1/Ovol1 ablation in keratinocytes impairs the barrier-promoting function of AhR, exacerbating AD-like inflammation. Mechanistically, we have identified Ovol1's direct downstream targets genome-wide and provided in vivo evidence supporting the role of Id1 as a functional target in barrier maintenance, disease suppression, and neutrophil accumulation. Furthermore, our findings reveal that an IL-1/dermal γδT cell axis exacerbates type 2 and 3 immune responses downstream of barrier perturbation in Ovol1-deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 functions in human AD skin. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis in the context of skin inflammation, identifying new therapeutic targets.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Lian Cui
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Peiyao Zhu
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China.
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA.
- Department of Dermatology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
D'Arcangelis A, Goswami Chatterjee S, Diaz I, Guehenneux S, Namkoong J, Wu J. In vitro, ex vivo, instrumental and clinical evaluation of a topical cream on the signs of periorbital ageing. Int J Cosmet Sci 2025; 47:18-30. [PMID: 39119663 PMCID: PMC11788005 DOI: 10.1111/ics.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Periorbital skin ageing signs are multidimensional, highly visible and a concern for many. We evaluated the potential efficacy of an eye cream to diminish these signs. METHODS Biological markers associated with ageing, barrier function and homeostasis were analysed in vitro to determine the effects of topically applied eye cream, compared to those of a placebo using human skin tissue models and/or explants. Collagen IV, elastin and bone morphogenic protein 4 (BMP4) expression was investigated by immunohistochemical labelling, while filaggrin, kallikrein 7 (KLK7) and HB-EGF were evaluated by RT-qPCR. IL-1α and melanin levels in darkly pigmented skin models were also quantified. The protective effect of the cream on glycation was assessed by a non-enzymatic assay. Finally, the benefits of twice-daily applications of the eye cream for 56 days were instrumentally and clinically evaluated on 33 women. RESULTS Only the eye cream, not the placebo, stimulated collagen IV and BMP4 protein expression, as well as increased elastin fibre length. It also led to higher HB-EGF, filaggrin and KLK7 mRNA levels. The placebo and the eye cream did not induce changes in IL-1α and melanin levels, but both reduced non-enzymatic glycation. When assessing the in vivo effects of the cream, short-term results indicated skin hydration, transepidermal water loss (TEWL) and skin profilometry improvement within 15 min. Instrumental evaluations of wrinkles showed a reduction after 7 days, which was clinically perceivable after 28 or 56 days. The eye-opening angle and eyelid sagging also improved after seven and 28 days, respectively. Finally, dark circles became lighter within 7 days (instrumental measurement) or 28 days (clinical assessment). CONCLUSION The instrumental and clinical evaluations revealed that the eye cream reduced all periorbital ageing signs evaluated. Its effects are supported by the in vitro and ex vivo analyses of molecular markers.
Collapse
Affiliation(s)
- Alexandra D'Arcangelis
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Sayantani Goswami Chatterjee
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Isabel Diaz
- Dermal Clinical ResearchColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | | | - Jin Namkoong
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Joanna Wu
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| |
Collapse
|
10
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00821-0. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Garcia-Cabau C, Bartomeu A, Tesei G, Cheung KC, Pose-Utrilla J, Picó S, Balaceanu A, Duran-Arqué B, Fernández-Alfara M, Martín J, De Pace C, Ruiz-Pérez L, García J, Battaglia G, Lucas JJ, Hervás R, Lindorff-Larsen K, Méndez R, Salvatella X. Mis-splicing of a neuronal microexon promotes CPEB4 aggregation in ASD. Nature 2025; 637:496-503. [PMID: 39633052 PMCID: PMC11711090 DOI: 10.1038/s41586-024-08289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
The inclusion of microexons by alternative splicing occurs frequently in neuronal proteins. The roles of these sequences are largely unknown, and changes in their degree of inclusion are associated with neurodevelopmental disorders1. We have previously shown that decreased inclusion of a 24-nucleotide neuron-specific microexon in CPEB4, a RNA-binding protein that regulates translation through cytoplasmic changes in poly(A) tail length, is linked to idiopathic autism spectrum disorder (ASD)2. Why this microexon is required and how small changes in its degree of inclusion have a dominant-negative effect on the expression of ASD-linked genes is unclear. Here we show that neuronal CPEB4 forms condensates that dissolve after depolarization, a transition associated with a switch from translational repression to activation. Heterotypic interactions between the microexon and a cluster of histidine residues prevent the irreversible aggregation of CPEB4 by competing with homotypic interactions between histidine clusters. We conclude that the microexon is required in neuronal CPEB4 to preserve the reversible regulation of CPEB4-mediated gene expression in response to neuronal stimulation.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Chit Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Julia Pose-Utrilla
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Picó
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
Beck T, van der Linden LM, Borcherds WM, Kim K, Schlüßler R, Müller P, Franzmann TM, Möckel C, Goswami R, Leaver M, Mittag T, Alberti S, Guck J. Optical characterization of molecular interaction strength in protein condensates. Mol Biol Cell 2024; 35:ar154. [PMID: 39535884 PMCID: PMC11656476 DOI: 10.1091/mbc.e24-03-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Biomolecular condensates have been identified as a ubiquitous means of intracellular organization, exhibiting very diverse material properties. However, techniques to characterize these material properties and their underlying molecular interactions are scarce. Here, we introduce two optical techniques-Brillouin microscopy and quantitative phase imaging (QPI)-to address this scarcity. We establish Brillouin shift and linewidth as measures for average molecular interaction and dissipation strength, respectively, and we used QPI to obtain the protein concentration within the condensates. We monitored the response of condensates formed by fused in sarcoma (FUS) and by the low-complexity domain of hnRNPA1 (A1-LCD) to altering temperature and ion concentration. Conditions favoring phase separation increased Brillouin shift, linewidth, and protein concentration. In comparison to solidification by chemical cross-linking, the ion-dependent aging of FUS condensates had a small effect on the molecular interaction strength inside. Finally, we investigated how sequence variations of A1-LCD, that change the driving force for phase separation, alter the physical properties of the respective condensates. Our results provide a new experimental perspective on the material properties of protein condensates. Robust and quantitative experimental approaches such as the presented ones will be crucial for understanding how the physical properties of biological condensates determine their function and dysfunction.
Collapse
Affiliation(s)
- Timon Beck
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
- Biotec, TU Dresden, Dresden, Germany, 01307
| | | | - Wade M. Borcherds
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
| | | | - Paul Müller
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
| | | | - Conrad Möckel
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 01307
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany, 91058
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany, 91054
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 91058
| |
Collapse
|
13
|
Hughes AJ, Barbosa E, Cernova J, Thomas BR, O'Shaughnessy RFL, O'Toole EA. Loss-of-function FLG mutations are associated with reduced history of acne vulgaris in a cohort of patients with atopic eczema of Bangladeshi ancestry in East London. Clin Exp Dermatol 2024; 49:1547-1553. [PMID: 38747172 DOI: 10.1093/ced/llae185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Acne vulgaris (AV) is the eighth most common nonfatal disease globally. Previous work identified an association between AV and increased filaggrin (FLG) protein expression in the follicular epidermis, but further work did not find a clear link between loss-of-function (LoF) FLG gene mutations and protection from AV. OBJECTIVES To explore any association between AV and FLG LoF mutations in a cohort of genotyped patients of Bangladeshi ancestry with atopic eczema (AE) in East London. METHODS A retrospective notes review was performed on 245 patients who had been genotyped for FLG LoF mutations and undergone -clinical assessment. A χ2-test or Fisher's exact test was used to determine differences in AV history between FLG LoF genotype groups. RESULTS We found a significant reduction in history of AV in patients with AE with FLG LoF mutations (19 of 82) relative to those without FLG mutations (47 of 129) (23% vs. 36.4%; P = 0.02). We showed a nonsignificant reduction in AV diagnosis in patients with impaired barrier function (measured by transepidermal water loss) and palmar hyperlinearity. We found that patients with severe AE were less likely to have a history of AV only if they had an existing FLG LoF mutation (P = 0.02). CONCLUSIONS In the context of AE, our work suggests that FLG LoF mutations protect patients from developing AV.
Collapse
Affiliation(s)
- Aaron J Hughes
- Queen Mary University of London Centre for Cell Biology and Cutaneous Research, London, UK
- Department of Dermatology, Barts Health NHS Trust, London, UK
| | - Elsa Barbosa
- Department of Dermatology, Barts Health NHS Trust, London, UK
| | - Jeva Cernova
- Department of Dermatology, Barts Health NHS Trust, London, UK
| | - Bjorn R Thomas
- Queen Mary University of London Centre for Cell Biology and Cutaneous Research, London, UK
| | - Ryan F L O'Shaughnessy
- Queen Mary University of London Centre for Cell Biology and Cutaneous Research, London, UK
| | - Edel A O'Toole
- Queen Mary University of London Centre for Cell Biology and Cutaneous Research, London, UK
- Department of Dermatology, Barts Health NHS Trust, London, UK
| |
Collapse
|
14
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
15
|
Sun X, Zhou Y, Sun S, Qiu S, Peng M, Gong H, Guo J, Wen C, Zhang Y, Xie Y, Li H, Liang L, Luo G, Wu W, Liu J, Tan W, Ye M. Cancer cells sense solid stress to enhance metastasis by CKAP4 phase separation-mediated microtubule branching. Cell Discov 2024; 10:114. [PMID: 39528501 PMCID: PMC11554681 DOI: 10.1038/s41421-024-00737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Solid stress, originating from rigid and elastic components of extracellular matrix and cells, is a typical physical hallmark of tumors. Mounting evidence indicates that elevated solid stress drives metastasis and affects prognosis. However, the molecular mechanism of how cancer cells sense solid stress, thereby exacerbating malignancy, remains elusive. In this study, our clinical data suggest that elevated stress in metastatic solid tumors is highly associated with the expression of cytoskeleton-associated protein 4 (CKAP4). Intriguingly, CKAP4, as a sensitive intracellular mechanosensor, responds specifically to solid stress in a subset of studied tumor micro-environmental elements through liquid-liquid phase separation. These micron-scaled CKAP4 puncta adhere tightly onto microtubules and dramatically reorchestrate their curvature and branching to enhance cell spreading, which, as a result, boosts cancer cell motility and facilitates distant metastasis in vivo. Mechanistically, the intrinsically disordered region 1 (IDR1) of CKAP4 binds to microtubules, while IDR2 governs phase separation due to the Cav1.2-dependent calcium influx, which collectively remodels microtubules. These findings reveal an unprecedented mechanism of how cancer cells sense solid stress for cancer malignancy and bridge the gap between cancer physics and cancer cell biology.
Collapse
Grants
- 92253201, 22334005, 21890744, 82203880, 82404104, 82100137, and 32350026 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2021YFA0909400), the fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740, and BX2021096), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (2023JJ10096), the Science and Technology Innovation Program of Hunan Province (2022RC1215), Natural Science Foundation of Hunan Province (2022JJ30183, 2024JJ6492, and 2024JJ3037), and the Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0572).
- fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740)
Collapse
Affiliation(s)
- Xing Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Shengjie Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Siyuan Qiu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Yibin Zhang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Wu ZQ, Liu YM, Cheng QD, Li CY, Liu YL, Ge WY, Falke S, Brognaro H, Chen JJ, Zhou H, Shang P, He JH, Betzel C, Yin DC. Growing a single suspended perfect protein crystal in a fully noncontact manner. Int J Biol Macromol 2024; 282:136637. [PMID: 39481732 DOI: 10.1016/j.ijbiomac.2024.136637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Nucleation is a fundamental process that determines the structure, morphology, and properties of crystalline materials, and is difficult to control because it is unpredictable. Here, we demonstrate a new method to control the protein crystal nucleation using a magnetic force, where we manipulate the movement and coalescence of nucleation precursors by adding paramagnetic salt into the crystallization solution to constrain the number and position of nucleation. We found that protein nucleation could be significantly affected by the magnetic force that the gradient magnetic fields generate. When the magnetization force is sufficiently enough, nucleation can be confined to the crystallization solution with no interface contact; therefore, only one crystal nucleus appears, which results in noncontact suspension growth of a single crystal in the crystallization solution system. Under these situations, the nucleation rate significantly decreases due to the coalescence of the dense liquid phase, and the crystal growth rate also decreases due to the suppression of convection, which increases the crystal quality. Our findings provide a new method for the noncontact control of crystal nucleation and demonstrate that externally applied physical environments can be used to affect the liquid-liquid phase separation process.
Collapse
Affiliation(s)
- Zi-Qing Wu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Education and Music, Sanming University, Sanming 365004, Fujian, China
| | - Yong-Ming Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Education and Music, Sanming University, Sanming 365004, Fujian, China
| | - Qing-Di Cheng
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Chen-Yuan Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Ya-Li Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Sven Falke
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Hevila Brognaro
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Jing-Jie Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Christian Betzel
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| |
Collapse
|
17
|
Beck T, van der Linden LM, Borcherds WM, Kim K, Schlüßler R, Müller P, Franzmann T, Möckel C, Goswami R, Leaver M, Mittag T, Alberti S, Guck J. Optical characterization of molecular interaction strength in protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585750. [PMID: 39484615 PMCID: PMC11526858 DOI: 10.1101/2024.03.19.585750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Biomolecular condensates have been identified as a ubiquitous means of intracellular organization, exhibiting very diverse material properties. However, techniques to characterize these material properties and their underlying molecular interactions are scarce. Here, we introduce two optical techniques - Brillouin microscopy and quantitative phase imaging (QPI) - to address this scarcity. We establish Brillouin shift and linewidth as measures for average molecular interaction and dissipation strength, respectively, and we used QPI to obtain the protein concentration within the condensates. We monitored the response of condensates formed by FUS and by the low-complexity domain of hnRNPA1 (A1-LCD) to altering temperature and ion concentration. Conditions favoring phase separation increased Brillouin shift, linewidth, and protein concentration. In comparison to solidification by chemical crosslinking, the ion-dependent aging of FUS condensates had a small effect on the molecular interaction strength inside. Finally, we investigated how sequence variations of A1-LCD, that change the driving force for phase separation, alter the physical properties of the respective condensates. Our results provide a new experimental perspective on the material properties of protein condensates. Robust and quantitative experimental approaches such as the presented ones will be crucial for understanding how the physical properties of biological condensates determine their function and dysfunction.
Collapse
Affiliation(s)
- Timon Beck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotec, TU Dresden, Dresden, Germany
| | | | - Wade M. Borcherds
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | | | - Paul Müller
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | | | - Conrad Möckel
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
18
|
Chow CFW, Ghosh S, Hadarovich A, Toth-Petroczy A. SHARK enables sensitive detection of evolutionary homologs and functional analogs in unalignable and disordered sequences. Proc Natl Acad Sci U S A 2024; 121:e2401622121. [PMID: 39383002 PMCID: PMC11494347 DOI: 10.1073/pnas.2401622121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024] Open
Abstract
Intrinsically disordered regions (IDRs) are structurally flexible protein segments with regulatory functions in multiple contexts, such as in the assembly of biomolecular condensates. Since IDRs undergo more rapid evolution than ordered regions, identifying homology of such poorly conserved regions remains challenging for state-of-the-art alignment-based methods that rely on position-specific conservation of residues. Thus, systematic functional annotation and evolutionary analysis of IDRs have been limited, despite them comprising ~21% of proteins. To accurately assess homology between unalignable sequences, we developed an alignment-free sequence comparison algorithm, SHARK (Similarity/Homology Assessment by Relating K-mers). We trained SHARK-dive, a machine learning homology classifier, which achieved superior performance to standard alignment-based approaches in assessing evolutionary homology in unalignable sequences. Furthermore, it correctly identified dissimilar but functionally analogous IDRs in IDR-replacement experiments reported in the literature, whereas alignment-based tools were incapable of detecting such functional relationships. SHARK-dive not only predicts functionally similar IDRs at a proteome-wide scale but also identifies cryptic sequence properties and motifs that drive remote homology and analogy, thereby providing interpretable and experimentally verifiable hypotheses of the sequence determinants that underlie such relationships. SHARK-dive acts as an alternative to alignment to facilitate systematic analysis and functional annotation of the unalignable protein universe.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01062, Germany
| | - Soumyadeep Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01062, Germany
| |
Collapse
|
19
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
20
|
Ahmed Z, Shahzadi K, Temesgen SA, Ahmad B, Chen X, Ning L, Zulfiqar H, Lin H, Jin YT. A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins. Int J Biol Macromol 2024; 277:134146. [PMID: 39067723 DOI: 10.1016/j.ijbiomac.2024.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.68% and 89.67%, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
Collapse
Affiliation(s)
- Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Kiran Shahzadi
- Department of Biotechnology, Women University of Azad Jammu and Kashmir, Bagh, Azad Kashmir, Pakistan.
| | - Sebu Aboma Temesgen
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Basharat Ahmad
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Xiang Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Lin Ning
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China.
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| |
Collapse
|
21
|
Giraldo-Castaño MC, Littlejohn KA, Avecilla ARC, Barrera-Villamizar N, Quiroz FG. Programmability and biomedical utility of intrinsically-disordered protein polymers. Adv Drug Deliv Rev 2024; 212:115418. [PMID: 39094909 PMCID: PMC11389844 DOI: 10.1016/j.addr.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates -genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.
Collapse
Affiliation(s)
- Maria Camila Giraldo-Castaño
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kai A Littlejohn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Natalia Barrera-Villamizar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Regina Chua Avecilla A, Thomas J, Quiroz FG. Genetically-encoded phase separation sensors for intracellular probing of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610365. [PMID: 39257779 PMCID: PMC11383673 DOI: 10.1101/2024.08.29.610365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomolecular condensates are dynamic membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically-disordered proteins (IDPs) often function as condensate scaffolds, fueled by their liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of these condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely sensitive to molecular-level fusions, risking distortion of the native biophysical properties of IDP-scaffolds and their assemblies. Probing epidermal condensates in mouse skin, we recently introduced genetically encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. The concept of LLPS-sensors involves a shift in focus from subcellular tracking of IDP-scaffolds to higher-level observations that report on the assembly and liquid-dynamics of their condensates. Towards advancing the repertoire of intracellular LLPS-sensors, here we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in early and late stages of intracellular LLPS dynamics. Benchmarking against scaffold-bound fluorescent reporters, we found that tunable ultraweak scaffold-sensor interactions are key to the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeremy Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Liu X, Diao N, Song S, Wang W, Cao M, Yang W, Guo C, Chen D. Inflammatory macrophage reprogramming strategy of fucoidan microneedles-mediated ROS-responsive polymers for rheumatoid arthritis. Int J Biol Macromol 2024; 271:132442. [PMID: 38761903 DOI: 10.1016/j.ijbiomac.2024.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
During the pathogenesis of rheumatoid arthritis, inflammatory cells usually infiltrate synovial tissues, notably, M1-type macrophages, whose redox imbalance leads to the degradation of joint structures and deterioration of function. Natural active products play a vital role in immune modulation and antioxidants. In this study, we constructed a ROS-responsive nanoparticle called FTL@SIN, which consists of fucoidan (Fuc) and luteolin (Lut) connected by a ROS-responsive bond, Thioketal (TK), and encapsulated with an anti-rheumatic drug, Sinomenine (SIN), for synergistic anti-inflammatory effects. The FTL@SIN is then dispersed in high molecular weight Fuc-fabricated dissolvable microneedles (FTL@SIN MNs) for local administration. Therapy of FTL@SIN MNs afforded a significant decrease in macrophage inflammation while decreasing key pro-inflammatory cytokines and repolarizing M1 type to M2 type, thereby ameliorating synovial inflammation, and promoting cartilage repair. Additionally, our investigations have revealed that Fucoidan (Fuc) demonstrates synergistic effects, exhibiting superior mechanical strength and enhanced physical stability when compared to microneedles formulated solely with hyaluronic acid. This study combines nanomedicine with traditional Chinese medicine, a novel drug delivery strategy that presents a promising avenue for therapeutic intervention in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shiqing Song
- Rehabilitation Department, Yantai Yuhuangding Hospital, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
24
|
Chen J, Liu C, Yang Y, Gong X, Qian H. The stratum corneum barrier: impaired function in relation to associated lipids and proteins. Tissue Barriers 2024:2361197. [PMID: 38818698 DOI: 10.1080/21688370.2024.2361197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, District, China
| | - Changjie Liu
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Yuan Yang
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Xue Gong
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Sun X, Zhou Y, Wang Z, Peng M, Wei X, Xie Y, Wen C, Liu J, Ye M. Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices. Int J Mol Sci 2024; 25:4127. [PMID: 38612940 PMCID: PMC11012904 DOI: 10.3390/ijms25074127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular behaviors, signaling axes, and clinical prognosis. Particularly, physical traits of BCs play an important role; however, a panoramic view from this perspective toward clinical practices remains lacking. In this review, we describe the most typical five physical traits of BCs, and comprehensively summarize their roles in molecular signaling axes and corresponding major determinants. Moreover, establishing the recent observed contribution of condensate physics on clinical therapeutics, we illustrate next-generation medical strategies by targeting condensate physics. Finally, the challenges and opportunities for future medical development along with the rapid scientific and technological advances are highlighted.
Collapse
Affiliation(s)
- Xing Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Zhiyan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Yifang Xie
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Chengcai Wen
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| |
Collapse
|
26
|
Cayla M, Spanos C, McWilliam K, Waskett E, Rappsilber J, Matthews KR. Differentiation granules, a dynamic regulator of T. brucei development. Nat Commun 2024; 15:2972. [PMID: 38582942 PMCID: PMC10998879 DOI: 10.1038/s41467-024-47309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kirsty McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eliza Waskett
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Sun J, Qu J, Zhao C, Zhang X, Liu X, Wang J, Wei C, Liu X, Wang M, Zeng P, Tang X, Ling X, Qing L, Jiang S, Chen J, Chen TSR, Kuang Y, Gao J, Zeng X, Huang D, Yuan Y, Fan L, Yu H, Ding J. Precise prediction of phase-separation key residues by machine learning. Nat Commun 2024; 15:2662. [PMID: 38531854 DOI: 10.1038/s41467-024-46901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding intracellular phase separation is crucial for deciphering transcriptional control, cell fate transitions, and disease mechanisms. However, the key residues, which impact phase separation the most for protein phase separation function have remained elusive. We develop PSPHunter, which can precisely predict these key residues based on machine learning scheme. In vivo and in vitro validations demonstrate that truncating just 6 key residues in GATA3 disrupts phase separation, enhancing tumor cell migration and inhibiting growth. Glycine and its motifs are enriched in spacer and key residues, as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of disease-associated phase-separating proteins, with frequent mutated pathological residues like glycine and proline often residing in these key residues. PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating insights into phase separation mechanisms governing transcriptional control, cell fate transitions, and disease development.
Collapse
Affiliation(s)
- Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cai Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyao Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mulan Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoru Ling
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahao Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tara S R Chen
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yalan Kuang
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Jinhang Gao
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xiaoxi Zeng
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yong Yuan
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Haopeng Yu
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
28
|
Kong D, Qian Y, Yu B, Hu Z, Cheng C, Wang Y, Fang Z, Yu J, Xiang S, Cao L, He Y. Interaction of human dendritic cell receptor DEC205/CD205 with keratins. J Biol Chem 2024; 300:105699. [PMID: 38301891 PMCID: PMC10914487 DOI: 10.1016/j.jbc.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.
Collapse
Affiliation(s)
- Dandan Kong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanying Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhenzheng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Chen Z, Dragan M, Sun P, Haensel D, Vu R, Cui L, Shi Y, Dai X. An AhR-Ovol1-Id1 regulatory axis in keratinocytes promotes skin homeostasis against atopic dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577821. [PMID: 38352592 PMCID: PMC10862726 DOI: 10.1101/2024.01.29.577821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonist is in clinical trial for atopic dermatitis (AD) treatment, but the underlying mechanism of action remains ill-defined. Here we report OVOL1/Ovol1 as a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 impacts AhR regulation of keratinocyte gene expression, and Ovol1 deletion in keratinocytes hampers AhR's barrier promotion function and worsens AD-like inflammation. Mechanistically, we identify Ovol1's direct downstream targets genome-wide, and provide in vivo evidence for Id1's critical role in barrier maintenance and disease suppression. Furthermore, our findings reveal an IL-1/dermal γδT cell axis exacerbating both type 2 and type 3 immune responses downstream of barrier perturbation in Ovol1 -deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 function in human AD. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis against AD-like inflammation, implicating new therapeutic targets for AD.
Collapse
|
30
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
31
|
Zhang C, Peng H, Waite JH, Zhao Q. Coacervate Phase Evolution and Membrane Formation in Natural Seawater. J Am Chem Soc 2024; 146:2219-2226. [PMID: 38207218 DOI: 10.1021/jacs.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.
Collapse
Affiliation(s)
- Chongrui Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huawen Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - J Herbert Waite
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Qiang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
32
|
Steinbinder J, Sachslehner AP, Holthaus KB, Eckhart L. Comparative genomics of monotremes provides insights into the early evolution of mammalian epidermal differentiation genes. Sci Rep 2024; 14:1437. [PMID: 38228724 PMCID: PMC10791643 DOI: 10.1038/s41598-024-51926-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
The function of the skin as a barrier against the environment depends on the differentiation of epidermal keratinocytes into highly resilient corneocytes that form the outermost skin layer. Many genes encoding structural components of corneocytes are clustered in the epidermal differentiation complex (EDC), which has been described in placental and marsupial mammals as well as non-mammalian tetrapods. Here, we analyzed the genomes of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) to determine the gene composition of the EDC in the basal clade of mammals, the monotremes. We report that mammal-specific subfamilies of EDC genes encoding small proline-rich proteins (SPRRs) and late cornified envelope proteins as well as single-copy EDC genes such as involucrin are conserved in monotremes, suggesting that they have originated in stem mammals. Monotremes have at least one gene homologous to the group of filaggrin (FLG), FLG2 and hornerin (HRNR) in placental mammals, but no clear one-to-one pairwise ortholog of either FLG, FLG2 or HRNR. Caspase-14, a keratinocyte differentiation-associated protease implicated in the processing of filaggrin, is encoded by at least 3 gene copies in the echidna. Our results reveal evolutionarily conserved and clade-specific features of the genetic regulation of epidermal differentiation in monotremes.
Collapse
Affiliation(s)
- Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Tesei G, Hsiao YW, Dabkowska A, Grönberg G, Yanez Arteta M, Ulkoski D, Bray DJ, Trulsson M, Ulander J, Lund M, Lindfors L. Lipid shape and packing are key for optimal design of pH-sensitive mRNA lipid nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2311700120. [PMID: 38175863 PMCID: PMC10786277 DOI: 10.1073/pnas.2311700120] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
The ionizable-lipid component of RNA-containing nanoparticles controls the pH-dependent behavior necessary for an efficient delivery of the cargo-the so-called endosomal escape. However, it is still an empirical exercise to identify optimally performing lipids. Here, we study two well-known ionizable lipids, DLin-MC3-DMA and DLin-DMA using a combination of experiments, multiscale computer simulations, and electrostatic theory. All-atom molecular dynamics simulations, and experimentally measured polar headgroup pKa values, are used to develop a coarse-grained representation of the lipids, which enables the investigation of the pH-dependent behavior of lipid nanoparticles (LNPs) through Monte Carlo simulations, in the absence and presence of RNA molecules. Our results show that the charge state of the lipids is determined by the interplay between lipid shape and headgroup chemistry, providing an explanation for the similar pH-dependent ionization state observed for lipids with headgroup pKa values about one-pH-unit apart. The pH dependence of lipid ionization is significantly influenced by the presence of RNA, whereby charge neutrality is achieved by imparting a finite and constant charge per lipid at intermediate pH values. The simulation results are experimentally supported by measurements of α-carbon 13C-NMR chemical shifts for eGFP mRNA LNPs of both DLin-MC3-DMA and DLin-DMA at various pH conditions. Further, we evaluate the applicability of a mean-field Poisson-Boltzmann theory to capture these phenomena.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, CopenhagenDK-2200, Denmark
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Ya-Wen Hsiao
- The Hartree Centre, Science and Technology Facilities Council (STFC) Daresbury Laboratory, WarringtonWA4 4AD, United Kingdom
| | - Aleksandra Dabkowska
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Gunnar Grönberg
- Medicinal Chemistry, Early Respiratory & Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - David J. Bray
- The Hartree Centre, Science and Technology Facilities Council (STFC) Daresbury Laboratory, WarringtonWA4 4AD, United Kingdom
| | - Martin Trulsson
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Johan Ulander
- Data Science and Modelling, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Mikael Lund
- Department of Chemistry, Division of Computational Chemistry, Lund University, LundSE-221 00, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| |
Collapse
|
34
|
Briot J, Arbey E, Goudounèche D, Bernard D, Simon M, Méchin MC. Human filaggrin monomer does not seem to be a proteasome target. Exp Dermatol 2024; 33:e14772. [PMID: 36807394 DOI: 10.1111/exd.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Absence of a functional proteasome in the suprabasal layers of the epidermis is responsible for keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome. Patient epidermis shows hypergranulosis associated with abnormally shaped keratohyalin granules and abnormal distribution of filaggrin in the Stratum granulosum and Stratum corneum. This suggests that the proteasome is involved in the degradation of filaggrin. To test this hypothesis, the proteasome proteolytic activity was inhibited in 3D reconstructed human epidermis (RHE) with the specific clasto-lactacystin β-lactone inhibitor. Confirming the efficacy of inhibition, ubiquitinated proteins accumulated in treated RHEs as compared to controls. Levels of urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA), the end products of filaggrin degradation, were reduced. However, neither filaggrin accumulation nor appearance of filaggrin-derived peptides were observed. On the contrary, the amount of filaggrin was shown to decrease, and a similar tendency was observed for profilaggrin, its precursor. Accumulation of small cytoplasmic vesicles associated with a significant increase in autophagy markers indicated activation of the autophagy process upon proteasome inhibition. Taken together, these results suggest that the perturbation of UCA and PCA production after proteasome inhibition was probably due to down-regulation of filaggrin expression rather than to blocking of filaggrin proteolysis.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Eric Arbey
- L'Oréal Research and Innovation, Aulnay-sous-bois, Aulnay-sous-bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Université de Toulouse, Toulouse, France
| | - Dominique Bernard
- L'Oréal Research and Innovation, Aulnay-sous-bois, Aulnay-sous-bois, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| |
Collapse
|
35
|
Jo H, Sim S. Elastic Network of Droplets for Underwater Adhesives. J Am Chem Soc 2023. [PMID: 38048531 DOI: 10.1021/jacs.3c10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Functionality in biological materials arises from complex hierarchical structures formed through self-assembly processes. Here, we report a kinetically trapped self-assembly of an elastic network of liquid droplets and its utility for tough and fast-acting underwater adhesives. This complex structure was made from a one-pot mixture of scalable small-molecule precursors. Liquid-liquid phase separation accompanied by silanol hydrolysis, condensation, and zwitterionic self-association yields a viscoelastic solid with interconnected liquid droplets. These hierarchical microstructures increase toughness and enable underwater adhesion for a range of substrates, offering a platform for robust adhesives for rapid underwater repair or emergency wound care.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
36
|
Ramšak M, Ramirez DA, Hough LE, Shirts MR, Vidmar S, Eleršič Filipič K, Anderluh G, Jerala R. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat Commun 2023; 14:7973. [PMID: 38042897 PMCID: PMC10693550 DOI: 10.1038/s41467-023-43742-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.
Collapse
Affiliation(s)
- Maruša Ramšak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Eleršič Filipič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Dong H, Zhang H, Jalin J, He Z, Wang R, Huang L, Liu Z, Zhang S, Dai B, Li D. Nucleocapsid proteins from human coronaviruses possess phase separation capabilities and promote FUS pathological aggregation. Protein Sci 2023; 32:e4826. [PMID: 37906538 PMCID: PMC10659942 DOI: 10.1002/pro.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.
Collapse
Affiliation(s)
- Hui Dong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Present address:
Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Hong Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Julie Jalin
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ziqi He
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
| | - Runhan Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Leqi Huang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zibo Liu
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shenqing Zhang
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| | - Bin Dai
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dan Li
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
38
|
Matsui T. Epidermal Barrier Development via Corneoptosis: A Unique Form of Cell Death in Stratum Granulosum Cells. J Dev Biol 2023; 11:43. [PMID: 38132711 PMCID: PMC10744242 DOI: 10.3390/jdb11040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Epidermal development is responsible for the formation of the outermost layer of the skin, the epidermis. The establishment of the epidermal barrier is a critical aspect of mammalian development. Proper formation of the epidermis, which is composed of stratified squamous epithelial cells, is essential for the survival of terrestrial vertebrates because it acts as a crucial protective barrier against external threats such as pathogens, toxins, and physical trauma. In mammals, epidermal development begins from the embryonic surface ectoderm, which gives rise to the basal layer of the epidermis. This layer undergoes a series of complex processes that lead to the formation of subsequent layers, including the stratum intermedium, stratum spinosum, stratum granulosum, and stratum corneum. The stratum corneum, which is the topmost layer of the epidermis, is formed by corneoptosis, a specialized form of cell death. This process involves the transformation of epidermal keratinocytes in the granular layer into flattened dead cells, which constitute the protective barrier. In this review, we focus on the intricate mechanisms that drive the development and establishment of the mammalian epidermis to gain insight into the complex processes that govern this vital biological system.
Collapse
Affiliation(s)
- Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura-cho, Tokyo 192-0982, Japan
| |
Collapse
|
39
|
Yang L, Lin Z, Gao Y, Zhang J, Peng H, Li Y, Che J, Zhao L, Zhang J. Populational pan-ethnic screening panel enabled by deep whole genome sequencing. NPJ Genom Med 2023; 8:38. [PMID: 37985665 PMCID: PMC10661700 DOI: 10.1038/s41525-023-00383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Birth defect is a global threat to the public health systems. Mitigating neonatal anomalies is hampered by elusive molecular mechanisms of pathogenic mutations and poor subsequent translation into preventative measures. Applying appropriate strategies in China to promote reproductive health is particularly challenging, as the Chinese population compromises complex genomic diversity due to the inclusion of many ethnic groups with distinct genetic backgrounds. To investigate and evaluate the feasibility of implementing a pan-ethnic screening strategy, and guide future reproductive counselling, high-quality variants associated with autosome recessive (AR) diseases derived from the largest publicly available cohort of the Chinese population were re-analysed using a bottom-up approach. The analyses of gene carrier rates (GCRs) across distinct ethnic groups revealed that substantial heterogeneity existed potentially due to diverse evolutionary selection. The sampling population, sequencing coverage and underlying population structure contributed to the differential variants observed between ChinaMAP and the East Asian group in gnomAD. Beyond characteristics of GCR, potential druggable targets were additionally explored according to genomic features and functional roles of investigated genes, demonstrating that phase separation could be a therapeutic target for autosomal recessive diseases. A further examination of estimated GCR across ethnic groups indicated that most genes shared by at least two populations could be utilised to direct the design of a pan-ethnic screening application once sequencing and interpreting costs become negligible. To this end, a list of autosomal recessive disease genes is proposed based on the prioritised rank of GCR to formulate a tiered screening strategy.
Collapse
Affiliation(s)
- Linfeng Yang
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhe Lin
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yong Gao
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Yaqing Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Lijian Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
- Medical Technology College of Hebei Medical University, Shijiazhuang, China.
| | - Jilin Zhang
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong S.A.R, China.
- Department of Precision Diagnostic and Therapeutic Technology, The City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong S.A.R, China.
| |
Collapse
|
40
|
Wang D, Sun T, Xia Y, Zhao Z, Sheng X, Li S, Ma Y, Li M, Su X, Zhang F, Li P, Ma D, Ye J, Lu F, Ji C. Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation. Nat Commun 2023; 14:6907. [PMID: 37903757 PMCID: PMC10616288 DOI: 10.1038/s41467-023-42650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
41
|
Hajjar S, Zhou X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol 2023; 44:807-825. [PMID: 37714775 PMCID: PMC10543622 DOI: 10.1016/j.it.2023.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.
Collapse
Affiliation(s)
- Stephanie Hajjar
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA
| | - Xu Zhou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Liu JX, Haataja MP, Košmrlj A, Datta SS, Arnold CB, Priestley RD. Liquid-liquid phase separation within fibrillar networks. Nat Commun 2023; 14:6085. [PMID: 37770446 PMCID: PMC10539382 DOI: 10.1038/s41467-023-41528-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Complex fibrillar networks mediate liquid-liquid phase separation of biomolecular condensates within the cell. Mechanical interactions between these condensates and the surrounding networks are increasingly implicated in the physiology of the condensates and yet, the physical principles underlying phase separation within intracellular media remain poorly understood. Here, we elucidate the dynamics and mechanics of liquid-liquid phase separation within fibrillar networks by condensing oil droplets within biopolymer gels. We find that condensates constrained within the network pore space grow in abrupt temporal bursts. The subsequent restructuring of condensates and concomitant network deformation is contingent on the fracture of network fibrils, which is determined by a competition between condensate capillarity and network strength. As a synthetic analog to intracellular phase separation, these results further our understanding of the mechanical interactions between biomolecular condensates and fibrillar networks in the cell.
Collapse
Affiliation(s)
- Jason X Liu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Craig B Arnold
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Rodney D Priestley
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
43
|
陈 一, 凌 晓, 于 浩, 丁 俊. [Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:857-862. [PMID: 37866939 PMCID: PMC10579061 DOI: 10.12182/20230960302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research.
Collapse
Affiliation(s)
- 一龙 陈
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 晓茹 凌
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
| | - 浩澎 于
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 俊军 丁
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Xu C, Kim A, Corbin JM, Wang GG. Onco-condensates: formation, multi-component organization, and biological functions. Trends Cancer 2023; 9:738-751. [PMID: 37349246 PMCID: PMC10524369 DOI: 10.1016/j.trecan.2023.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Numerous cellular processes occur in the context of condensates, a type of large, membrane-less biomolecular assembly generated through phase separation. These condensates function as a hub of diversified cellular events by concentrating the required components. Cancer frequently coopts biomolecular condensation mechanisms to promote survival and/or proliferation. Onco-condensates, which refer to those that have causal roles or are critically involved in tumorigenicity, operate to abnormally elevate biological output of a proliferative process, or to suppress a tumor-suppressive pathway, thereby promoting oncogenesis. Here, we summarize advances regarding how multi-component onco-condensates are established and organized to promote oncogenesis, with those related to chromatin and transcription deregulation used as showcases. A better understanding should enable development of new means of targeting onco-condensates as potential therapeutics.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joshua M Corbin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Schulte T, Panas MD, Han X, Williams L, Kedersha N, Fleck JS, Tan TJC, Dopico XC, Olsson A, Morro AM, Hanke L, Nilvebrant J, Giang KA, Nygren PÅ, Anderson P, Achour A, McInerney GM. Caprin-1 binding to the critical stress granule protein G3BP1 is influenced by pH. Open Biol 2023; 13:220369. [PMID: 37161291 PMCID: PMC10170197 DOI: 10.1098/rsob.220369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
G3BP is the central node within stress-induced protein-RNA interaction networks known as stress granules (SGs). The SG-associated proteins Caprin-1 and USP10 bind mutually exclusively to the NTF2 domain of G3BP1, promoting and inhibiting SG formation, respectively. Herein, we present the crystal structure of G3BP1-NTF2 in complex with a Caprin-1-derived short linear motif (SLiM). Caprin-1 interacts with His-31 and His-62 within a third NTF2-binding site outside those covered by USP10, as confirmed using biochemical and biophysical-binding assays. Nano-differential scanning fluorimetry revealed reduced thermal stability of G3BP1-NTF2 at acidic pH. This destabilization was counterbalanced significantly better by bound USP10 than Caprin-1. The G3BP1/USP10 complex immunoprecipated from human U2OS cells was more resistant to acidic buffer washes than G3BP1/Caprin-1. Acidification of cellular condensates by approximately 0.5 units relative to the cytosol was detected by ratiometric fluorescence analysis of pHluorin2 fused to G3BP1. Cells expressing a Caprin-1/FGDF chimera with higher G3BP1-binding affinity had reduced Caprin-1 levels and slightly reduced condensate sizes. This unexpected finding may suggest that binding of the USP10-derived SLiM to NTF2 reduces the propensity of G3BP1 to enter condensates.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Lucy Williams
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Nancy Kedersha
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Simon Fleck
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Timothy J. C. Tan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Anders Olsson
- Protein Expression and Characterization, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
| | - Ainhoa Moliner Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Johan Nilvebrant
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Kim Anh Giang
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 114 21, Stockholm
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Sweden
| | - Paul Anderson
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
46
|
van den Bogaard EH, Elias PM, Goleva E, Berdyshev E, Smits JPH, Danby SG, Cork MJ, Leung DYM. Targeting Skin Barrier Function in Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1335-1346. [PMID: 36805053 PMCID: PMC11346348 DOI: 10.1016/j.jaip.2023.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and VA Medical Center, San Francisco, Calif
| | - Elena Goleva
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Evgeny Berdyshev
- Department of Pulmonology, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| | - Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon G Danby
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo.
| |
Collapse
|
47
|
Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems. Nat Commun 2023; 14:2456. [PMID: 37117170 PMCID: PMC10147642 DOI: 10.1038/s41467-023-38236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Aqueous two-phase systems (ATPS) provide imperative interfaces and compartments in biology, but the sculpture and conversion of liquid structures to functional solids is challenging. Here, inspired by phase evolution of mussel foot proteins ATPS, we tackle this problem by designing poly(ionic liquids) capable of responsive condensation and phase-dependent curing. When mixed with poly(dimethyl diallyl ammonium chloride), the poly(ionic liquids) formed liquid condensates and ATPS, which were tuned into bicontinuous liquid phases under stirring. Selective, rapid curing of the poly(ionic liquids)-rich phase was facilitated under basic conditions (pH 11), leading to the liquid-to-gel conversion and structure sculpture, i.e., the evolution from ATPS to macroporous sponges featuring bead-and-string networks. This mechanism enabled the selective embedment of carbon nanotubes in the poly(ionic liquids)-rich phase, which showed exceptional stability in harsh conditions (10 wt% NaCl, 80 oC, 3 days) and high (2.5 kg/m2h) solar thermal desalination of concentrated salty water under 1-sun irradiation.
Collapse
Affiliation(s)
- Chongrui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
48
|
Morishita K, Watanabe K, Naguro I, Ichijo H. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep 2023; 42:112315. [PMID: 37019112 DOI: 10.1016/j.celrep.2023.112315] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Biomolecular condensates are membraneless structures formed through phase separation. Recent studies have demonstrated that the material properties of biomolecular condensates are crucial for their biological functions and pathogenicity. However, the phase maintenance of biomolecular condensates in cells remains elusive. Here, we show that sodium ion (Na+) influx regulates the condensate liquidity under hyperosmotic stress. ASK3 condensates have higher fluidity at the high intracellular Na+ concentration derived from extracellular hyperosmotic solution. Moreover, we identified TRPM4 as a cation channel that allows Na+ influx under hyperosmotic stress. TRPM4 inhibition causes the liquid-to-solid phase transition of ASK3 condensates, leading to impairment of the ASK3 osmoresponse. In addition to ASK3 condensates, intracellular Na+ widely regulates the condensate liquidity and aggregate formation of biomolecules, including DCP1A, TAZ, and polyQ-protein, under hyperosmotic stress. Our findings demonstrate that changes in Na+ contribute to the cellular stress response via liquidity maintenance of biomolecular condensates.
Collapse
Affiliation(s)
- Kazuhiro Morishita
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Azzari P, Mezzenga R. LLPS vs. LLCPS: analogies and differences. SOFT MATTER 2023; 19:1873-1881. [PMID: 36806460 PMCID: PMC9993225 DOI: 10.1039/d2sm01455f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
We compare the process of Liquid-Liquid Phase Separation (LLPS) of flexible macromolecular solutions, with the Liquid-Liquid Crystalline Phase Separation (LLCPS) of semiflexible polymers and rigid filamentous colloids, which involves the formation of a liquid phase that possesses a directional alignment. Although the observed phase separation follows a similar dynamic path, namely nucleation and growth or spinodal decomposition separating two phases of dilute and concentrated compositions, the underlying physics that defines the theoretical framework of LLCPS is completely different from the one of LLPS. We review the main theories that describe the phase separation processes and relying on thermodynamics and dynamical arguments, we highlight the differences and analogies between these two phase separation phenomena, attempting to clarify the inner mechanisms that regulate those two processes. A particular focus is given to metastable phases, as these intermediate states represent a key element in understanding how phase separation works.
Collapse
Affiliation(s)
- Paride Azzari
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- Department of Materials, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
50
|
Zaver SA, Johnson CJ, Berndt A, Simpson CL. Live Imaging with Genetically Encoded Physiologic Sensors and Optogenetic Tools. J Invest Dermatol 2023; 143:353-361.e4. [PMID: 36822769 PMCID: PMC9972253 DOI: 10.1016/j.jid.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023]
Abstract
Barrier tissues such as the epidermis employ complex signal transduction systems to execute morphogenetic programs and to rapidly respond to environmental cues to promote homeostasis. Recent advances in live-imaging techniques and tools allow precise spatial and temporal monitoring and manipulation of intracellular signaling cascades. Leveraging the chemistry of naturally occurring light-sensitive proteins, genetically encoded fluorescent biosensors have emerged as robust tools for visualizing dynamic signaling events. In contrast, optogenetic protein constructs permit laser-mediated control of signal receptors and effectors within live cells, organoids, and even model organisms. In this paper, we review the basic principles underlying novel biosensors and optogenetic tools and highlight how recent studies in cutaneous biology have leveraged these imaging strategies to illuminate the spatiotemporal signals regulating epidermal development, barrier formation, and tissue homeostasis.
Collapse
Affiliation(s)
- Shivam A Zaver
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA; Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Christopher J Johnson
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andre Berndt
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine (ISCRM), University of Washington, Seattle, Washington, USA
| | - Cory L Simpson
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine (ISCRM), University of Washington, Seattle, Washington, USA.
| |
Collapse
|