1
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
2
|
Kikawa C, Loes AN, Huddleston J, Figgins MD, Steinberg P, Griffiths T, Drapeau EM, Peck H, Barr IG, Englund JA, Hensley SE, Bedford T, Bloom JD. High-throughput neutralization measurements correlate strongly with evolutionary success of human influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641544. [PMID: 40161702 PMCID: PMC11952370 DOI: 10.1101/2025.03.04.641544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Human influenza viruses rapidly acquire mutations in their hemagglutinin (HA) protein that erode neutralization by antibodies from prior exposures. Here, we use a sequencing-based assay to measure neutralization titers for 78 recent H3N2 HA strains against a large set of children and adult sera, measuring ~10,000 total titers. There is substantial person-to-person heterogeneity in the titers against different viral strains, both within and across age cohorts. The growth rates of H3N2 strains in the human population in 2023 are highly correlated with the fraction of sera with low titers against each strain. Notably, strain growth rates are less correlated with neutralization titers against pools of human sera, demonstrating the importance of population heterogeneity in shaping viral evolution. Overall, these results suggest that high-throughput neutralization measurements of human sera against many different viral strains can help explain the evolution of human influenza.
Collapse
Affiliation(s)
- Caroline Kikawa
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
- These authors contributed equally and are listed alphabetically
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- These authors contributed equally and are listed alphabetically
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Marlin D. Figgins
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Philippa Steinberg
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Tachianna Griffiths
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth M. Drapeau
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Janet A. Englund
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- Lead contact
| |
Collapse
|
3
|
Cvijović I, Swift M, Quake SR. Long-term B cell memory emerges at uniform relative rates in the human immune response. Proc Natl Acad Sci U S A 2025; 122:e2406474122. [PMID: 40020190 PMCID: PMC11892634 DOI: 10.1073/pnas.2406474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/13/2025] [Indexed: 03/12/2025] Open
Abstract
B cells generate pathogen-specific antibodies and play an essential role in providing adaptive protection against infection. Antibody genes are modified in evolutionary processes acting on the B cell populations within an individual. These populations proliferate, differentiate, and migrate to long-term niches in the body. However, the dynamics of these processes in the human immune system are primarily inferred from mouse studies. We addressed this gap by sequencing the antibody repertoire and transcriptomes from single B cells in four immune-rich tissues from six individuals. We find that B cells descended from the same pre-B cell ("lineages") often colocalize within the same tissue, with the bone marrow harboring the largest excess of lineages without representation in other tissues. Within lineages, cells with different levels of somatic hypermutation are uniformly distributed among tissues and functional states. This suggests that the relative probabilities of localization and differentiation outcomes change negligibly during affinity maturation, and quantitatively agrees with a simple dynamical model of B cell differentiation. While lineages strongly colocalize, we find individual B cells nevertheless appear to make independent differentiation decisions. Proliferative antibody-secreting cells, however, deviate from these global patterns. These cells are often clonally expanded, their clones appear universally distributed among all sampled organs, and form lineages with an excess of cells of the same type. Collectively, our findings show the limits of peripheral blood monitoring of the immune repertoire, and provide a probabilistic model of the dynamics of antibody memory formation in humans.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Applied Physics, Stanford University, Stanford, CA94305
| | - Michael Swift
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- The Chan Zuckerberg Initiative, Redwood City, CA94063
| |
Collapse
|
4
|
Lane A, Quach HQ, Ovsyannikova IG, Kennedy RB, Ross TM, Einav T. Characterizing the Short- and Long-Term Temporal Dynamics of Antibody Responses to Influenza Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322965. [PMID: 40061340 PMCID: PMC11888507 DOI: 10.1101/2025.02.26.25322965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Most influenza vaccine studies evaluate acute antibody responses 1 month post-vaccination, leaving long-term immunity poorly understood. Here, we performed a combined analysis of 14 large-scale vaccine studies and conducted two new studies mapping antibody responses in high resolution from their inception out to 1 year post-vaccination. Vaccine antibody responses were classified as weak (<4x fold-change at 1 month and 1 year), transient (≥4x at 1 month, <4x at 1 year), or durable (≥4x at 1 month and 1 year). Surprisingly, >50% of vaccine recipients were weak across seasons, age groups, sexes, pre-vaccination titers, and high or standard vaccine doses. Peak fold-change at 1 month post-vaccination was strongly associated with the long-term response, with most transient responders achieving a maximum fold-change of 4x, while most durable responders reached ≥16x, with both groups maintaining these titers for 2 months (10-75 days post-vaccination). Using the weak, transient, and durable trajectories, a single time point early in the response (days 7-8 or 21) predicted an individual's response out to 1 year post-vaccination. These results demonstrate that influenza vaccine responses range from little-to-no response to eliciting strong-and-durable immunity, highlighting the stark heterogeneity that is consistently seen across influenza seasons.
Collapse
Affiliation(s)
- Aaron Lane
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Huy Q Quach
- Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Wang X, Kong H, Chu B, Yang Q, Lin C, Liu R, Chen C, Gao Y, Wang G, Wang D, Qin C, Ye X, Yu L, Xu X, Jin J, Sun R, Chen H, Wu X, Zhang Z. Identification of a broad-inhibition influenza neuraminidase antibody from pre-existing memory B cells. Cell Host Microbe 2025; 33:151-166.e8. [PMID: 39740671 DOI: 10.1016/j.chom.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Identifying broadly reactive B precursor cells and conserved epitopes is crucial for developing a universal flu vaccine. In this study, using influenza neuraminidase (NA) mutant probes, we find that human pre-existing NA-specific memory B cells (MBCs) account for ∼0.25% of total MBCs, which are heterogeneous and dominated by class-unswitched MBCs. In addition, we identify three NA broad-inhibition monoclonal antibodies (mAbs) (BImAbs) that block the activity of NA derived from different influenza strains, including the recent cow H5N1. The cryoelectron microscopy (cryo-EM) structure shows that the BImAb targets the conserved NA enzymatic pocket and a separate epitope in the neighboring NA monomer. Furthermore, the NA BImAbs protect mice from the lethal challenge of the human pandemic H1N1 and H5N1. Our work demonstrates that the NA broad-inhibition precursor MBCs exist in healthy adults and could be targeted by the NA-based universal flu vaccine.
Collapse
Affiliation(s)
- Xin Wang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingxin Chu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qian Yang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaohui Lin
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Rui Liu
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Changxu Chen
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yang Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guojun Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Chen Qin
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaohua Ye
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lifei Yu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xiangfei Xu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Ren Sun
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Zeli Zhang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Livieratos A, Schiro LE, Gogos C, Akinosoglou K. Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2. Vaccines (Basel) 2024; 12:1444. [PMID: 39772104 PMCID: PMC11680120 DOI: 10.3390/vaccines12121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Research on respiratory virus immunity duration post-vaccination reveals variable outcomes. This study performed a literature review to assess the efficacy and longevity of immune protection post-vaccination against SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), with a focus on immunocompromised populations. Specific objectives included examining humoral and cellular immune responses and exploring the impact of booster doses and hybrid immunity on extending protection. METHODS A literature review was conducted focusing on studies published from January 2014 to November 2024. The search targeted adaptive immunity post-vaccination, natural immunity, and hybrid immunity for SARS-CoV-2, influenza, and RSV. Selection criteria emphasized human populations, adaptive immunity outcomes, and immunocompromised individuals. The PICO framework guided the analysis, culminating in a detailed review of 30 studies. RESULTS SARS-CoV-2 vaccines exhibited robust initial antibody responses, which waned significantly within six months, necessitating frequent boosters. Influenza and RSV vaccines similarly showed declines in immunity, though some influenza vaccines demonstrated moderate durability. Hybrid immunity, arising from combined natural infection and vaccination, provided more resilient and lasting protection than vaccination alone, especially against emerging variants. Immunocompromised individuals consistently exhibited reduced durability in adaptive immune responses across all studied viruses. Challenges include rapid viral mutations, limiting the broad protection of current vaccines. CONCLUSIONS Immune durability varies significantly across virus types and patient populations. Frequent boosters and hybrid immunity are critical to optimizing protection, particularly for vulnerable groups. The findings underscore the need for adaptable vaccination strategies and advancements in vaccine design to counter rapidly mutating respiratory pathogens effectively.
Collapse
Affiliation(s)
| | | | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
7
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy-chain antibodies. Nat Biomed Eng 2024; 8:1700-1714. [PMID: 39039240 DOI: 10.1038/s41551-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
The immunoglobulin locus of B cells can be reprogrammed by genome editing to produce custom or non-natural antibodies that are not induced by immunization. However, current strategies for antibody reprogramming require complex expression cassettes and do not allow for customization of the constant region of the antibody. Here we show that human B cells can be edited at the immunoglobulin heavy-chain locus to express heavy-chain-only antibodies that support alterations to both the fragment crystallizable domain and the antigen-binding domain, which can be based on both antibody and non-antibody components. Using the envelope protein (Env) from the human immunodeficiency virus as a model antigen, we show that B cells edited to express heavy-chain antibodies to Env support the regulated expression of B cell receptors and antibodies through alternative splicing and that the cells respond to the Env antigen in a tonsil organoid model of immunization. This strategy allows for the reprogramming of human B cells to retain the potential for in vivo amplification while producing molecules with flexibility of composition beyond that of standard antibodies.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eric J Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J Virol 2024; 98:e0068924. [PMID: 39315814 PMCID: PMC11494878 DOI: 10.1128/jvi.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Vaccination
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Female
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
9
|
Xu H, Chen Y, Li J, Li M, Sun M, Chen J, Li L, Xue Q, Ma H. Altering the competitive environment of B cell epitopes significantly extends the duration of antibody production. Int Immunol 2024; 36:517-528. [PMID: 38708774 DOI: 10.1093/intimm/dxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/04/2024] [Indexed: 05/07/2024] Open
Abstract
Persistent immunoglobulin G (IgG) production (PIP) provides long-term vaccine protection. While variations in the duration of protection have been observed with vaccines prepared from different pathogens, little is known about the factors that determine PIP. Here, we investigated the impact of three parameters on the duration of anti-peptide IgG production, namely amino acid sequences, protein carriers, and immunization programs. We show that anti-peptide IgG production can be transformed from transient IgG production (TIP) to PIP, by placing short peptides (Pi) containing linear B cell epitopes in different competitive environments using bovine serum albumin (BSA) conjugates instead of the original viral particles. When goats were immunized with the peste des petits ruminants (PPR) live-attenuated vaccine (containing Pi as the constitutive component) and BSA-Pi conjugate, anti-Pi IgG production exhibited TIP (duration < 60 days) and PIP (duration > 368 days), respectively. Further, this PIP was unaffected by subsequent immunization with the PPR live-attenuated vaccine in the same goat. When goats were coimmunized with PPR live-attenuated vaccine and BSA-Pi, the induced anti-Pi IgG production showed a slightly extended TIP (from ~60 days to ~100 days). This discovery provides new perspectives for studying the fate of plasma cells in humoral immune responses and developing peptide vaccines related to linear neutralizing epitopes from various viruses.
Collapse
Affiliation(s)
- Hongke Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mengyu Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Ling Li
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
10
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Van Vinh Chau N, Loes AN, Huddleston J, Yu TC, Quynh Le M, Nhat NTD, Thi Le Thanh N, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 2024; 32:1397-1411.e11. [PMID: 39032493 PMCID: PMC11329357 DOI: 10.1016/j.chom.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Mutation
- Adult
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza, Human/virology
- Influenza, Human/immunology
- Age Factors
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Adolescent
- Evolution, Molecular
- Aged
- Child
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
McIntire KM, Meng H, Lin TH, Kim W, Moore NE, Han J, McMahon M, Wang M, Malladi SK, Mohammed BM, Zhou JQ, Schmitz AJ, Hoehn KB, Carreño JM, Yellin T, Suessen T, Middleton WD, Teefey SA, Presti RM, Krammer F, Turner JS, Ward AB, Wilson IA, Kleinstein SH, Ellebedy AH. Maturation of germinal center B cells after influenza virus vaccination in humans. J Exp Med 2024; 221:e20240668. [PMID: 38935072 PMCID: PMC11211068 DOI: 10.1084/jem.20240668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.
Collapse
Affiliation(s)
- Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Nina E. Moore
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Wang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Bassem M. Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M. Presti
- Department of Internal Medicine-Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
12
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Tehrani ZR, Habibzadeh P, Flinko R, Chen H, Abbasi A, Yared JA, Ciupe SM, Lewis GK, Sajadi MM. Deficient Generation of Spike-Specific Long-Lived Plasma Cells in the Bone Marrow After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis 2024; 230:e30-e33. [PMID: 39052732 PMCID: PMC11272043 DOI: 10.1093/infdis/jiad603] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024] Open
Abstract
Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.
Collapse
Affiliation(s)
- Zahra R Tehrani
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Parham Habibzadeh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin Flinko
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jean A Yared
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, USA
| | - George K Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Garg N, Tellier G, Vale N, Kluge J, Portman JL, Markowska A, Tussey L. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS One 2024; 19:e0303450. [PMID: 38843267 PMCID: PMC11156369 DOI: 10.1371/journal.pone.0303450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 μg or 7.5 μg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 μg group and 1 participant withdrew from the 7.5 μg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 μg and 7.5 μg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 μg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.
Collapse
Affiliation(s)
- Naveen Garg
- Centricity Research-Montreal, Point-Claire, Québec, Canada
| | - Guy Tellier
- Centricity Research-Mirabel, Mirabel, Québec, Canada
| | - Noah Vale
- Centricity Research-Toronto, Toronto, Ontario, Canada
| | - Jon Kluge
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Jonathan L. Portman
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Anna Markowska
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Lynda Tussey
- Development and MAP Production, Vaxess Technologies, Woburn, Massachusetts, United States of America
| |
Collapse
|
15
|
Khamyath M, Melhem H, Balabanian K, Espéli M. New insights into the mechanisms regulating plasma cell survival and longevity. Curr Opin Immunol 2024; 88:102442. [PMID: 38964008 DOI: 10.1016/j.coi.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Plasma cells correspond to the last stage of B cell differentiation and are professional antibody-secreting cells. While most persist for only few days, some may survive for weeks to years in dedicated survival niches. The determination of plasma cell survival rate seems to rely both on intrinsic and extrinsic factors. Although often opposed, the deterministic and environmental models for plasma cell longevity are certainly overlapping. Understanding the contribution and the regulation of these different factors is paramount to develop better vaccines but also to target malignant plasma cells. Here, we review recent literature highlighting new findings pertaining to plasma cell survival rate, intrinsic regulation of plasma cell persistence and function, as well as the plasma cell/niche dialogue. Moreover, the now well-recognised heterogeneity observed among plasma cells is also discussed.
Collapse
Affiliation(s)
- Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Houda Melhem
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
16
|
Mayer DP, Nelson ME, Andriyanova D, Filler RB, Ökten A, Antao OQ, Chen JS, Scumpia PO, Weaver WM, Wilen CB, Deshayes S, Weinstein JS. A novel microporous biomaterial vaccine platform for long-lasting antibody mediated immunity against viral infection. J Control Release 2024; 370:570-582. [PMID: 38734312 PMCID: PMC11665867 DOI: 10.1016/j.jconrel.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude, neutralization, and duration of anti-receptor binding domain antibodies compared to Alum vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.
Collapse
Affiliation(s)
- Daniel P. Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Mariah E. Nelson
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Daria Andriyanova
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Arya Ökten
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Olivia Q. Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Philip O. Scumpia
- Department of Medicine, Division of Dermatology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Dermatology, West Los Angeles Veteran Affairs Medical Center, Los Angeles, California, United States of America
| | - Westbrook M. Weaver
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Stephanie Deshayes
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
17
|
Costa-Gouvea TBL, Françoso KS, Marques RF, Gimenez AM, Faria ACM, Cariste LM, Dominguez MR, Vasconcelos JRC, Nakaya HI, Silveira ELV, Soares IS. Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice. Front Immunol 2024; 15:1331474. [PMID: 38650939 PMCID: PMC11033515 DOI: 10.3389/fimmu.2024.1331474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.
Collapse
Affiliation(s)
- Tiffany B. L. Costa-Gouvea
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia S. Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C. M. Faria
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo M. Cariste
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584176. [PMID: 38496577 PMCID: PMC10942427 DOI: 10.1101/2024.03.08.584176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
19
|
Zhou J, Lan L, Ai S, Lin J, Liu N, Xie Y, Cui P, Liang H, Ye L, Huang J, Xie Z. People living with HIV who have poor immune status are a key population for SARS-CoV-2 prevention. J Infect 2024; 88:106122. [PMID: 38367706 DOI: 10.1016/j.jinf.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China
| | - Liuyan Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China; The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Sufang Ai
- AIDS Clinical Treatment Center of Guangxi (Nanning) & The Fourth People's Hospital of Nanning, Nanning 530012, Guangxi, China
| | - Jianyan Lin
- AIDS Clinical Treatment Center of Guangxi (Nanning) & The Fourth People's Hospital of Nanning, Nanning 530012, Guangxi, China
| | - Ningmei Liu
- AIDS Clinical Treatment Center of Guangxi (Nanning) & The Fourth People's Hospital of Nanning, Nanning 530012, Guangxi, China
| | - Yulan Xie
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China
| | - Ping Cui
- Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China; Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China; Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China; Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning 530021, Guangxi, China
| | - Zhiman Xie
- AIDS Clinical Treatment Center of Guangxi (Nanning) & The Fourth People's Hospital of Nanning, Nanning 530012, Guangxi, China.
| |
Collapse
|
20
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
21
|
Mayer DP, Neslon ME, Andriyanova D, Antao OQ, Chen JS, Scumpia PO, Weaver WM, Deshayes S, Weinstein JS. A novel microporous biomaterial vaccine platform for long-lasting antibody mediated immunity against viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578038. [PMID: 38352398 PMCID: PMC10862793 DOI: 10.1101/2024.01.30.578038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude and duration of anti-receptor binding domain antibodies compared to Alum and mRNA-vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.
Collapse
|
22
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
23
|
Sayers DR. Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Boosters: An Influenza Vaccine Perspective. Mil Med 2023; 188:223-224. [PMID: 35943170 PMCID: PMC9384641 DOI: 10.1093/milmed/usac243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Changes to severe acute respiratory syndrome 2 (SARS-CoV-2) vaccine guidance since their initial authorization may lead to confusion and hesitancy. Suggested recommendations for an annual SARS-CoV-2 vaccine naturally draw comparisons with the influenza vaccine program. Considering viral and vaccine characteristics between these pathogens provides an important perspective that can help increase vaccine confidence with SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- David R Sayers
- Department of the Air Force, AFMRA/SG3PM, Falls Church, VA 22042, USA
| |
Collapse
|
24
|
Nesovic LD, Roach CJ, Joshi G, Gill HS. Delivery of gold nanoparticle-conjugated M2e influenza vaccine in mice using coated microneedles. Biomater Sci 2023; 11:5859-5871. [PMID: 37455612 DOI: 10.1039/d3bm00305a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As a prospective influenza vaccination platform, a microneedle patch offers advantages such as self-administration and reduction of needle-phobia-associated vaccination avoidance. In an effort to design a broadly protective influenza vaccine we have previously developed a vaccine formulation containing the highly conserved ectodomain sequence of the M2 influenza protein (M2e) attached to the surface of gold nanoparticles (AuNPs) with CpG as a soluble adjuvant (AuNP-M2e + sCpG). Our previous studies have used the intranasal route for vaccination and demonstrated broad protection from this vaccine. Here we asked the question whether the same formulation can be effective when administered to mice using microneedles. We demonstrate that the microneedles can be coated with AuNP-M2e + sCpG formulation, and the AuNPs from the coating can be readily resuspended without aggregation. The AuNPs were delivered with high efficiency into murine skin, and the AuNPs cleared the skin within 12 h of microneedle treatment. After vaccination, strong M2e-specific humoral and cellular responses were stimulated, and the vaccinated mice were 100% protected following a lethal challenge with influenza A/PR/8/34 (H1N1).
Collapse
Affiliation(s)
- Lazar D Nesovic
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Carsen J Roach
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Gaurav Joshi
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Harvinder Singh Gill
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| |
Collapse
|
25
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Lopes de Assis F, Hoehn KB, Zhang X, Kardava L, Smith CD, El Merhebi O, Buckner CM, Trihemasava K, Wang W, Seamon CA, Chen V, Schaughency P, Cheung F, Martins AJ, Chiang CI, Li Y, Tsang JS, Chun TW, Kleinstein SH, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep 2023; 42:112780. [PMID: 37440409 PMCID: PMC10529190 DOI: 10.1016/j.celrep.2023.112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.
Collapse
Affiliation(s)
- Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor D Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Microbiology and Immunology and Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy chain antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546944. [PMID: 37425794 PMCID: PMC10327003 DOI: 10.1101/2023.06.28.546944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We describe a genome editing strategy to reprogram the immunoglobulin heavy chain (IgH) locus of human B cells to express custom molecules that respond to immunization. These heavy chain antibodies (HCAbs) comprise a custom antigen-recognition domain linked to an Fc domain derived from the IgH locus and can be differentially spliced to express either B cell receptor (BCR) or secreted antibody isoforms. The HCAb editing platform is highly flexible, supporting antigen-binding domains based on both antibody and non-antibody components, and also allowing alterations in the Fc domain. Using HIV Env protein as a model antigen, we show that B cells edited to express anti-Env HCAbs support the regulated expression of both BCRs and antibodies, and respond to Env antigen in a tonsil organoid model of immunization. In this way, human B cells can be reprogrammed to produce customized therapeutic molecules with the potential for in vivo amplification.
Collapse
Affiliation(s)
- Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Eric J. Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
28
|
Conarty JP, Wieland A. The Tumor-Specific Immune Landscape in HPV+ Head and Neck Cancer. Viruses 2023; 15:1296. [PMID: 37376596 DOI: 10.3390/v15061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC) becoming a rapidly growing public health issue in the Western world. Due its viral etiology and potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We highlight the localization, antigen specificity, and differentiation states of humoral and cellular immune responses, and discuss their similarities and differences. Finally, we review currently pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune responses for improving clinical outcomes in patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Jacob P Conarty
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Wu CY, Kao SE, Tseng YC, Lin YP, Hou JT, Wu LY, Chiu S, Ma CA, Hsiao PW, Hsiao J, Chen JR. Pilot-scale production of inactivated monoglycosylated split H 1N 1 influenza virus vaccine provides cross-strain protection against influenza viruses. Antiviral Res 2023; 216:105640. [PMID: 37263355 DOI: 10.1016/j.antiviral.2023.105640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Influenza epidemics and pandemics caused by newly emerging virus strains highlight an urgent need to develop a universal vaccine against viruses. Previously, a monoglycosylated X-181mg vaccine demonstrated that the HA possessing a single N-acetylglucosamine at each N-glycosylation site is superior to confer broader protection in mice than conventional vaccines. However, the greatest challenge in conducting clinical trials is the need to develop robust manufacturing processes capable of producing vaccines at the pilot scale with the desired stability, potency, and efficacy. Whether the monoglycosylated virus vaccine platform can be applied to the new vaccine strain in a timely manner and whether the mass-produced vaccine has the proper immunogenicity to induce cross-protective immunity remains unclear. Here, we show that a pilot-scale manufacturing process produced a monoglycosylated A/Brisbane/02/2018(H1N1) virus vaccine (IVR-190mg) with a single glycan at each glycosylation site of HA and NA. Compared with the fully glycosylated virus vaccine (IVR-190fg), the IVR-190mg provided broader cross-protection in mice against a wide range of H1N1 variants. The enhanced antibody responses induced by IVR-190mg immunization include higher hemagglutination-inhibition titers, higher neutralization activity, more anti-HA head domain, more anti-HA stem antibodies, higher neuraminidase activity inhibition titers, and notably, higher antibody-dependent cellular cytotoxicity. Additionally, the IVR-190mg also induced a more balanced Th1/Th2 response and elicited broader splenic CD4+ and CD8+ T-cell responses than IVR-190fg. This study demonstrated that IVR-190mg produced using a pilot-scale manufacturing process elicits comprehensive cross-strain immune responses that have great potential to substantially mitigate the need for yearly reformulation of strain-specific inactivated vaccines.
Collapse
Affiliation(s)
| | - Shao-En Kao
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | | | - Yu-Po Lin
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Jen-Tzu Hou
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Li-Yang Wu
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Sharon Chiu
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Che Alex Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jane Hsiao
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan; OPKO Health Inc. Miami, Florida, USA
| | | |
Collapse
|
30
|
Robinson MJ, Ding Z, Dowling MR, Hill DL, Webster RH, McKenzie C, Pitt C, O'Donnell K, Mulder J, Brodie E, Hodgkin PD, Wong NC, Quast I, Tarlinton DM. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 2023:S1074-7613(23)00183-8. [PMID: 37164016 DOI: 10.1016/j.immuni.2023.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| | - Zhoujie Ding
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Mark R Dowling
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC 3000, Australia; Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Danika L Hill
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Rosela H Webster
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Craig McKenzie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Erica Brodie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nick C Wong
- Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
31
|
del Pino Molina L, Bravo Gallego LY, Nozal P, Soto-Serrano Y, Martínez-Feito A, Reche-Yebra K, González-Torbay A, Cuesta-Martín de la Cámara R, Gianelli C, Cámara C, González-García J, González-Muñoz M, Rodríguez-Pena R, López Granados E. Detection of specific RBD + IgG + memory B cells by flow cytometry in healthcare workers and patients with inborn errors of immunity after BNT162b2 m RNA COVID-19 vaccination. Front Immunol 2023; 14:1136308. [PMID: 37215146 PMCID: PMC10192857 DOI: 10.3389/fimmu.2023.1136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.
Collapse
Affiliation(s)
- Lucía del Pino Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luz Yadira Bravo Gallego
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pilar Nozal
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), ISCIII, Madrid, Spain
- Complement Research Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Yolanda Soto-Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ana Martínez-Feito
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Immuno-Rheumatology Research Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Keren Reche-Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | | | - Carla Gianelli
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Carmen Cámara
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - J. González-García
- HIV Unit, Internal Medicine Department, La Paz University Hospital, AIDS and Infectious Diseases Group, Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC CB21/13/00039), La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Rebeca Rodríguez-Pena
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Eduardo López Granados
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
32
|
Tarlinton DM, Ding Z, Tellier J, Nutt SL. Making sense of plasma cell heterogeneity. Curr Opin Immunol 2023; 81:102297. [PMID: 36889029 DOI: 10.1016/j.coi.2023.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023]
Abstract
Plasma cells (PCs) are essential for the quality and longevity of protective immunity. The canonical humoral response to vaccination involves induction of germinal centers in lymph nodes followed by maintenance by bone marrow-resident PCs, although there are many variations of this theme. Recent studies have highlighted the importance of PCs in nonlymphoid organs, including the gut, central nervous system, and skin. These sites harbor PCs with distinct isotypes and possible immunoglobulin-independent functions. Indeed, bone marrow now appears unique in housing PCs derived from multiple other organs. The mechanisms through which the bone marrow maintains PC survival long-term and the impact of their diverse origins on this process remain very active areas of research.
Collapse
Affiliation(s)
- David M Tarlinton
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Kotaki R, Moriyama S, Takahashi Y. Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflamm Regen 2023; 43:4. [PMID: 36631890 PMCID: PMC9834039 DOI: 10.1186/s41232-023-00255-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is ongoing because of the repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, highlighting the importance of developing vaccines for variants that may continue to emerge. In the present review, we discuss humoral immune responses against SARS-CoV-2 with a focus on the antibody breadth to the variants. Recent studies have revealed that the temporal maturation of humoral immunity improves the antibody potency and breadth to the variants after infection or vaccination. Repeated vaccination or infection further accelerates the expansion of the antibody breadth. Memory B cells play a central role in this phenomenon, as the reactivity of the B-cell antigen receptor (BCR) on memory B cells is a key determinant of the antibody potency and breadth recalled upon vaccination or infection. The evolution of memory B cells remarkably improves the reactivity of BCR to antigenically distinct Omicron variants, to which the host has never been exposed. Thus, the evolution of memory B cells toward the variants constitutes an immunological basis for the durable and broad control of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
34
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Trivalent inactivated influenza vaccine response and immunogenicity assessment after one week and three months in repeatedly vaccinated adults. Expert Rev Vaccines 2023; 22:826-838. [PMID: 37747798 DOI: 10.1080/14760584.2023.2262563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The influenza vaccine administrated every year is a recommended infection control procedure for individuals above the age of six months. However, the effectiveness of repeated annual vaccination is still an active research topic. Therefore, we investigated the vaccine immunogenicity in two independent groups: previously vaccinated versus non-vaccinated individuals at three time points; prior vaccination, one week and three months post vaccination. The assessment enabled us to evaluate the elicited immune responses and the durability of the induced protection in both groups. RESEARCH DESIGN AND METHODS A research study was conducted to assess the immunogenicity of a single dose of Trivalent Inactivated Influenza Vaccine (A/H1N1, A/H3N2, and B) in 278 healthy adults aged between 32 and 66 years. Almost half of the participants, 140 (50·36%), received influenza vaccination at least once precursor to past influenza seasons. One blood sample was taken prior to vaccination for complete blood analysis and baseline immunogenicity assessment. The selected study participants received a single vaccine dose on the first day, and then followed up for three months. Two blood samples were taken after one week and three months post vaccination, respectively, for vaccine immunogenicity assessment. RESULTS Before vaccination, the seroprotection, defined as a hemagglutination-inhibiting titer of =>1:40, was detected for the three vaccine virus strains in 20 previously vaccinated participants (14·29%) [8·95%, 21·2%]. We compared the overall vaccine response for the three virus strains using a normalized response score calculated from linearly transformed titer measurements; the score before vaccination was 84% higher in the previously vaccinated group and the mean difference between the two groups was statistically significant. Three months post-vaccination, we didn't find a significant difference in vaccine responses; the number of fully seroprotected individuals became 48 (34·29%) [26·48%, 42·77%] in the previously vaccinated group and 59 (42·75%) [34·37%, 51·45%] in the non-vaccinated group. The calculated response score was almost equal in both groups and the mean difference was no longer statistically significant. CONCLUSION Our findings suggest that a single dose of influenza vaccine is equally protective after three months for annually vaccinated adults and first-time vaccine receivers.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Institut Pasteur, CNRS UMR2000, Functional Genetics of Infectious Diseases Unit, Paris, France
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, Leuven, Leuven, KU, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
- Institut Pasteur, CNRS UMR2000, Ecology and Emergence of Arthropod-borne Pathogens Unit, Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
35
|
Single cell multi-omic reference atlases of non-human primate immune tissues reveals CD102 as a biomarker for long-lived plasma cells. Commun Biol 2022; 5:1399. [PMID: 36543997 PMCID: PMC9770566 DOI: 10.1038/s42003-022-04216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
In response to infection or immunization, antibodies are produced that provide protection against re-exposure with the same pathogen. These antibodies can persist at high titers for decades and are maintained by bone marrow-resident long-lived plasma cells (LLPC). However, the durability of antibody responses to immunization varies amongst vaccines. It is unknown what factors contribute to the differential longevity of serum antibody responses and whether heterogeneity in LLPC contributes to this phenomenon. While LLPC differentiation has been studied extensively in mice, little is known about this population in humans or non-human primates (NHP). Here, we use multi-omic single-cell profiling to identify and characterize the LLPC compartment in NHP. We identify LLPC biomarkers including the marker CD102 and show that CD102 in combination with CD31 identifies LLPC in NHP bone marrow. Additionally, we find that CD102 is expressed by LLPC in mouse and humans. These results further our understanding of the LLPC compartment in NHP, identify biomarkers of LLPC, and provide tissue-specific single cell references for future studies.
Collapse
|
36
|
Kardava L, Buckner CM, Moir S. B-Cell Responses to Sars-Cov-2 mRNA Vaccines. Pathog Immun 2022; 7:93-119. [PMID: 36655200 PMCID: PMC9836209 DOI: 10.20411/pai.v7i2.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Most vaccines against viral pathogens protect through the acquisition of immunological memory from long-lived plasma cells that produce antibodies and memory B cells that can rapidly respond upon an encounter with the pathogen or its variants. The COVID-19 pandemic and rapid deployment of effective vaccines have provided an unprecedented opportunity to study the immune response to a new yet rapidly evolving pathogen. Here we review the scientific literature and our efforts to understand antibody and B-cell responses to SARS-CoV-2 vaccines, the effect of SARSCoV-2 infection on both primary and secondary immune responses, and how repeated exposures may impact outcomes.
Collapse
Affiliation(s)
- Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Clarisa M. Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
37
|
Kwiatkowska KM, Mkindi CG, Nielsen CM. Human lymphoid tissue sampling for vaccinology. Front Immunol 2022; 13:1045529. [PMID: 36466924 PMCID: PMC9714609 DOI: 10.3389/fimmu.2022.1045529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 02/15/2024] Open
Abstract
Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development.
Collapse
Affiliation(s)
| | - Catherine G. Mkindi
- Department of Intervention and Clinical Trials, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Kinetic of the Antibody Response Following AddaVax-Adjuvanted Immunization with Recombinant Influenza Antigens. Vaccines (Basel) 2022; 10:vaccines10081315. [PMID: 36016202 PMCID: PMC9415944 DOI: 10.3390/vaccines10081315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.
Collapse
|
39
|
Long-term study of the human memory B cell pool reveals high stability and recurrent plasmablasts. Nat Immunol 2022; 23:1002-1003. [PMID: 35790891 DOI: 10.1038/s41590-022-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Koutsakos M, Ellebedy AH. Long Live the Plasma Cell: The Basis of Sustained Humoral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:3-4. [PMID: 35768156 DOI: 10.4049/jimmunol.2200121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “Humoral immunity due to long-lived plasma cells,” a pivotal article written by M. K. Slifka, R. Antia, J. K. Whitmire, and R. Ahmed, and published in Immunity, in 1998. https://pubmed.ncbi.nlm.nih.gov/9529153/. The Journal of Immunology, 2022, 209: 3–4.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO;
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO; and
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
41
|
Gunay G, Hamsici S, Lang GA, Lang ML, Kovats S, Acar H. Peptide Aggregation Induced Immunogenic Rupture (PAIIR). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105868. [PMID: 35599386 PMCID: PMC9313945 DOI: 10.1002/advs.202105868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Immunogenic cell death (ICD) arises when cells are under stress, and their membranes are damaged. They release damage-associated molecular patterns (DAMPs) that stimulate and drive the type and magnitude of the immune response. In the presence of an antigen, DAMPs ride the longevity and efficacy of antigen-specific immunity. Yet, no tool can induce the controlled ICD with predictable results. A peptide-based tool, [II], is designed that aggregates in the cell and causes cell membrane damage, generates ICD and DAMPs release on various cell types, and hence can act as an adjuvant. An influenza vaccine is prepared by combining [II] with influenza hemagglutinin (HA) subunit antigens. The results show that [II] induced significantly higher HA-specific immunoglobulin G1 (IgG1) and IgG2a antibodies than HA-only immunized mice, while the peptide itself did not elicit antibodies. This paper demonstrates the first peptide-aggregation induced immunogenic rupture (PAIIR) approach as a vaccine adjuvant. PAIIR is a promising adjuvant with a high potential to promote universal protection upon influenza HA vaccination.
Collapse
Affiliation(s)
- Gokhan Gunay
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Seren Hamsici
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Gillian A. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Mark L. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Susan Kovats
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
- Arthritis & Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOK73104USA
| | - Handan Acar
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| |
Collapse
|
42
|
Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts. Nat Immunol 2022; 23:1076-1085. [PMID: 35761085 PMCID: PMC9276532 DOI: 10.1038/s41590-022-01230-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Memory B cells persist for a lifetime and rapidly differentiate into antibody-producing plasmablasts and plasma cells upon antigen re-encounter. The clonal relationship and evolution of memory B cells and circulating plasmablasts is not well understood. Using single-cell sequencing combined with isolation of specific antibodies, we found that in two healthy donors, the memory B cell repertoire was dominated by large IgM, IgA and IgG2 clonal families, whereas IgG1 families, including those specific for recall antigens, were of small size. Analysis of multiyear samples demonstrated stability of memory B cell clonal families and revealed that a large fraction of recently generated plasmablasts was derived from long-term memory B cell families and was found recurrently. Collectively, this study provides a systematic description of the structure, stability and dynamics of the human memory B cell pool and suggests that memory B cells may be active at any time point in the generation of plasmablasts.
Collapse
|
43
|
Phung E, Chang LA, Mukhamedova M, Yang L, Nair D, Rush SA, Morabito KM, McLellan JS, Buchholz UJ, Mascola JR, Crank MC, Chen G, Graham BS, Ruckwardt TJ. Elicitation of pneumovirus-specific B cell responses by a prefusion-stabilized respiratory syncytial virus F subunit vaccine. Sci Transl Med 2022; 14:eabo5032. [PMID: 35731888 PMCID: PMC11340646 DOI: 10.1126/scitranslmed.abo5032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Respiratory syncytial virus (RSV) is a substantial cause of morbidity and mortality globally. A candidate RSV prefusion (pre-F)-stabilized subunit vaccine, DS-Cav1, has previously been shown to elicit potent and durable neutralizing activity in a phase 1 clinical trial in healthy adults. Here, we used fluorescently labeled probes and flow cytometry to evaluate the antigen specificity and phenotype of RSV F-specific B cells longitudinally after DS-Cav1 immunization. Peripheral blood mononuclear cells (PBMCs) collected at time points before the first immunization through the end of the trial at 44 weeks were assessed by flow cytometry. Our data demonstrate a rapid increase in the frequency of pre-F-specific IgG+ and IgA+ B cells after the first immunization and a modest increase after a second immunization at week 12. Nearly all F-specific B cells down-regulated CD21 and up-regulated the proliferation marker CD71 after the first immunization, with less pronounced activation after the second immunization. Memory B cells (CD27+CD21+) specific for pre-F remained elevated above baseline at 44 weeks after vaccination. DS-Cav1 vaccination also activated human metapneumovirus (HMPV) cross-reactive B cells capable of binding prefusion-stabilized HMPV F protein and increased HMPV F-binding antibodies and neutralizing activity for HMPV in some participants. In summary, vaccination with RSV pre-F resulted in the expansion and activation of RSV and HMPV F-specific B cells that were maintained above baseline for at least 10 months and could contribute to long-term pneumovirus immunity.
Collapse
Affiliation(s)
- Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: GlaxoSmithKline, Rockville, MD 20850, USA
| | - Lauren A. Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maryam Mukhamedova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deepika Nair
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A. Rush
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ursula J. Buchholz
- RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Institute for Asthma and Allergy, Chevy Chase, MD 20815, USA
| | - Grace Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Moderna, Cambridge, MA 02139, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
45
|
Hernandez-Davies JE, Dollinger EP, Pone EJ, Felgner J, Liang L, Strohmeier S, Jan S, Albin TJ, Jain A, Nakajima R, Jasinskas A, Krammer F, Esser-Kahn A, Felgner PL, Nie Q, Davies DH. Magnitude and breadth of antibody cross-reactivity induced by recombinant influenza hemagglutinin trimer vaccine is enhanced by combination adjuvants. Sci Rep 2022; 12:9198. [PMID: 35654904 PMCID: PMC9163070 DOI: 10.1038/s41598-022-12727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.
Collapse
Affiliation(s)
- Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Egest J Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
46
|
Hu W, Sjoberg PA, Fries AC, DeMarcus LS, Robbins AS. Waning Vaccine Protection against Influenza among Department of Defense Adult Beneficiaries in the United States, 2016–2017 through 2019–2020 Influenza Seasons. Vaccines (Basel) 2022; 10:vaccines10060888. [PMID: 35746496 PMCID: PMC9229659 DOI: 10.3390/vaccines10060888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to assess inactivated influenza vaccine effectiveness (VE) by time since vaccination in adults aged ≥ 18 years using a test-negative design. All data were obtained from the US Department of Defense Global Respiratory Pathogen Surveillance Program over four influenza seasons, from 2016–2017 through 2019–2020. Analyses were performed to estimate VE using a generalized linear mixed model with logit link and binomial distribution. The adjusted overall VE against any medically attended, laboratory-confirmed influenza decreased from 50% (95% confidence interval (CI): 41–58%) in adults vaccinated 14 to 74 days prior to the onset of influenza-like illness (ILI), to 39% (95% CI: 31–47%) in adults vaccinated 75 to 134 days prior to the onset of ILI, then to 17% (95% CI: 0–32%) in adults vaccinated 135 to 194 days prior to the onset of ILI. The pattern and magnitude of VE change with increasing time since vaccination differed by influenza (sub)types. Compared to VE against influenza A(H1N1)pdm09 and influenza B, the decrease of VE against influenza A(H3N2) was more pronounced with increasing time since vaccination. In conclusion, based on the analysis of 2536 influenza-positive cases identified from 7058 adults over multiple influenza seasons, the effectiveness of inactivated influenza vaccine wanes within 180 days after 14 days of influenza vaccination.
Collapse
Affiliation(s)
- Wenping Hu
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
- Correspondence:
| | - Paul A. Sjoberg
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
| | - Anthony C. Fries
- U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Dayton, OH 45433, USA;
| | - Laurie S. DeMarcus
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
| | - Anthony S. Robbins
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
| |
Collapse
|
47
|
Prabhu PR, Carter JJ, Galloway DA. B Cell Responses upon Human Papillomavirus (HPV) Infection and Vaccination. Vaccines (Basel) 2022; 10:vaccines10060837. [PMID: 35746445 PMCID: PMC9229470 DOI: 10.3390/vaccines10060837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Infection with human papillomavirus (HPV) is the necessary cause of cervical cancer. Availability of vaccines against HPV makes it a highly preventable disease. HPV vaccines act through type-specific neutralizing antibodies produced by antigen-specific plasma cells known as long-lived plasma cells (LLPC). However, just as any other vaccine, success of HPV vaccine is attributed to the immunologic memory that it builds, which is largely attained through generation and maintenance of a class of B cells named memory B cells (Bmem). Both LLPCs and Bmems are important in inducing and maintaining immune memory and it is therefore necessary to understand their role after HPV vaccination to better predict outcomes. This review summarizes current knowledge of B-cell responses following HPV vaccination and natural infection, including molecular signatures associated with these responses.
Collapse
|
48
|
Pillai S. Suboptimal Humoral Immunity in Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Viral Variant Generation. Clin Lab Med 2022; 42:75-84. [PMID: 35153049 PMCID: PMC8563339 DOI: 10.1016/j.cll.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes the underlying basis for the sup-optimal humoral immune response in coronavirus disease (COVID)-19 including the absence of evidence for affinity maturation in the vast majority of patients and the absence of germinal centers even in severe disease. Suboptimal humoral and cellular immunity may provide the optimal conditions for the generation and selection of viral variants.
Collapse
Affiliation(s)
- Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Boothby MR, Brookens SK, Raybuck AL, Cho SH. Supplying the trip to antibody production-nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol Immunol 2022; 19:352-369. [PMID: 34782762 PMCID: PMC8591438 DOI: 10.1038/s41423-021-00782-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID pandemic has refreshed and expanded recognition of the vital role that sustained antibody (Ab) secretion plays in our immune defenses against microbes and of the importance of vaccines that elicit Ab protection against infection. With this backdrop, it is especially timely to review aspects of the molecular programming that govern how the cells that secrete Abs arise, persist, and meet the challenge of secreting vast amounts of these glycoproteins. Whereas plasmablasts and plasma cells (PCs) are the primary sources of secreted Abs, the process leading to the existence of these cell types starts with naive B lymphocytes that proliferate and differentiate toward several potential fates. At each step, cells reside in specific microenvironments in which they not only receive signals from cytokines and other cell surface receptors but also draw on the interstitium for nutrients. Nutrients in turn influence flux through intermediary metabolism and sensor enzymes that regulate gene transcription, translation, and metabolism. This review will focus on nutrient supply and how sensor mechanisms influence distinct cellular stages that lead to PCs and their adaptations as factories dedicated to Ab secretion. Salient findings of this group and others, sometimes exhibiting differences, will be summarized with regard to the journey to a distinctive metabolic program in PCs.
Collapse
Affiliation(s)
- Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Rheumatology & Immunology Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA.
| | - Shawna K Brookens
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA
| |
Collapse
|
50
|
Chen Z, Gao X, Yu D. Longevity of vaccine protection: Immunological mechanism, assessment methods, and improving strategy. VIEW 2022. [DOI: 10.1002/viw.20200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| |
Collapse
|