1
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Fick A, Fick JLM, Swart V, van den Berg N. In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70169. [PMID: 40304719 PMCID: PMC12042882 DOI: 10.1111/tpj.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Plant Nucleotide-binding leucine-rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR-effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR-triggered immunity. In this study, NLR-effector protein complex structures were predicted using AlphaFold2-Multimer for all experimentally validated NLR-effector interactions reported in literature. Binding affinities- and energies were predicted using 97 machine learning models from Area-Affinity. We show that AlphaFold2-Multimer predicted structures have acceptable accuracy and can be used to investigate NLR-effector interactions in silico. Binding affinities for 58 NLR-effector complexes ranged between -8.5 and -10.6 log(K), and binding energies between -11.8 and -14.4 kcal/mol-1, depending on the Area-Affinity model used. For 2427 "forced" NLR-effector complexes, these estimates showed larger variability, enabling identification of novel NLR-effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies- and affinities for "true" interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR-effector interactions, applicable to all pathosystems. Finally, the NLR-Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant-pathogen resistance, advancing our understanding of plant immunity.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | | | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
3
|
Guo G, Bai K, Hou Y, Gong Z, Zhang H, Wu Q, Lu P, Li M, Dong L, Xie J, Chen Y, Zhang P, Zhu K, Li B, Li W, Dong L, Yang Y, Qiu D, Wang G, Ahn H, Zhao H, Yuan C, Shi W, Xue M, Yang L, Yu D, Zhao Y, Chen Y, Li H, Hu T, Han G, Jones JDG, Liu Z. The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1260-1276. [PMID: 39840722 PMCID: PMC11933841 DOI: 10.1111/pbi.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat. The resistance function of the RXL/Pm5e pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both RXL and Pm5e encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying RXL/Pm5e-mediated powdery mildew resistance and provides a new example of an NLR pair in wheat disease resistance.
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Kaihong Bai
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yikun Hou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhen Gong
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qiuhong Wu
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yongxing Chen
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Panpan Zhang
- Tea Research InstituteYunnan Academy of Agricultural SciencesKunmingYunnanChina
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Beibei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wenling Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Lei Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yijun Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dan Qiu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Gaojie Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - He Zhao
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Wenqi Shi
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Minfeng Xue
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Lijun Yang
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Dazao Yu
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Yusheng Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yuhang Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hongjie Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Tiezhu Hu
- Henan Institute of Science and TechnologyXinxiangHenan ProvinceChina
| | - Guan‐Zhu Han
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | | | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Hainan Seed Industry LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
4
|
Loyo CL, Grossman AD. A phage-encoded counter-defense inhibits an NAD-degrading anti-phage defense system. PLoS Genet 2025; 21:e1011551. [PMID: 40173202 PMCID: PMC11984713 DOI: 10.1371/journal.pgen.1011551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Bacteria contain a diverse array of genes that provide defense against predation by phages. Anti-phage defense genes are frequently located on mobile genetic elements and spread through horizontal gene transfer. Despite the many anti-phage defense systems that have been identified, less is known about how phages overcome the defenses employed by bacteria. The integrative and conjugative element ICEBs1 in Bacillus subtilis contains a gene, spbK, that confers defense against the temperate phage SPβ through an abortive infection mechanism. Using genetic and biochemical analyses, we found that SpbK is an NADase that is activated by binding to the SPβ phage portal protein YonE. The presence of YonE stimulates NADase activity of the TIR domain of SpbK and causes cell death. We also found that the SPβ-like phage Φ3T has a counter-defense gene that prevents SpbK-mediated abortive infection and enables the phage to produce viable progeny, even in cells expressing spbK. We made SPβ-Φ3T hybrid phages that were resistant to SpbK-mediated defense and identified a single gene in Φ3T (phi3T_120, now called nip for NADase inhibitor from phage) that was both necessary and sufficient to block SpbK-mediated anti-phage defense. We found that Nip binds to the TIR (NADase) domain of SpbK and inhibits NADase activity. Our results provide insight into how phages overcome bacterial immunity by inhibiting enzymatic activity of an anti-phage defense protein.
Collapse
Affiliation(s)
- Christian L. Loyo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
Lu P, Zhang G, Li J, Gong Z, Wang G, Dong L, Zhang H, Guo G, Su M, Wang K, Wang Y, Zhu K, Wu Q, Chen Y, Li M, Huang B, Li B, Li W, Dong L, Hou Y, Cui X, Fu H, Qiu D, Yuan C, Li H, Zhou JM, Han GZ, Chen Y, Liu Z. A wheat tandem kinase and NLR pair confers resistance to multiple fungal pathogens. Science 2025; 387:1418-1424. [PMID: 40146830 DOI: 10.1126/science.adp5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
Tandem kinase proteins underlie the innate immune systems of cereal plants, but how they initiate plant immune responses remains unclear. This report identifies wheat protein wheat tandem NBD 1 (WTN1), a noncanonical nucleotide-binding leucine-rich repeat (NLR) receptor featuring tandem nucleotide binding adaptor shared by APAF-1, plant R proteins, and CED-4 (NB-ARC) domains, required for WTK3-mediated disease resistance. Both WTK3 and its allelic variant Rwt4-known for conferring resistance to wheat powdery mildew and blast, respectively-are capable of recognizing the blast effector PWT4. They activate WTN1 to form calcium-permeable channels, akin to ZAR1 and Sr35. Thus, tandem kinase proteins and their associated NLRs operate as "sensor-executor" pairs against fungal pathogens. Additionally, evolutionary analyses reveal a coevolutionary trajectory of the tandem kinase-NLR module, highlighting their cooperative role in triggering plant immunity.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Gaojie Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Yongxing Chen
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoge Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yikun Hou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkui Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Jian-Min Zhou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
| |
Collapse
|
6
|
Demont H, Remblière C, Culerrier R, Sauvaget M, Deslandes L, Bernoux M. Downstream signaling induced by several plant Toll/interleukin-1 receptor-containing immune proteins is stable at elevated temperature. Cell Rep 2025; 44:115326. [PMID: 39982818 DOI: 10.1016/j.celrep.2025.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Plant immunity and, in particular, immune responses induced by nucleotide-binding leucine-rich repeat receptors (NLRs) are often dampened above the optimal plant's growth range, but the underlying molecular mechanism remains elusive. N-terminal Toll/interleukin-1 receptor (TIR) domains are self-sufficient to trigger immune signaling. We showed that the conditional activation of two well-characterized TIR-containing NLRs (TNLs) or their corresponding TIR domains alone induce the same signaling route at permissive temperature (ENHANCED DISEASE SUSCEPTIBLITY 1 [EDS1]/helper NLRs that display an RPW8-like N-terminal CCR domain [RNL] requirement and activation of the salicylic acid sector) in Arabidopsis. Yet, this signaling pathway is maintained under elevated temperatures (30°C) when induced by TIRs only but not full-length TNLs. This work underlines the need to further study how NLRs are impacted by an increase in temperature, which is particularly important to improve the resilience of plant disease resistance in a warming climate.
Collapse
Affiliation(s)
- Héloïse Demont
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Céline Remblière
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Raphaël Culerrier
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Madeline Sauvaget
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
7
|
Tian H, Zhang Y. Activation and inhibition of helper NLRs in TIR signaling of higher plants. Sci Bull (Beijing) 2025:S2095-9273(25)00234-8. [PMID: 40118723 DOI: 10.1016/j.scib.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Chakravarti A, Patel DJ. Structure-guided insights into TIR-mediated bacterial and eukaryotic immunity. Structure 2025; 33:421-434. [PMID: 39837332 DOI: 10.1016/j.str.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Within the course of evolution, TIR (Toll/interleukin-1 receptor) domains acquired a myriad of functional specificities. This has significantly added to their well-established roles in innate immune signaling. These additional functions include nicotinamide adenine dinucleotide (NAD)(P) hydrolase, RNA/DNA nuclease (in plants), CN (cyclic nucleotide) cyclase, and base exchanger activities. Owing to these diverse functions, TIR domains can either generate CN second messengers or act as effectors, many of which can accomplish depletion of the essential metabolite NAD+, leading to cell death prior to pathogen-induced cell lysis. Despite their functional diversity, activated TIR domains have retained their ability to form multimers that adopt varying topologies, thereby creating composite NADase active sites between adjacent TIR monomers. This structure-based review on the functional diversity of TIR domains focuses primarily across bacterial antiphage defense systems while also addressing their eukaryotic counterparts, throughout highlighting multimerization, including filament formation, as the conserved topological characteristic.
Collapse
Affiliation(s)
- Arpita Chakravarti
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Hao W, Wu Y, Guo Q, Wu J, Lin M, Hu Q, Tandayu E, Lu J, Si H, Ma C, Wang X, Chen C. Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:63. [PMID: 40021553 DOI: 10.1007/s00122-025-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
KEY MESSAGE A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F2 population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjie Wu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jingchun Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Meng Lin
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qiwei Hu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Erwin Tandayu
- Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Xiao Y, Wu X, Wang Z, Ji K, Zhao Y, Zhang Y, Wan L. Activation and inhibition mechanisms of a plant helper NLR. Nature 2025; 639:438-446. [PMID: 39939758 DOI: 10.1038/s41586-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors sense pathogen effectors and form resistosomes to confer immunity1. Some sensor NLR resistosomes produce small molecules to induce formation of a heterotrimer complex with two lipase-like proteins, EDS1 and SAG101, and a helper NLR called NRG1 (refs. 2,3). Activation of sensor NLR resistosomes also triggers NRG1 oligomerization and resistosome formation at the plasma membrane4,5. We demonstrate that the Arabidopsis AtEDS1-AtSAG101-AtNRG1A heterotrimer formation is stabilized by the AtNRG1A loss-of-oligomerization mutant L134E5,6. We report structures of AtEDS1-AtSAG101-AtNRG1A L134E and AtEDS1-AtSAG101-AtNRG1C heterotrimers with similar assembly mechanisms. AtNRG1A signalling is activated by the interaction with the AtEDS1-AtSAG101 heterodimer in complex with their small-molecule ligand. The truncated AtNRG1C maintains core interacting domains of AtNRG1A but develops further interactions with AtEDS1-AtSAG101 to outcompete AtNRG1A. Moreover, AtNRG1C lacks an N-terminal signalling domain and shows nucleocytoplasmic localization, facilitating its sequestration of AtEDS1-AtSAG101, which is also nucleocytoplasmic. Our study shows the activation and inhibition mechanisms of a plant helper NLR.
Collapse
Affiliation(s)
- Yinyan Xiao
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian Wu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zaiqing Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Ji
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Li Wan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Prigozhin DM, Sutherland CA, Rangavajjhala S, Krasileva KV. Majority of the Highly Variable NLRs in Maize Share Genomic Location and Contain Additional Target-Binding Domains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:275-284. [PMID: 39013614 DOI: 10.1094/mpmi-05-24-0047-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nucleotide-binding, leucine-rich repeat (LRR) proteins (NLRs) are a major class of immune receptors in plants. NLRs include both conserved and rapidly evolving members; however, their evolutionary trajectory in crops remains understudied. Availability of crop pan-genomes enables analysis of the recent events in the evolution of this highly complex gene family within domesticated species. Here, we investigated the NLR complement of 26 nested association mapping (NAM) founder lines of maize. We found that maize has just four main subfamilies containing rapidly evolving highly variable NLR (hvNLR) receptors. Curiously, three of these phylogenetically distinct hvNLR lineages are located in adjacent clusters on chromosome 10. Members of the same hvNLR clade show variable expression and methylation across lines and tissues, which is consistent with their rapid evolution. By combining sequence diversity analysis and AlphaFold2 computational structure prediction, we predicted ligand-binding sites in the hvNLRs. We also observed novel insertion domains in the LRR regions of two hvNLR subfamilies that likely contribute to target recognition. To make this analysis accessible, we created NLRCladeFinder, a Google Colaboratory notebook, that accepts any newly identified NLR sequence, places it in the evolutionary context of the maize pan-NLRome, and provides an updated clade alignment, phylogenetic tree, and sequence diversity information for the gene of interest. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Sanjay Rangavajjhala
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
12
|
Wu (吴家旭) J, Mukhopadhyay S, Pérez-López E. Resistance gene enrichment sequencing refines the Brassica napus NLRome. PLANT PHYSIOLOGY 2025; 197:kiae631. [PMID: 39603796 PMCID: PMC11884775 DOI: 10.1093/plphys/kiae631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Resistance gene enrichment sequencing produces a complete repertoire of nucleotide-binding leucine-rich repeat receptors for Brassica napus, overcoming prior limitations in gene annotation.
Collapse
Affiliation(s)
- Jiaxu Wu (吴家旭)
- Départment de Phytologie, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada G1V 0A6
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Québec City, QC, Canada G1V 0A6
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada G1V 0A6
- L’Institute EDS, Université Laval, Québec City, QC, Canada G1V 0A6
| | - Soham Mukhopadhyay
- Départment de Phytologie, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada G1V 0A6
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Québec City, QC, Canada G1V 0A6
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada G1V 0A6
- L’Institute EDS, Université Laval, Québec City, QC, Canada G1V 0A6
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada G1V 0A6
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Québec City, QC, Canada G1V 0A6
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada G1V 0A6
- L’Institute EDS, Université Laval, Québec City, QC, Canada G1V 0A6
| |
Collapse
|
13
|
Zhong C, Li W, Zhang X, Zhang D, Wen Z, Song W, Jiang Z, Gao Z, Guo H, Bi G, Liu Z, Li D, Dinesh-Kumar SP, Zhang Y. A cell wall-associated kinase phosphorylates NLR immune receptor to negatively regulate resistosome formation. NATURE PLANTS 2025; 11:561-579. [PMID: 40119183 DOI: 10.1038/s41477-025-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Plants deploy intracellular nucleotide-binding leucine-rich repeats (NLRs) to detect pathogen effectors and initiate immune responses. Although the activation mechanism of some plant NLRs forming resistosomes has been elucidated, whether NLR resistosome assembly is regulated to fine-tune immunity remains enigmatic. Here we used an antiviral coiled coil-nucleotide-binding site-leucine rich repeat, Barley Stripe Resistance 1 (BSR1), as a model and demonstrate that BSR1 is phosphorylated. Using a proximity labelling approach, we identified a wall-associated kinase-like protein 20 (WAKL20) which negatively regulates BSR1-mediated immune responses by directly phosphorylating the Ser470 residue in the NB-ARC domain of BSR1. Mechanistically, Ser470 phosphorylation results in a steric clash of intramolecular domains of BSR1, thereby compromising BSR1 oligomerization. The phosphorylation site is conserved among multiple plant NLRs and our results show that WAKL20 participates in other NLR-mediated immune responses besides BSR1. Together, our data reveal phosphorylation as a mechanism for modulating plant resistosome assembly, and provide new insight into NLR-mediated plant immunity.
Collapse
Affiliation(s)
- Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hailong Guo
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Lim SM, Kim YH, Yun YB, Yang DH, Yi H, Song SK. Functional analysis of AtTX11/12 TIR-domain proteins identifies key residues for basal and temperature-insensitive growth inhibition. Biochem Biophys Res Commun 2025; 749:151357. [PMID: 39842332 DOI: 10.1016/j.bbrc.2025.151357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Plant Toll/interleukin-1 receptor (TIR) domains function as NADases and ribosyl-transferases generating second messengers that trigger hypersensitive responses. TIR-X (TX) proteins contain a TIR domain with or without various C-terminal domains and lack the canonical nucleotide-binding site and leucine-rich repeat domain. In a previous study, we identified an Arabidopsis thaliana activation-tagging line with severe growth defects caused by the overexpression of the AtTX12 gene. Here, we investigated the domains and specific amino acid residues required for the growth inhibition activity of AtTX12 and its homolog AtTX11. C-terminal truncation analysis revealed that the AtTX12C173Δ mutant, lacking 30 C-terminal amino acids, retained partial activity, whereas the C163Δ, lacking 40 amino acids, lost activity entirely indicating that the fifth α-helix within the TIR domain is critical for activity, while the sixth α-helix in the extra domain is dispensable. The substitution mutagenesis revealed that residues essential for enzymatic activities (E79 for NADase, C76 for 2',3'-cAMP/cGMP synthetase), self-association (H25, E43, K142/G144, K150), and undefined roles (I97) were crucial for growth inhibition activity with varying effects. Temperature sensitivity tests revealed that the AtTX12 N36D mutant, which exhibited moderately strong growth inhibition activity at normal temperatures, became inactive under high-temperature conditions in which Enhanced Disease Susceptibility 1 (EDS1) is almost non-functional. In contrast, wild-type AtTX12 retained activity under elevated temperatures, implicating N36 in maintaining temperature-insensitive functionality. Furthermore, a slightly reduced growth inhibition phenotype induced by AtTX12 overexpression in the eds1 mutant was consistently observed under both normal and high temperatures. These results suggest that AtTX12-mediated growth inhibition integrates EDS1-dependent (temperature-sensitive) and EDS1-independent (temperature-insensitive) pathways. Our findings suggest that attenuated AtTX11/12 mutants could be used to optimize the growth-defense trade-off, enhancing plant defense with minimal growth penalties.
Collapse
Affiliation(s)
- Su Min Lim
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yo Han Kim
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Young Bin Yun
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Da Hyeong Yang
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hankuil Yi
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang-Kee Song
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
15
|
Seong K, Wei W, Sent SC, Vega B, Dee A, Ramirez-Bernardino G, Kumar R, Parra L, Saur IML, Krasileva K. Resurrection of the Plant Immune Receptor Sr50 to Overcome Pathogen Immune Evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.07.607039. [PMID: 39149390 PMCID: PMC11326300 DOI: 10.1101/2024.08.07.607039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Pathogen-driven plant diseases cause significant crop losses worldwide. The introgression of intracellular nucleotide-binding leucine-rich repeat receptor (NLR) genes into elite crop cultivars is a common strategy for disease control, yet pathogens rapidly evolve to evade NLR-mediated immunity. The NLR gene Sr50 protects wheat against stem rust, a devastating disease caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt). However, mutations in AvrSr50 allowed Pgt to evade Sr50 recognition, leading to resistance breakdown. Advances in protein structure modeling can enable targeted NLR engineering to restore recognition of escaped effectors. Here, we combined iterative computational structural analyses and site-directed mutagenesis to engineer Sr50 recognition of AvrSr50QCMJC, a Pgt effector variant that evades wild-type Sr50 detection. Derived by molecular docking, our initial structural model identified the K711D substitution in Sr50, which partially restored AvrSr50QCMJC recognition. Enhancing Sr50K711D expression via strong promoters compensated for weak recognition and restored robust immune responses. Further structural refinements led to the generation of five double and two triple receptor mutants. These engineered mutants, absent in nature, showed robust dual recognition for AvrSr50 and AvrSr50QCMJC in both Nicotiana benthamiana and wheat protoplasts. Notably, the K711D substitution was essential and synergistic with the additional substitutions for AvrSr50QCMJC recognition, demonstrating protein epistasis. Furthermore, this single substitution altered AlphaFold 2 predictions, enabling accurate modeling of the Sr50K711D-AvrSr50 complex structure, consistent with our final structural hypothesis. Collectively, this study outlines a framework for NLR engineering to counteract pathogen adaptation and provides novel Sr50 variants with potential for stem rust resistance.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sophie C Sent
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Brandon Vega
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Amanda Dee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Rakesh Kumar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lorena Parra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Isabel ML Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| |
Collapse
|
16
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Zhang Q, Gao D, Tian L, Feussner K, Li B, Yang L, Yang Q, Zhang Y, Li X, Feussner I, Xu F. Toll/interleukin-1 receptor-only genes contribute to immune responses in maize. PLANT PHYSIOLOGY 2025; 197:kiaf030. [PMID: 39843224 DOI: 10.1093/plphys/kiaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR nucleotide-binding leucine-rich repeat-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are 3 conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3. A genome-wide scan for TIR genes and comparative analysis revealed that these genes exhibit low sequence diversity and do not show copy number variation among 26 diverse inbred lines. ZmTIR1 and ZmTIR3, but not ZmTIR2, specifically trigger cell death and defense gene expression when overexpressed in Nicotiana benthamiana leaves. These responses depend on the critical glutamic acid and cysteine residues predicted to be essential for TIR-mediated NADase and 2',3'-cAMP/cGMP synthetase activity, respectively, as well as the key TIR downstream regulator Enhanced Disease Susceptibility 1 (EDS1). Overexpression of ZmTIR3 in N. benthamiana produces signaling molecules, including 2'cADPR, 2',3'-cAMP, and 2',3'-cGMP, a process that requires the enzymatic glutamic acid and cysteine residues of ZmTIR3. ZmTIR expression in maize is barely detectable under normal conditions but is substantially induced by different pathogens. Importantly, the maize Zmtir3 knockout mutant exhibits enhanced susceptibility to the fungal pathogen Cochliobolus heterostrophus, highlighting the role of ZmTIR3 in maize immunity. Overall, our results unveil the function of the maize ZmTIRs. We propose that the pathogen-inducible ZmTIRs play an important role in maize immunity, likely through their enzymatic activity and via EDS1-mediated signaling.
Collapse
Affiliation(s)
- Qiang Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Derong Gao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lei Tian
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Bin Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen 37077, Germany
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Tan YY, Liew YY, Lee RRQ, Castel B, Chan NM, Wan WL, Zhang Y, Hu D, Chan P, Kim ST, Chae E. Generation of Inheritable A-to-G Transitions Using Adenine Base Editing and NG-PAM Cas9 in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:30-42. [PMID: 39585742 DOI: 10.1094/mpmi-10-24-0127-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Towards precise genome editing, base editors have been developed by fusing catalytically compromised Cas9 with deaminase components, mediating C-to-T (cytosine base editors) or A-to-G (adenine base editors) transition. We developed a set of vectors consisting of a 5'-NG-3' PAM-recognizing variant of SpCas9 with adenosine deaminases TadA7.10 or TadA8e. Using a phenotype-based screen in Arabidopsis thaliana targeting multiple PDS3 intron splice sites, we achieved up to 81% somatic A-to-G editing in primary transformants at a splice acceptor site with NGG PAM, while 35% was achieved for the same target adenine with NGA PAM. Among tested vectors, pECNUS4 (Addgene #184887), carrying TadA8e, showed the highest adenine base editor (ABE) efficiency. With pECNUS4, we recreated a naturally occurring allele of DANGEROUS MIX3 (DM3) in two generations, transgene-free, for NGC PAM. We also simultaneously base-edited four redundant DM1/SSI4 homologs, encoding nucleotide-binding leucine-rich repeat (NLR) proteins, using a single gRNA with NGA PAM targeting the conserved yet functionally crucial P-loop motif of NLR proteins. We found fixation of A-to-G in three NLR genes for all three possible adenine sites within base-editing window 3-9, as the edited genes segregate in T2. Multigene targeting succeeded in rescuing the previously reported autoimmune phenotype in two generations. Mediating desired ABE on seven NLR genes simultaneously was successful as well; above 77% editing was achieved in six of the seven possible targets in a T1 plant, with the remaining having a moderately high (32%) editing. ABE application to specifically inactivate functional motifs is anticipated to expedite the discovery of novel roles for proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi Yun Tan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yin Yin Liew
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Nga Man Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yizhong Zhang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Donghui Hu
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Persis Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
19
|
Wang H, Gao X, Kong Y, Jia Z, Qiao L, Yang B. Puccinia striiformis Effector PNPi Suppresses TaIAA14 Expression to Inhibit Host Cell Death Response. MOLECULAR PLANT PATHOLOGY 2025; 26:e70063. [PMID: 39980173 PMCID: PMC11842466 DOI: 10.1111/mpp.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Fungal pathogens secrete effectors that suppress the hypersensitive response (HR) of the host, characterised by programmed cell death, facilitating colonisation. However, how effectors manipulate host cell death remains poorly understood. In this study, we discovered that the Puccinia striiformis effector PNPi (Puccinia NPR1 interactor) suppressed BAX-induced cell death in Nicotiana benthamiana. This virulence was mediated by the FtsN domain of PNPi, and an enhanced suppression effect was observed when Ser129 was mutated into arginine. Further RNA-sequencing analysis revealed that auxin signalling was disturbed, with the auxin-responsive protein IAA29-like (NbIAA29) being downregulated during cell death suppression by PNPi. Exogenous application of auxins alleviated cell death suppression in N. benthamiana. Silencing NbIAA29 enhanced the PNPi-induced suppression; however, this effect was reduced in NbIAA29-silenced plants pretreated with auxins. Additionally, we confirmed the in vivo interaction between PNPi and TaIAA14, which is the homologous gene of NbIAA29 in wheat. Knocking down TaIAA14 through virus-induced gene silencing significantly increased the fungal development and reduced wheat cell death response. Overall, these results indicate that the P. striiformis effector PNPi suppresses the cell death response by targeting TaIAA14 to facilitate infection, advancing our understanding of how P. striiformis effectors manipulate host immunity and providing a theoretical basis for new strategies of sustainable disease control.
Collapse
Affiliation(s)
- Huiyutang Wang
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Xue Gao
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Yixi Kong
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Zhiqiang Jia
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Liang Qiao
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Baoju Yang
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
20
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Leng Y, Kümmel F, Zhao M, Molnár I, Doležel J, Logemann E, Köchner P, Xi P, Yang S, Moscou MJ, Fiedler JD, Du Y, Steuernagel B, Meinhardt S, Steffenson BJ, Schulze-Lefert P, Zhong S. A barley MLA immune receptor is activated by a fungal nonribosomal peptide effector for disease susceptibility. THE NEW PHYTOLOGIST 2025; 245:1197-1215. [PMID: 39641654 DOI: 10.1111/nph.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
The barley Mla locus contains functionally diversified genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) and confer strain-specific immunity to biotrophic and hemibiotrophic fungal pathogens. In this study, we isolated a barley gene Scs6, which is an allelic variant of Mla genes but confers susceptibility to the isolate ND90Pr (BsND90Pr) of the necrotrophic fungus Bipolaris sorokiniana. We generated Scs6 transgenic barley lines and showed that Scs6 is sufficient to confer susceptibility to BsND90Pr in barley genotypes naturally lacking the receptor. The Scs6-encoded NLR (SCS6) is activated by a nonribosomal peptide (NRP) effector produced by BsND90Pr to induce cell death in barley and Nicotiana benthamiana. Domain swaps between MLAs and SCS6 reveal that the SCS6 leucine-rich repeat domain is a specificity determinant for receptor activation by the NRP effector. Scs6 is maintained in both wild and domesticated barley populations. Our phylogenetic analysis suggests that Scs6 is a Hordeum-specific innovation. We infer that SCS6 is a bona fide immune receptor that is likely directly activated by the nonribosomal peptide effector of BsND90Pr for disease susceptibility in barley. Our study provides a stepping stone for the future development of synthetic NLR receptors in crops that are less vulnerable to modification by necrotrophic pathogens.
Collapse
Affiliation(s)
- Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Mingxia Zhao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - István Molnár
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Elke Logemann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Petra Köchner
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pinggen Xi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shengming Yang
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Matthew J Moscou
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Jason D Fiedler
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Yang Du
- Department of Computer Systems and Software Engineering, Valley City State University, Valley City, ND, 58072, USA
| | - Burkhard Steuernagel
- John Innes Centre, Computational and Systems Biology, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Meinhardt
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
22
|
Huang S, Li E, Jia F, Han Z, Chai J. Assembly and functional mechanisms of plant NLR resistosomes. Curr Opin Struct Biol 2025; 90:102977. [PMID: 39808854 DOI: 10.1016/j.sbi.2024.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens. Over the past few years, our understanding of NLR biology has significantly advanced, particularly in the structural and biochemical aspects of the NLR resistosomes. Here, we highlight the recent advancements in the structural knowledge of how NLR resistosomes are activated and assembled, and how the structural knowledge provides insights into the biochemical functions of these NLR resistosomes, which converge on Ca2+ signals. Signaling mechanisms of the resistosomes that underpin plant immunity are also briefly discussed.
Collapse
Affiliation(s)
- Shijia Huang
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Ertong Li
- School of Pharmaceutical Sciences, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450000, China.
| | - Fangshuai Jia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
23
|
Smith M, Jones JT, Hein I. Resistify: A Novel NLR Classifier That Reveals Helitron-Associated NLR Expansion in Solanaceae. Bioinform Biol Insights 2025; 19:11779322241308944. [PMID: 39845701 PMCID: PMC11752215 DOI: 10.1177/11779322241308944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Nucleotide-binding domain leucine-rich repeat (NLR) proteins are a key component of the plant innate immune system. In plant genomes, NLRs exhibit considerable presence/absence variation and sequence diversity. Recent advances in sequencing technologies have made the generation of high-quality novel plant genome assemblies considerably more straightforward. Accurately identifying NLRs from these genomes is a prerequisite for improving our understanding of NLRs and identifying novel sources of disease resistance. While several tools have been developed to predict NLRs, they are hampered by low accuracy, speed, and availability. Here, the NLR annotation tool Resistify is presented. Resistify is an easy-to-use, rapid, and accurate tool to identify and classify NLRs from protein sequences. Applying Resistify to the RefPlantNLR database demonstrates that it can correctly identify NLRs from a diverse range of species. Applying Resistify in combination with tools to identify transposable elements to a panel of Solanaceae genomes reveals a previously undescribed association between NLRs and Helitron transposable elements.
Collapse
Affiliation(s)
- Moray Smith
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Biology, University of St Andrews, St Andrews, UK
| | - John T Jones
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Biology, University of St Andrews, St Andrews, UK
| | - Ingo Hein
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
24
|
Wu N, Jiang W, Xiang Z, Asghar R, Akkaya MS. Assessment of Self-Activation and Inhibition of Wheat Coiled-Coil Domain Containing NLR Immune Receptor Yr10 CG. PLANTS (BASEL, SWITZERLAND) 2025; 14:278. [PMID: 39861631 PMCID: PMC11768854 DOI: 10.3390/plants14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR Yr10CG, a previously proposed candidate for the Yr10 resistance gene. Though recent studies have identified YrNAM as the true Yr10 gene, Yr10CG remains an important NLR in understanding NLR-mediated immunity in wheat. In this study, we found that the overexpression of either the full-length Yr10CG or its CC domain in Nicotiana benthamiana did not trigger cell death, suggesting a robust autoinhibitory mechanism within Yr10CG. However, we observed that mutations in the conserved MHD motif, specifically D502G, activated Yr10CG and induced cell death. Structural modeling indicated that this mutation disrupted key interactions within the MHD motif, promoting local flexibility and activation. We further explored the effector recognition potential of Yr10CG by creating chimeric proteins with Sr50 domains, revealing that both the NB-ARC and LRR domains are necessary for effector recognition, while the CC domain likely functions in downstream immune signaling. Additionally, disrupting membrane localization through an L11E mutation abolished Yr10CG self-activation, suggesting a requirement for membrane association in immune activation. Our findings contribute to the understanding of CC-NLR activation and autoinhibition mechanisms, highlighting the potential of Yr10CG in NLR engineering for crop resistance improvement.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Wanqing Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Raheel Asghar
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| |
Collapse
|
25
|
Manik MK, Pan M, Xiao L, Gu W, Kim H, Pospich S, Hedger A, Vajjhala PR, Lee MYL, Qian X, Landsberg MJ, Ve T, Nanson JD, Raunser S, Stacey KJ, Wu H, Kobe B. Structural basis for TIR domain-mediated innate immune signaling by Toll-like receptor adaptors TRIF and TRAM. Proc Natl Acad Sci U S A 2025; 122:e2418988122. [PMID: 39786929 PMCID: PMC11745336 DOI: 10.1073/pnas.2418988122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear. Here, we present cryo-EM structures of filaments formed by TRIF and TRAM TIR domains at resolutions of 3.3 Å and 5.6 Å, respectively. Both structures reveal two-stranded parallel helical arrangements. Functional studies underscore the importance of intrastrand interactions, mediated by the BB-loop, and interstrand interactions in TLR4-mediated signaling. We also report the crystal structure of the monomeric TRAM TIR domain bearing the BB loop mutation C117H, which reveals conformational differences consistent with its inactivity. Our findings suggest a unified signaling mechanism by the TIR domains of the four signaling TLR adaptors MyD88, MAL, TRIF, and TRAM and reveal potential therapeutic targets for immunity-related disorders.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Signal Transduction/immunology
- Immunity, Innate
- Humans
- Protein Domains
- Cryoelectron Microscopy
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Toll-Like Receptor 4/metabolism
- Toll-Like Receptor 4/chemistry
- Toll-Like Receptor 4/immunology
- Myeloid Differentiation Factor 88/metabolism
- Myeloid Differentiation Factor 88/chemistry
- Myeloid Differentiation Factor 88/genetics
- Toll-Like Receptors/metabolism
- Toll-Like Receptors/immunology
- HEK293 Cells
- Crystallography, X-Ray
- Models, Molecular
- Adaptor Proteins, Signal Transducing
Collapse
Affiliation(s)
- Mohammad K. Manik
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Mengqi Pan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund44227, Germany
| | - Andrew Hedger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Morris Y. L. Lee
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Xiaoqi Qian
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD4215, Australia
| | - Jeffrey D. Nanson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW2678, Australia
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund44227, Germany
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
26
|
Sia J, Zhang W, Cheng M, Bogdan P, Cook DE. Machine learning-based identification of general transcriptional predictors for plant disease. THE NEW PHYTOLOGIST 2025; 245:785-806. [PMID: 39573924 DOI: 10.1111/nph.20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 12/20/2024]
Abstract
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets. The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction.
Collapse
Affiliation(s)
- Jayson Sia
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Mingxi Cheng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center for Complex Particle Systems (COMPASS), University of Southern California, Los Angeles, USA
| | - David E Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
27
|
Li Y, Gou X, Ma R, Zhang P, Ansabayeva A, Shi Q, Liu Z, Meng Y, Shan W. miR158a negatively regulates plant resistance to Phytophthora parasitica by repressing AtTN7 that requires EDS1-PAD4-ADR1 complex in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17194. [PMID: 39636666 DOI: 10.1111/tpj.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Small RNAs are involved in diverse cellular processes, including plant immunity to pathogens. Here, we report that miR158a negatively regulates plant immunity to the oomycete pathogen Phytophthora parasitica in Arabidopsis thaliana. By performing real-time quantitative PCR, transient expression, and RNA ligase-mediated 5' rapid amplification of cDNA ends assays, we demonstrate that miR158a downregulates AtTN7 expression by cleaving its 3'-untranslated region. AtTN7 positively affects plant immunity and encodes a truncated intracellular nucleotide-binding site and leucine-rich repeat receptor containing the Toll/interleukin-1 receptor. AtTN7 can degrade oxidized forms of nicotinamide adenine dinucleotide (NAD+). Further genetic and molecular analyses reveal that the Enhanced Disease Susceptibility 1-Phytoalexin Deficient 4-Activated Disease Resistance 1 complex is required for AtTN7-mediated immunity. ADR1-dependent Ca2+ influx is crucial for activating salicylic acid signaling to condition AtTN7-triggered immunity. Our study uncovers the immune roles and regulatory mechanisms of miR158a and its target AtTN7. Both miR158a-downregulation and AtTN7-overexpression lead to enhanced plant resistance to P. parasitica without affecting plant growth phenotypes, suggesting their application potentials and the utilization of miRNAs in identifying novel immune genes for the development of plant germplasm resources with enhanced disease resistance.
Collapse
Affiliation(s)
- Yilin Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruize Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peiling Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Assiya Ansabayeva
- Department of Agronomy, A. Baitursynov Kostanay Regional University, Kostanay, 110000, Republic of Kazakhstan
| | - Qingyao Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zeming Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
28
|
Rao W, Ma T, Cao J, Zhang Y, Chen S, Lin S, Liu X, He G, Wan L. Recognition of a salivary effector by the TNL protein RCSP promotes effector-triggered immunity and systemic resistance in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:150-168. [PMID: 39474762 DOI: 10.1111/jipb.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
Insects secret chemosensory proteins (CSPs) into plant cells as potential effector proteins during feeding. The molecular mechanisms underlying how CSPs activate plant immunity remain largely unknown. We show that CSPs from six distinct insect orders induce dwarfism when overexpressed in Nicotiana benthamiana. Agrobacterium-mediated transient expression of Nilaparvata lugens CSP11 (NlCSP11) triggered cell death and plant dwarfism, both of which were dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), N requirement gene 1 (NRG1) and SENESCENCE-ASSOCIATED GENE 101 (SAG101), indicating the activation of effector-triggered immunity (ETI) in N. benthamiana. Overexpression of NlCSP11 led to stronger systemic resistance against Pseudomonas syringae DC3000 lacking effector HopQ1-1 and tobacco mosaic virus, and induced higher accumulation of salicylic acid (SA) in uninfiltrated leaves compared to another effector XopQ that is recognized by a Toll-interleukin-1 receptor (TIR) domain nucleotide-binding leucine-rich repeat receptor (TNL) called ROQ1 in N. benthamiana. Consistently, NlCSP11-induced dwarfism and systemic resistance, but not cell death, were abolished in N. benthamiana transgenic line expressing the SA-degrading enzyme NahG. Through large-scale virus-induced gene silencing screening, we identified a TNL protein that mediates the recognition of CSPs (RCSP), including aphid effector MP10 that triggers resistance against aphids in N. benthamiana. Co-immunoprecipitation, bimolecular fluorescence complementation and AlphaFold2 prediction unveiled an interaction between NlCSP11 and RCSP. Interestingly, RCSP does not contain the conserved catalytic glutamic acid in the TIR domain, which is required for TNL function. Our findings point to enhanced ETI and systemic resistance by a TNL protein via hyperactivation of the SA pathway. Moreover, RCSP is the first TNL identified to recognize an insect effector.
Collapse
Affiliation(s)
- Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Ma
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayuan Cao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajun Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu Lin
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Fang N, Jia C, Chen R, An J, Kang Z, Liu J. The wheat CC-NBS-LRR protein TaRGA3 confers resistance to stripe rust by suppressing ascorbate peroxidase 6 activity. PLANT PHYSIOLOGY 2024; 197:kiae603. [PMID: 39556767 DOI: 10.1093/plphys/kiae603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Nannan Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Conghui Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruolin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiarui An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
30
|
Yu H, Xu W, Chen S, Wu X, Rao W, Liu X, Xu X, Chen J, Nishimura MT, Zhang Y, Wan L. Activation of a helper NLR by plant and bacterial TIR immune signaling. Science 2024; 386:1413-1420. [PMID: 39509471 DOI: 10.1126/science.adr3150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to initiate immune signaling. TIR domains across different kingdoms have NADase activities and can produce phosphoribosyl adenosine monophosphate/diphosphate (pRib-AMP/ADP) or cyclic ADPR (cADPR) isomers. The lipase-like proteins EDS1 and PAD4 transduce immune signals from sensor TIR-NLRs to a helper NLR called ADR1, which executes immune function. We report the structure and function of an Arabidopsis EDS1-PAD4-ADR1 (EPA) heterotrimer in complex with pRib-AMP/ADP activated by plant or bacterial TIR signaling. 2'cADPR can be hydrolyzed into pRib-AMP and thus activate EPA signaling. Bacterial TIR domains producing 2'cADPR also activate EPA function. Our findings suggest that 2'cADPR may be the storage form of the unstable signaling molecule pRib-AMP.
Collapse
Affiliation(s)
- Hua Yu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiying Xu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxian Wu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyan Xu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingqi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Yu Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Dangl JL, Jones JDG. A common immune response node in diverse plants. Science 2024; 386:1344-1346. [PMID: 39700299 DOI: 10.1126/science.adu4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Small molecules activate a defense mechanism shared by all flowering plants.
Collapse
Affiliation(s)
- Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
32
|
Kibby EM, Robbins LK, Deep A, Min NK, Whalen LA, Nagy TA, Freeborn L, Corbett KD, Whiteley AT. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629029. [PMID: 39763729 PMCID: PMC11702601 DOI: 10.1101/2024.12.17.629029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Immune systems must rapidly sense viral infections to initiate antiviral signaling and protect the host. Bacteria encode >100 distinct viral (phage) defense systems and each has evolved to sense crucial components or activities associated with the viral lifecycle. Here we used a high-throughput AlphaFold-multimer screen to discover that a bacterial NLR-related protein directly senses multiple phage proteins, thereby limiting immune evasion. Phages encoded as many as 5 unrelated activators that were predicted to bind the same interface of a C-terminal sensor domain. Genetic and biochemical assays confirmed activators bound to the bacterial NLR-related protein at high affinity, induced oligomerization, and initiated signaling. This work highlights how in silico strategies can identify complex protein interaction networks that regulate immune signaling across the tree of life.
Collapse
Affiliation(s)
- Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Laurel K. Robbins
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nathan K. Min
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lindsay A. Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Layla Freeborn
- Research Computing, Office of Information Technology, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
33
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
34
|
Weralupitiya C, Eccersall S, Meisrimler CN. Shared signals, different fates: Calcium and ROS in plant PRR and NLR immunity. Cell Rep 2024; 43:114910. [PMID: 39471173 DOI: 10.1016/j.celrep.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
Lacking an adaptive immune system, plants rely on innate immunity comprising two main layers: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), both utilizing Ca2+ influx and reactive oxygen species (ROS) for signaling. PTI, mediated by pattern-recognition receptors (PRRs), responds to conserved pathogen- or damage-associated molecular patterns. Some pathogens evade PTI using effectors, triggering plants to activate ETI. At the heart of ETI are nucleotide-binding leucine-rich repeat receptors (NLRs), which detect specific pathogen effectors and initiate a robust immune response. NLRs, equipped with a nucleotide-binding domain and leucine-rich repeats, drive a potent immune reaction starting with pronounced, prolonged cytosolic Ca2+ influx, followed by increased ROS levels. This sequence of events triggers the hypersensitive response-a localized cell death designed to limit pathogen spread. This intricate use of Ca2+ and ROS highlights the crucial role of NLRs in supplementing the absence of an adaptive immune system in plant innate immunity.
Collapse
Affiliation(s)
| | - Sophie Eccersall
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Claudia-Nicole Meisrimler
- University of Canterbury, School of Biological Science, Christchurch, New Zealand; Biomolecular Interaction Centre, Christchurch, New Zealand.
| |
Collapse
|
35
|
Madhuprakash J, Toghani A, Contreras MP, Posbeyikian A, Richardson J, Kourelis J, Bozkurt TO, Webster MW, Kamoun S. A disease resistance protein triggers oligomerization of its NLR helper into a hexameric resistosome to mediate innate immunity. SCIENCE ADVANCES 2024; 10:eadr2594. [PMID: 39504373 PMCID: PMC11540030 DOI: 10.1126/sciadv.adr2594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
NRCs are essential helper NLR (nucleotide-binding domain and leucine-rich repeat) proteins that execute immune responses triggered by sensor NLRs. The resting state of NbNRC2 was recently shown to be a homodimer, but the sensor-activated state remains unclear. Using cryo-EM, we determined the structure of sensor-activated NbNRC2, which forms a hexameric inflammasome-like resistosome. Mutagenesis of the oligomerization interface abolished immune signaling, confirming the functional significance of the NbNRC2 resistosome. Comparative structural analyses between the resting state homodimer and sensor-activated homohexamer revealed substantial rearrangements, providing insights into NLR activation mechanisms. Furthermore, structural comparisons between NbNRC2 hexamer and previously reported CC-NLR pentameric assemblies revealed features allowing an additional protomer integration. Using the NbNRC2 hexamer structure, we assessed the recently released AlphaFold 3 for predicting activated CC-NLR oligomers, revealing high-confidence modeling of NbNRC2 and other CC-NLR amino-terminal α1 helices, a region proven difficult to resolve structurally. Overall, our work sheds light on NLR activation mechanisms and expands understanding of NLR structural diversity.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andres Posbeyikian
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jake Richardson
- Bioimaging Facility, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Michael W. Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
36
|
Qin H, Cheng J, Han GZ, Gong Z. Phylogenomic insights into the diversity and evolution of RPW8-NLRs and their partners in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1032-1046. [PMID: 39312623 DOI: 10.1111/tpj.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Plants use nucleotide-binding leucine-rich repeat receptors (NLRs) to sense pathogen effectors, initiating effector-triggered immunity (ETI). NLRs containing RESISTANCE TO POWDERY MILDEW 8 domain (RNLs) function as "helper" NLRs in flowering plants and support the immune responses mediated by "sensor" NLRs in cooperation with lipase-EP domain fused proteins (EP proteins). Despite their crucial roles in ETI, much remains unclear about the evolutionary trajectories of RNLs and their functional partners EP proteins. Here, we perform phylogenomic analyses of RNLs in 90 plants, covering the major diversity of plants, and identify the presence of RNLs in land plants and green algae, expanding the distribution of RNLs. We uncover a neglected major RNL group in gymnosperms, besides the canonical major group with NRG1s and ADR1s, and observe a drastic increase in RNL repertoire size in conifers. Phylogenetic analyses indicate that RNLs originated multiple times through domain shuffling, and the evolution of RNLs underwent a birth-and-death process. Moreover, we trace the origin of EP proteins back to the last common ancestor of vascular plants. We find that both RNLs and EP proteins evolve mainly under negative selection, revealing strong constraints on their function. Concerted losses and positive correlation in copy number are observed between RNL and EP sublineages, suggesting their cooperation in function. Together, our findings provide insights into the origin and evolution of plant helper NLRs, with implications for predicting novel innate immune signaling modules.
Collapse
Affiliation(s)
- Huiyu Qin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Junyuan Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
37
|
Wen Q, Wang S, Zhang X, Zhou Z. Recent advances of NLR receptors in vegetable disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112224. [PMID: 39142606 DOI: 10.1016/j.plantsci.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Plants mainly depend on both cell-surface and intracellular receptors to defend against various pathogens. The nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular receptors that recognize pathogen effectors. The first NLR was cloned thirty years ago. Genomic sequencing and biotechnologies accelerated NLR gene isolation. NLR genes have been proven useful in breeding disease resistant crops. Here, we summarized the current knowledge of strategies for NLR gene isolation and provided a list of NLRs cloned in vegetables. We also discussed the mechanisms underlying NLR gene function, the challenges of NLRs in vegetable breeding and directions for future studies.
Collapse
Affiliation(s)
- Qing Wen
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Sheikh AH, Zacharia I, Tabassum N, Hirt H, Ntoukakis V. 14-3-3 proteins as a major hub for plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:1245-1253. [PMID: 38955584 DOI: 10.1016/j.tplants.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Iosif Zacharia
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
39
|
Dong B, Liu Y, Huang G, Song A, Chen S, Jiang J, Chen F, Fang W. Plant NAC transcription factors in the battle against pathogens. BMC PLANT BIOLOGY 2024; 24:958. [PMID: 39396978 PMCID: PMC11472469 DOI: 10.1186/s12870-024-05636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity. RESULTS In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance. CONCLUSIONS This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.
Collapse
Affiliation(s)
- Boxiao Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Gan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
40
|
Das AK, Hussain A, Methela NJ, Lee DS, Lee GJ, Woo YJ, Yun BW. Genome-wide characterization of nitric oxide-induced NBS-LRR genes from Arabidopsis thaliana and their association in monocots and dicots. BMC PLANT BIOLOGY 2024; 24:934. [PMID: 39379841 PMCID: PMC11462825 DOI: 10.1186/s12870-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Geum-Jin Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youn-Ji Woo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
41
|
Tse-Kang SY, Wani KA, Peterson ND, Page A, Humphries F, Pukkila-Worley R. Intestinal immunity in C. elegans is activated by pathogen effector-triggered aggregation of the guard protein TIR-1 on lysosome-related organelles. Immunity 2024; 57:2280-2295.e6. [PMID: 39299238 PMCID: PMC11464196 DOI: 10.1016/j.immuni.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amanda Page
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
42
|
Selvaraj M, Toghani A, Pai H, Sugihara Y, Kourelis J, Yuen ELH, Ibrahim T, Zhao H, Xie R, Maqbool A, De la Concepcion JC, Banfield MJ, Derevnina L, Petre B, Lawson DM, Bozkurt TO, Wu CH, Kamoun S, Contreras MP. Activation of plant immunity through conversion of a helper NLR homodimer into a resistosome. PLoS Biol 2024; 22:e3002868. [PMID: 39423240 PMCID: PMC11524475 DOI: 10.1371/journal.pbio.3002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | | | - He Zhao
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
43
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
44
|
Liu F, Yang Z, Wang C, You Z, Martin R, Qiao W, Huang J, Jacob P, Dangl JL, Carette JE, Luan S, Nogales E, Staskawicz BJ. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 2024; 187:4877-4889.e15. [PMID: 39094568 PMCID: PMC11380581 DOI: 10.1016/j.cell.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zhang You
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
45
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Bhatt A, Mishra BP, Gu W, Sorbello M, Xu H, Ve T, Kobe B. Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches. IUCRJ 2024; 11:695-707. [PMID: 39190506 PMCID: PMC11364022 DOI: 10.1107/s2052252524007693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.
Collapse
Affiliation(s)
- Akansha Bhatt
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
- School of Pharmacy and Medical SciencesGriffith UniversitySouthportQLD4222Australia
| | - Biswa P. Mishra
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Weixi Gu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Mitchell Sorbello
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Hongyi Xu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Thomas Ve
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
47
|
Chakraborty J, Sobol G, Xia F, Zhang N, Martin GB, Sessa G. PP2C phosphatase Pic14 negatively regulates tomato Pto/Prf-triggered immunity by inhibiting MAPK activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2622-2637. [PMID: 39032095 DOI: 10.1111/tpj.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
48
|
Wan L. Phase separation activates plant TIR-only immune receptors. Sci Bull (Beijing) 2024; 69:2311-2313. [PMID: 38880681 DOI: 10.1016/j.scib.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Affiliation(s)
- Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
49
|
Yang Y, Tan L, Xu X, Tang Q, Wang J, Xing S, Wang R, Zou T, Wang S, Zhu J, Li S, Liang Y, Deng Q, Li P. Activation and Autoinhibition Mechanisms of NLR Immune Receptor Pi36 in Rice. Int J Mol Sci 2024; 25:7301. [PMID: 39000408 PMCID: PMC11242311 DOI: 10.3390/ijms25137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Liu Tan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Xingzhe Xu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Qiaoyi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ji Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Shiyue Xing
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Rui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| |
Collapse
|
50
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|