1
|
Ma ZN, Ding JJ, Shi XQ, Yuan Y, Wang MT, Yu LN, Wang XJ, Shen P. A dual-functional paper-based analytical device for ultrasensitive detection of peanut allergen-specific IgE. Anal Chim Acta 2025; 1352:343922. [PMID: 40210278 DOI: 10.1016/j.aca.2025.343922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/08/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Increasing attention has been caught by the allergy-related food safety issue. The rapid and sensitive diagnosing approaches are still in high demand for providing clinical reference. Paper-based analytical devices (PADs) are appealing candidates for allergy diagnosis and prediction due to their portability, stability, and operational easiness. However, the sensitivity of PADs needs to be further improved for the targets with low abundance. In addition to the complex signal amplifications, an alternative strategy that requires fewer reagents, steps, and shorter time is anticipated. (82) RESULTS: We report fluorescent PADs (FPADs) that can accumulate and detect the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2)-specific IgE (sIgE). The FPADs are constructed by in-situ synthesis of blue-emissive carbon dots (BCDs) on the surface of cellulose paper, followed by the conjugation of Ara h2. After the capture of sIgE, a green-emissive carbon dots-labeled secondary anti-sIgE reporter (Ab2-GCDs) is assembled on FPADs. The detection relies on the sIgE concentration-dependent color variation of FPADs. In addition, the accumulation of sIgE is achievable by filtering the sample through FPADs, improving the assay sensitivity and efficiency. It is demonstrated that the limit of detection (LOD) is 15.7 ng/mL, evidently lower than the simple immersion-based assay (90.2 ng/mL). The excellent selectivity allows sIgE quantification in serum with high accuracy. (130) SIGNIFICANCE: By harnessing the outperforming sensing performance of the proposed FPADs, the rapid, accurate, and cost-efficient diagnosis and prediction of peanut allergy can be realized. In addition, the FPADs could serve as a universal sensing platform for varying targets by flexibly engineering the capture moieties on the surface of fluorescent paper. (50).
Collapse
Affiliation(s)
- Ze-Nan Ma
- Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, 215128, China
| | - Jun-Jie Ding
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China
| | - Xin-Qiao Shi
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China
| | - Ying Yuan
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China
| | - Meng-Tian Wang
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China
| | - Li-Na Yu
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China
| | - Xiao-Jun Wang
- Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, 215128, China.
| | - Peng Shen
- Jiangsu Sunlant Bioengineering Co., Ltd, Wuxi, Jiangsu, 214038, China.
| |
Collapse
|
2
|
Balla J, Rathore APS, St. John AL. Maternal IgE Influence on Fetal and Infant Health. Immunol Rev 2025; 331:e70029. [PMID: 40281548 PMCID: PMC12032057 DOI: 10.1111/imr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Immunoglobulin E (IgE) is the most recently discovered and evolved mammalian antibody type, best known for interacting with mast cells (MCs) as immune effectors. IgE-mediated antigen sensing by MC provides protection from parasites, venomous animals, bacteria, and other insults to barrier tissues exposed to the environment. IgE and MCs act as inflammation amplifiers and immune response adjuvants. Thus, IgE production and memory formation are greatly constrained and require specific licensing. Failure of regulation gives rise to allergic disease, one of the top causes of chronic illness. Increasing evidence suggests allergy development often starts early in life, including prenatally, with maternal influence being central in shaping the offspring's immune system. Although IgE often exists before birth, an endogenous source of IgE-producing B cells has not been identified. This review discusses the mechanisms of maternal IgE transfer into the offspring, its interactions with offspring MCs and antigen-presenting cells, and the consequences for allergic inflammation and allergen sensitization development. We discuss the multifaceted effects of pre-existing IgG, IgE, and their glycosylation on maternal IgE transfer and functionality in the progeny. Understanding the IgE-mediated mechanisms predisposing for early life allergy development may allow their targeting with existing therapeutics and guide the development of new ones.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Abhay P. S. Rathore
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ashley L. St. John
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- SingHealth Duke‐NUS Global Health InstituteSingaporeSingapore
| |
Collapse
|
3
|
Mouillet JF, Ouyang Y, Sadovsky E, Kothnadan VK, Sorenson HL, Badeau LJ, Sarkar SN, Chu T, Sorkin A, Sadovsky Y. The Chromosome 19 miRNA Cluster Guards Trophoblasts Against Overacting Innate Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647038. [PMID: 40236003 PMCID: PMC11996509 DOI: 10.1101/2025.04.03.647038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
To maintain pregnancy health, the human placenta delicately balances protection of the developing fetus from invading pathogens with suppression of excessive inflammation that could lead to fetal and neonatal autoimmune disorders. Previous research, including our own, has shown that small RNA products of the Chromosome 19 MicroRNA Cluster (C19MC) promote viral resistance in non-trophoblastic cells. However, the role of C19MC products in placental trophoblasts remained unclear. Here, we analyzed chromatin accessibility in the C19MC enhancer and identified a previously unknown regulatory domain. Deletion of this domain silenced the expression of C19MC microRNA and Alu elements in trophoblasts. This silencing unexpectedly led to marked activation of cellular innate immune response and strikingly increased Toll-like receptor 3 (TLR3)-mediated sensitivity to poly(I:C), a viral RNA mimic. Our data suggest that C19MC non-coding RNAs interfere with endosomal TLR3 activation in trophoblasts, highlighting a previously unrecognized mechanism for hindrance of excessive innate immune activation.
Collapse
|
4
|
Liu J, Chen X, Liu J, Peng C, Wang F, Huang X, Li S, Liu Y, Shou W, Cao D, Li X. Prenatal Inflammatory Exposure Predisposes Offspring to Chronic Kidney Diseases Via the Activation of the eIF2α-ATF4 Pathway. Inflammation 2025; 48:747-759. [PMID: 38913145 DOI: 10.1007/s10753-024-02084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
It has recently become more recognized that renal diseases in adults can originate from adverse intrauterine (maternal) environmental exposures. Previously, we found that prenatal lipopolysaccharide (LPS) exposure can result in chronic renal inflammation, which leads to renal damage in older offspring rats. To test whether prenatal inflammatory exposure predisposes offspring to renal damage, a mouse model of oral adenine consumption-induced chronic kidney disease (CKD) was applied to offspring from prenatal LPS-treated mothers (offspring-pLPS) and age-matched control offspring of prenatal saline-treated mothers (offspring-pSaline). We found that offspring-pLPS mice presented with more severe renal collagen deposition and renal dysfunction after 4 weeks of adenine consumption than sex- and treatment-matched offspring-pSaline controls. To illustrate the underlying molecular mechanism, we subjected offspring-pLPS and offspring-pSaline kidneys to genome-wide transcriptomic analysis. Bioinformatic analysis of the sequencing data, together with further experimental confirmation, revealed a strong activation of the PERK-eIF2α-ATF4-mediated unfolded protein response (UPR) in offspring-pLPS kidneys, which likely contributed to the CKD predisposition seen in offspring-pLPS mice. More importantly, the specific eIF2α-ATF4 signaling inhibitor ISIRB was able to prevent adenine-induced CKD in the offspring-pLPS mice. Our findings suggest that the eIF2α-ATF4-mediated UPR, but not PERK, is likely the major disease-causing pathway in prenatal inflammatory exposure-induced CKD predisposition. Our study also suggests that targeting this signaling pathway is a potentially promising approach for CKD treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Xin Chen
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Cuiping Peng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weinian Shou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dayan Cao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
5
|
Andruszewski D, Uhlfelder DC, Desiato G, Regen T, Schelmbauer C, Blanfeld M, Scherer L, Radyushkin K, Pozzi D, Waisman A, Mufazalov IA. Embryo-restricted responses to maternal IL-17A promote neurodevelopmental disorders in mouse offspring. Mol Psychiatry 2025; 30:1585-1593. [PMID: 39384965 PMCID: PMC11919734 DOI: 10.1038/s41380-024-02772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Prenatal imprinting to interleukin 17A (IL-17A) triggers behavioral disorders in offspring. However, reported models of maternal immune activation utilizing immunostimulants, lack specificity to elucidate the anatomical compartments of IL-17A's action and the distinct behavioral disturbances it causes. By combining transgenic IL-17A overexpression with maternal deficiency in its receptor, we established a novel model of prenatal imprinting to maternal IL-17A (acronym: PRIMA-17 model). This model allowed us to study prenatal imprinting established exclusively through embryo-restricted IL-17A responses. We demonstrated a transfer of transgenic IL-17A across the placental barrier, which triggered the development of selected behavioral deficits in mouse offspring. More specifically, embryonic responses to IL-17A resulted in communicative impairment in early-life measured by reduced numbers of nest retrieval calls. In adulthood, IL-17A-imprinted offspring displayed an increase in anxiety-like behavior. We advocate our PRIMA-17 model as a useful tool to study neurological deficits in mice.
Collapse
Affiliation(s)
- David Andruszewski
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David C Uhlfelder
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Genni Desiato
- Institute of Neuroscience - National Research Council, Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lena Scherer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Translational Animal Research Center (TARC), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Lei Y, Tsang JS. Systems Human Immunology and AI: Immune Setpoint and Immune Health. Annu Rev Immunol 2025; 43:693-722. [PMID: 40279304 DOI: 10.1146/annurev-immunol-090122-042631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The immune system, critical for human health and implicated in many diseases, defends against pathogens, monitors physiological stress, and maintains tissue and organismal homeostasis. It exhibits substantial variability both within and across individuals and populations. Recent technological and conceptual progress in systems human immunology has provided predictive insights that link personal immune states to intervention responses and disease susceptibilities. Artificial intelligence (AI), particularly machine learning (ML), has emerged as a powerful tool for analyzing complex immune data sets, revealing hidden patterns across biological scales, and enabling predictive models for individualistic immune responses and potentially personalized interventions. This review highlights recent advances in deciphering human immune variation and predicting outcomes, particularly through the concepts of immune setpoint, immune health, and use of the immune system as a window for measuring health. We also provide a brief history of AI; review ML modeling approaches, including their applications in systems human immunology; and explore the potential of AI to develop predictive models and personal immune state embeddings to detect early signs of disease, forecast responses to interventions, and guide personalized health strategies.
Collapse
Affiliation(s)
- Yona Lei
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Chan Zuckerberg Biohub NY, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Cortez VS, Viragova S, Koga S, Liu M, O'Leary CE, Ricardo-Gonzalez RR, Schroeder AW, Kochhar N, Klein OD, Diamond MS, Liang HE, Locksley RM. IL-25-induced memory ILC2s mediate long-term small intestinal adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645270. [PMID: 40196473 PMCID: PMC11974837 DOI: 10.1101/2025.03.25.645270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The adaptation of intestinal helminths to vertebrates evolved strategies to attenuate host tissue damage to support reproductive needs of parasites necessary to disseminate offspring to the environment. Helminths initiate the IL-25-mediated tuft cell-ILC2 circuit that enhances barrier protection of the host although viable parasites can target and limit the pathway. We used IL-25 to create small intestinal adaptation marked by anatomic, cell compositional and immunologic changes that persisted months after induction. Small intestinal adaptation was associated with heightened resistance to barrier pathogens, including in the lung, and sustained by transcriptionally and epigenetically modified, tissue-resident, memory-effector ILC2s distinct from those described by innate 'training'; epithelial stem cells remained unaltered. Despite requiring IL-25 for induction, memory ILC2s maintained an activated state in the absence of multiple alarmins and supported mucosal resilience while avoiding adverse sensitization to chronic inflammation, revealing a pathway for deploying innate immune cells to coordinate a distributed mucosal defense.
Collapse
|
8
|
Liao J, Wang M, Li H, Li T, Deng Z, Li J, Zheng L, Yan Y, Duan S, Zhang B. Human Milk Oligosaccharide LNnT Promotes Intestinal Epithelial Growth and Maturation During the Early Life of Infant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6678-6690. [PMID: 40048505 DOI: 10.1021/acs.jafc.4c10055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a prevalent neutral core human milk oligosaccharides (HMOs) recognized for its numerous benefits to infant health. In infant formula, galactooligosaccharide (GOS) are frequently used as substitutes for HMOs. However, the regulatory roles of LNnT and GOS in early intestinal development are not yet fully understood. This study aims to elucidate the effects of LNnT and GOS on intestinal development during early life. Our findings show that administering LNnT or GOS significantly increased the spleen and liver indices of infant mice at postnatal day 21. Immunofluorescence and qPCR analysis showed that feeding LNnT significantly promoted the proliferation and differentiation of intestinal stem cells (ISCs) in the colon of infant mice at postnatal day 21, and increased the expression of differentiation markers of goblet cells, intestinal epithelial cells, Paneth cells, and intestinal endocrine cells. Conversely, feeding GOS had no significant effect on the proliferation and differentiation of ISCs. Furthermore, intestinal microbiota analysis showed that LNnT increased the microbiota associated with intestinal regeneration and ISCs proliferation and differentiation in infant mice at postnatal day 21. In conclusion, LNnT promoted ISCs proliferation and differentiation in the colon and alters the composition and function of the intestinal microbiota to support intestinal development in infant mice.
Collapse
Affiliation(s)
- Jinqiang Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
| | - Minghui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Ting Li
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Sufang Duan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| |
Collapse
|
9
|
Zhang Y, Jing Y, He J, Dong R, Li T, Li F, Zheng X, Liu G, Jia R, Xu J, Wu F, Jia C, Song J, Zhang L, Zhou P, Wang H, Yao Z, Liu Q, Yu Y, Zhou J. Bile acid receptor FXR promotes intestinal epithelial ferroptosis and subsequent ILC3 dysfunction in neonatal necrotizing enterocolitis. Immunity 2025; 58:683-700.e10. [PMID: 40023163 DOI: 10.1016/j.immuni.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/14/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a common pediatric emergency primarily afflicting preterm infants, yet its mechanisms remain to be fully understood. Here, we report that plasma fibroblast growth factor (FGF)19, a target of farnesoid X receptor (FXR), was positively correlated with the clinical parameters of NEC. NEC patients and the NEC murine model displayed abundant FXR in intestinal epithelial cells (IECs), which was restricted by microbiota-derived short-chain fatty acids (SCFAs) under homeostasis. Genetic deficiency of FXR in IECs caused remission of NEC. Mechanistically, FXR facilitated ferroptosis of IECs via targeting acyl-coenzyme A synthetase long-chain family member 4 (Acsl4). Lipid peroxides released by ferroptotic IECs suppressed interleukin (IL)-22 secretion from type 3 innate lymphoid cells (ILC3s), thereby exacerbating NEC. Intestinal FXR antagonist, ACSL4 inhibitor, and ferroptosis inhibitor ameliorated murine NEC. Furthermore, the elevated lipid peroxides in NEC patients were positively correlated with FGF19 and disease parameters. These observations demonstrate the therapeutic value of targeting intestinal FXR and ferroptosis in NEC treatment.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Humans
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Mice
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Infant, Newborn
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Fibroblast Growth Factors/blood
- Fibroblast Growth Factors/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Coenzyme A Ligases/metabolism
- Mice, Knockout
- Female
- Male
- Immunity, Innate
Collapse
Affiliation(s)
- Yuxin Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Yuchao Jing
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Immunology, Basic Medical College, Changzhi 046000, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui Dong
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Tongyang Li
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Fang Li
- Department of Central Laboratory, Changzhi Medical College, Changzhi 046000, China
| | - Xiaoqing Zheng
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaoyu Liu
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Jin Song
- Department of Pediatric Surgery Maternal and Child Health Care of Changzhi, Changzhi 046011, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300050, China
| | - Ying Yu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Mitchell TM, Burdick Sanchez NC, Carroll JA, Broadway PR, Legako JF, Bowen BM, Petry AL. Prenatal lipopolysaccharide stimulation modulates gastrointestinal immunity and oxidative status in weaned pigs. Am J Physiol Gastrointest Liver Physiol 2025; 328:G197-G205. [PMID: 39853237 DOI: 10.1152/ajpgi.00268.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose lipopolysaccharide (LPS) during the final third of gestation to target the developing immune system. On day 78 ± 1.8 of gestation, 14 Camborough sows (parity = 2.6 ± 1.4) received either saline (Control, CON) or LPS from Escherichia coli O111:B4 (2.5 µg/kg of body wt). A subset of 34 weaned barrows (n = 17 CON, PIS), weaned at 21 ± 1.3 days, were anesthetized for subcutaneous temperature loggers and jugular catheter placement. Following recovery, all pigs received an intravenous injection of LPS (10 µg/kg·body wt) from E. coli O111:B4. Our findings demonstrate that PIS enhances the gut immune response by upregulating key inflammatory cytokines, indicative of a proinflammatory profile. Consistently across the jejunum and ileum, stem cell factor was modulated with heightened expression in PIS than CON (P ≤ 0.05). In the ileum alone, PIS exhibited heightened expression of proinflammatory cytokines and chemokines, including TNFα, IL-6, IL-1β, and CCL3L1, compared with CON (P ≤ 0.05). Exposure to PIS resulted in reduced systemic total antioxidant capacity at hours 2 and 4 postchallenge (P = 0.004). Piglets exposed to PIS had decreased jejunal tissue malondialdehyde concentrations (P = 0.049). Together, these data indicate that exposure to PIS alters the inflammatory profile of the gastrointestinal immune response and oxidative status in weaned pigs.NEW & NOTEWORTHY These studies represent novel investigations into the influence of prenatal immune stimulation (PIS) in swine on the gastrointestinal immune response and oxidative status of offspring following subsequent immune challenge. Notable alterations were observed in gut protein biomarkers, particularly the upregulation of proinflammatory cytokines TNFα, IL-6, and IL-1β in PIS-exposed pigs, but has variable effects on oxidative status. Altered intestinal immune development may contribute to an increased risk for inflammatory disease associated with prenatal immune stimulation.
Collapse
Affiliation(s)
- Ty M Mitchell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States
| | - Nicole C Burdick Sanchez
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jeff A Carroll
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Paul R Broadway
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Brooke M Bowen
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Amy L Petry
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
11
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
12
|
Tang D, Bukai A, Qin S, Duan R, Lyu D, He Z, Zheng X, Wu W, Liang J, Qu H, Bieke A, Zhang P, Zhang D, Han H, Duan Q, Jing H, Wang X. Maternal F1 antibodies and cytokines in mother-neonate dog pairs in the Marmota himalayana plague focus. Heliyon 2025; 11:e42336. [PMID: 39991224 PMCID: PMC11847103 DOI: 10.1016/j.heliyon.2025.e42336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
In this study, we investigated the F1 antibody against Yersinia pestis in the sera of mother-neonate shepherd dog pairs in the Marmota himalayana plague focus of the Altun-Qilian Mountains, Qinghai-Tibetan Plateau, China. Seropositive shepherd dogs lived in plague-endemic regions, where marmots were infected with Y. pestis, whereas seronegative dogs lived in non-endemic regions. The neonatal F1 antibody titers positively correlated with the maternal titers within 3 months after birth, and the neonatal titers were similar to or slightly lower than the maternal titers. In the absence of reinfection, antibodies in the neonates were obtained from their mothers; titers decreased with age and disappeared after 3 months. Mean tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-2, IL-10, and nerve growth factor (NGF)-β were higher in the mothers than in neonates. Maternal TNF-α, IL-10, vascular endothelial growth factor (VEGF)-A, and NGF-β and neonatal monocyte chemoattractant factor (MCP)-1 and VEGF-A were positively correlated with F1 antibody titers. Our results reveal continuing vertical transmission of F1 antibodies between mother dogs and their offspring and cytokine signatures under plague.
Collapse
Affiliation(s)
- Deming Tang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Dongcheng Center for Disease Control and Prevention, Beijing, China
| | - Asaiti Bukai
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Weiwei Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haifu Qu
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Aidai Bieke
- Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
Huang C, Lim AI. Pre-birth stem cell education: A gift from mother's bugs. Cell Stem Cell 2025; 32:175-176. [PMID: 39919718 DOI: 10.1016/j.stem.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
The maternal gut microbiota undergoes significant changes during pregnancy and plays a pivotal role in offspring development. In this issue, Dang et al. demonstrate that modifying the maternal gut microbiome during pregnancy shapes offspring neural and intestinal stem cells via the mTOR pathway, with long-lasting effects on their functions.
Collapse
Affiliation(s)
- Chenyan Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Li Y, Li RY, Zhu JY, Chen M, Mu WJ, Luo HY, Li S, Yan LJ, Yin MT, Li X, Chen HM, Guo L. Maternal exercise prevents metabolic disorders in offspring mice through SERPINA3C. Nat Metab 2025; 7:401-420. [PMID: 39891022 DOI: 10.1038/s42255-024-01213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Maternal exercise can improve the metabolic health of the offspring. However, the molecular mechanisms underlying the beneficial effects of maternal exercise on the offspring remain unclear. Here, we show that maternal exercise during pregnancy alleviates high-fat diet (HFD)-induced adipose inflammation and glucose intolerance in offspring mice, accompanied by upregulation of the adipokine serine protease inhibitor A3C (SERPINA3C) both in maternal adipose tissues and the fetal circulation. Adipose SERPINA3C knockdown impairs, but its overexpression in dams mimics, maternal exercise-mediated metabolic benefits in HFD-fed offspring. Maternal SERPINA3C is transported into the fetal circulation and promotes Krüppel-like factor 4 (Klf4) gene promoter demethylation in fetal preadipocytes to increase KLF4 expression, which inhibits adipose inflammation in HFD-fed offspring mice. The SERPINA3C-cathepsin G-integrin β1 axis activates phosphatidylinositol 3-kinase signalling in preadipocytes. This promotes nuclear translocation of the p110β subunit to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the nucleus. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase then binds to PIP3 to promote ten-eleven translocation methylcytosine dioxygenase 1 (TET1) O-GlcNAcylation, thereby enhancing TET1 activity to facilitate Klf4 gene promoter demethylation. These results provide mechanistic insights into maternal exercise-mediated improvement of offspring metabolism.
Collapse
Affiliation(s)
- Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
15
|
Calvez V, Puca P, Di Vincenzo F, Del Gaudio A, Bartocci B, Murgiano M, Iaccarino J, Parand E, Napolitano D, Pugliese D, Gasbarrini A, Scaldaferri F. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025; 13:305. [PMID: 40002718 PMCID: PMC11853239 DOI: 10.3390/biomedicines13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, are complex chronic disorders characterized by an intricate interplay between genetic predisposition, immune dysregulation, gut microbiota alterations, and environmental exposures. This review aims to synthesize recent advances in IBD pathogenesis, exploring key mechanisms and potential avenues for prevention and personalized therapy. A comprehensive literature search was conducted across major bibliographic databases, selecting the most recent and impactful studies on IBD pathogenesis. The review integrates findings from multi-omics analyses, single-cell transcriptomics, and longitudinal cohort studies, focusing on immune regulation, gut microbiota dynamics, and environmental factors influencing disease onset and progression. Immune dysregulation, including macrophage polarization (M1 vs. M2) and Th17 activation, emerges as a cornerstone of IBD pathogenesis. Dysbiosis, as a result of reduced alpha and beta diversity and overgrowth of harmful taxa, is one of the main contributing factors in causing inflammation in IBD. Environmental factors, including air and water pollutants, maternal smoking, and antibiotic exposure during pregnancy and infancy, significantly modulate IBD risk through epigenetic and microbiota-mediated mechanisms. While recent advances have supported the development of new therapeutic strategies, deeply understanding the complex dynamics of IBD pathogenesis remains challenging. Future efforts should aim to reduce the burden of disease with precise, personalized treatments and lower the incidence of IBD through early-life prevention and targeted interventions addressing modifiable risk factors.
Collapse
Affiliation(s)
- Valentin Calvez
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Pierluigi Puca
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Jacopo Iaccarino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Erfan Parand
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Daniele Napolitano
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Franco Scaldaferri
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| |
Collapse
|
16
|
Jimena B, Kazimierczyk D, Kazimierczyk S, Moya H, Shin E, Li L, Korgaonkar P, Porter C, Seed B, Cherayil BJ, Jain N. Prenatal maternal infection promotes maternal microchimeric cells to alter infection risk in male offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633596. [PMID: 39896468 PMCID: PMC11785123 DOI: 10.1101/2025.01.17.633596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Vertically transferred maternal cells or maternal microchimeric cells (MMCs) engraft the fetus and persist in offspring for long periods of time. How altered maternal immune states arising from infection affect MMCs and their function in offspring is poorly understood. Here, we show that pregnancy-associated transient maternal infection alters MMCs to differentially regulate immunity in offspring. In male offspring of dams previously infected with Yersinia pseudotuberculosis , MMCs confer a pro-inflammatory type 17 T effector phenotype that leads to enhanced protective immunity to an unrelated Salmonella infection. Thus, acquired maternal cells imprinted by microbial exposure during pregnancy exert an antigen agnostic and sex-differential effect on offspring immunity, and may potentially be targeted to deliver immune benefits to infants in the vulnerable early life period.
Collapse
|
17
|
Li B, Xiong Y, Guo D, Deng G, Wu H. The gut-reproductive axis: Bridging microbiota balances to reproductive health and fetal development. Int Immunopharmacol 2025; 144:113627. [PMID: 39579544 DOI: 10.1016/j.intimp.2024.113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
The gut microbiota is a highly complex microbial community residing in the digestive tract of humans and animals, closely linked to host health. Dysbiosis within the gut microbiota has been associated with various diseases. Moreover, it interacts with the female reproductive system's microbiota, influencing maternal reproductive homeostasis. Although the gut microbiota holds potential for treating reproductive system diseases and modulating offspring fertility, research in this domain remains limited. This review examines the relationship between both balanced and imbalanced gut microbiota and reproductive system diseases, as well as their effects on fetal development. It is highlighted that dysbiosis in the gut microbiota may contribute to several reproductive conditions, including polycystic ovary syndrome (PCOS), preeclampsia (PE), endometriosis, gestational diabetes, and reproductive cancers. The abundance of specific gut microbial species or interactions among various species can influence the reproductive system through hormonal pathways and other mechanisms, ultimately affecting pregnancy outcomes and fetal health. Therefore, the concept of the gut-reproductive axis is proposed, emphasizing the significant role of maternal gut microbiota in shaping fetal development, metabolic capacity, and immunity.
Collapse
Affiliation(s)
- Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
18
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
19
|
Levra Levron C, Elettrico L, Duval C, Piacenti G, Proserpio V, Donati G. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ 2025; 32:78-89. [PMID: 38228801 PMCID: PMC11742435 DOI: 10.1038/s41418-023-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy.
| |
Collapse
|
20
|
Chen K, Wang J, Hu T, Zhao Y, Wu Y, Wang X, Li W, Yang G, Zhang L, Wang J, Zhu Y. Salmonella enterica serovar typhimurium effectors spiA and spiC promote replication by modulating iron metabolism and oxidative stress. Vet Microbiol 2025; 300:110328. [PMID: 39674031 DOI: 10.1016/j.vetmic.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a major threat to the health and safety of animal-derived foods worldwide. Recently, we have reported that S. Typhimurium uses iron to promote its own proliferation, leading to iron metabolism disorders. However, the mechanism by which S. Typhimurium induces iron metabolism disturbances remains unclear. In this study, we found that the S. Typhimurium effectors spiA and spiC promote the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1 (TfR1) and divalent metal transporter protein 1 (DMT1) and inhibit the expression of ferroportin after transfection with the recombinant plasmids pEGFP-C1-spiA and pEGFP-C1-spiC, which in turn contributes to the accumulation of iron and oxidative stress. Furthermore, we aimed to verify the role of these two effector proteins in S. Typhimurium-induced disorders of iron metabolism. We constructed spiA or spiC mutant strains and their corresponding complementation strains. Our data showed that when spiA or spiC was knocked out, the upregulation of iron metabolism proteins (IRP2, TfR1 and DMT1), the accumulation of iron and oxidative stress caused by the wild-type strain were clearly alleviated in vitro and in vivo, which plays a key role in reducing the intracellular replication of S. Typhimurium and attenuating pathological damage to the liver and ileum of mice. Our findings highlighted that S. Typhimurium induces the disruption of iron metabolism via the virulence factors spiA and spiC, thereby facilitating S. Typhimurium proliferation and causing oxidative damage to the liver and ileum, which provides prospective insights into the search for effective antimicrobial targets for the defense against salmonellosis.
Collapse
Affiliation(s)
- Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Ting Hu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yiqing Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yi Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Wei Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
21
|
Pietrasanta C, Carlosama C, Lizier M, Fornasa G, Jost TR, Carloni S, Giugliano S, Silvestri A, Brescia P, De Ponte Conti B, Braga D, Mihula M, Morosi L, Bernardinello A, Ronchi A, Martano G, Mosca F, Penna G, Grassi F, Pugni L, Rescigno M. Prenatal antibiotics reduce breast milk IgA and induce dysbiosis in mouse offspring, increasing neonatal susceptibility to bacterial sepsis. Cell Host Microbe 2024; 32:2178-2194.e6. [PMID: 39603245 DOI: 10.1016/j.chom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Antibiotics (Abx) are administered to 20%-30% of pregnant women, but their effects on neonatal immune development are poorly understood. We show that newborn mice born to Abx-treated dams are more susceptible to late-onset sepsis. This susceptibility is linked to lower maternal breast milk immunoglobulin A (IgA), neonatal fecal IgA, and IgA coating of intestinal bacteria, thus causing the translocation of intestinal pathobionts. Weaned young adults born to Abx-treated mothers had reduced IgA+ plasma cells in the ileum and colon, fecal secretory IgA (SIgA), colonic CD4+ T regulatory lymphocytes and T helper 17-like lymphocytes, and a less diverse fecal microbiome. However, treatment with apyrase, which restores SIgA secretion, prompted IgA production in breast milk and protected pups from sepsis. Additionally, breast milk from untreated mothers rescued the phenotypes of pups born to Abx-treated mothers. Our data highlight the impact of prenatal Abx on breast milk IgA and their long-term influence on intestinal mucosal immune function mediated by breastfeeding.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy.
| | - Carolina Carlosama
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Silvia Giugliano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | | | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Martin Mihula
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Medical Biotechnology, Università di Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Lavinia Morosi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro Bernardinello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Andrea Ronchi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Martano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, Rozzano, Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenza Pugni
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy.
| |
Collapse
|
22
|
Balla J, Rathore AP, St John AL. Mechanisms and risk factors for perinatal allergic disease. Curr Opin Immunol 2024; 91:102505. [PMID: 39566249 DOI: 10.1016/j.coi.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
Allergies are among the top causes of chronic disease in children. Their pathogenesis classically involves T helper 2 (Th2)-type inflammation driven by IgE-mediated allergen sensing. Triggers influencing allergic disease occur early in life, including before birth. The immature fetal immune system and mucosal barriers undergo periods of plasticity that are open to longitudinal programming by maternal influence. Evidence supports the importance of the maternal immune system in shaping perinatal immunity, as the transfer of cytokines, antibodies, and cells promotes offspring protection from pathogens. However, the same components may lead to allergic predisposition. Maternal-fetal interactions are further modified by epigenetic, metabolic, dietary, and microbiome-mediated effects. Here, we review how diverse maternal exposures and mediators signal across the placenta and through nursing perinatally to promote future tolerance or enhance reactivity against allergens. Improved understanding of the mechanisms predisposing for allergic disease in early life can guide the development of new therapeutics and preventative lifestyle modifications.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore.
| |
Collapse
|
23
|
Garcia-Flores V, Liu Z, Romero R, Pique-Regi R, Xu Y, Miller D, Levenson D, Galaz J, Winters AD, Farias-Jofre M, Panzer JJ, Theis KR, Gomez-Lopez N. Homeostatic Macrophages Prevent Preterm Birth and Improve Neonatal Outcomes by Mitigating In Utero Sterile Inflammation in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1620-1634. [PMID: 39431882 PMCID: PMC11572957 DOI: 10.4049/jimmunol.2400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Preterm birth (PTB), often preceded by preterm labor, is a major cause of neonatal morbidity and mortality worldwide. Most PTB cases involve intra-amniotic inflammation without detectable microorganisms, termed in utero sterile inflammation, for which there is no established treatment. In this study, we propose homeostatic macrophages to prevent PTB and adverse neonatal outcomes caused by in utero sterile inflammation. Single-cell atlases of the maternal-fetal interface revealed that homeostatic maternal macrophages are reduced with human labor. M2 macrophage treatment prevented PTB and reduced adverse neonatal outcomes in mice with in utero sterile inflammation. Specifically, M2 macrophages halted premature labor by suppressing inflammatory responses in the amniotic cavity, including inflammasome activation, and mitigated placental and offspring lung inflammation. Moreover, M2 macrophages boosted gut inflammation in neonates and improved their ability to fight systemic bacterial infections. Our findings show that M2 macrophages are a promising strategy to mitigate PTB and improve neonatal outcomes resulting from in utero sterile inflammation.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Roger Pique-Regi
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Dustyn Levenson
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew D. Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jonathan J. Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
24
|
Raynor JL, Collins N, Shi H, Guy C, Saravia J, Ah Lim S, Chapman NM, Zhou P, Wang Y, Sun Y, Risch I, Hu H, Kc A, Sun R, Shrestha S, Huang H, Connelly JP, Pruett-Miller SM, Reina-Campos M, Goldrath AW, Belkaid Y, Chi H. CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8 + T cell formation. Immunity 2024; 57:2597-2614.e13. [PMID: 39406246 PMCID: PMC11590283 DOI: 10.1016/j.immuni.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renqiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
25
|
Choi J, Chudziak J, Lee JH. Bi-directional regulation between inflammation and stem cells in the respiratory tract. J Cell Sci 2024; 137:jcs263413. [PMID: 39508347 PMCID: PMC11574357 DOI: 10.1242/jcs.263413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Inflammation plays a crucial role in tissue injury, repair and disease, orchestrating a complex interplay of immune responses and cellular processes. Recent studies have uncovered the intricate connection between inflammation and stem cell dynamics, shedding light on the central role of stem cells in tissue regeneration. This Review highlights the significance of inflammation in shaping epithelial stem cell dynamics and its implications for tissue repair, regeneration and aging. We explore the multifaceted interactions between inflammation and stem cells, focusing on how inflammatory signals affect stem cell behavior and fate as well as the remodeling of their niche in the respiratory tract. We also discuss the concept of 'inflammatory memory' in epithelial stem cells, where prior inflammatory stimuli endow these cells with enhanced regenerative potential and confer long-lasting protective mechanisms for maintaining tissue integrity and function. Furthermore, we review the impact of cell senescence induced by inflammation on tissue regeneration and aging, delving into the molecular mechanisms underlying the modulation of signaling pathways, epigenetic modifications and cellular crosstalk. Understanding these dynamic processes not only deepens our knowledge of tissue homeostasis and repair but also holds profound implications for regenerative medicine strategies aimed at preventing pulmonary diseases.
Collapse
Affiliation(s)
- Jinwook Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jakub Chudziak
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
| | - Joo-Hyeon Lee
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| |
Collapse
|
26
|
Dulfer EA, Domínguez-Andrés J. Mechanisms involved in the transmission of trained immunity to offspring. J Allergy Clin Immunol 2024; 154:1117-1119. [PMID: 38866208 DOI: 10.1016/j.jaci.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Affiliation(s)
- Elisabeth A Dulfer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Paixao ES, Cerqueira-Silva T, Florentino PT, Carroll O, Sanchez Clemente N, Lawlor DA, Ribeiro Silva RDC, Rodrigues LC, Smeeth L, Barreto ML. A nationwide longitudinal investigation on the role of prenatal exposure to infectious diseases on the onset of chronic conditions in children and adolescents in Brazil. Wellcome Open Res 2024; 9:320. [PMID: 39429627 PMCID: PMC11489840 DOI: 10.12688/wellcomeopenres.22430.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Background In utero exposure to infections might set the stage for a chain of events leading to a wide spectrum of long-term health outcomes observed in children and adolescents. This proposal aims to investigate whether syphilis, zika, dengue and chikungunya during pregnancy can increase the risk of the offspring developing a non-infectious chronic condition during childhood and adolescence. Objectives 1) Estimate the risk of non-infectious chronic conditions associated to syphilis, zika, dengue and chikungunya during pregnancy and when appropriate, explore if the risk varies by timing during pregnancy when the infection is acquired (first, second or third trimester) and severity (such as severe or mild dengue); 2) Investigate whether in uterus exposure to maternal infection affects the growth pattern of children and adolescents; 3) Examine the extent to which the relationship between maternal infection and non-infectious chronic outcomes are mediated by intrauterine growth restriction and preterm birth. Methods We will compare health outcomes and growth trajectories of children and adolescents born to mothers with and without specific infections during pregnancy using conventional multivariable regression in the whole study population, in a within sibship design, using the subgroup of offspring with at least one sibling who is not exposed to the infection, and negative control outcome. Then we will decompose the direct and mediated effects (by preterm birth and small for gestational age) of maternal infection on chronic disorders. Results and Conclusions The results from this study will advance our understanding of the relationship between infections during pregnancy and chronic disorders, with widespread implications enabling targeting of critical points along the path from in utero exposure to outcomes to avoid or mitigate illness and disability over the life course.
Collapse
Affiliation(s)
- Enny S. Paixao
- Faculty of Epidemiology and Population Health, London School of hygiene and Tropical Medicine, London, UK
- Centre for Data and Knowledge Integration for Health, Salvador, Brazil
| | - Thiago Cerqueira-Silva
- Faculty of Epidemiology and Population Health, London School of hygiene and Tropical Medicine, London, UK
| | | | - Orlagh Carroll
- Faculty of Epidemiology and Population Health, London School of hygiene and Tropical Medicine, London, UK
| | - Nuria Sanchez Clemente
- Centre for Neonatal and Paediatric Infection, St George's University, Saint George's, Saint George, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, United Kingdom; Population Health Science, Bristol Medical School, University of Bristol, Bristol, England, UK
| | | | - Laura Cunha Rodrigues
- Faculty of Epidemiology and Population Health, London School of hygiene and Tropical Medicine, London, UK
| | - Liam Smeeth
- Faculty of Epidemiology and Population Health, London School of hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
28
|
Zhao D, Ravikumar V, Leach TJ, Kraushaar D, Lauder E, Li L, Sun Y, Oravecz-Wilson K, Keller ET, Chen F, Maneix L, Jenq RR, Britton R, King KY, Santibanez AE, Creighton CJ, Rao A, Reddy P. Inflammation-induced epigenetic imprinting regulates intestinal stem cells. Cell Stem Cell 2024; 31:1447-1464.e6. [PMID: 39232559 PMCID: PMC11963838 DOI: 10.1016/j.stem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
Collapse
Affiliation(s)
- Dongchang Zhao
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler J Leach
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Emma Lauder
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Lu Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Yaping Sun
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengju Chen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert Britton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Y King
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Ana E Santibanez
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
30
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
31
|
Chen S, Ding S, Pang Y, Jin Y, Sun P, Li Y, Cao M, Wang Y, Wang Z, Wang T, Zou Y, Zhang Y, Xiao M. Dysregulated miR-124 mediates impaired social memory behavior caused by paternal early social isolation. Transl Psychiatry 2024; 14:392. [PMID: 39341799 PMCID: PMC11438908 DOI: 10.1038/s41398-024-03109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Early social isolation (SI) leads to various abnormalities in emotion and behavior during adulthood. However, the negative impact of SI on offspring remains unclear. This study has discovered that paternal early SI causes social memory deficits and anxiety-like behavior in F1 young adult mice, with alterations of myelin and synapses in the medial prefrontal cortex (mPFC). The 2-week SI in the F1 progeny exacerbates social memory impairment and hypomyelination in the mPFC. Furthermore, the down-regulation of miR-124, a key inhibitor of myelinogenesis, or over-expression of its target gene Nr4a1 in the mPFC of the F1 mice improves social interaction ability and enhances oligodendrocyte maturation and myelin formation. Mechanistically, elevated levels of miR-124 in the sperm of paternal SI mice are transmitted epigenetically to offspring, altering the expression levels of miR-124/Nr4a1/glucocorticoid receptors in mPFC oligodendrocytes. This, in turn, impedes the establishment of myelinogenesis-dependent social behavior. This study unveils a novel mechanism through which miR-124 mediates the intergenerational effects of early isolation stress, ultimately impairing the establishment of social behavior and neurodevelopment.
Collapse
Affiliation(s)
- Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yimiao Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, 213000, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| |
Collapse
|
32
|
Love C, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024; 22:393. [PMID: 39278907 PMCID: PMC11404034 DOI: 10.1186/s12916-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.
Collapse
Affiliation(s)
- Chloe Love
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Luba Sominsky
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Martin O'Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Samantha L Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
- Murdoch Children's Research Institute, Parkville, Australia.
- Food and Mood Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
33
|
Oguey C, Thayer MT. Sow reproductive and progeny growth performance when fed Pichia guilliermondii yeast postbiotic: systematic review and meta-analysis. Transl Anim Sci 2024; 8:txae137. [PMID: 39376467 PMCID: PMC11457054 DOI: 10.1093/tas/txae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Previous research suggested that feeding sows with a product containing an inactivated strain specific Pichia guilliermondii yeast postbiotic (PG; Citristim, ADM Animal Nutrition, Quincy, IL) has the potential to support fecundity, and progeny performance at birth, weaning, and after weaning. To summarize these effects, a systematic review followed by a meta-analysis was carried out to determine the effects of feeding sows with PG during gestation and lactation on reproductive the performance of sows and the growth of progeny after weaning. All experiments included were randomized trials reporting side-by-side comparisons of an appropriate control (CON) and the CON with the inclusion of PG. The effects of PG inclusion in sow diets were evaluated using the raw mean difference and effect size calculations. Analysis included seven trials for sow reproductive and litter performance until weaning, and eight trials for progeny performance after weaning. The risk of publication bias was assessed by funnel plots. In the case of publication bias, the Trim and Fill method was used. Heterogeneity was assessed using I 2 statistics. Sows fed PG during gestation and lactation had more piglets born alive (BA), BA + stillborn, and BA + stillborn + mummies (P < 0.001). The individual birth weight of the piglets was not affected by the supplementation (P = 0.835). As a result, litter weight at birth was greater in sows-fed PG (P < 0.001). Piglets born from PG-fed sows tended to be weaned 0.34 d younger than those from CON-fed sows (P = 0.060). Twenty-one-day adjusted pig weight at weaning tended to be lighter by 0.122 kg in the PG sow group (P = 0.069); however, litter weight at weaning adjusted to 21 d remained similar across groups (P = 0.516). The number of piglets weaned and mortality-adjusted number of piglets weaned per sow were greater in PG than in CON sows (P < 0.023). A carryover effect was observed for progeny of PG-fed sows after weaning. Piglets born from PG-supplemented sows had greater weight gain (P = 0.030) and tended to have a better survival rate (P = 0.055) until the end of the nursery phase. These results indicate that feeding PG to sows during gestation and lactation consistently and significantly improves not only the performance of sows at farrowing but also performance of the progeny after weaning.
Collapse
|
34
|
Rocha CC, Cordeiro ALL, Campbell M, Maldonado MBC, Silva FACC, Bennett A, Waheed A, Hansen T, Binelli M. In vitro reminiscence: uterine programming in vivo affects respective luminal epithelial cells function in vitro†. Biol Reprod 2024; 111:600-612. [PMID: 38910516 DOI: 10.1093/biolre/ioae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 06/25/2024] Open
Abstract
In cattle, the endometrium during diestrus and early pregnancy displays cellular responses that are consequences of prior, transient stimuli. Goal was to establish a model to study cellular memory in the endometrium. The hypothesis is that stimuli given to endometrium in vivo are retained as a cellular memory that remains after bovine uterine epithelial cells (BUECs) are isolated, cultured, and further stimulated in vitro. Objectives were to measure BUEC proliferation/migration and responsiveness to recombinant bovine Interferon-tau (rbIFNT) in vitro: among cows that showed estrus (experiment 1 [Exp1]), cows that became or not pregnant to artificial insemination (Exp2), cows that received or not supplemental progesterone (P4; Exp3) and cows that received or not a COX-1/2 inhibitor (Exp4). Only cows that displayed estrus were included in studies. For all experiments endometrial cytology was collected 4 days after estrus, BUECs were cultured, propagated, and submitted to rbIFNT treatment and an in vitro scratch assay. In Exp1, different cows spontaneously grouped according to proliferative/migratory capacity and responsiveness to rbIFNT of their respective BUECs. In Exp2, BUECs from pregnant cows showed greater rbIFNT responsiveness and cellular proliferation. In Exp3, BUECs from cows supplemented with P4 presented inhibited proliferation and increased expression of RSAD2. In Exp4, Flunixin Meglumine modified rbIFNT responsiveness of BUECs in an IFN-signaling pathway-specific manner. In conclusion, physiological and pharmacological stimuli received by the endometrium in vivo were retained as cellular memory in BUECs, persisted in culture, and changed BUEC proliferation/migration and responsiveness to rbIFNT, which are characteristics associated with fertility in cattle.
Collapse
Affiliation(s)
| | - Andrey Luiz Lopes Cordeiro
- Center of Biological and Nature Sciences, Federal University of Acre, Rodovia BR 364, Km 04, Rio Branco, Acre, 69920-900, Brazil
| | - Meghan Campbell
- Department of Animal Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | | | | | - Alexandra Bennett
- Department of Animal Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Abdul Waheed
- Department of Animal Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Thomas Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
35
|
Sha Y, Liu X, Li X, Wang Z, Shao P, Jiao T, He Y, Zhao S. Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs. MICROBIOME 2024; 12:172. [PMID: 39267132 PMCID: PMC11397069 DOI: 10.1186/s40168-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The microbiota and metabolites in the gastrointestinal tracts of female animals at different reproductive periods are very important to the growth, development, and health of themselves and their offspring. However, the changes in the gastrointestinal microbiota and metabolites throughout reproductive period of different sheep breeds and their effects on the growth and development of offspring lambs are still unclear. Hence, this study presents an assessment of the reproductive hormone levels, immune levels, rumen microbiota, and metabolites in Hu sheep and Suffolk ewes at different reproductive periods and their effects on the growth and development of offspring lambs. RESULTS Hu sheep and Suffolk during non-pregnancy, pregnancy, and lactation were used as the research objects to determine reproductive and immune indexes of ewes at different periods, analyze rumen microbiome and metabolome, and track the growth performance and development of offspring lambs. The results showed that the reproductive hormone and immune levels of Hu sheep and Suffolk underwent adaptive changes across different reproductive periods. Compared with non-pregnancy, the microbial energy metabolism and lipid metabolism function decreased during Hu sheep pregnancy, and energy metabolism function decreased during lactation. In Suffolk, energy metabolism, glycan biosynthesis, and metabolism function were enhanced during pregnancy, and the metabolism of cofactors and vitamins was enhanced during lactation. Prevotella increased in Suffolk during pregnancy and lactation (P < 0.05) and was positively correlated with the birth weight and body size of the lambs (P < 0.05). Moreover, the abundances of Butyrivibrio and Rikenellaceae_RC9_gut_group during pregnancy were positively correlated with the intestinal immunity of the offspring lambs (P < 0.05), thereby regulating the intestinal immunity level of the lambs. Metabolomic analysis revealed that the protein digestion, absorption, and amino acid metabolism of Hu sheep were enhanced during pregnancy, which provided amino acids for the growth and development of pregnant ewes and fetuses and was significantly correlated with the birth weight, body size, and intestinal immunity of lambs (P < 0.05). Simultaneously, there was an increase in acetate and propionate during the pregnancy and lactation period of both Hu sheep and Suffolk, providing energy for ewes during reproductive period. Moreover, the microbiota during the lactation period was significantly correlated with the milk quality and lambs daily gain (P < 0.05). CONCLUSIONS This study revealed the characteristic succession changes in the rumen microbiota and its metabolites at different reproductive periods in sheep breeds and their regulation of reproductive hormone and immune levels and identified their potential effects on the growth and development of offspring lambs. The findings provide valuable insights into the health and feeding management of different sheep breeds during the reproductive stage. Video Abstract.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Pengyang Shao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
36
|
Mertens RT, Misra A, Xiao P, Baek S, Rone JM, Mangani D, Sivanathan KN, Arojojoye AS, Awuah SG, Lee I, Shi GP, Petrova B, Brook JR, Anderson AC, Flavell RA, Kanarek N, Hemberg M, Nowarski R. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity 2024; 57:2077-2094.e12. [PMID: 38906145 DOI: 10.1016/j.immuni.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.
Collapse
Affiliation(s)
- Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xiao
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Hofsink N, Groenink L, Plösch T. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. Semin Immunopathol 2024; 46:14. [PMID: 39212791 PMCID: PMC11364800 DOI: 10.1007/s00281-024-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.
Collapse
Affiliation(s)
- Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Carl von Ossietzky Universität Oldenburg School VI - School of Medicine and Health Sciences, Department of Paediatrics, Section of Neonatology, and Research Centre Neurosensory Science, Oldenburg, Germany
| |
Collapse
|
38
|
Cherayil BJ, Jain N. From Womb to World: Exploring the Immunological Connections between Mother and Child. Immunohorizons 2024; 8:552-562. [PMID: 39172025 PMCID: PMC11374749 DOI: 10.4049/immunohorizons.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Mother and child are immunologically interconnected by mechanisms that we are only beginning to understand. During pregnancy, multiple molecular and cellular factors of maternal origin are transferred across the placenta and influence the development and function of the fetal and newborn immune system. Altered maternal immune states arising from pregnancy-associated infections or immunizations have the potential to program offspring immune function in ways that may have long-term health consequences. In this study, we review current literature on the impact of prenatal infection and vaccination on the developing immune system, highlight knowledge gaps, and look to the horizon to envision maternal interventions that could benefit both the mother and her child.
Collapse
Affiliation(s)
- Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Center for Computational and Integrative Biology, Mass General Brigham, Boston, MA
| |
Collapse
|
39
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
40
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
42
|
Xiao L, Zhou T, Zuo Z, Sun N, Zhao F. Spatiotemporal patterns of the pregnancy microbiome and links to reproductive disorders. Sci Bull (Beijing) 2024; 69:1275-1285. [PMID: 38388298 DOI: 10.1016/j.scib.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The microbiome of females undergoes extensive remodeling during pregnancy, which is likely to have an impact on the health of both mothers and offspring. Nevertheless, large-scale integrated investigations characterizing microbiome dynamics across key body habitats are lacking. Here, we performed an extensive meta-analysis that compiles and analyzes microbiome profiles from >10,000 samples across the gut, vagina, and oral cavity of pregnant women from diverse geographical regions. We have unveiled unexpected variations in the taxonomic, functional, and ecological characteristics of microbial communities throughout the course of pregnancy. The gut microbiota showed distinct trajectories between Western and non-Western populations. The vagina microbiota exhibited fluctuating transitions at the genus level across gestation, while the oral microbiota remained relatively stable. We also identified distinctive microbial signatures associated with prevalent pregnancy-related disorders, including opposite variations in the oral and gut microbiota of patients with gestational diabetes and disrupted microbial networks in preterm birth. This study establishes a comprehensive atlas of the pregnancy microbiome by integrating multidimensional datasets and offers foundational insights into the intricate interplay between microbes and host factors that underlie reproductive health.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Zhou
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Shu C, Street K, Breton CV, Bastain TM, Wilson ML. A review of single-cell transcriptomics and epigenomics studies in maternal and child health. Epigenomics 2024; 16:775-793. [PMID: 38709139 PMCID: PMC11318716 DOI: 10.1080/17501911.2024.2343276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Single-cell sequencing technologies enhance our understanding of cellular dynamics throughout pregnancy. We outlined the workflow of single-cell sequencing techniques and reviewed single-cell studies in maternal and child health. We conducted a literature review of single cell studies on maternal and child health using PubMed. We summarized the findings from 16 single-cell atlases of the human and mammalian placenta across gestational stages and 31 single-cell studies on maternal exposures and complications including infection, obesity, diet, gestational diabetes, pre-eclampsia, environmental exposure and preterm birth. Single-cell studies provides insights on novel cell types in placenta and cell type-specific marks associated with maternal exposures and complications.
Collapse
Affiliation(s)
- Chang Shu
- Center for Genetic Epidemiology, Division of Epidemiology & Genetics, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Kelly Street
- Division of Biostatistics, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Carrie V Breton
- Division of Environmental Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Theresa M Bastain
- Division of Environmental Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Melissa L Wilson
- Division of Disease Prevention, Policy, & Global Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles,CA USA
| |
Collapse
|
44
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
45
|
Daccache JA, Naik S. Inflammatory Memory in Chronic Skin Disease. JID INNOVATIONS 2024; 4:100277. [PMID: 38708420 PMCID: PMC11068922 DOI: 10.1016/j.xjidi.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is a hallmark of remitting-relapsing dermatological diseases. Although a large emphasis has been placed on adaptive immune cells as mediators of relapse, evidence in epithelial and innate immune biology suggests that disease memory is widespread. In this study, we bring to the fore the concept of inflammatory memory or nonspecific training of long-lived cells in the skin, highlighting the epigenetic and other mechanisms that propagate memory at the cellular level. We place these findings in the context of psoriasis, a prototypic flaring disease known to have localized memory, and underscore the importance of targeting memory to limit disease flares.
Collapse
Affiliation(s)
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, New York, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, New York, USA
- Department of Medicine, NYU Langone Health, New York, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Colton Center for Autoimmunity, NYU Langone Health, New York, New York, USA
| |
Collapse
|
46
|
Chi L, Liu C, Gribonika I, Gschwend J, Corral D, Han SJ, Lim AI, Rivera CA, Link VM, Wells AC, Bouladoux N, Collins N, Lima-Junior DS, Enamorado M, Rehermann B, Laffont S, Guéry JC, Tussiwand R, Schneider C, Belkaid Y. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 2024; 384:eadk6200. [PMID: 38574174 DOI: 10.1126/science.adk6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.
Collapse
Affiliation(s)
- Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024; 25:598-606. [PMID: 38565970 DOI: 10.1038/s41590-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.
Collapse
Affiliation(s)
- Eunha Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
48
|
Eskiocak O, Chowdhury S, Shah V, Nnuji-John E, Chung C, Boyer JA, Harris AS, Habel J, Sadelain M, Beyaz S, Amor C. Senolytic CAR T cells reverse aging-associated defects in intestinal regeneration and fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585779. [PMID: 38529506 PMCID: PMC10962734 DOI: 10.1101/2024.03.19.585779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Intestinal stem cells (ISCs) drive the rapid regeneration of the gut epithelium to maintain organismal homeostasis. Aging, however, significantly reduces intestinal regenerative capacity. While cellular senescence is a key feature of the aging process, little is known about the in vivo effects of senescent cells on intestinal fitness. Here, we identify the accumulation of senescent cells in the aging gut and, by harnessing senolytic CAR T cells to eliminate them, we uncover their detrimental impact on epithelial integrity and overall intestinal homeostasis in natural aging, injury and colitis. Ablation of intestinal senescent cells with senolytic CAR T cells in vivo or in vitro is sufficient to promote the regenerative potential of aged ISCs. This intervention improves epithelial integrity and mucosal immune function. Overall, these results highlight the ability of senolytic CAR T cells to rejuvenate the intestinal niche and demonstrate the potential of targeted cell therapies to promote tissue regeneration in aging organisms.
Collapse
Affiliation(s)
- Onur Eskiocak
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- Graduate Program in Genetics, Stony Brook University; NY, USA
| | | | - Vyom Shah
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Emmanuella Nnuji-John
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Jacob A. Boyer
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University; Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Corina Amor
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| |
Collapse
|
49
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
50
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|