1
|
Carreño JM, Lerman B, Singh G, Abbad A, Yellin T, Ehrenhaus J, Fried M, Nardulli JR, Kang HM, Mulder LCF, Gleason C, Srivastava K, Simon V, Krammer F. XBB.1.5 monovalent vaccine induces lasting cross-reactive responses to SARS-CoV-2 variants such as HV.1 and JN.1, as well as SARS-CoV-1, but elicits limited XBB.1.5 specific antibodies. mBio 2025; 16:e0360724. [PMID: 40042313 PMCID: PMC11980561 DOI: 10.1128/mbio.03607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/13/2025] [Indexed: 04/10/2025] Open
Abstract
The evolution of the antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is impacted by the nature and number of antigenic exposures. First-generation coronavirus disease 2019 (COVID-19) vaccines encoded an ancestral spike protein. Updated bivalent vaccines and breakthrough infections have shaped the intricate diversity of the polyclonal antibody response and specificity of individual antibody clones. We and others previously showed that bivalent vaccines containing the ancestral and Omicron (BA.5) spikes induce high levels of cross-reactive antibodies but undetectable BA.5-specific antibodies in serum. Here, we assessed sera collected before as well as 1 and 3 months following administration of an updated XBB.1.5 monovalent vaccine to individuals with diverse infection and vaccination histories. Vaccination increased neutralization against recent variants of concern, including HV.1, JN.1, and the vaccine-homologous XBB.1.5. Antibody binding and avidity against ancestral and XBB.1.5 antigens significantly increased after vaccination. However, antibody depletion experiments showed that most of the response was cross-reactive to the ancestral spike, and only low levels of XBB.1.5-specific antibodies to the spike or the receptor-binding domain were detected. Importantly, increased antibody levels were still detectable in circulation 3 months post-vaccination and cross-reacted with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) as measured by pseudovirus neutralization and binding assays. Overall, our data suggest that the XBB.1.5 monovalent vaccine predominantly elicits a cross-reactive response imprinted by viral spike antigens encountered early during the pandemic.IMPORTANCEUpdated COVID-19 vaccine formulations and SARS-CoV-2 exposure history affect the antibody response to SARS-CoV-2. High titers of antibodies are induced in serum by XBB.1.5 monovalent vaccination. Antibody depletion experiments reveal that the majority of the antibody response is cross-reactive to the ancestral spike, despite vaccination increasing neutralization against recently circulating Omicron variants. Vaccine-induced SARS-CoV-2 antibodies cross-react with SARS-CoV-1 and remain in the bloodstream for at least 3 months after immunization.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Brian Lerman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jordan Ehrenhaus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Miriam Fried
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jessica R. Nardulli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hyun Min Kang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - PVI study group
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Frei L, Gao B, Han J, Taft JM, Irvine EB, Weber CR, Kumar RK, Eisinger BN, Ignatov A, Yang Z, Reddy ST. Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2. Nat Biomed Eng 2025; 9:552-565. [PMID: 40044817 PMCID: PMC12003156 DOI: 10.1038/s41551-025-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2025] [Indexed: 04/18/2025]
Abstract
Most antibodies for treating COVID-19 rely on binding the receptor-binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). However, Omicron and its sub-lineages, as well as other heavily mutated variants, have rendered many neutralizing antibodies ineffective. Here we show that antibodies with enhanced resistance to the evolution of SARS-CoV-2 can be identified via deep mutational learning. We constructed a library of full-length RBDs of Omicron BA.1 with high mutational distance and screened it for binding to the angiotensin-converting-enzyme-2 receptor and to neutralizing antibodies. After deep-sequencing the library, we used the data to train ensemble deep-learning models for the prediction of the binding and escape of a panel of eight therapeutic antibody candidates targeting a diverse range of RBD epitopes. By using in silico evolution to assess antibody breadth via the prediction of the binding and escape of the antibodies to millions of Omicron sequences, we found combinations of two antibodies with enhanced and complementary resistance to viral evolution. Deep learning may enable the development of therapeutic antibodies that remain effective against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Alloy Therapeutics (Switzerland) AG, Allschwil, Switzerland
| | - Rachita K Kumar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benedikt N Eisinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andrey Ignatov
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhouya Yang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Botnar Institute of Immune Engineering, Basel, Switzerland.
| |
Collapse
|
3
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
4
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Sadhu S, Goswami S, Khatri R, Lohiya B, Singh V, Yadav R, Das V, Tripathy MR, Dwivedi P, Srivastava M, Mani S, Asthana S, Samal S, Awasthi A. Berbamine prevents SARS-CoV-2 entry and transmission. iScience 2024; 27:111347. [PMID: 39640591 PMCID: PMC11618033 DOI: 10.1016/j.isci.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Effective antiviral drugs are essential to combat COVID-19 and future pandemics. Although many compounds show antiviral in vitro activity, only a few retain effectiveness in vivo against SARS-CoV-2. Here, we show that berbamine (Berb) is effective against SARS-CoV, MER-CoV, SARS-CoV-2 and its variants, including the XBB.1.16 variant. In hACE2.Tg mice, Berb suppresses SARS-CoV-2 replication through two distinct mechanisms: inhibiting spike-mediated viral entry and enhancing antiviral gene expression during infection. The administration of Berb, in combination with remdesivir (RDV), clofazimine (Clof) and fangchinoline (Fcn), nearly eliminated viral load and promoted recovery from acute SARS-CoV-2 infection and its variants. Co-housed mice in direct contact with either pre-treated or untreated infected mice exhibited negligible viral loads, reduced lung pathology, and decreased viral shedding, suggesting that Berb may effectively hinder virus transmission. This broad-spectrum activity positions Berb as a promising preventive or therapeutic option against betacoronaviruses.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sandeep Goswami
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Bharat Lohiya
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Rahul Yadav
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Prabhanjan Dwivedi
- Small Animal Facility, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
6
|
Misasi J, Wei RR, Wang L, Pegu A, Wei CJ, Oloniniyi OK, Zhou T, Moliva JI, Zhao B, Choe M, Yang ES, Zhang Y, Boruszczak M, Chen M, Leung K, Li J, Yang ZY, Andersen H, Carlton K, Godbole S, Harris DR, Henry AR, Ivleva VB, Lei QP, Liu C, Longobardi L, Merriam JS, Nase D, Olia AS, Pessaint L, Porto M, Shi W, Wallace SM, Wolff JJ, Douek DC, Suthar MS, Gall JG, Koup RA, Kwong PD, Mascola JR, Nabel GJ, Sullivan NJ. A multispecific antibody against SARS-CoV-2 prevents immune escape in vitro and confers prophylactic protection in vivo. Sci Transl Med 2024; 16:eado9026. [PMID: 39383243 DOI: 10.1126/scitranslmed.ado9026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronnie R Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Olamide K Oloniniyi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marika Boruszczak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan Li
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Zhi-Yong Yang
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | | | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vera B Ivleva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lindsay Longobardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeremy J Wolff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
8
|
Díaz-Salinas MA, Jain A, Durham ND, Munro JB. Single-molecule imaging reveals allosteric stimulation of SARS-CoV-2 spike receptor binding domain by host sialic acid. SCIENCE ADVANCES 2024; 10:eadk4920. [PMID: 39018397 PMCID: PMC466946 DOI: 10.1126/sciadv.adk4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Conformational dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S) mediate exposure of the binding site for the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The N-terminal domain (NTD) of S binds terminal sialic acid (SA) moieties on the cell surface, but the functional role of this interaction in virus entry is unknown. Here, we report that NTD-SA interaction enhances both S-mediated virus attachment and ACE2 binding. Through single-molecule Förster resonance energy transfer imaging of individual S trimers, we demonstrate that SA binding to the NTD allosterically shifts the S conformational equilibrium, favoring enhanced exposure of the ACE2-binding site. Antibodies that target the NTD block SA binding, which contributes to their mechanism of neutralization. These findings inform on mechanisms of S activation at the cell surface.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Aastha Jain
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
de Lima VA, Nunes JPS, Rosa DS, Ferreira R, Oliva MLV, Andreata‐Santos R, Duarte‐Barbosa M, Janini LMR, Maricato JT, Akamatsu MA, Ho PL, Schenkman S. Development and characterization of a multimeric recombinant protein using the spike protein receptor binding domain as an antigen to induce SARS-CoV-2 neutralization. Immun Inflamm Dis 2024; 12:e1353. [PMID: 39056544 PMCID: PMC11273545 DOI: 10.1002/iid3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.
Collapse
Affiliation(s)
- Veronica A. de Lima
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - João P. S. Nunes
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Daniela S. Rosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Rodrigo Ferreira
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria L. V. Oliva
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Robert Andreata‐Santos
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Marcia Duarte‐Barbosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Luiz M. R. Janini
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Juliana T. Maricato
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Milena A. Akamatsu
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Paulo L. Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| |
Collapse
|
10
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
12
|
Ober Shepherd BL, Scott PT, Hutter JN, Lee C, McCauley MD, Guzman I, Bryant C, McGuire S, Kennedy J, Chen WH, Hajduczki A, Mdluli T, Valencia-Ruiz A, Amare MF, Matyas GR, Rao M, Rolland M, Mascola JR, De Rosa SC, McElrath MJ, Montefiori DC, Serebryannyy L, McDermott AB, Peel SA, Collins ND, Joyce MG, Robb ML, Michael NL, Vasan S, Modjarrad K. SARS-CoV-2 recombinant spike ferritin nanoparticle vaccine adjuvanted with Army Liposome Formulation containing monophosphoryl lipid A and QS-21: a phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial. THE LANCET. MICROBE 2024; 5:e581-e593. [PMID: 38761816 PMCID: PMC11192176 DOI: 10.1016/s2666-5247(23)00410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 05/20/2024]
Abstract
BACKGROUND A self-assembling SARS-CoV-2 WA-1 recombinant spike ferritin nanoparticle (SpFN) vaccine co-formulated with Army Liposomal Formulation (ALFQ) adjuvant containing monophosphoryl lipid A and QS-21 (SpFN/ALFQ) has shown protective efficacy in animal challenge models. This trial aims to assess the safety and immunogenicity of SpFN/ALFQ in a first-in-human clinical trial. METHODS In this phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial, adults were randomly assigned (5:5:2) to receive 25 μg or 50 μg of SpFN/ALFQ or saline placebo intramuscularly at day 1 and day 29, with an optional open-label third vaccination at day 181. Enrolment and randomisation occurred sequentially by group; randomisation was done by an interactive web-based randomisation system and only designated unmasked study personnel had access to the randomisation code. Adults were required to be seronegative and unvaccinated for inclusion. Local and systemic reactogenicity, adverse events, binding and neutralising antibodies, and antigen-specific T-cell responses were quantified. For safety analyses, exact 95% Clopper-Pearson CIs for the probability of any incidence of an unsolicited adverse event was computed for each group. For immunogenicity results, CIs for binary variables were computed using the exact Clopper-Pearson methodology, while CIs for geometric mean titres were based on 10 000 empirical bootstrap samples. Post-hoc, paired one-sample t tests were used to assess the increase in mean log-10 neutralising antibody titres between day 29 and day 43 (after the second vaccination) for the primary SARS-CoV-2 targets of interest. This trial is registered at ClinicalTrials.gov, NCT04784767, and is closed to new participants. FINDINGS Between April 7, and June 29, 2021, 29 participants were enrolled in the study. 20 individuals were assigned to receive 25 μg SpFN/ALFQ, four to 50 μg SpFN/ALFQ, and five to placebo. Neutralising antibody responses peaked at day 43, 2 weeks after the second dose. Neutralisation activity against multiple omicron subvariants decayed more slowly than against the D614G or beta variants until 5 months after second vaccination for both dose groups. CD4+ T-cell responses were elicited 4 weeks after the first dose and were boosted after a second dose of SpFN/ALFQ for both dose groups. Neutralising antibody titres against early omicron subvariants and clade 1 sarbecoviruses were detectable after two immunisations and peaked after the third immunisation for both dose groups. Neutralising antibody titres against XBB.1.5 were detected after three vaccinations. Passive IgG transfer from vaccinated volunteers into Syrian golden hamsters controlled replication of SARS-CoV-1 after challenge. INTERPRETATION SpFN/ALFQ was well tolerated and elicited robust and durable binding antibody and neutralising antibody titres against a broad panel of SARS-CoV-2 variants and other sarbecoviruses. FUNDING US Department of Defense, Defense Health Agency.
Collapse
Affiliation(s)
- Brittany L Ober Shepherd
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul T Scott
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Global Clinical Development, Vaccines, Merck, Rahway, NJ, USA
| | - Jack N Hutter
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christine Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melanie D McCauley
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ivelese Guzman
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Wei-Hung Chen
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Thembi Mdluli
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anais Valencia-Ruiz
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret F Amare
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mangala Rao
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Departments of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Departments of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Immunology, Sanofi Vaccines, Lyon, France
| | - Sheila A Peel
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Sandhya Vasan
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Vaccine Research and Development, Pfizer, Pearl River, NY, USA
| |
Collapse
|
13
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
15
|
Wang Y, Yan A, Song D, Duan M, Dong C, Chen J, Jiang Z, Gao Y, Rao M, Feng J, Zhang Z, Qi R, Ma X, Liu H, Yu B, Wang Q, Zong M, Jiao J, Xing P, Pan R, Li D, Xiao J, Sun J, Li Y, Zhang L, Shen Z, Sun B, Zhao Y, Zhang L, Dai J, Zhao J, Wang L, Dou C, Liu Z, Zhao J. Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants. Nat Commun 2024; 15:842. [PMID: 38287016 PMCID: PMC10825162 DOI: 10.1038/s41467-024-45050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Deyong Song
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Maoqin Duan
- Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuangchuang Dong
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Jiantao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihe Jiang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Yuanzhu Gao
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Muding Rao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Jianxia Feng
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Hong Liu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Beibei Yu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Qiaoping Wang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Mengqi Zong
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Jie Jiao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Pingping Xing
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Rongrong Pan
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Dan Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Juxue Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junbo Sun
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Ying Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Linfeng Zhang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Zhenduo Shen
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Baiping Sun
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Yanyan Zhao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Jun Dai
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wang
- Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Changlin Dou
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China.
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Bio-Island, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
16
|
Prabhakaran M, Matassoli F, Leggat D, Hoover A, Srikanth A, Wu W, Henry AR, Wang J, Lin BC, Teng IT, Schramm CA, Castro M, Serebryannyy L, Jean-Baptiste N, Moore C, Gajjala S, Todd JPM, McCarthy E, Narpala S, Francica J, Program VP, Corbett-Helaire KS, Douek DC, Kwong PD, Seder RA, Andrews SF, McDermott AB. Adjuvanted SARS-CoV-2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Sci Transl Med 2024; 16:eadd5960. [PMID: 38170789 DOI: 10.1126/scitranslmed.add5960] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.
Collapse
Affiliation(s)
- Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Flavio Matassoli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Leggat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Walter Reed Army Institute of Research, Military HIV Research Program, Silver Spring, MD 20910, USA
| | - Abigayle Hoover
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abhinaya Srikanth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Weiwei Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazaire Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suprabhath Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Astrazeneca, Washington, DC 20004, USA
| | | | - Kizzmekia S Corbett-Helaire
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Korenkov M, Zehner M, Cohen-Dvashi H, Borenstein-Katz A, Kottege L, Janicki H, Vanshylla K, Weber T, Gruell H, Koch M, Diskin R, Kreer C, Klein F. Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants. Immunity 2023; 56:2803-2815.e6. [PMID: 38035879 DOI: 10.1016/j.immuni.2023.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.
Collapse
Affiliation(s)
- Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aliza Borenstein-Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
18
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Wang Q, Guo Y, Liu L, Schwanz LT, Li Z, Nair MS, Ho J, Zhang RM, Iketani S, Yu J, Huang Y, Qu Y, Valdez R, Lauring AS, Huang Y, Gordon A, Wang HH, Liu L, Ho DD. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 2023; 624:639-644. [PMID: 37871613 DOI: 10.1038/s41586-023-06750-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Liyuan Liu
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Logan T Schwanz
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathobiology and Mechanisms of Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jerren Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard M Zhang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Lauring
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
20
|
Moliva JI, Andrew SF, Flynn BJ, Wagner DA, Foulds KE, Gagne M, Flebbe DR, Lamb E, Provost S, Marquez J, Mychalowych A, Lorag CG, Honeycutt CC, Burnett MR, McCormick L, Henry AR, Godbole S, Davis-Gardner ME, Minai M, Bock KW, Nagata BM, Todd JPM, McCarthy E, Dodson A, Kouneski K, Cook A, Pessaint L, Ry AV, Valentin D, Young S, Littman Y, Boon ACM, Suthar MS, Lewis MG, Andersen H, Alves DA, Woodward R, Leuzzi A, Vitelli A, Colloca S, Folgori A, Raggiolli A, Capone S, Nason MC, Douek DC, Roederer M, Seder RA, Sullivan NJ. Durable immunity to SARS-CoV-2 in both lower and upper airways achieved with a gorilla adenovirus (GRAd) S-2P vaccine in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.567930. [PMID: 38076895 PMCID: PMC10705562 DOI: 10.1101/2023.11.22.567930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.
Collapse
Affiliation(s)
- Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Samantha Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Cynthia G Lorag
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, 30322, United States of America
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Alan Dodson
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Katelyn Kouneski
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Anthony Cook
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Laurent Pessaint
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Alex Van Ry
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Daniel Valentin
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Steve Young
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Yoav Littman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, 30322, United States of America
| | - Mark G Lewis
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Hanne Andersen
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Ruth Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | | | | | | | | | | | | | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- Correspondence: and
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Correspondence: and
- Lead contact
| |
Collapse
|
21
|
Wang Q, Li Z, Guo Y, Mellis IA, Iketani S, Liu M, Yu J, Valdez R, Lauring AS, Sheng Z, Gordon A, Liu L, Ho DD. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. iScience 2023; 26:108254. [PMID: 38026207 PMCID: PMC10654603 DOI: 10.1016/j.isci.2023.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 Omicron BA.2.75 has diversified into multiple subvariants with additional spike mutations and several are expanding in prevalence, particularly CH.1.1 and BN.1. Here, we investigated the viral receptor affinities and neutralization evasion properties of major BA.2.75 subvariants actively circulating in different regions worldwide. We found two distinct evolutionary pathways and three newly identified mutations that shaped the virological features of these subvariants. One phenotypic group exhibited a discernible decrease in viral receptor affinities, but a noteworthy increase in resistance to antibody neutralization, as exemplified by CH.1.1, which is apparently as resistant as XBB.1.5. In contrast, a second group demonstrated a substantial increase in viral receptor affinity but only a moderate increase in antibody evasion, as exemplified by BN.1. We also observed that all prevalent SARS-CoV-2 variants in the circulation presently, except for BN.1, exhibit profound levels of antibody evasion, suggesting this is the dominant determinant of virus transmissibility today.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ian A. Mellis
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
22
|
Focosi D, McConnell S, Sullivan DJ, Casadevall A. Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist Updat 2023; 71:100991. [PMID: 37572569 DOI: 10.1016/j.drup.2023.100991] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
The mutation rate of the Omicron sublineage has led to baseline resistance against all previously authorized anti-Spike monoclonal antibodies (mAbs). Nevertheless, in case more antiviral mAbs will be authorized in the future, it is relevant to understand how frequently treatment-emergent resistance has emerged so far, under different combinations and in different patient subgroups. We report the results of a systematic review of the medical literature for case reports and case series for treatment-emergent immune escape, which is defined as emergence of a resistance-driving mutation in at least 20% of sequences in a given host at a given timepoint. We identified 32 publications detailing 216 cases that included different variants of concern (VOC) and found that the incidence of treatment emergent-resistance ranged from 10% to 50%. Most of the treatment-emergent resistance events occurred in immunocompromised patients. Interestingly, resistance also emerged against cocktails of two mAbs, albeit at lower frequencies. The heterogenous therapeutic management of those cases doesn't allow inferences about the clinical outcome in patients with treatment-emergent resistance. Furthermore, we noted a temporal correlation between the introduction of mAb therapies and a subsequent increase in SARS-CoV-2 sequences across the globe carrying mutations conferring resistance to that mAb, raising concern as to whether these had originated in mAb-treated individuals. Our findings confirm that treatment-emergent immune escape to anti-Spike mAbs represents a frequent and concerning phenomenon and suggests that these are associated with mAb use in immunosuppressed hosts.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy.
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
24
|
Pflumm D, Seidel A, Klein F, Groß R, Krutzke L, Kochanek S, Kroschel J, Münch J, Stifter K, Schirmbeck R. Heterologous DNA-prime/protein-boost immunization with a monomeric SARS-CoV-2 spike antigen redundantizes the trimeric receptor-binding domain structure to induce neutralizing antibodies in old mice. Front Immunol 2023; 14:1231274. [PMID: 37753087 PMCID: PMC10518615 DOI: 10.3389/fimmu.2023.1231274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
A multitude of alterations in the old immune system impair its functional integrity. Closely related, older individuals show, for example, a reduced responsiveness to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. However, systematic strategies to specifically improve the efficacy of vaccines in the old are missing or limited to simple approaches like increasing the antigen concentration or injection frequencies. We here asked whether the intrinsic, trimeric structure of the SARS-CoV-2 spike (S) antigen and/or a DNA- or protein-based antigen delivery platform affects priming of functional antibody responses particularly in old mice. The used S-antigens were primarily defined by the presence/absence of the membrane-anchoring TM domain and the closely interlinked formation/non-formation of a trimeric structure of the receptor binding domain (S-RBD). Among others, we generated vectors expressing prefusion-stabilized, cell-associated (TM+) trimeric "S2-P" or secreted (TM-) monomeric "S6-PΔTM" antigens. These proteins were produced from vector-transfected HEK-293T cells under mild conditions by Strep-tag purification, revealing that cell-associated but not secreted S proteins tightly bound Hsp73 and Grp78 chaperones. We showed that both, TM-deficient S6-PΔTM and full-length S2-P antigens elicited very similar S-RBD-specific antibody titers and pseudovirus neutralization activities in young (2-3 months) mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. The trimeric S2-P antigen induced high S-RBD-specific antibody responses in old (23-24 months) mice through DNA-prime/DNA-boost vaccination. Unexpectedly, the monomeric S6-PΔTM antigen induced very low S-RBD-specific antibody titers in old mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. However, old mice efficiently elicited an S-RBD-specific antibody response after heterologous DNA-prime/protein-boost immunization with the S6-PΔTM antigen, and antibody titers even reached similar levels and neutralizing activities as in young mice and also cross-reacted with different S-variants of concern. The old immune system thus distinguished between trimeric and monomeric S protein conformations: it remained antigen responsive to the trimeric S2-P antigen, and a simple change in the vaccine delivery regimen was sufficient to unleash its reactivity to the monomeric S6-PΔTM antigen. This clearly shows that both the antigen structure and the delivery platform are crucial to efficiently prime humoral immune responses in old mice and might be relevant for designing "age-adapted" vaccine strategies.
Collapse
Affiliation(s)
- Dominik Pflumm
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabrice Klein
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Joris Kroschel
- Institute of Clinical Chemistry, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | | |
Collapse
|
25
|
Yang Y, Kong WP, Liu C, Ruckwardt TJ, Tsybovsky Y, Wang L, Wang S, Biner DW, Chen M, Liu T, Merriam J, Olia AS, Ou L, Qiu Q, Shi W, Stephens T, Yang ES, Zhang B, Zhang Y, Zhou Q, Rawi R, Koup RA, Mascola JR, Kwong PD. Enhancing Anti-SARS-CoV-2 Neutralizing Immunity by Genetic Delivery of Enveloped Virus-like Particles Displaying SARS-CoV-2 Spikes. Vaccines (Basel) 2023; 11:1438. [PMID: 37766115 PMCID: PMC10537688 DOI: 10.3390/vaccines11091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Daniel W. Biner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Jonah Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| |
Collapse
|
26
|
Huang SH, Chen YT, Lin XY, Ly YY, Lien ST, Chen PH, Wang CT, Wu SC, Chen CC, Lin CY. In silico prediction of immune-escaping hot spots for future COVID-19 vaccine design. Sci Rep 2023; 13:13468. [PMID: 37596329 PMCID: PMC10439115 DOI: 10.1038/s41598-023-40741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has had a widespread impact on a global scale, and the evolution of considerable dominants has already taken place. Some variants contained certain key mutations located on the receptor binding domain (RBD) of spike protein, such as E484K and N501Y. It is increasingly worrying that these variants could impair the efficacy of current vaccines or therapies. Therefore, analyzing and predicting the high-risk mutations of SARS-CoV-2 spike glycoprotein is crucial to design future vaccines against the different variants. In this work, we proposed an in silico approach, immune-escaping score (IES), to predict high-risk immune-escaping hot spots on the receptor-binding domain (RBD), implemented through integrated delta binding free energy measured by computational mutagenesis of spike-antibody complexes and mutation frequency calculated from viral genome sequencing data. We identified 23 potentially immune-escaping mutations on the RBD by using IES, nine of which occurred in omicron variants (R346K, K417N, N440K, L452Q, L452R, S477N, T478K, F490S, and N501Y), despite our dataset being curated before the omicron first appeared. The highest immune-escaping score (IES = 1) was found for E484K, which agrees with recent studies stating that the mutation significantly reduced the efficacy of neutralization antibodies. Furthermore, our predicted delta binding free energy and IES show a high correlation with high-throughput deep mutational scanning data (Pearson's r = 0.70) and experimentally measured neutralization titers data (mean Pearson's r = -0.80). In summary, our work presents a new method to identify the potentially immune-escaping mutations on the RBD and provides valuable insights into future COVID-19 vaccine design.
Collapse
Affiliation(s)
| | | | | | - Yi-Yi Ly
- Graphen Inc., New York, NY, 10110, USA
| | | | | | | | - Suh-Chin Wu
- Adimmune Corp., Taichung City, 427003, Taiwan
| | | | | |
Collapse
|
27
|
Liu C, Wang L, Merriam JS, Shi W, Yang ES, Zhang Y, Chen M, Kong WP, Cheng C, Tsybovsky Y, Stephens T, Verardi R, Leung K, Stein C, Olia AS, Harris DR, Choe M, Zhang B, Graham BS, Kwong PD, Koup RA, Pegu A, Mascola JR. Self-assembling SARS-CoV-2 spike-HBsAg nanoparticles elicit potent and durable neutralizing antibody responses via genetic delivery. NPJ Vaccines 2023; 8:111. [PMID: 37553406 PMCID: PMC10409857 DOI: 10.1038/s41541-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
While several COVID-19 vaccines have been in use, more effective and durable vaccines are needed to combat the ongoing COVID-19 pandemic. Here, we report highly immunogenic self-assembling SARS-CoV-2 spike-HBsAg nanoparticles displaying a six-proline-stabilized WA1 (wild type, WT) spike S6P on a HBsAg core. These S6P-HBsAgs bound diverse domain-specific SARS-CoV-2 monoclonal antibodies. In mice with and without a HBV pre-vaccination, DNA immunization with S6P-HBsAgs elicited significantly more potent and durable neutralizing antibody (nAb) responses against diverse SARS-CoV-2 strains than that of soluble S2P or S6P, or full-length S2P with its coding sequence matching mRNA-1273. The nAb responses elicited by S6P-HBsAgs persisted substantially longer than by soluble S2P or S6P and appeared to be enhanced by HBsAg pre-exposure. These data show that genetic delivery of SARS-CoV-2 S6P-HBsAg nanoparticles can elicit greater and more durable nAb responses than non-nanoparticle forms of stabilized spike. Our findings highlight the potential of S6P-HBsAgs as next generation genetic vaccine candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Cody Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Chia WN, Tan CW, Tan AWK, Young B, Starr TN, Lopez E, Fibriansah G, Barr J, Cheng S, Yeoh AYY, Yap WC, Lim BL, Ng TS, Sia WR, Zhu F, Chen S, Zhang J, Kwek MSS, Greaney AJ, Chen M, Au GG, Paradkar PN, Peiris M, Chung AW, Bloom JD, Lye D, Lok S, Wang LF. Potent pan huACE2-dependent sarbecovirus neutralizing monoclonal antibodies isolated from a BNT162b2-vaccinated SARS survivor. SCIENCE ADVANCES 2023; 9:eade3470. [PMID: 37494438 PMCID: PMC10371021 DOI: 10.1126/sciadv.ade3470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Aaron Wai Kit Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Barnaby Young
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jennifer Barr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Samuel Cheng
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shiwei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Madeline Sheng Si Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Mark Chen
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Gough G. Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Prasad N. Paradkar
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Immunology & Infection, New Territories, Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Lye
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheemei Lok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
29
|
Moriyama S, Anraku Y, Taminishi S, Adachi Y, Kuroda D, Kita S, Higuchi Y, Kirita Y, Kotaki R, Tonouchi K, Yumoto K, Suzuki T, Someya T, Fukuhara H, Kuroda Y, Yamamoto T, Onodera T, Fukushi S, Maeda K, Nakamura-Uchiyama F, Hashiguchi T, Hoshino A, Maenaka K, Takahashi Y. Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants. Nat Commun 2023; 14:4198. [PMID: 37452031 PMCID: PMC10349087 DOI: 10.1038/s41467-023-39890-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.
Collapse
Affiliation(s)
- Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
- Department of Life Science and Medical Bioscience, Waseda University; Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Taiyou Someya
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Fukuhara
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Fukumi Nakamura-Uchiyama
- Department of Infectious Diseases, Tokyo Metropolitan Bokutoh Hospital; Sumida-ku, Tokyo, 130-8575, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
30
|
Hunt AC, Vögeli B, Hassan AO, Guerrero L, Kightlinger W, Yoesep DJ, Krüger A, DeWinter M, Diamond MS, Karim AS, Jewett MC. A rapid cell-free expression and screening platform for antibody discovery. Nat Commun 2023; 14:3897. [PMID: 37400446 DOI: 10.1038/s41467-023-38965-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Madison DeWinter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Tan CW, Valkenburg SA, Poon LLM, Wang LF. Broad-spectrum pan-genus and pan-family virus vaccines. Cell Host Microbe 2023; 31:902-916. [PMID: 37321173 PMCID: PMC10265776 DOI: 10.1016/j.chom.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Although the development and clinical application of SARS-CoV-2 vaccines during the COVID-19 pandemic demonstrated unprecedented vaccine success in a short time frame, it also revealed a limitation of current vaccines in their inability to provide broad-spectrum or universal protection against emerging variants. Broad-spectrum vaccines, therefore, remain a dream and challenge for vaccinology. This review will focus on current and future efforts in developing universal vaccines targeting different viruses at the genus and/or family levels, with a special focus on henipaviruses, influenza viruses, and coronaviruses. It is evident that strategies for developing broad-spectrum vaccines will be virus-genus or family specific, and it is almost impossible to adopt a universal approach for different viruses. On the other hand, efforts in developing broad-spectrum neutralizing monoclonal antibodies have been more successful and it is worth considering broad-spectrum antibody-mediated immunization, or "universal antibody vaccine," as an alternative approach for early intervention for future disease X outbreaks.
Collapse
Affiliation(s)
- Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China.
| | - Lin-Fa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
32
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz RM, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. Exposure of progressive immune dysfunction by SARS-CoV-2 mRNA vaccination in patients with chronic lymphocytic leukemia: A prospective cohort study. PLoS Med 2023; 20:e1004157. [PMID: 37384638 PMCID: PMC10309642 DOI: 10.1371/journal.pmed.1004157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (β2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Regina M. Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Victor M. Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
33
|
Liu KJ, Zelazowska MA, McBride KM. The Longitudinal Analysis of Convergent Antibody VDJ Regions in SARS-CoV-2-Positive Patients Using RNA-Seq. Viruses 2023; 15:1253. [PMID: 37376553 DOI: 10.3390/v15061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an ongoing pandemic that continues to evolve and reinfect individuals. To understand the convergent antibody responses that evolved over the course of the pandemic, we evaluated the immunoglobulin repertoire of individuals infected by different SARS-CoV-2 variants for similarity between patients. We utilized four public RNA-seq data sets collected between March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal analysis. This covered individuals infected with Alpha and Omicron variants. In total, from 269 SARS-CoV-2-positive patients and 26 negative patients, 629,133 immunoglobulin heavy-chain variable region V(D)J sequences were reconstructed from sequencing data. We grouped samples based on the SARS-CoV-2 variant type and/or the time they were collected from patients. Our comparison of patients within each SARS-CoV-2-positive group found 1011 common V(D)Js (same V gene, J gene and CDR3 amino acid sequence) shared by more than one patient and no common V(D)Js in the noninfected group. Taking convergence into account, we clustered based on similar CDR3 sequence and identified 129 convergent clusters from the SARS-CoV-2-positive groups. Within the top 15 clusters, 4 contain known anti-SARS-CoV-2 immunoglobulin sequences with 1 cluster confirmed to cross-neutralize variants from Alpha to Omicron. In our analysis of longitudinal groups that include Alpha and Omicron variants, we find that 2.7% of the common CDR3s found within groups were also present in more than one group. Our analysis reveals common and convergent antibodies, which include anti-SARS-CoV-2 antibodies, in patient groups over various stages of the pandemic.
Collapse
Affiliation(s)
- Kate J Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
35
|
Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun 2023; 14:1494. [PMID: 36932063 PMCID: PMC10021056 DOI: 10.1038/s41467-023-36995-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Brian E Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - Elizabeth G Blade
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 21701, Frederick, MD, USA
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
- Morehouse School of Medicine, 30310, Atlanta, GA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA.
| | - Rebecca J Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA.
- GSK Global Health R&D Vaccines (GVGH), 53100, Siena, Italy.
| |
Collapse
|
36
|
Ju B, Zhang Q, Wang Z, Aw ZQ, Chen P, Zhou B, Wang R, Ge X, Lv Q, Cheng L, Zhang R, Wong YH, Chen H, Wang H, Shan S, Liao X, Shi X, Liu L, Chu JJH, Wang X, Zhang Z, Zhang L. Infection with wild-type SARS-CoV-2 elicits broadly neutralizing and protective antibodies against omicron subvariants. Nat Immunol 2023; 24:690-699. [PMID: 36914890 PMCID: PMC10063446 DOI: 10.1038/s41590-023-01449-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhen Qin Aw
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Disease Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peng Chen
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bing Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Ruoke Wang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qining Lv
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Rui Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Disease Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Disease Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Sisi Shan
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuejiao Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xuanling Shi
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lei Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Disease Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China. .,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China. .,Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, China.
| | - Linqi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
37
|
Lee M, Major M, Hong H. Distinct Conformations of SARS-CoV-2 Omicron Spike Protein and Its Interaction with ACE2 and Antibody. Int J Mol Sci 2023; 24:3774. [PMID: 36835186 PMCID: PMC9967551 DOI: 10.3390/ijms24043774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Since November 2021, Omicron has been the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that causes the coronavirus disease 2019 (COVID-19) and has continuously impacted human health. Omicron sublineages are still increasing and cause increased transmission and infection rates. The additional 15 mutations on the receptor binding domain (RBD) of Omicron spike proteins change the protein conformation, enabling the Omicron variant to evade neutralizing antibodies. For this reason, many efforts have been made to design new antigenic variants to induce effective antibodies in SARS-CoV-2 vaccine development. However, understanding the different states of Omicron spike proteins with and without external molecules has not yet been addressed. In this review, we analyze the structures of the spike protein in the presence and absence of angiotensin-converting enzyme 2 (ACE2) and antibodies. Compared to previously determined structures for the wildtype spike protein and other variants such as alpha, beta, delta, and gamma, the Omicron spike protein adopts a partially open form. The open-form spike protein with one RBD up is dominant, followed by the open-form spike protein with two RBD up, and the closed-form spike protein with the RBD down. It is suggested that the competition between antibodies and ACE2 induces interactions between adjacent RBDs of the spike protein, which lead to a partially open form of the Omicron spike protein. The comprehensive structural information of Omicron spike proteins could be helpful for the efficient design of vaccines against the Omicron variant.
Collapse
Affiliation(s)
- Myeongsang Lee
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marian Major
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
38
|
Lei Z, Zhu L, Pan P, Ruan Z, Gu Y, Xia X, Wang S, Ge W, Yao Y, Luo F, Xiao H, Guo J, Ding Q, Yin Z, Li Y, Luo Z, Zhang Q, Chen X, Wu J. A vaccine delivery system promotes strong immune responses against SARS-CoV-2 variants. J Med Virol 2023; 95:e28475. [PMID: 36606607 DOI: 10.1002/jmv.28475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Global coronavirus disease 2019 (COVID-19) pandemics highlight the need of developing vaccines with universal and durable protection against emerging SARS-CoV-2 variants. Here we developed an extended-release vaccine delivery system (GP-diABZI-RBD), consisting the original SARS-CoV-2 WA1 strain receptor-binding domain (RBD) as the antigen and diABZI stimulator of interferon genes (STING) agonist in conjunction with yeast β-glucan particles (GP-diABZI) as the platform. GP-diABZI-RBD could activate STING pathway and inhibit SARS-CoV-2 replication. Compared to diABZI-RBD, intraperitoneal injection of GP-diABZI-RBD elicited robust cellular and humoral immune responses in mice. Using SARS-CoV-2 GFP/ΔN transcription and replication-competent virus-like particle system (trVLP), we demonstrated that GP-diABZI-RBD-prototype vaccine exhibited the strongest and durable humoral immune responses and antiviral protection; whereas GP-diABZI-RBD-Omicron displayed minimum neutralization responses against trVLP. By using pseudotype virus (PsVs) neutralization assay, we found that GP-diABZI-RBD-Prototype, GP-diABZI-RBD-Delta, and GP-diABZI-RBD-Gamma immunized mice sera could efficiently neutralize Delta and Gamma PsVs, but had weak protection against Omicron PsVs. In contrast, GP-diABZI-RBD-Omicron immunized mice sera displayed the strongest neutralization response to Omicron PsVs. Taken together, the results suggest that GP-diABZI can serve as a promising vaccine delivery system for enhancing durable humoral and cellular immunity against broad SARS-CoV-2 variants. Our study provides important scientific basis for developing SARS-CoV-2 VOC-specific vaccines.
Collapse
Affiliation(s)
- Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Leqing Zhu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Pan Pan
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yu Gu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xichun Xia
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Shengli Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangrong Yao
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Fazeng Luo
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Heng Xiao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Wang B, Xu H, Liang ZT, Zhao TN, Zhang X, Peng TB, Wang YC, Su XD. Human antibody BD-218 has broad neutralizing activity against concerning variants of SARS-CoV-2. Int J Biol Macromol 2023; 227:896-902. [PMID: 36528147 PMCID: PMC9747686 DOI: 10.1016/j.ijbiomac.2022.12.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
As SARS-CoV-2 variants of concern (VOC) reduce the effectiveness of existing anti-COVID therapeutics, it is increasingly critical to identify highly potent neutralizing antibodies (nAbs) that bind to conserved regions across multiple variants, especially beta, delta, and omicron variants. Using single-cell sequencing with biochemical methods and pseudo-typed virus neutralization experiments, here we report the characterization of a potent nAb BD-218, identified from an early screen of patients recovering from the original virus. We have determined the cryo-EM structure of the BD-218/spike protein complex to define its epitope in detail, which revealed that BD-218 interacts with a novel epitope on the receptor-binding domain (RBD) of the spike protein. We concluded that BD-218 is a highly effective and broadly active nAb against SARS-CoV-2 variants with promising potential for therapeutic development.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Hua Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Zi-Teng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tian-Ning Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Tian-Bo Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - You-Chun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
40
|
Wang Y, Yan A, Song D, Dong C, Rao M, Gao Y, Qi R, Ma X, Wang Q, Xu H, Liu H, Han J, Duan M, Liu S, Yu X, Zong M, Feng J, Jiao J, Zhang H, Li M, Yu B, Wang Y, Meng F, Ni X, Li Y, Shen Z, Sun B, Shao X, Zhao H, Zhao Y, Li R, Zhang Y, Du G, Lu J, You C, Jiang H, Zhang L, Wang L, Dou C, Liu Z, Zhao J. Biparatopic antibody BA7208/7125 effectively neutralizes SARS-CoV-2 variants including Omicron BA.1-BA.5. Cell Discov 2023; 9:3. [PMID: 36609558 PMCID: PMC9822811 DOI: 10.1038/s41421-022-00509-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 Omicron subvariants have demonstrated extensive evasion from monoclonal antibodies (mAbs) developed for clinical use, which raises an urgent need to develop new broad-spectrum mAbs. Here, we report the isolation and analysis of two anti-RBD neutralizing antibodies BA7208 and BA7125 from mice engineered to produce human antibodies. While BA7125 showed broadly neutralizing activity against all variants except the Omicron sublineages, BA7208 was potently neutralizing against all tested SARS-CoV-2 variants (including Omicron BA.1-BA.5) except Mu. By combining BA7208 and BA7125 through the knobs-into-holes technology, we generated a biparatopic antibody BA7208/7125 that was able to neutralize all tested circulating SARS-CoV-2 variants. Cryo-electron microscopy structure of these broad-spectrum antibodies in complex with trimeric Delta and Omicron spike indicated that the contact residues are highly conserved and had minimal interactions with mutational residues in RBD of current variants. In addition, we showed that administration of BA7208/7125 via the intraperitoneal, intranasal, or aerosol inhalation route showed potent therapeutic efficacy against Omicron BA.1 and BA.2 in hACE2-transgenic and wild-type mice and, separately, effective prophylaxis. BA7208/7125 thus has the potential to be an effective candidate as an intervention against COVID-19.
Collapse
Affiliation(s)
- Yanqun Wang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong China
| | - An Yan
- grid.263817.90000 0004 1773 1790Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Deyong Song
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Chuangchuang Dong
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Muding Rao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Yuanzhu Gao
- grid.263817.90000 0004 1773 1790Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Ruxi Qi
- grid.263817.90000 0004 1773 1790Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Xiaomin Ma
- grid.263817.90000 0004 1773 1790Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Qiaoping Wang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Hongguang Xu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Hong Liu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Jing Han
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Maoqin Duan
- grid.410749.f0000 0004 0577 6238Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shuo Liu
- grid.410749.f0000 0004 0577 6238Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xiaoping Yu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Mengqi Zong
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Jianxia Feng
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Jie Jiao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Huimin Zhang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Min Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Beibei Yu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | | | | | | | - Ying Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Zhenduo Shen
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Baiping Sun
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Xin Shao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Haifeng Zhao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Yanyan Zhao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Rui Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Yanan Zhang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Guangying Du
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, Shandong, China
| | - Jun Lu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Chunna You
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, Shandong, China
| | - Hua Jiang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, Guangdong, China
| | - Lan Wang
- grid.410749.f0000 0004 0577 6238Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Changlin Dou
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, Shandong, China
| | - Zheng Liu
- grid.263817.90000 0004 1773 1790Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Jincun Zhao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China ,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China ,grid.413419.a0000 0004 1757 6778Institute of Infectious disease, Guangzhou Eighth People’s Hospital of Guangzhou Medical University, Guangzhou, Guangdong China ,grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.263817.90000 0004 1773 1790Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
41
|
Andreano E, Paciello I, Pierleoni G, Piccini G, Abbiento V, Antonelli G, Pileri P, Manganaro N, Pantano E, Maccari G, Marchese S, Donnici L, Benincasa L, Giglioli G, Leonardi M, De Santi C, Fabbiani M, Rancan I, Tumbarello M, Montagnani F, Sala C, Medini D, De Francesco R, Montomoli E, Rappuoli R. B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response. Nat Commun 2023; 14:53. [PMID: 36599850 DOI: 10.1038/s41467-022-35781-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | | | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Mario Tumbarello
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Raffaele De Francesco
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena, Italy
- VisMederi S.r.l, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
42
|
Neamtu A, Mocci F, Laaksonen A, Barroso da Silva FL. Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. Colloids Surf B Biointerfaces 2023; 221:112986. [PMID: 36375294 PMCID: PMC9617679 DOI: 10.1016/j.colsurfb.2022.112986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its here optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs structures were initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be the best against all SARS-CoV-2 variants. Surprisingly, all 10 candidates and the native CR3022 exhibited a higher affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling the affinity and complex building. Studied mAbs carrying a more negative total net charge show a higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a strategy for designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, Str. Universitatii nr. 16, 700051 Iasi, România; TRANSCEND Centre - Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot, Nr. 2-4 Iași, România
| | - Francesca Mocci
- University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41 A, 700487 Iasi, Romania; University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. café, s/no - campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
43
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogenic human coronavirus that belongs to the sarbecovirus lineage of the genus Betacoronavirus. The ancestor strain has evolved into a number of variants of concern, with the Omicron variant of concern now having many distinct sublineages. The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. Many are in preclinical and clinical development, and a few have been approved for emergency use. Here we summarize neutralizing antibodies that target four key regions within the SARS-CoV-2 spike (S) protein, namely the N-terminal domain and the receptor-binding domain in the S1 subunit, and the stem helix region and the fusion peptide region in the S2 subunit. Understanding the characteristics of these broadly neutralizing antibodies will accelerate the development of new antibody therapeutics and provide guidance for the rational design of next-generation vaccines.
Collapse
|
44
|
Monferrer A, Kretzmann JA, Sigl C, Sapelza P, Liedl A, Wittmann B, Dietz H. Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells. ACS NANO 2022; 16:20002-20009. [PMID: 36323320 PMCID: PMC9798855 DOI: 10.1021/acsnano.1c11328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trapping properties by exploiting avidity and a widespread background affinity of viruses to heparan sulfate proteoglycans (HSPG). With a calibrated density of heparin and heparan sulfate (HS) derivatives crafted to the interior of DNA origami shells, we could encapsulate adeno, adeno-associated, chikungunya, dengue, human papilloma, noro, polio, rubella, and SARS-CoV-2 viruses or virus-like particles, in one and the same HS-functionalized shell system. Additional virus-type-specific binders were not needed for the trapping. Depending on the relative dimensions of shell to virus particles, multiple virus particles may be trapped per shell, and multiple shells can cover the surface of clusters of virus particles. The steric occlusion provided by the heparan sulfate-coated DNA origami shells can prevent viruses from further interactions with receptors, possibly including those found on cell surfaces.
Collapse
Affiliation(s)
- Alba Monferrer
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Jessica A. Kretzmann
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Christian Sigl
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Pia Sapelza
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Anna Liedl
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Barbara Wittmann
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Hendrik Dietz
- Laboratory
for Biomolecular Nanotechnology. Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
45
|
Takeshita M, Fukuyama H, Kamada K, Matsumoto T, Makino-Okamura C, Uchikubo-Kamo T, Tomabechi Y, Hanada K, Moriyama S, Takahashi Y, Ishigaki H, Nakayama M, Nguyen CT, Kitagawa Y, Itoh Y, Imai M, Maemura T, Furusawa Y, Ueki H, Iwatsuki-Horimoto K, Ito M, Yamayoshi S, Kawaoka Y, Shirouzu M, Ishii M, Saya H, Kondo Y, Kaneko Y, Suzuki K, Fukunaga K, Takeuchi T. Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. iScience 2022; 25:105596. [PMID: 36406861 PMCID: PMC9664764 DOI: 10.1016/j.isci.2022.105596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidehiro Fukuyama
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research unit, Kanagawa 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Lymphocyte Differentiation, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
- INSERM EST, 67037 Strasbourg Cedex 2, France
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Katsuhiko Kamada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- Laboratory for Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | | | - Chieko Makino-Okamura
- RIKEN Center for Integrative Medical Sciences, Laboratory for Lymphocyte Differentiation, Kanagawa 230-0045, Japan
| | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirohito Ishigaki
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Misako Nakayama
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Cong Thanh Nguyen
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 162-8640, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
46
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz R, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. SARS-CoV-2 mRNA vaccination exposes progressive adaptive immune dysfunction in patients with chronic lymphocytic leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.19.22283645. [PMID: 36597532 PMCID: PMC9810225 DOI: 10.1101/2022.12.19.22283645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response. Interestingly, 26% were seropositive, but had no detectable NAbs, suggesting the maintenance of pre-existing endemic human coronavirus-specific antibodies that cross-react with the S2 domain of the SARS-CoV-2 spike. These individuals had more advanced disease. In treatment-naïve CLL patients, mRNA-2173 induced 12-fold higher NAb titers and 1.7-fold higher response rates than BNT162b2. These data reveal a graded loss of immune function, with pre-existing memory being preserved longer than the capacity to respond to new antigens, and identify mRNA-2173 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Lead Contact,Correspondence: (R.S.D.)
| |
Collapse
|
47
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
48
|
Mutational escape prevention by combination of four neutralizing antibodies that target RBD conserved regions and stem helix. Virol Sin 2022; 37:860-873. [PMID: 36414178 PMCID: PMC9674564 DOI: 10.1016/j.virs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.
Collapse
|
49
|
Seghatchian J, Pereira P, Lanza F. Spotlights on the latest opinions on identification, prevention, and management of newer CoV-2 variants: A roundup appraisal on innovative ideas and designer vaccines for Omicron. Transfus Apher Sci 2022; 61:103499. [PMID: 35811273 PMCID: PMC9250817 DOI: 10.1016/j.transci.2022.103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 10/24/2022]
Abstract
Although mass vaccination combined with some other preventative strategies and lockdown was associated with some early signs that COVID-19 infection might be fading away, the over 35 sites mutated new South African variant, "Omicron", emerged almost globally. Certain predisposed hosts may develop severe inflammatory thrombotic or mild long-Covid conditions due to this variant, which depletes T-cells, neutralizes antibodies circulating in the body, and coincidentally induces hypercoagulability. The surge of Omicron combined with Delta variants may confer unresponsiveness to the currently available vaccines even when the second dose is given up to 90 days. A drop in the antibody levels by 30 % has been identified in omicron-infected individuals, and one in five people is resistant to antibody treatment. This poses major concerns in the transmissibility rate of this new variant, even in a heavy mass vaccinated environment. This heavily mutated Omicron with other spike sites facilitates viral entry into the cells through conformational changes, irrespective of circulating neutralising antibody. Based on this consideration, we believe that speeding up mixed-matched vaccines with higher T-cell stimulation ability may improve the current situation. Moreover, large orders for antiviral drugs and monoclonal antibodies that could tackle Omicron combined with other variants may be valuable. The use of free polyclonal antibody donations and, hopefully, T-cell immunotherapy, may represent further breakthrough therapeutic interventions. However, Omicron infection is relatively milder than the ongoing Delta variant but is extremely contagious, and therefore the development of novel interventions is highly demanding.
Collapse
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Innovative Manufacturing and Quality/Safety of Blood-Derived Bioproducts. London, England, UK
| | - Paulo Pereira
- Portuguese Institute of Blood and Transplantation, Lisbon, Portugal
| | - Francesco Lanza
- Hematology Unit & Romagna Transplant Network, Ravenna, Italy.
| |
Collapse
|
50
|
Gao X, Fan L, Zheng B, Li H, Wang J, Zhang L, Li J, Zhu F. Binding and neutralizing abilities of antibodies towards SARS-CoV-2 S2 domain. Hum Vaccin Immunother 2022; 18:2055373. [PMID: 35417303 PMCID: PMC9225664 DOI: 10.1080/21645515.2022.2055373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants have been reported to be resistant to several neutralizing antibodies (NAbs) targeting Receptor Binding Domain (RBD) and N Terminal Domain (NTD) of spike (S) protein and thus inducing immune escape. However, fewer studies were carried out to investigate the neutralizing ability of S2-specific antibodies. In this research, 10 monoclonal antibodies (mAbs) targeting SARS-CoV-2 S2 subunit were generated from Coronavirus Disease 2019 (COVID-19) convalescent patients by phage display technology and molecular cloning technology. The binding activity of these S2-mAbs toward SARS-CoV-2 S, SARS-CoV-2 S2, SARS-CoV-2 RBD, SARS-CoV-2 NTD, severe acute respiratory syndrome coronavirus (SARS-CoV) S, SARS-CoV S2 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) S proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). Their neutralizing potency toward SARS-CoV-2 wild-type (WT), B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.1 and B.1.621 variants were determined by pseudo-virus-based neutralization assay. Results showed that S2E7-mAb had cross-activity to S or S2 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, while with limited neutralizing activity to pseudo-viruses of SARS-CoV-2 WT and variants. It is undeniable that the binding and neutralizing activities of the S2-targeting mAbs are significantly weaker than the previously reported antibodies targeting RBD and NTD, but our study may provide some evidences for understanding immune protection and identifying targets for vaccine design based on the conserved S2 subunit.
Collapse
Affiliation(s)
- Xingsu Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Linlin Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Binyang Zheng
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Haoze Li
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Jiwei Wang
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Li Zhang
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jingxin Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Fengcai Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|