1
|
Potharlanka VT, Shao Y, Wu D, Banda N, DeCasien A, Umapathy G. Proximate mechanisms underlying the coevolution of diet quality and relative brain size in primates. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240126. [PMID: 40566919 DOI: 10.1098/rstb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/04/2025] [Accepted: 05/14/2025] [Indexed: 06/28/2025] Open
Abstract
Multiple primate species, including humans, have evolved brains that are surprisingly large relative to their body sizes. Studies of this variation have focused on either proximate (how) or ultimate (why) explanations by correlating species-average brain sizes with, e.g. the rate of genetic changes or certain socioecological variables, respectively. Here, we combined proximate and ultimate perspectives to identify genes that modulated the coevolutionary relationship between diet quality and relative brain size in primates. For n = 50 species, we estimated selection pressure (i.e. root-to-tip dN/dS) for approximately 8K genes and collected brain size, body size and diet quality data. We first used this novel dataset to build on previous studies and bolster findings that neurogenesis-related genes facilitate evolutionary changes in brain size. We then applied phylogenetic partial correlation analysis (to identify genes correlated with both brain size and diet quality) and phylogenetic path analysis (to compare different causal models). We found dozens of genes that may have facilitated the coevolution of diet quality and brain size in primates and show that these genes are involved in neurodevelopment and energy metabolism. This is likely to reflect that higher-quality diets provide more energy to grow and maintain metabolically expensive brains. Our novel approach provides new insight into the drivers of primate brain size evolution.This article is part of the Theo Murphy meeting issue 'Selection shapes diverse animal minds'.
Collapse
Affiliation(s)
- Vinay Teja Potharlanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory for the Conservation of Endangered Species (LaCONES), Centre for Cellular and Molecular Biology CSIR, Hyderabad, India
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming, Yunnan, People's Republic of China
| | - Dongdong Wu
- Chinese Academy of Sciences, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, Yunnan, People's Republic of China
| | - Noemi Banda
- Computational and Evolutionary Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
| | - Alex DeCasien
- Computational and Evolutionary Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory for the Conservation of Endangered Species (LaCONES), Centre for Cellular and Molecular Biology CSIR, Hyderabad, India
| |
Collapse
|
2
|
Jiang X, Hu Q, Mei D, Li X, Xiang L, Al-Shehbaz IA, Song X, Liu J, Lysak MA, Sun P. Chromosome fusions shaped karyotype evolution and evolutionary relationships in the model family Brassicaceae. Nat Commun 2025; 16:4631. [PMID: 40389407 PMCID: PMC12089291 DOI: 10.1038/s41467-025-59640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
The ancestral crucifer karyotype and 22 conserved genomic blocks (CGBs) facilitate phylogenomic analyses in the Brassicaceae. Chromosomal rearrangements reshuffled CGBs of ancestral chromosomes during karyotype evolution. Here, we identify eight protochromosomes representing the common ancestral karyotype (ACBK) of the two Brassicoideae supertribes: Camelinodae (Lineage I) and Brassicodae (Lineage II). The characterization of multiple cascading fusion events allows us to infer evolutionary relationships based on these events. In the Camelinodae, the ACBK first evolved into the AKI genome, which remained conserved in the Cardamineae, whereas it was altered to tAKI by a reciprocal translocation that preceded the diversification of most Camelinodae tribes. The identified fusion breakpoints largely overlap with CGB boundaries, suggesting that CGBs are mainly disrupted by chromosome fusions. Our results demonstrate the stable inheritance of chromosome fusions and their importance for reconstructing evolutionary relationships. The chromosomal breakpoint approach provides a basis for ancestral state reconstruction based on chromosome-level genome assemblies.
Collapse
Affiliation(s)
- Xinyao Jiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaonan Li
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology and Department of Experimental Botany, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
3
|
Qin T, Zhang H, Zou Z. Unveiling cell-type-specific mode of evolution in comparative single-cell expression data. J Genet Genomics 2025:S1673-8527(25)00131-6. [PMID: 40345525 DOI: 10.1016/j.jgg.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
While methodology for determining the mode of evolution in coding sequences has been well established, evaluation of adaptation events in emerging types of phenotype data needs further development. Here we propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell expression data based on phenotypic evolution theory. After decomposing the gene expression variance into separate components, we use two strategies to identify genes exhibiting large between-taxon expression divergence and small within-cell-type expression noise in certain cell types, attributing this pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types, thus likely to have experienced more extensive adaptation. Reassuringly, at molecular sequence level, the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall, the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongjiu Zhang
- Microsoft Canada Development Centre, Vancouver, British Columbia, V5C 1G1, Canada
| | - Zhengting Zou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
4
|
Mencius J, Chen W, Zheng Y, An T, Yu Y, Sun K, Feng H, Feng Z. Restoring flowcell type and basecaller configuration from FASTQ files of nanopore sequencing data. Nat Commun 2025; 16:4102. [PMID: 40316544 PMCID: PMC12048652 DOI: 10.1038/s41467-025-59378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
As nanopore sequencing has been widely adopted, data accumulation has surged, resulting in over 700,000 public datasets. While these data hold immense potential for advancing genomic research, their utility is compromised by the absence of flowcell type and basecaller configuration in about 85% of the data and associated publications. These parameters are essential for many analysis algorithms, and their misapplication can lead to significant drops in performance. To address this issue, we present LongBow, designed to infer flowcell type and basecaller configuration directly from the base quality value patterns of FASTQ files. LongBow has been tested on 66 in-house basecalled FAST5/POD5 datasets and 1989 public FASTQ datasets, achieving accuracies of 95.33% and 91.45%, respectively. We demonstrate its utility by reanalyzing nanopore sequencing data from the COVID-19 Genomics UK (COG-UK) project. The results show that LongBow is essential for reproducing reported genomic variants and, through a LongBow-based analysis pipeline, we discovered substantially more functionally important variants while improving accuracy in lineage assignment. Overall, LongBow is poised to play a critical role in maximizing the utility of public nanopore sequencing data, while significantly enhancing the reproducibility of related research.
Collapse
Affiliation(s)
- Jun Mencius
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenjun Chen
- Department of Clinical Genetics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqi Zheng
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Tingyi An
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongguo Yu
- Department of Clinical Genetics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Clinical Genetics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pediatric Cardiology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huijuan Feng
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Zhixing Feng
- Department of Clinical Genetics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Liu S, Li K, Zheng Y, Xue J, Wang S, Li S, Cao P, Liu F, Dai Q, Feng X, Yang R, Ping W, Wu D, Fan P, Fu Q, Chen Z. Mitogenomes of museum specimens provide new insight into species classification and recently reduced diversity of highly endangered Nomascus gibbons. Integr Zool 2025; 20:674-684. [PMID: 39075927 PMCID: PMC12046444 DOI: 10.1111/1749-4877.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Our findings reveal that the western black crested gibbon (Nomascus concolor) did not divide into different subspecies, and the relatively low level of genetic diversity emphasizes the importance of monitoring this indicator for vulnerable wildlife. Meanwhile, phylogeographic analysis of the Nomascus genus shows a north-to-south trend of ancestral geographic distribution.
Collapse
Affiliation(s)
- Siqiong Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jiayang Xue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Song Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, et alYoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O'Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. Nature 2025; 641:401-418. [PMID: 40205052 PMCID: PMC12058530 DOI: 10.1038/s41586-025-08816-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The most dynamic and repetitive regions of great ape genomes have traditionally been excluded from comparative studies1-3. Consequently, our understanding of the evolution of our species is incomplete. Here we present haplotype-resolved reference genomes and comparative analyses of six ape species: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan and siamang. We achieve chromosome-level contiguity with substantial sequence accuracy (<1 error in 2.7 megabases) and completely sequence 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, to provide in-depth evolutionary insights. Comparative analyses enabled investigations of the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference genome. Such regions include newly minted gene families in lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes and subterminal heterochromatin. This resource serves as a comprehensive baseline for future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- German Primate Center, Primate Genetics Laboratory, Goettingen, Germany
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Riley J Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Christine R Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P Chan
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of Bioinformatics and Population Genetics, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Loftus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F I Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Saswat K Mohanty
- Department of Biology, Penn State University, University Park, PA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA, USA
| | - Matt Pennell
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Francisca R Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Samuel Sacco
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA, USA
| | - Dongmin R Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Alexander P Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael G Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Sarah A Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yixin Zhu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zachary A Szpiech
- Department of Biology, Penn State University, University Park, PA, USA
| | - Christian D Huber
- Department of Biology, Penn State University, University Park, PA, USA
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Miriam K Konkel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA.
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Mutai H, Kuroda Y, Noji S, Ichikawa S, Matsuo K, Tanaka S, Kataoka N, Fujioka M, Matsunaga T. Complete omission of exon 21 from Slc12a2 transcripts in mice results in hearing loss. Sci Rep 2025; 15:14790. [PMID: 40295800 PMCID: PMC12038040 DOI: 10.1038/s41598-025-99827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
Hereditary hearing loss is highly heterogeneous. SLC12A2 is linked to autosomal dominant nonsyndromic hearing loss, DFNA78, with all the pathogenic variants affecting the exon 21. The gene encodes a cotransporter NKCC1 crucial for regulating intracellular osmotic pressure and producing endolymph in the cochlea. We generated two mouse strains with heterologous Slc12a2 variants in the splice site of the exon 21 (Em1: NM_009194.3:c.2912-2 A > G and Em2: c.2912-4_2913del). Slc12a2Em2/Em2 mice with complete skip of the exon 21 showed reduced endolymph on postnatal day 1 (P1), reduced stria vascularis (StV) and no auditory brainstem responses at 4 weeks. Reduced StV size was considered to be due to rebalance osmotic pressure, and upregulation of Cldn9 revealed by RNA-seq was considered as tissue response to repair the gaps from reduced cell sizes in the Slc12a2Em2/Em2 cochlea. Female Slc12a2Em2/+ mice also exhibited mild elevation of ABR thresholds in several sound frequencies. Slc12a2Em1/Em1 mice showed normal hearing, presumably due to sufficient cotransporter activity from the 9 bases shorter transcript by cryptic splicing. Minigene assays indicated that a single nucleotide difference between humans and mice at the 5' end of the exon 21 affects exon 21 splicing. Slc12a2Em2 mouse is proposed as a model for studying DFNA78 pathology.
Collapse
Affiliation(s)
- Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
- Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan.
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Shinobu Noji
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Saki Ichikawa
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo , Japan
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo , Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
| | - Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
| | - Masato Fujioka
- Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Otolaryngology, Keio University School of Medicine, Tokyo , Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo , Japan
| |
Collapse
|
8
|
Nchioua R, Kmiec D, Krchlikova V, Mattes S, Noettger S, Bibollet-Ruche F, Russell RM, Sparrer KMJ, Charpentier T, Tardy F, Bosinger SE, Sauter D, Hahn BH, Kirchhoff F. Host ZAP activity correlates with the levels of CpG suppression in primate lentiviruses. Proc Natl Acad Sci U S A 2025; 122:e2419489122. [PMID: 40178887 PMCID: PMC12012506 DOI: 10.1073/pnas.2419489122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc-finger antiviral protein (ZAP) is thought to drive the suppression of CpG dinucleotides in many viruses to mimic the composition of their host genomes. However, in vivo evidence is sparse. Here, we investigated the reasons for unusually high CpG levels in SIVmus and SIVmon from mustached and mona monkeys, descendants of one of the precursors of HIV-1. We show that SIVmus is not resistant to ZAP inhibition. Instead, these Cercopithecus monkey hosts differ from other primate species by a splice site mutation and express the poorly active extralarge XL rather than the highly active L isoform of ZAP. Similarly, higher CpG levels in endogenous prosimian lentiviruses were associated with low activity of the corresponding host lemur ZAPs. In addition, lemur genes also show lower CpG suppression than other primates. Thus, the antiviral activity of ZAP not only affects suppression of CpG dinucleotides in viral transcripts but possibly also host genomes.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Veronika Krchlikova
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Sarah Mattes
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronnie M. Russell
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Konstantin M. J. Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
- Neurovirology & Neuroinflammation, German Center for Neurodegenerative Diseases (DZNE), Ulm89081, Germany
| | | | | | - Steven E. Bosinger
- Department of Pathology & Laboratory Medicine, Emory University, Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, GA30329
| | - Daniel Sauter
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Beatrice H. Hahn
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| |
Collapse
|
9
|
Li Y, Luo J, Chen M, Roos C, Hu Z, Chen Y, Tian Y, Guo R, Kuang W, Yu L. Genetic Diversity, Genetic Structure, and Demographic History of Black Snub-Nosed Monkey (Rhinopithecus strykeri) in the Gaoligong Mountains, Southwestern China. Am J Primatol 2025; 87:e70031. [PMID: 40195038 DOI: 10.1002/ajp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The Gaoligong Mountains, located in the southeastern Tibetan Plateau, is one of the world's biodiversity hotspots and provides a refugium for many endangered endemic animals. In this study, we reported a population genetic study on black snub-nosed monkey (Rhinopithecus strykeri), a critically endangered primate endemic to the Gaoligong Mountains, yet their large-scale population genetic study remains underexplored. Here, we performed population genetic analyses from two geographical populations (Pianma and Luoma) based on targeted genomic single-nucleotide polymorphism (SNP) data (37.7 K) and mitochondrial DNA (mtDNA) control region (842 bp). Both nuclear SNP data and mtDNA revealed relatively low levels of genetic variation in both populations compared to other reported primates, which is most likely to be explained by loss of historical genetic diversity due to inbreeding and long-term small effective population size, thus potentially aggravating the effects of inbreeding and genetic depression. Phylogenetic and population structure analyses for mtDNA revealed two deep lineages (approximately 0.69 million years ago), but limited genetic differentiation in nuclear data, which might have been caused by the Late Cenozoic uplift of the Tibetan Plateau and glacial refuge, and subsequent secondary contact as a result of historically high and bidirectional gene flow between populations. Ecological niche modeling and landscape connectivity analyses also showed historical and recent connectivity between two geographical populations. The demographic history inferred from both mtDNA and nuclear data revealed at least two continuous declines in the effective population size occurring around 43 Kya and 8-10 Kya, respectively, probably due to Pleistocene glaciations and subsequent human activities. Our results provide the first detailed and comprehensive genetic insights into the genetic diversity, population structure, and demographic history of a critically endangered species, and provide essential baseline information to guide conservation efforts.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jia Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Minglin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Zhechang Hu
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yixin Chen
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, China
| | - Yingping Tian
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Rongxi Guo
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
10
|
Chi H, Wan J, Melin AD, DeCasien AR, Wang S, Zhang Y, Cui Y, Guo X, Zhao L, Williamson J, Zhang T, Li Q, Zhan Y, Li N, Guo J, Xu Z, Hou W, Cao Y, Yuan J, Zheng J, Shao Y, Wang J, Chen W, Song S, Lu X, Qi X, Zhang G, Rossiter SJ, Wu DD, Liu Y, Lu H, Li G. Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution. Nat Ecol Evol 2025; 9:721-733. [PMID: 40021902 DOI: 10.1038/s41559-025-02651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Sensory trade-offs between vision and olfaction in the evolution and radiation of primates have long been debated. However, insights have been limited by a lack of sensory gene sequences and accompanying functional predictions. Here we conduct large-scale functional analyses of visual and olfactory receptors and related brain regions across extant primates. Our results reveal a visual shift from ultraviolet to violet colour sensitivity in early haplorrhine primates, followed by acceleration in the rhodopsin retinal release rates at the origin of anthropoids, both of which are expected to greatly enhance visual acuity under brighter light conditions. Additionally, we find that the sensitivity of olfactory receptors shifted from narrowly to broadly tuned early in anthropoid evolution. In contrast, strepsirrhines appear to have retained sensitive dim-light vision and underwent functional enhancement of narrowly tuned olfactory receptors. Our models indicate that this would have enhanced odorant discrimination and facilitated olfaction-mediated physiology and behaviour. These differences in tuning patterns of olfactory receptors between major primate lineages mirror well-established morphological differences in external anatomy and brain structures, revealing new mechanisms of olfactory adaptation and evolutionary plasticity. Our multisystem analyses reveal patterns of co-evolution in genomic, molecular and neuroanatomical traits that are consistent with a sensory 'reallocation' rather than strict trade-offs.
Collapse
Affiliation(s)
- Hai Chi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahui Wan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alex R DeCasien
- Computational and Evolutionary Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yudan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimeng Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Joseph Williamson
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qian Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Zhan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinqu Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenhui Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumin Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiangmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong Shao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shengjing Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoli Lu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- BGI-Shenzhen, Shenzhen, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China.
| |
Collapse
|
11
|
Shen Z, Zhang R, Chen X, Yang G, Si Y, Yan T, Chen S, Cheng B, Wu X, Chen D, Zhang D, Xiao G, Zhu JK, Wang S. An atlas of early human mandibular endochondral and osteogenic paracrine signaling regions of Meckel's cartilage. Proc Natl Acad Sci U S A 2025; 122:e2420466122. [PMID: 40096606 PMCID: PMC11962497 DOI: 10.1073/pnas.2420466122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
The mandible, also known as the lower jaw, is the only bone in the skull that can move and is essential for speaking and chewing. Meckel's cartilage (MC) is a temporary structure that supports the formation of the mandible, but how MC is involved in the ossification of the mandible is poorly understood. Through the use of single-cell RNA sequencing and single-cell spatial transcriptomics analyses, a spatiotemporal atlas of MC in human fetuses from 7 to 15 wk postconception was established, highlighting the role of MC in the ossification of the mandible. Importantly, we revealed that two populations of MC contributed to mandibular ossification through different mechanisms. The anterior MC can differentiate into osteolineage cells, as shown in an in vivo lineage tracing mouse model. The intermediate MC facilitates intramembranous ossification through cell-cell communications, possibly through signaling ligands like BMP5, BMP7, SEMA3A, PDGFC, and FGF7. This study suggests that MC plays a crucial role in mediating mandibular ossification through distinct mechanisms, providing valuable insights for understanding oral and craniofacial diseases and disorders in the future.
Collapse
Affiliation(s)
- Zongshan Shen
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing100050, China
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou510055, China
| | - Ran Zhang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing100081, China
| | - Xinyue Chen
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Guan Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing102206, China
| | - Yuanchun Si
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Tianxing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing100081, China
| | - Suwen Chen
- Department of Reproductive Regulation, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing100026, China
| | - Bin Cheng
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou510055, China
| | - Xiaoshan Wu
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha410008, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen518107, China
| | - Dong Zhang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing100050, China
| | - Guozhi Xiao
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen518055, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology, School of Medicine and Homeostatic Medicine Institute, Southern University of Science and Technology, Shenzhen518055, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing100050, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha410008, China
- Laboratory of Homeostatic Medicine, School of Medicine and Homeostatic Medicine Institute, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
12
|
Hamazaki Y, Akuta H, Suzuki H, Tanabe H, Ichiyanagi K, Imamura T, Imamura M. Generation and characterization of induced pluripotent stem cells of small apes. Front Cell Dev Biol 2025; 13:1536947. [PMID: 40177132 PMCID: PMC11961953 DOI: 10.3389/fcell.2025.1536947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Small apes (family Hylobatidae), encompassing gibbons and siamangs, occupy a pivotal evolutionary position within the hominoid lineage, bridging the gap between great apes and catarrhine monkeys. Although they possess distinctive genomic and phenotypic features-such as rapid chromosomal rearrangements and adaptations for brachiation-functional genomic studies on small apes have been hindered by the limited availability of biological samples and developmental models. Here, we address this gap by successfully reprogramming primary skin fibroblasts from three small ape species: lar gibbons (Hylobates lar), Abbott's gray gibbons (Hylobates abbotti), and siamangs (Symphalangus syndactylus). Using Sendai virus-based stealth RNA vectors, we generated 31 reprogrammed cell lines, five of which were developed into transgene-free induced pluripotent stem cells. These iPSCs displayed canonical features of primed pluripotency, both morphologically and molecularly, consistent with other primate iPSCs. Directed differentiation experiments confirmed the capacity of the small ape iPSCs to generate cells representing all three germ layers. In particular, their successful differentiation into limb bud mesoderm cells underscores their utility in investigating the molecular and developmental mechanisms unique to small ape forelimb evolution. Transcriptomic profiling of small ape iPSCs revealed significant upregulation of pluripotency-associated genes, alongside elevated expression of transposable elements. Remarkably, LAVA retrotransposons-a class of elements specific to small apes-exhibited particularly high expression levels in these cells. Comparative transcriptomic analyses with iPSCs from humans, great apes, and macaques identified evolutionary trends and clade-specific gene expression signatures. These signatures highlighted processes linked to genomic stability and cell death, providing insights into small ape-specific adaptations. This study positions small ape iPSCs as a transformative tool for advancing functional genomics and evolutionary developmental biology. By facilitating detailed investigations into hominoid genome evolution and phenotypic diversification, this system bridges critical gaps in comparative research, enabling deeper exploration of the genetic and cellular underpinnings of small ape-specific traits.
Collapse
Affiliation(s)
- Yusuke Hamazaki
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Hikaru Suzuki
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masanori Imamura
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
13
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Finnegan N, Lima MGM, Lynch JW. Mitochondrial DNA for Phylogeny Building: Assessing Individual and Grouped mtGenes as Proxies for the mtGenome in Platyrrhines. Am J Primatol 2025; 87:e70017. [PMID: 40059324 PMCID: PMC11891386 DOI: 10.1002/ajp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/15/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
Phylogenetic trees are analytic tools used in primate studies to elucidate evolutionary relationships. Because of its relative ease to sequence and rapid evolution compared to nuclear genomes, mitochondrial DNA is frequently used for phylogeny building. This project evaluated the effectiveness of using individual or grouped mitochondrial genes (mtGenes) as a proxy for the mitochondrial genome (mtGenome) in phylogeny building within two nested primate datasets, Cebidae and Platyrrhini, with differing divergence dates. mtGene utility rankings were determined based on congruence values to the mtGenome tree. mtGenes trees were also assessed on tree resolution and ability to sort nested clades. We found that most individual mtGenes, including ribosomal genes (12S and 16S), COX genes, most ND genes, and d-Loop are not appropriate for use as proxies for the mtGenome when tree building in either the Cebidae or Platyrrhini set. On average, grouped mtGenes outperformed individual mtGenes in both sets, and mtGene and grouped mtGene rankings varied between sets. Pairing CYB and COX3 together or pairing ND2 and CYB worked well in both the Cebidae set and the Platyrrhini set. We also found that nucleotide diversity is not a predictor of mtGene performance. Instead, it may be that unique mtGene or mtGene system evolutionary history impacts mtGene performance.
Collapse
Affiliation(s)
- Natalie Finnegan
- Department of AnthropologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | | | - Jessica W. Lynch
- Department of AnthropologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Institute for Society and GeneticsUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Sangesland M, Li N, Tsybovsky Y, Rodgers MD, Han J, Rodriguez AJ, Ferguson JA, Henry AR, Smith SC, Roberts-Torres J, Gillespie RA, Liu C, Merriam JS, Stephens T, Williams C, Maestle E, Corcoran M, Ravichandran M, Creanga A, Andrews SF, Pierson TC, Karlsson Hedestam GB, Schramm CA, Reed DS, Douek DC, Zhou T, Ward AB, Kanekiyo M. Functional, Immunogenetic, and Structural Convergence in Influenza Immunity between Humans and Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639368. [PMID: 40568173 PMCID: PMC12190764 DOI: 10.1101/2025.02.21.639368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Human B cell immunity to the influenza hemagglutinin (HA) stem region, a universal influenza vaccine target, is often stereotyped and immunogenetically restricted, posing challenges for study outside humans. Here, we show that macaques vaccinated with a HA stem immunogen elicit human-like public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V H 1-138, the macaque homolog of human V H 1-69, a V H -gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs). Similarly, macaques produced anchor bnAbs with the human-like NWP motif. Both bnAb lineages were functionally and structurally analogous to their human counterparts, with recognition mediated largely by germline-encoded motifs. Thus the macaque immunoglobulin repertoire supports human-like public bnAb responses to influenza HA. Moreover, this underscores the utility of homologous germline-encoded immunity, suggesting that immune repertoires of macaques and humans may have been similarly shaped during evolution. HIGHLIGHTS Functional human-like public antibody lineages can be elicited to HA stem supersites in macaques. Macaque central stem bnAbs are predominantly derived from V H 1-138, a V H -gene homologous to human V H 1-69. The human-like CDR L3 NWP anchor epitope-targeting lineage can be elicited in macaques.Central stem and anchor bnAbs from humans and macaques engage their respective epitopes with atomic level similarity.
Collapse
|
16
|
Bein B, Chrysostomakis I, Arantes LS, Brown T, Gerheim C, Schell T, Schneider C, Leushkin E, Chen Z, Sigwart J, Gonzalez V, Wong NLWS, Santos FR, Blom MPK, Mayer F, Mazzoni CJ, Böhne A, Winkler S, Greve C, Hiller M. Long-read sequencing and genome assembly of natural history collection samples and challenging specimens. Genome Biol 2025; 26:25. [PMID: 39930463 PMCID: PMC11809032 DOI: 10.1186/s13059-025-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
Museum collections harbor millions of samples, largely unutilized for long-read sequencing. Here, we use ethanol-preserved samples containing kilobase-sized DNA to show that amplification-free protocols can yield contiguous genome assemblies. Additionally, using a modified amplification-based protocol, employing an alternative polymerase to overcome PCR bias, we assemble the 3.1 Gb maned sloth genome, surpassing the previous 500 Mb protocol size limit. Our protocol also improves assemblies of other difficult-to-sequence molluscs and arthropods, including millimeter-sized organisms. By highlighting collections as valuable sample resources and facilitating genome assembly of tiny and challenging organisms, our study advances efforts to obtain reference genomes of all eukaryotes.
Collapse
Affiliation(s)
- Bernhard Bein
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University , Max-Von-Laue-Str. 9, Frankfurt, 60438, Germany
| | - Ioannis Chrysostomakis
- Center for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, Bonn, 53113, Germany
| | - Larissa S Arantes
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, Berlin, 14195, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany
| | - Tom Brown
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, Berlin, 14195, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Clément Schneider
- Senckenberg Research Institute, Am Museum 1, Görlitz, 02826, Germany
| | - Evgeny Leushkin
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Zeyuan Chen
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Julia Sigwart
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Vanessa Gonzalez
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, 71050, Malaysia
| | - Fabricio R Santos
- Laboratório de Biodiversidade E Evolução Molecular, Departamento de Genética, Universidade Federal de Minas Gerais, Ecologia E Evolução, Belo Horizonte, Minas Gerais, Brazil
| | - Mozes P K Blom
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| | - Frieder Mayer
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, Berlin, 14195, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany
| | - Astrid Böhne
- Center for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, Bonn, 53113, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
- DRESDEN Concept Genome Center, Technische Universität Dresden, Fetscherstraße 105, Dresden, 01307, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University , Max-Von-Laue-Str. 9, Frankfurt, 60438, Germany.
| |
Collapse
|
17
|
Fong-Zazueta R, Krueger J, Alba DM, Aymerich X, Beck RMD, Cappellini E, Carrillo-Martin G, Cirilli O, Clark N, Cornejo OE, Farh KKH, Ferrández-Peral L, Juan D, Kelley JL, Kuderna LFK, Little J, Orkin JD, Paterson RS, Pawar H, Marques-Bonet T, Lizano E. Phylogenetic Signal in Primate Tooth Enamel Proteins and its Relevance for Paleoproteomics. Genome Biol Evol 2025; 17:evaf007. [PMID: 39834226 PMCID: PMC11878541 DOI: 10.1093/gbe/evaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1 to 2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.
Collapse
Affiliation(s)
- Ricardo Fong-Zazueta
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Johanna Krueger
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| | - Xènia Aymerich
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Enrico Cappellini
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Carrillo-Martin
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Omar Cirilli
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Nathan Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Luis Ferrández-Peral
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David Juan
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Jordan Little
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Joseph D Orkin
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Département d’anthropologie, Université de Montréal, Montréal, QC, Canada
| | - Ryan S Paterson
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Harvinder Pawar
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Esther Lizano
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| |
Collapse
|
18
|
Liu Y, Luo X, Sun Y, Chen K, Hu T, You B, Xu J, Zhang F, Cheng Q, Meng X, Yan T, Li X, Qi X, He X, Guo X, Li C, Su B. Comparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development. Dev Cell 2025; 60:414-428.e8. [PMID: 39481377 DOI: 10.1016/j.devcel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Understanding the cellular and genetic mechanisms driving human-specific features of cortical development remains a challenge. We generated a cell-type resolved atlas of transcriptome and chromatin accessibility in the developing macaque and mouse prefrontal cortex (PFC). Comparing with published human data, our findings demonstrate that although the cortex cellular composition is overall conserved across species, progenitor cells show significant evolutionary divergence in cellular properties. Specifically, human neural progenitors exhibit extensive transcriptional rewiring in growth factor and extracellular matrix (ECM) pathways. Expression of the human-specific progenitor marker ITGA2 in the fetal mouse cortex increases the progenitor proliferation and the proportion of upper-layer neurons. These transcriptional divergences are primarily driven by altered activity in the distal regulatory elements. The chromatin regions with human-gained accessibility are enriched with human-specific sequence changes and polymorphisms linked to intelligence and neuropsychiatric disorders. Our results identify evolutionary changes in neural progenitors and putative gene regulatory mechanisms shaping primate brain evolution.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China.
| | - Yiming Sun
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Kaimin Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Benhui You
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Jiahao Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Fengyun Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Cheng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiaoxuan Qi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
19
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
20
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2025; 93:62-82. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Wang RJ, Peña-García Y, Raveendran M, Harris RA, Nguyen TT, Gingras MC, Wu Y, Perez L, Yoder AD, Simmons JH, Rogers J, Hahn MW. Unprecedented female mutation bias in the aye-aye, a highly unusual lemur from Madagascar. PLoS Biol 2025; 23:e3003015. [PMID: 39919095 PMCID: PMC11819580 DOI: 10.1371/journal.pbio.3003015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Every mammal studied to date has been found to have a male mutation bias: male parents transmit more de novo mutations to offspring than female parents, contributing increasingly more mutations with age. Although male-biased mutation has been studied for more than 75 years, its causes are still debated. One obstacle to understanding this pattern is its near universality-without variation in mutation bias, it is difficult to find an underlying cause. Here, we present new data on multiple pedigrees from two primate species: aye-ayes (Daubentonia madagascariensis), a member of the strepsirrhine primates, and olive baboons (Papio anubis). In stark contrast to the pattern found across mammals, we find a much larger effect of maternal age than paternal age on mutation rates in the aye-aye. In addition, older aye-aye mothers transmit substantially more mutations than older fathers. We carry out both computational and experimental validation of our results, contrasting them with results from baboons and other primates using the same methodologies. Further, we analyze a set of DNA repair and replication genes to identify candidate mutations that may be responsible for the change in mutation bias observed in aye-ayes. Our results demonstrate that mutation bias is not an immutable trait, but rather one that can evolve between closely related species. Further work on aye-ayes (and possibly other lemuriform primates) should help to explain the molecular basis for sex-biased mutation.
Collapse
Affiliation(s)
- Richard J. Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Yadira Peña-García
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Thuy-Trang Nguyen
- Department of Computer Science, Indiana University, Bloomington, Indiana, United States of America
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yifan Wu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lesette Perez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Computer Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
22
|
Tan I, Chothani S, Lim HH, Lam KP. Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates. Sci Rep 2025; 15:3360. [PMID: 39870744 PMCID: PMC11772596 DOI: 10.1038/s41598-025-86789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution. Analyses of putative exon 1b genomic sequences within the primate superfamily indicated that the exonization of LKB1/STK11 exon 1b was mediated by the conserved retrotransposable element Alu-Sc. While putative exon 1b sequences are recognizable in most members of the primate family from New World Monkeys onwards, characteristically functional LKB1/STK11 exon 1b, with translation start and 5' and 3' splice sites, could only be found in greater apes and human, and interestingly, correlates with their increased body mass and longevity development.
Collapse
Affiliation(s)
- Ivan Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore
| | | | - Hong-Hwa Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
23
|
Zhang C, Nielsen R. WASTER: Practical de novo phylogenomics from low-coverage short reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633983. [PMID: 39896589 PMCID: PMC11785061 DOI: 10.1101/2025.01.20.633983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The advent of affordable whole-genome sequencing has spurred numerous large-scale projects aimed at inferring the tree of life, yet achieving a complete species-level phylogeny remains a distant goal due to significant costs and computational demands. Traditional species tree inference methods, though effective, are hampered by the need for high-coverage sequencing, high-quality genomic alignments, and extensive computational resources. To address these challenges, this study introduces WASTER, a novel de novo tool for inferring species trees directly from short-read sequences. WASTER employs a k-mer based approach for identifying variable sites, circumventing the need for genome assembly and alignment. Using simulations, we demonstrate that WASTER achieves accuracy comparable to that of traditional alignment-based methods, even for low sequencing depth, and has substantially higher accuracy than other alignment-free methods. We validate WASTER's efficacy on real data, where it accurately reconstructs phylogenies of eukaryotic species with as low depth as 1.5X. WASTER provides a fast and efficient solution for phylogeny estimation in cases where genome assembly and/or alignment may bias analyses or is challenging, for example due to low sequencing depth. It also provides a method for generating guide trees for tree-based alignment algorithms. WASTER's ability to accurately estimate trees from low-coverage sequencing data without relying on assembly and alignment will lead to substantially reduced sequencing and computational costs in phylogenomic projects.
Collapse
Affiliation(s)
- Chao Zhang
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
| | - Rasmus Nielsen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
| |
Collapse
|
24
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
25
|
Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, Andriaholinirina N, Balaresque P, Blair ME, Fausser JL, Gut IG, Gut M, Hahn MW, Harris RA, Horvath JE, Keyser C, Kitchener AC, Le MD, Lizano E, Merker S, Nadler T, Perry GH, Rabarivola CJ, Rasmussen L, Raveendran M, Roos C, Wu DD, Zaramody A, Zhang G, Zinner D, Pozzi L, Rogers J, Farh KKH, Marques Bonet T. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nat Ecol Evol 2025; 9:42-56. [PMID: 39730835 DOI: 10.1038/s41559-024-02596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/01/2024] [Indexed: 12/29/2024]
Abstract
Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history. Here, we analyse high-coverage genome-wide resequencing data from 162 unique individuals comprising 50 species of Lemuriformes, including multiple individuals from most species. Genomic diversity varies widely across the infraorder and yet is broadly consistent among individuals within species. We show widespread introgression in multiple genera and generally high levels of genomic diversity likely resulting from allele sharing that occurred during periods of connectivity and fragmentation during climatic shifts. We find distinct patterns of demographic history in lemurs across the ecogeographic regions of Madagascar within the last million years. Within the past 2,000 years, lemurs underwent major declines in effective population size that corresponded to the timing of human population expansion in Madagascar. In multiple regions of the island, we identified chronological trajectories of inbreeding that are consistent across genera and species, suggesting localized effects of human activity. Our results show how the extraordinary diversity of these long-neglected, endangered primates has been influenced by ecological and anthropogenic factors.
Collapse
Affiliation(s)
- Joseph D Orkin
- Département d'anthropologie, Université de Montréal, Montréal, Québec, Canada.
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada.
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Aylward
- Department of Field and Conservation Science, Bristol Zoological Society, Bristol, UK
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Patricia Balaresque
- Centre de Recherche sur la Biodiversité et l'Environnement, CNRS UMR5300, Université Toulouse III, Université de Toulouse, CNRS IRD, Toulouse, France
| | - Mary E Blair
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | - Jean-Luc Fausser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ivo Glynne Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Julie E Horvath
- Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Christine Keyser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- UK and School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Cerdanyola del Vallès, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Tilo Nadler
- Cuc Phuong Commune, Ninh Binh Province, Vietnam
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
- Université de l'Itasy, Antananarivo, Madagascar
| | | | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Primate Cognition, Georg-August-University, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Luca Pozzi
- Department of Anthropology, University of Texas San Antonio, San Antonio, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- CNAG-Centre for Genomic Analyses, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
26
|
Hu T, Kong Y, Tan Y, Ma P, Wang J, Sun X, Xiang K, Mao B, Wu Q, Yi SV, Shi L. Cis-Regulatory Evolution of CCNB1IP1 Driving Gradual Increase of Cortical Size and Folding in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627376. [PMID: 39713381 PMCID: PMC11661109 DOI: 10.1101/2024.12.08.627376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neocortex expansion has a concerted relationship with folding, underlying evolution of human cognitive functions. However, molecular mechanisms underlying this significant evolutionary process remains unknown. Here, using tree shrew as an outgroup of primates, we identify a new regulator CCNB1IP1, which acquired its expression before the emergence of primates. Following the evolution of cis-regulatory elements, the CCNB1IP1 expression has steadily increased over the course of primate brain evolution, mirroring the gradual increase of neocortex. Mechanistically, we elucidated that CCNB1IP1 expression can cause an increase in neural progenitors through shortening G1 phase. Consistently, the CCNB1IP1 knock-in mouse model exhibited traits associated with enhanced learning and memory abilities. Together, our study reveals how changes in CCNB1IP1 expression may have contributed to the gradual evolution in primate brain.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yifan Kong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yulian Tan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Jianhong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Xuelian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Xiang
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, 650034, P.R. China
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
| | - Soojin V. Yi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lei Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| |
Collapse
|
27
|
Libé-Philippot B, Polleux F, Vanderhaeghen P. If you please, draw me a neuron - linking evolutionary tinkering with human neuron evolution. Curr Opin Genet Dev 2024; 89:102260. [PMID: 39357501 PMCID: PMC11625661 DOI: 10.1016/j.gde.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), NeuroMarseille, Marseille, France.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. https://twitter.com/@fpolleux
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Baumgartner M, Ji Y, Noonan JP. Reconstructing human-specific regulatory functions in model systems. Curr Opin Genet Dev 2024; 89:102259. [PMID: 39270593 PMCID: PMC11588545 DOI: 10.1016/j.gde.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Uniquely human physical traits, such as an expanded cerebral cortex and changes in limb morphology that allow us to use tools and walk upright, are in part due to human-specific genetic changes that altered when, where, and how genes are expressed during development. Over 20 000 putative regulatory elements with potential human-specific functions have been discovered. Understanding how these elements contributed to human evolution requires identifying candidates most likely to have shaped human traits, then studying them in genetically modified animal models. Here, we review the progress and challenges in generating and studying such models and propose a pathway for advancing the field. Finally, we highlight that large-scale collaborations across multiple research domains are essential to decipher what makes us human.
Collapse
Affiliation(s)
| | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Luo Z, Jiang L, Xu J, Wang J, Nie W, Ning Z, Yang F. Haplotype-phased genome assemblies and annotation of the northern white-cheeked gibbon (Nomascus leucogenys). Sci Data 2024; 11:1279. [PMID: 39587154 PMCID: PMC11589157 DOI: 10.1038/s41597-024-04073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Nomascus leucogenys is a critically endangered species of small apes. Here, we sequenced and assembled the male genome of N. leucogenys, using PacBio and Hi-C datasets, with a particular focus on its Y-chromosome. The resulting high-quality haplotype-phased assemblies are at chromosome-scale, with scaffold/contig N50 values of 124.2/102.2 Mb for Haplotype 1 and 121.2/85.67 Mb for Haplotype 2. The assembled Y-chromosome spans 16.06 Mb. BUSCO assessment indicated completeness scores exceeding 95%. We predicted 18,925 protein-coding genes (23,783 mRNAs), including 58 genes on the Y-chromosome. Approximately 50% of the genome comprises repetitive elements. These comprehensive genome datasets will serve as a valuable resource for future studies on the genetics and protection of gibbons and improve our understanding on the evolution of Y-chromosome-related genes in primates.
Collapse
Affiliation(s)
- Zhonglai Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| |
Collapse
|
30
|
Soni V, Terbot JW, Versoza CJ, Pfeifer SP, Jensen JD. A whole-genome scan for evidence of recent positive and balancing selection in aye-ayes ( Daubentonia madagascariensis) utilizing a well-fit evolutionary baseline model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622667. [PMID: 39605496 PMCID: PMC11601216 DOI: 10.1101/2024.11.08.622667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for recent positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction - a key trait in these nocturnal primates - were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum-based inference methods, once accounting for the potentially confounding contributions of population history, recombination and mutation rate variation, and purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.
Collapse
Affiliation(s)
- Vivak Soni
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - John W. Terbot
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Mc Auley MT. The evolution of ageing: classic theories and emerging ideas. Biogerontology 2024; 26:6. [PMID: 39470884 PMCID: PMC11522123 DOI: 10.1007/s10522-024-10143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Ageing is generally regarded as a non-adaptive by-product of evolution. Based on this premise three classic evolutionary theories of ageing have been proposed. These theories have dominated the literature for several decades. Despite their individual nuances, the common thread which unites them is that they posit that ageing results from a decline in the intensity of natural selection with chronological age. Empirical evidence has been identified which supports each theory. However, a consensus remains to be fully established as to which theory best accounts for the evolution of ageing. A consequence of this uncertainty are counter arguments which advocate for alternative theoretical frameworks, such as those which propose an adaptive origin for ageing, senescence, or death. Given this backdrop, this review has several aims. Firstly, to briefly discuss the classic evolutionary theories. Secondly, to evaluate how evolutionary forces beyond a monotonic decrease in natural selection can affect the evolution of ageing. Thirdly, to examine alternatives to the classic theories. Finally, to introduce a pluralistic interpretation of the evolution of ageing. The basis of this pluralistic theoretical framework is the recognition that certain evolutionary ideas will be more appropriate depending on the organism, its ecological context, and its life history.
Collapse
Affiliation(s)
- Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford, M5 4NT, UK.
| |
Collapse
|
32
|
He H, Fang C, Liu L, Li M, Liu W. Environmental Driving of Adaptation Mechanism on Rumen Microorganisms of Sheep Based on Metagenomics and Metabolomics Data Analysis. Int J Mol Sci 2024; 25:10957. [PMID: 39456741 PMCID: PMC11508146 DOI: 10.3390/ijms252010957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Natural or artificial selection causes animals to adapt to their environment. The adaptive changes generated by the rumen population and metabolism form the basis of ruminant evolution. In particular, the adaptive drive for environmental adaptation reflects the high-quality traits of sheep that have migrated from other places or have been distant from their origins for a long time. The Hu sheep is the most representative sheep breed in the humid and low-altitude environments (Tai Lake region) in East Asia and has been widely introduced into the arid and high-altitude environments (Tibetan Plateau and Hotan region), resulting in environmental adaptive changes in the Hu sheep. In this study, a joint analysis of the rumen microbial metagenome and metabolome was conducted on Hu sheep from different regions (area of origin and area of introduction) with the objective of investigating the quality traits of Hu sheep and identifying microorganisms that influence the adaptive drive of ruminants. The results demonstrated that the growth performance of Hu sheep was altered due to changes in rumen tissue and metabolism following their introduction to the arid area at relatively high altitude. Metagenomic and metabolomic analyses (five ramsper area) revealed that 3580 different microorganisms and 732 different metabolites were identified in the rumen fluid of arid sheep. Among these, the representative upregulated metabolites were 4,6-isocanedione, methanesulfonic acid and N2-succinyl-L-arginine, while the dominant microorganism was Prevotella ruminicola. The downregulated metabolites were identified as campesterol, teprenone and dihydroclavaminic acid, while the disadvantaged microorganisms were Dialister_succinatiphilus, Prevotella_sp._AGR2160, Prevotella_multisaccharivorax and Selenomonas_bovis. The results of the Pearson analysis indicated that the rumen microbiota and metabolite content of sheep were significantly altered and highly correlated following their relocation from a humid lowland to an arid upland. In particular, the observed changes in rumen microorganisms led to an acceleration of body metabolism, rendering sheep highly adaptable to environmental stress. Prevotella_ruminicola was identified as playing an important role in this process. These findings provide insights into the environmental adaptation mechanisms of sheep.
Collapse
Affiliation(s)
- Haiying He
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Chao Fang
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Lingling Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Mingming Li
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| | - Wujun Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi 830052, China; (H.H.); (L.L.); (M.L.)
| |
Collapse
|
33
|
Wang Z, Lv Q, Li W, Huang W, Gong G, Yan X, Liu B, Chen O, Wang N, Zhang Y, Wang R, Li J, Tian S, Su R. Chromosome-level genome assembly of the cashmere goat. Sci Data 2024; 11:1107. [PMID: 39384835 PMCID: PMC11479617 DOI: 10.1038/s41597-024-03932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
The goat, an early domesticated ruminant, is a reliable source of cashmere, meat and milk in global agricultural production. Despite this, the genome of cashmere-rich goats has yet to be characterized. Here, we assembled the nearly complete genome of a cashmere goat from a highly economically valuable Inner Mongolian Cashmere buck, utilizing a combination of PacBio HiFi, ONT ultra-long reads, and Hi-C technologies. The size of this genome is 2.76 Gb, with a contig N50 of 95.22 Mb. All assembled sequences were anchored onto 29 autosomes and both sex chromosomes, with only two gaps present on the X chromosome. We identified 1,333.29 Mb (48.26%) of repetitive sequences and predicted 22,480 protein-coding genes. Assembly quality assessment of the genome demonstrated that our assembled cashmere goat genome surpasses the continuity, completeness, and accuracy of other published goat genomes. Taken together, we provided the first cashmere goat assembly, bridging the gap in the genome of important economic breeds of domestic goats, and providing a valuable reference resource for goat genetics and genome research.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Wanlong Huang
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Baichuan Liu
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 017000, China
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 017000, China
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 017000, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, 100015, China.
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China.
- Sino-Arabian Joint Laboratory of Sheep and Goat Germplasm Innovation, Hohhot, Inner Mongolia Autonomous Region, 010018, China.
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China.
| |
Collapse
|
34
|
Hermosilla-Albala N, Silva FE, Cuadros-Espinoza S, Fontsere C, Valenzuela-Seba A, Pawar H, Gut M, Kelley JL, Ruibal-Puertas S, Alentorn-Moron P, Faella A, Lizano E, Farias I, Hrbek T, Valsecchi J, Gut IG, Rogers J, Farh KKH, Kuderna LFK, Marques-Bonet T, Boubli JP. Whole genomes of Amazonian uakari monkeys reveal complex connectivity and fast differentiation driven by high environmental dynamism. Commun Biol 2024; 7:1283. [PMID: 39379612 PMCID: PMC11461705 DOI: 10.1038/s42003-024-06901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Despite showing the greatest primate diversity on the planet, genomic studies on Amazonian primates show very little representation in the literature. With 48 geolocalized high coverage whole genomes from wild uakari monkeys, we present the first population-level study on platyrrhines using whole genome data. In a very restricted range of the Amazon rainforest, eight uakari species (Cacajao genus) have been described and categorized into the bald and black uakari groups, based on phenotypic and ecological differences. Despite a slight habitat overlap, we show that posterior to their split 0.92 Mya, bald and black uakaris have remained independent, without gene flow. Nowadays, these two groups present distinct genetic diversity and group-specific variation linked to pathogens. We propose differing hydrology patterns and effectiveness of geographic barriers have modulated the intra-group connectivity and structure of bald and black uakari populations. With this work we have explored the effects of the Amazon rainforest's dynamism on wild primates' genetics and increased the representation of platyrrhine genomes, thus opening the door to future research on the complexity and diversity of primate genomics.
Collapse
Grants
- T.M.B gratefully acknowledges the financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 864203), (PID2021-126004NB-100) (MICIIN/FEDER, UE) and from the Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2021 SGR 00177). J.P.B. gratefully acknowledges the financial support from the Natural Environment Research Council (NERC) (NE/T000341/1). F.E.S. gratefully acknowledges the financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (801505), the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, Belgium; grant 40017464) Brazilian National Council for Scientific and Technological Development (CNPq) (Processes 303286/2014-8, 303579/2014-5, 200502/2015-8, 302140/2020-4, 300365/2021-7, 301407/2021-5, #301925/2021-6), the International Primatological Society (Conservation grant). The Rufford Foundation (14861-1, 23117-2, 38786-B), the Margot Marsh Biodiversity Foundation (SMA-CCO-G0023, SMA-CCOG0037), the Primate Conservation Inc. (1713 and 1689) and the Gordon and Betty Moore Foundation (Grant 5344) (Mamirauá Institute for Sustainable Development). N.H.-A. gratefully acknowledges the financial support from the Government of Catalonia | Agència de Gestió d'Ajuts Universitaris i de Recerca (Agency for Management of University and Research Grants) (FI_00040).
Collapse
Affiliation(s)
- Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain.
| | - Felipe Ennes Silva
- Research Unit of Evolutionary Biology and Ecology, Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Brussels, Belgium
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
| | - Sebastián Cuadros-Espinoza
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Alejandro Valenzuela-Seba
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Harvinder Pawar
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Sandra Ruibal-Puertas
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Armida Faella
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX, 78212, USA
| | - Joao Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia-RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica-ComFauna, Iquitos, Loreto, Peru
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Tomas Marques-Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010, Barcelona, Spain
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
35
|
Versoza CJ, Pfeifer SP. A hybrid genome assembly of the endangered aye-aye (Daubentonia madagascariensis). G3 (BETHESDA, MD.) 2024; 14:jkae185. [PMID: 39109845 PMCID: PMC11457058 DOI: 10.1093/g3journal/jkae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024]
Abstract
The aye-aye (Daubentonia madagascariensis) is the only extant member of the Daubentoniidae primate family. Although several reference genomes exist for this endangered strepsirrhine primate, the predominant usage of short-read sequencing has resulted in limited assembly contiguity and completeness, and no protein-coding gene annotations have yet been released. Here, we present a novel, fully annotated, chromosome-level hybrid de novo assembly for the species based on a combination of Oxford Nanopore Technologies long reads and Illumina short reads and scaffolded using genome-wide chromatin interaction data-a community resource that will improve future conservation efforts as well as primate comparative analyses.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
36
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Anez GM, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Roha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, et alYoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Anez GM, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Roha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O’Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605654. [PMID: 39131277 PMCID: PMC11312596 DOI: 10.1101/2024.07.31.605654] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Steven J. Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon D. Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Abigail N. Sequeira
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Riley J. Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Genetics Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Christine R. Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Borchers
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gerard G. Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y. Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P. Chan
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S. Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Research Institute, Goethe University, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marlys L. Houck
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of bioinformatics and population genetics, Interdisciplinary program in bioinformatics, Seoul National University, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark Loftus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F. I. Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Britta S. Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Saswat K. Mohanty
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Francisca R. Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Joana L. Roha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Samuel Sacco
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas J. Schork
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Dongmin R. Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cynthia Steiner
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Alexander P. Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Sarah A. Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixin Zhu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Zachary A. Szpiech
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Christian D. Huber
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Miriam K. Konkel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V. Yi
- Department of Ecology, Evolution and Marine Biology, Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Craig B. Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Departments of Molecular and Cell Biology, UConn Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Karageorgiou C, Gokcumen O, Dennis MY. Deciphering the role of structural variation in human evolution: a functional perspective. Curr Opin Genet Dev 2024; 88:102240. [PMID: 39121701 PMCID: PMC11485010 DOI: 10.1016/j.gde.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.5% of the genome is divergent in humans versus other great apes, impacting thousands of genes. Functional genomics and gene-editing tools in various model systems recently emerged as an exciting frontier - investigating the wide-ranging impacts of SVs on molecular, cellular, and systems-level phenotypes. This review examines existing research and identifies future directions to broaden our understanding of the functional roles of SVs on phenotypic innovations and diversity impacting uniquely human features, ranging from cognition to metabolic adaptations.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA. https://twitter.com/@evobioclio
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Zhao L, Yuan J, Wang G, Jing H, Huang C, Xu L, Xu X, Sun T, Chen W, Mao X, Li G. Chromosome-level genome and population genomics of the intermediate horseshoe bat ( Rhinolophus affinis) reveal the molecular basis of virus tolerance in Rhinolophus and echolocation call frequency variation. Zool Res 2024; 45:1147-1160. [PMID: 39257377 PMCID: PMC11491789 DOI: 10.24272/j.issn.2095-8137.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024] Open
Abstract
Horseshoe bats (genus Rhinolophus, family Rhinolophidae) represent an important group within chiropteran phylogeny due to their distinctive traits, including constant high-frequency echolocation, rapid karyotype evolution, and unique immune system. Advances in evolutionary biology, supported by high-quality reference genomes and comprehensive whole-genome data, have significantly enhanced our understanding of species origins, speciation mechanisms, adaptive evolutionary processes, and phenotypic diversity. However, genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data, with only a single published genome of R. ferrumequinum currently available. In this study, we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat ( R. affinis). Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae. Notably, we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway, DNA repair, and apoptosis, which displayed signs of rapid evolution. In addition, we observed an expansion of the major histocompatibility complex class II (MHC-II) region and a higher copy number of the HLA- DQB2 gene in horseshoe bats compared to other chiropteran species. Based on whole-genome resequencing and population genomic analyses, we identified multiple candidate loci (e.g., GLI3) associated with variations in echolocation call frequency across R. affinis subspecies. This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, Guangdong 510070, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. E-mail:
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
- Guangzhou Zoo, Guangzhou, Guangdong 510070, China. E-mail:
| |
Collapse
|
39
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
40
|
Oren G, Shapira A, Lifshitz R, Vinepinsky E, Cohen R, Fried T, Hadad GP, Omer D. Vocal labeling of others by nonhuman primates. Science 2024; 385:996-1003. [PMID: 39208084 DOI: 10.1126/science.adp3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Humans, dolphins, and elephants are the only known species that vocally label their conspecifics. It remains unclear whether nonhuman primates share this ability. We recorded spontaneous "phee-call" dialogues between pairs of marmoset monkeys. We discovered that marmosets use these calls to vocally label their conspecifics. Moreover, they respond more consistently and correctly to calls that are specifically directed at them. Analysis of calls from multiple monkeys revealed that family members use similar calls and acoustic features to label others and perform vocal learning. These findings shed light on the complexities of social vocalizations among nonhuman primates and suggest that marmoset vocalizations may provide a model for understanding aspects of human language, thereby offering new insights into the evolution of social communication.
Collapse
Affiliation(s)
- Guy Oren
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aner Shapira
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Lifshitz
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Vinepinsky
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Cohen
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Fried
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy P Hadad
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Omer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
42
|
Du D, Zhong F, Liu L. Enhancing recognition and interpretation of functional phenotypic sequences through fine-tuning pre-trained genomic models. J Transl Med 2024; 22:756. [PMID: 39135093 PMCID: PMC11318145 DOI: 10.1186/s12967-024-05567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Decoding human genomic sequences requires comprehensive analysis of DNA sequence functionality. Through computational and experimental approaches, researchers have studied the genotype-phenotype relationship and generate important datasets that help unravel complicated genetic blueprints. Thus, the recently developed artificial intelligence methods can be used to interpret the functions of those DNA sequences. METHODS This study explores the use of deep learning, particularly pre-trained genomic models like DNA_bert_6 and human_gpt2-v1, in interpreting and representing human genome sequences. Initially, we meticulously constructed multiple datasets linking genotypes and phenotypes to fine-tune those models for precise DNA sequence classification. Additionally, we evaluate the influence of sequence length on classification results and analyze the impact of feature extraction in the hidden layers of our model using the HERV dataset. To enhance our understanding of phenotype-specific patterns recognized by the model, we perform enrichment, pathogenicity and conservation analyzes of specific motifs in the human endogenous retrovirus (HERV) sequence with high average local representation weight (ALRW) scores. RESULTS We have constructed multiple genotype-phenotype datasets displaying commendable classification performance in comparison with random genomic sequences, particularly in the HERV dataset, which achieved binary and multi-classification accuracies and F1 values exceeding 0.935 and 0.888, respectively. Notably, the fine-tuning of the HERV dataset not only improved our ability to identify and distinguish diverse information types within DNA sequences but also successfully identified specific motifs associated with neurological disorders and cancers in regions with high ALRW scores. Subsequent analysis of these motifs shed light on the adaptive responses of species to environmental pressures and their co-evolution with pathogens. CONCLUSIONS These findings highlight the potential of pre-trained genomic models in learning DNA sequence representations, particularly when utilizing the HERV dataset, and provide valuable insights for future research endeavors. This study represents an innovative strategy that combines pre-trained genomic model representations with classical methods for analyzing the functionality of genome sequences, thereby promoting cross-fertilization between genomics and artificial intelligence.
Collapse
Affiliation(s)
- Duo Du
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
43
|
L Rocha J, Lou RN, Sudmant PH. Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics. Curr Opin Genet Dev 2024; 87:102233. [PMID: 39042999 PMCID: PMC11695101 DOI: 10.1016/j.gde.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Structural variants (SVs) account for the majority of base pair differences both within and between primate species. However, our understanding of inter- and intra-species SV has been historically hampered by the quality of draft primate genomes and the absence of genome resources for key taxa. Recently, advances in long-read sequencing and genome assembly have begun to radically reshape our understanding of SVs. Two landmark achievements include the publication of a human telomere-to-telomere (T2T) genome as well as the development of the first human pangenome reference. In this review, we first look back to the major works laying the foundation for these projects. We then examine the ways in which T2T genome assemblies and pangenomes are transforming our understanding of and approach to primate SV. Finally, we discuss what the future of primate SV research may look like in the era of T2T genomes and pangenomics.
Collapse
Affiliation(s)
- Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@joanocha
| | - Runyang N Lou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@NicolasLou10
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, USA.
| |
Collapse
|
44
|
Huang YH, Sun YF, Li H, Li HS, Pang H. PhyloAln: A Convenient Reference-Based Tool to Align Sequences and High-Throughput Reads for Phylogeny and Evolution in the Omic Era. Mol Biol Evol 2024; 41:msae150. [PMID: 39041199 PMCID: PMC11287380 DOI: 10.1093/molbev/msae150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The current trend in phylogenetic and evolutionary analyses predominantly relies on omic data. However, prior to core analyses, traditional methods typically involve intricate and time-consuming procedures, including assembly from high-throughput reads, decontamination, gene prediction, homology search, orthology assignment, multiple sequence alignment, and matrix trimming. Such processes significantly impede the efficiency of research when dealing with extensive data sets. In this study, we develop PhyloAln, a convenient reference-based tool capable of directly aligning high-throughput reads or complete sequences with existing alignments as a reference for phylogenetic and evolutionary analyses. Through testing with simulated data sets of species spanning the tree of life, PhyloAln demonstrates consistently robust performance compared with other reference-based tools across different data types, sequencing technologies, coverages, and species, with percent completeness and identity at least 50 percentage points higher in the alignments. Additionally, we validate the efficacy of PhyloAln in removing a minimum of 90% foreign and 70% cross-contamination issues, which are prevalent in sequencing data but often overlooked by other tools. Moreover, we showcase the broad applicability of PhyloAln by generating alignments (completeness mostly larger than 80%, identity larger than 90%) and reconstructing robust phylogenies using real data sets of transcriptomes of ladybird beetles, plastid genes of peppers, or ultraconserved elements of turtles. With these advantages, PhyloAln is expected to facilitate phylogenetic and evolutionary analyses in the omic era. The tool is accessible at https://github.com/huangyh45/PhyloAln.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
45
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Sharma S, Kumar S. Discovering Fragile Clades and Causal Sequences in Phylogenomics by Evolutionary Sparse Learning. Mol Biol Evol 2024; 41:msae131. [PMID: 38916040 PMCID: PMC11247346 DOI: 10.1093/molbev/msae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.
Collapse
Affiliation(s)
- Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
47
|
Hou M, Akhtar MS, Hayashi M, Ashino R, Matsumoto-Oda A, Hayakawa T, Ishida T, Melin AD, Imai H, Kawamura S. Reduction of bitter taste receptor gene family in folivorous colobine primates relative to omnivorous cercopithecine primates. Primates 2024; 65:311-331. [PMID: 38605281 PMCID: PMC11219393 DOI: 10.1007/s10329-024-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Bitter taste perception is important in preventing animals from ingesting potentially toxic compounds. Whole-genome assembly (WGA) data have revealed that bitter taste receptor genes (TAS2Rs) comprise a multigene family with dozens of intact and disrupted genes in primates. However, publicly available WGA data are often incomplete, especially for multigene families. In this study, we employed a targeted capture (TC) approach specifically probing TAS2Rs for ten species of cercopithecid primates with diverse diets, including eight omnivorous cercopithecine species and two folivorous colobine species. We designed RNA probes for all TAS2Rs that we modeled to be intact in the common ancestor of cercopithecids ("ancestral-cercopithecid TAS2R gene set"). The TC was followed by short-read and high-depth massive-parallel sequencing. TC retrieved more intact TAS2R genes than found in WGA databases. We confirmed a large number of gene "births" at the common ancestor of cercopithecids and found that the colobine common ancestor and the cercopithecine common ancestor had contrasting trajectories: four gene "deaths" and three gene births, respectively. The number of intact TAS2R genes was markedly reduced in colobines (25-28 detected via TC and 20-26 detected via WGA analysis) as compared with cercopithecines (27-36 via TC and 19-30 via WGA). Birth or death events occurred at almost every phylogenetic-tree branch, making the composition of intact genes variable among species. These results show that evolutionary change in intact TAS2R genes is a complex process, refute a simple general prediction that herbivory favors more TAS2R genes, and have implications for understanding dietary adaptations and the evolution of detoxification abilities.
Collapse
Affiliation(s)
- Min Hou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG Room 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Muhammad Shoaib Akhtar
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG Room 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masahiro Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG Room 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG Room 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Aichi, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG Room 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
48
|
Obregon-Perko V, Mannino A, Ladner JT, Hodara V, Ebrahimi D, Parodi L, Callery J, Palacios G, Giavedoni LD. Adaptation of SIVmac to baboon primary cells results in complete absence of in vivo baboon infectivity. Front Cell Infect Microbiol 2024; 14:1408245. [PMID: 39006742 PMCID: PMC11239360 DOI: 10.3389/fcimb.2024.1408245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
While simian immunodeficiency virus (SIV) infection is non-pathogenic in naturally infected African nonhuman primate hosts, experimental or accidental infection in rhesus macaques often leads to AIDS. Baboons, widely distributed throughout Africa, do not naturally harbor SIV, and experimental infection of baboons with SIVmac results in transient low-level viral replication. Elucidation of mechanisms of natural immunity in baboons could uncover new targets of antiviral intervention. We tested the hypothesis that an SIVmac adapted to replicate in baboon primary cells will gain the capacity to establish chronic infections in vivo. Here, we generated SIVmac variants in baboon cells through serial passage in PBMC from different donors (SIVbn-PBMC s1), in PBMC from the same donors (SIVbn-PBMC s2), or in isolated CD4 cells from the same donors used for series 2 (SIVbn-CD4). While SIVbn-PBMC s1 and SIVbn-CD4 demonstrated increased replication capacity, SIVbn-PBMC s2 did not. Pharmacological blockade of CCR5 revealed SIVbn-PBMC s1 could more efficiently use available CCR5 than SIVmac, a trait we hypothesize arose to circumvent receptor occupation by chemokines. Sequencing analysis showed that all three viruses accumulated different types of mutations, and that more non-synonymous mutations became fixed in SIVbn-PBMC s1 than SIVbn-PBMC s2 and SIVbn-CD4, supporting the notion of stronger fitness pressure in PBMC from different genetic backgrounds. Testing the individual contribution of several newly fixed SIV mutations suggested that is the additive effect of these mutations in SIVbn-PBMC s1 that contributed to its enhanced fitness, as recombinant single mutant viruses showed no difference in replication capacity over the parental SIVmac239 strain. The replicative capacity of SIVbn-PBMC passage 4 (P4) s1 was tested in vivo by infecting baboons intravenously with SIVbn-PBMC P4 s1 or SIVmac251. While animals infected with SIVmac251 showed the known pattern of transient low-level viremia, animals infected with SIVbn-PBMC P4 s1 had undetectable viremia or viral DNA in lymphoid tissue. These studies suggest that adaptation of SIV to grow in baboon primary cells results in mutations that confer increased replicative capacity in the artificial environment of cell culture but make the virus unable to avoid the restrictive factors generated by a complex multicellular organism.
Collapse
Affiliation(s)
| | - Amanda Mannino
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Vida Hodara
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Laura Parodi
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Gustavo Palacios
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States
| |
Collapse
|
49
|
Liu Z, Qin Q, Zhang C, Xu X, Dai D, Lan M, Wang Y, Zhang J, Zhao D, Kong D, Qin T, Wu D, Gong X, Zhou X, Suhe A, Wang Z, Liu Z. Effects of nonsynonymous single nucleotide polymorphisms of the KIAA1217, SNTA1 and LTBP1 genes on the growth traits of Ujumqin sheep. Front Vet Sci 2024; 11:1382897. [PMID: 38756519 PMCID: PMC11097667 DOI: 10.3389/fvets.2024.1382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.
Collapse
Affiliation(s)
- Zhichen Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongliang Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingxi Lan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Deqing Kong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Danni Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuedan Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyu Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Alatan Suhe
- East Ujumqin Banner Hersig Animal Husbandry Development Limited Liability Company, Xilin Gol League, Xilinhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| |
Collapse
|
50
|
Rojo D, Hael CE, Soria A, de Souza FSJ, Low MJ, Franchini LF, Rubinstein M. A mammalian tripartite enhancer cluster controls hypothalamic Pomc expression, food intake, and body weight. Proc Natl Acad Sci U S A 2024; 121:e2322692121. [PMID: 38652744 PMCID: PMC11067048 DOI: 10.1073/pnas.2322692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Clara E. Hael
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Agustina Soria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Flávio S. J. de Souza
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| |
Collapse
|