1
|
Canesso MC, Castro TB, Nakandakari-Higa S, Lockhart A, Luehr J, Bortolatto J, Parsa R, Esterházy D, Lyu M, Liu TT, Murphy KM, Sonnenberg GF, Reis BS, Victora GD, Mucida D. Identification of antigen-presenting cell-T cell interactions driving immune responses to food. Science 2025; 387:eado5088. [PMID: 39700315 PMCID: PMC12017586 DOI: 10.1126/science.ado5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
The intestinal immune system must concomitantly tolerate food and commensals and protect against pathogens. Antigen-presenting cells (APCs) orchestrate these immune responses by presenting luminal antigens to CD4+ T cells and inducing their differentiation into regulatory (peripheral regulatory T cell) or inflammatory [T helper (Th) cell] subsets. We used a proximity labeling method (LIPSTIC) to identify APCs that presented dietary antigens under tolerizing and inflammatory conditions and to understand cellular mechanisms by which tolerance to food is induced and can be disrupted by infection. Helminth infections disrupted tolerance induction proportionally to the reduction in the ratio between tolerogenic APCs-including migratory dendritic cells (cDC1s) and Rorγt+ APCs-and inflammatory APCs, which were primarily cDC2s. These inflammatory cDC2s expanded by helminth infection did not present dietary antigens, thus avoiding diet-specific Th2 responses.
Collapse
Affiliation(s)
- Maria C.C. Canesso
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, United States
| | - Tiago B.R. Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, United States
| | | | - Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
| | - Julia Luehr
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, United States
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
| | - Daria Esterházy
- Department of Pathology, University of Chicago, Chicago, United States
| | - Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, United States
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, United States
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, United States
| | - Gregory F. Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, United States
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
2
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Nakandakari-Higa S, Walker S, Canesso MCC, van der Heide V, Chudnovskiy A, Kim DY, Jacobsen JT, Parsa R, Bilanovic J, Parigi SM, Fiedorczuk K, Fuchs E, Bilate AM, Pasqual G, Mucida D, Kamphorst AO, Pritykin Y, Victora GD. Universal recording of immune cell interactions in vivo. Nature 2024; 627:399-406. [PMID: 38448581 PMCID: PMC11078586 DOI: 10.1038/s41586-024-07134-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.
Collapse
Affiliation(s)
| | - Sarah Walker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Maria C C Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Dong-Yoon Kim
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Institute for Immunology and Transfusion Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Jana Bilanovic
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, Šplíchalová I, Kolář M, Abramson J, Filipp D, Dobeš J. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med 2024; 221:e20230194. [PMID: 37902602 PMCID: PMC10615894 DOI: 10.1084/jem.20230194] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
Collapse
Affiliation(s)
- Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Katarína Kováčová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Dobešová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Březina
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pacáková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iva Šplíchalová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J Exp Med 2023; 220:e20221816. [PMID: 37191720 PMCID: PMC10192604 DOI: 10.1084/jem.20221816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4+ T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4+ T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4+ T cells at the intestinal epithelium, imprinting a tissue-specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4+ T cells (Tregs). This steady state CD4+ T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased proinflammatory gene expression. Finally, we identified both steady-state epithelium-adapted CD4+ T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Aubrey Reed
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Calvin Herman
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Song X, Zhang H, Zhang Y, Goh B, Bao B, Mello SS, Sun X, Zheng W, Gazzaniga FS, Wu M, Qu F, Yin Q, Gilmore MS, Oh SF, Kasper DL. Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature 2023; 619:837-843. [PMID: 37380774 DOI: 10.1038/s41586-023-06265-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The human gut microbiome constantly converts natural products derived from the host and diet into numerous bioactive metabolites1-3. Dietary fats are essential micronutrients that undergo lipolysis to release free fatty acids (FAs) for absorption in the small intestine4. Gut commensal bacteria modify some unsaturated FAs-for example, linoleic acid (LA)-into various intestinal FA isomers that regulate host metabolism and have anticarcinogenic properties5. However, little is known about how this diet-microorganism FA isomerization network affects the mucosal immune system of the host. Here we report that both dietary factors and microbial factors influence the level of gut LA isomers (conjugated LAs (CLAs)) and that CLAs in turn modulate a distinct population of CD4+ intraepithelial lymphocytes (IELs) that express CD8αα in the small intestine. Genetic abolition of FA isomerization pathways in individual gut symbionts significantly decreases the number of CD4+CD8αα+ IELs in gnotobiotic mice. Restoration of CLAs increases CD4+CD8αα+ IEL levels in the presence of the transcription factor hepatocyte nuclear factor 4γ (HNF4γ). Mechanistically, HNF4γ facilitates CD4+CD8αα+ IEL development by modulating interleukin-18 signalling. In mice, specific deletion of HNF4γ in T cells leads to early mortality from infection by intestinal pathogens. Our data reveal a new role for bacterial FA metabolic pathways in the control of host intraepithelial immunological homeostasis by modulating the relative number of CD4+ T cells that were CD4+CD8αα+.
Collapse
Affiliation(s)
- Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Haohao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Zhang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suelen S Mello
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ximei Sun
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wen Zheng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca S Gazzaniga
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Mass General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fangfang Qu
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Nakandakari-Higa S, Canesso MCC, Walker S, Chudnovskiy A, Jacobsen JT, Bilanovic J, Parigi SM, Fiedorczuk K, Fuchs E, Bilate AM, Pasqual G, Mucida D, Pritykin Y, Victora GD. Universal recording of cell-cell contacts in vivo for interaction-based transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533003. [PMID: 36993443 PMCID: PMC10055214 DOI: 10.1101/2023.03.16.533003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cellular interactions are essential for tissue organization and functionality. In particular, immune cells rely on direct and usually transient interactions with other immune and non-immune populations to specify and regulate their function. To study these "kiss-and-run" interactions directly in vivo, we previously developed LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts), an approach that uses enzymatic transfer of a labeled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ helper T cells and antigen presenting cells, however. Here, we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the cellular partners of regulatory T cells in steady state, and identify germinal center (GC)-resident T follicular helper (Tfh) cells based on their ability to interact cognately with GC B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalog of the immune populations that physically interact with intestinal epithelial cells (IECs) and find evidence of stepwise acquisition of the ability to interact with IECs as CD4+ T cells adapt to residence in the intestinal tissue. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.
Collapse
Affiliation(s)
| | - Maria C C Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sarah Walker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Quantitative and Computational Biology Graduate Program, Princeton University, Princeton, NJ, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Jana Bilanovic
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Giulia Pasqual
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Lockhart A, Reed A, de Castro TR, Herman C, Canesso MCC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536475. [PMID: 37090529 PMCID: PMC10120666 DOI: 10.1101/2023.04.11.536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4 + T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4 + T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4 + T cells at the intestinal epithelium, imprinting a tissue specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4 + T cells (Tregs). This steady state CD4 + T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased pro-inflammatory gene expression. Finally, we identified both steady state epithelium-adapted CD4 + T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
|
11
|
Li C, Prakhar P, Park JH. Runx3d controls the abundance and functional differentiation of CD4 +CD8αα + intraepithelial T cells. Cell Death Discov 2023; 9:123. [PMID: 37045809 PMCID: PMC10097811 DOI: 10.1038/s41420-023-01415-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Bhuyan ZA, Rahman MA, Maradana MR, Mehdi AM, Bergot AS, Simone D, El-Kurdi M, Garrido-Mesa J, Cai CBB, Cameron AJ, Hanson AL, Nel HJ, Kenna T, Leo P, Rehaume L, Brown MA, Ciccia F, Thomas R. Genetically encoded Runx3 and CD4 + intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy. Clin Immunol 2023; 247:109220. [PMID: 36596403 DOI: 10.1016/j.clim.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/02/2023]
Abstract
Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαβ+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-β and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-β/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.
Collapse
Affiliation(s)
- Zaied Ahmed Bhuyan
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - M Arifur Rahman
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Muralidhara Rao Maradana
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Anne-Sophie Bergot
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Davide Simone
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marya El-Kurdi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Cheng Bang Benjamin Cai
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Amy J Cameron
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Aimee L Hanson
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Hendrik J Nel
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Tony Kenna
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Paul Leo
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Linda Rehaume
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Genomics England Ltd, Charterhouse Square, London, United Kingdom
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ranjeny Thomas
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
13
|
Cervantes-Barragan L, Colonna M. A microbiota-derived antigen drives CD4 + intraepithelial lymphocyte (CD4IEL) development. Trends Immunol 2022; 43:858-860. [PMID: 36243620 DOI: 10.1016/j.it.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
CD4+ intraepithelial lymphocytes (CD4IEL) are tissue-resident T cells with cytotoxic and regulatory properties; together with peripheral regulatory T cells, they control intestinal inflammation. Recently, Bousbaine and colleagues identified a microbiota-derived conserved antigen that induces CD4IEL differentiation and promotes their regulatory function, attenuating the severity of murine colitis.
Collapse
Affiliation(s)
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
14
|
Harada Y, Miyamoto K, Sujino T. Protocol to isolate and enrich mouse splenic naive CD4 + T cells for in vitro CD4 +CD8αα + cell induction. STAR Protoc 2022; 3:101728. [PMID: 36170110 PMCID: PMC9526228 DOI: 10.1016/j.xpro.2022.101728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023] Open
Abstract
Recent studies have shown that CD4+CD8αα+ T cells are induced in the hypoxic environment of the small intestinal epithelium. Herein, we describe a protocol for CD4+CD8αα+ T cell induction from freshly isolated naive CD4+ T cells, including procedures for the isolation and enrichment of mouse splenic T cells. In addition, we present an approach that can induce more CD4+CD8αα+ T cells by artificially creating a hypoxic environment in vitro. For complete details on the use and execution of this protocol, please refer to Harada et al. (2022).
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, Tokyo, Japan,Corresponding author
| |
Collapse
|
15
|
Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, Mimee M, Olesen S, Reis BS, VanInsberghe D, Bortolatto J, Poyet M, Cheloha RW, Sidney J, Ling J, Gupta A, Lu TK, Sette A, Alm EJ, Moon JJ, Victora GD, Mucida D, Ploegh HL, Bilate AM. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science 2022; 377:660-666. [PMID: 35926021 PMCID: PMC9766740 DOI: 10.1126/science.abg5645] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified β-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, β-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Laura I Fisch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Preksha Bhagchandani
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Tiago B Rezende de Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mark Mimee
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Scott Olesen
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - David VanInsberghe
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mathilde Poyet
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jingjing Ling
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Gupta
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Timothy K Lu
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Angelina M Bilate
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Estrada Brull A, Panetti C, Joller N. Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Front Immunol 2022; 13:864628. [PMID: 35572535 PMCID: PMC9099010 DOI: 10.3389/fimmu.2022.864628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) restrain excessive immune responses and dampen inflammation. In addition to this classical immune suppressive role, Tregs in non-lymphoid tissues also promote tissue homeostasis, regeneration and repair. In this review, we outline our current understanding of how Tregs migrate to peripheral tissues and the factors required for their maintenance at these sites. We discuss the tissue-specific adaptations of Tregs at barrier and immuno-privileged sites and the mechanisms that regulate their function within these organs. Furthermore, we outline what is known about the interactions of Tregs with non-immune cells in the different peripheral tissues at steady state and upon challenge or tissue damage. A thorough understanding of the tissue-specific adaptations and functions of Tregs will potentially pave the way for therapeutic approaches targeting their regenerative role.
Collapse
|
17
|
Harada Y, Sujino T, Miyamoto K, Nomura E, Yoshimatsu Y, Tanemoto S, Umeda S, Ono K, Mikami Y, Nakamoto N, Takabayashi K, Hosoe N, Ogata H, Ikenoue T, Hirao A, Kubota Y, Kanai T. Intracellular metabolic adaptation of intraepithelial CD4 +CD8αα + T lymphocytes. iScience 2022; 25:104021. [PMID: 35313689 PMCID: PMC8933710 DOI: 10.1016/j.isci.2022.104021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs), the first line of defense against microbial and dietary antigens, are classified as natural or induced based on their origin and receptor expression. Induced CD4+CD8αα+TCRβ+ T cells (double positive, DPIELs) originated from CD4+CD8α-TCRβ+ T cells (single positive, SPIELs) increase with aging. However, the metabolic requirements and the metabolic-related genes in IEL development remain unclear. We determined that the intraepithelial compartment is hypoxic in the presence of microbes and DPIELs increased more than natural IELs in this location. Moreover, DPIELs consumed less oxygen and glucose and exhibited unique alterations in mitochondria. Using inhibitors and genetically modified mice, we revealed that DPIELs adapt to their surrounding oxygen-deprived environment in peripheral tissues by modulating specific genes, including hypoxia-inducible factor, mammalian target of rapamycin complexes (mTORC), phosphorylated ribosomal protein S6 (pS6), and other glycolytic factors. Our findings provide valuable insight into the metabolic properties of IELs.
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kentaro Miyamoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Miyarisan Pharmaceutical Co. Ltd. Tokyo 114-0016, Japan
| | - Ena Nomura
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Yoshimatsu
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shun Tanemoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoko Umeda
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiko Ono
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yohei Mikami
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhiro Nakamoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
18
|
Ahrends T, Aydin B, Matheis F, Classon CH, Marchildon F, Furtado GC, Lira SA, Mucida D. Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. Cell 2021; 184:5715-5727.e12. [PMID: 34717799 PMCID: PMC8595755 DOI: 10.1016/j.cell.2021.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
The enteric nervous system (ENS) controls several intestinal functions including motility and nutrient handling, which can be disrupted by infection-induced neuropathies or neuronal cell death. We investigated possible tolerance mechanisms preventing neuronal loss and disruption in gut motility after pathogen exposure. We found that following enteric infections, muscularis macrophages (MMs) acquire a tissue-protective phenotype that prevents neuronal loss, dysmotility, and maintains energy balance during subsequent challenge with unrelated pathogens. Bacteria-induced neuroprotection relied on activation of gut-projecting sympathetic neurons and signaling via β2-adrenergic receptors (β2AR) on MMs. In contrast, helminth-mediated neuroprotection was dependent on T cells and systemic production of interleukin (IL)-4 and IL-13 by eosinophils, which induced arginase-expressing MMs that prevented neuronal loss from an unrelated infection located in a different intestinal region. Collectively, these data suggest that distinct enteric pathogens trigger a state of disease or tissue tolerance that preserves ENS number and functionality.
Collapse
Affiliation(s)
- Tomasz Ahrends
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Begüm Aydin
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Cajsa H Classon
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Gláucia C Furtado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sérgio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
19
|
Lin CH, Chen MC, Lin LL, Christian DA, Min B, Hunter CA, Lu LF. Gut epithelial IL-27 confers intestinal immunity through the induction of intraepithelial lymphocytes. J Exp Med 2021; 218:212659. [PMID: 34554189 PMCID: PMC8480671 DOI: 10.1084/jem.20210021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/04/2022] Open
Abstract
IL-27 controls a diverse range of immune responses in many disease settings. Here, we identify intestinal epithelial cells (IECs) as one of the major IL-27 cellular sources in the gut-associated tissue. Unlike IL-27 secreted by innate immune cells, gut epithelial IL-27 is dispensable for T-bet+ regulatory T cell (T reg cell) differentiation or IL-10 induction. Rather, IEC-derived IL-27 specifically promotes a distinct CD8αα+CD4+ intraepithelial lymphocyte (IEL) population that acquires their functional differentiation at the intestinal epithelium. Loss of IL-27 in IECs leads to a selective defect in CD8αα+CD4+ IELs over time. Consequently, mice with IEC-specific IL-27 ablation exhibited elevated pathogen burden during parasitic infection, and this could be rescued by transfer of exogenous CD8αα+CD4+ IELs. Collectively, our data reveal that in addition to its known regulatory properties in preventing immune hyperactivity, gut epithelial IL-27 confers barrier immunity by inducing a specific IEL subset and further suggest that IL-27 produced by different cell types plays distinct roles in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Booki Min
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| |
Collapse
|
20
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
21
|
Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother 2021; 141:111817. [PMID: 34126349 DOI: 10.1016/j.biopha.2021.111817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, an overwhelming amount of evidence has positively recommended a significant role of microbiota in human health and disease. Microbiota also plays a crucial role in the initiation, preparation, and function of the host immune response. Recently, it has been shown that short-chain fatty acids (SCFAs) are the primary metabolites of the intestinal microbiota produced by anaerobic fermentation, which contributes to the host-pathogen interaction. SCFAs, such as propionate, acetate, and butyrate, are bacterial metabolites with immunomodulatory activity, and they are indispensable for the maintenance of homeostasis. Some evidence indicates that they are involved in the development of infections. In the present study, we provide the latest findings on the role of SCFAs in response to bacterial infections.
Collapse
|
22
|
London M, Bilate AM, Castro TBR, Sujino T, Mucida D. Stepwise chromatin and transcriptional acquisition of an intraepithelial lymphocyte program. Nat Immunol 2021; 22:449-459. [PMID: 33686285 PMCID: PMC8251700 DOI: 10.1038/s41590-021-00883-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Mesenteric lymph node (mLN) T cells undergo tissue adaptation upon migrating to intestinal lamina propria and epithelium, ensuring appropriate balance between tolerance and resistance. By combining mouse genetics with single-cell and chromatin analyses, we uncovered the molecular imprinting of gut epithelium on T cells. Transcriptionally, conventional and regulatory (Treg) CD4+ T cells from mLN, lamina propria and intestinal epithelium segregate based on the gut layer they occupy; trajectory analysis suggests a stepwise loss of CD4 programming and acquisition of an intraepithelial profile. Treg cell fate mapping coupled with RNA sequencing and assay for transposase-accessible chromatin followed by sequencing revealed that the Treg cell program shuts down before an intraepithelial program becomes fully accessible at the epithelium. Ablation of CD4-lineage-defining transcription factor ThPOK results in premature acquisition of an intraepithelial lymphocyte profile by mLN Treg cells, partially recapitulating epithelium imprinting. Thus, coordinated replacement of the circulating lymphocyte program with site-specific transcriptional and chromatin changes is necessary for tissue imprinting.
Collapse
Affiliation(s)
- Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Bousbaine D, Ploegh HL. Antigen discovery tools for adaptive immune receptor repertoire research. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:64-70. [PMID: 33195881 PMCID: PMC7665270 DOI: 10.1016/j.coisb.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adaptive immune system has evolved to recognize with incredible precision a large diversity of molecules. Innovations in high-throughput sequencing and bioinformatics have accelerated large-scale immune repertoire analyses and given us important insights into the behavior of the adaptive immune system. However, establishing a connection between receptor sequence and its antigen-specificity remains a challenge despite its central role in determining T and B cell fate. We discuss recent large-scale antigen discovery technologies which can be combined with adaptive immune receptor repertoire (AIRR) studies. We highlight important discoveries made using repertoire analyses in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Department of Bioengineering and ChEM-H, Stanford University, Stanford CA, USA
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| |
Collapse
|
24
|
Bilate AM, London M, Castro TBR, Mesin L, Bortolatto J, Kongthong S, Harnagel A, Victora GD, Mucida D. T Cell Receptor Is Required for Differentiation, but Not Maintenance, of Intestinal CD4 + Intraepithelial Lymphocytes. Immunity 2020; 53:1001-1014.e20. [PMID: 33022229 PMCID: PMC7677182 DOI: 10.1016/j.immuni.2020.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023]
Abstract
The gut epithelium is populated by intraepithelial lymphocytes (IELs), a heterogeneous T cell population with cytotoxic and regulatory properties, which can be acquired at the epithelial layer. However, the role of T cell receptor (TCR) in this process remains unclear. Single-cell transcriptomic analyses revealed distinct clonal expansions between cell states, with CD4+CD8αα+ IELs being one of the least diverse populations. Conditional deletion of TCR on differentiating CD4+ T cells or of major histocompatibility complex (MHC) class II on intestinal epithelial cells prevented CD4+CD8αα+ IEL differentiation. However, TCR ablation on differentiated CD4+CD8αα+ IELs or long-term cognate antigen withdraw did not affect their maintenance. TCR re-engagement of antigen-specific CD4+CD8αα+ IELs by Listeria monocytogenes did not alter their state but correlated with reduced bacterial invasion. Thus, local antigen recognition is an essential signal for differentiation of CD4+ T cells at the epithelium, yet differentiated IELs are able to preserve an effector program in the absence of TCR signaling.
Collapse
Affiliation(s)
- Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Juliana Bortolatto
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Suppawat Kongthong
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Audrey Harnagel
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Wienke J, Brouwers L, van der Burg LM, Mokry M, Scholman RC, Nikkels PG, van Rijn BB, van Wijk F. Human Tregs at the materno-fetal interface show site-specific adaptation reminiscent of tumor Tregs. JCI Insight 2020; 5:137926. [PMID: 32809975 PMCID: PMC7526557 DOI: 10.1172/jci.insight.137926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tregs are crucial for maintaining maternal immunotolerance against the semiallogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (materno-fetal interface) and incision site (control) and blood were obtained from women with uncomplicated pregnancies undergoing cesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell levels by flow cytometry. Placental bed uTregs showed elevated expression of Treg signature markers, including FOXP3, CTLA-4, and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, and 4-1BB; genes associated with suppressive capacity (HAVCR2, IL10, LAYN, and PDCD1); and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs and was remarkably pronounced at the placental bed compared with uterine control site. In conclusion, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the materno-fetal interface. This introduces the concept of site-specific transcriptional adaptation of Tregs within 1 organ. Human regulatory T cells at the maternal-fetal interface show uterine site-specific functional adaptation with late-stage effector differentiation, chronic activation, Th1 polarization, and tumor-infiltrating, Treg-like features.
Collapse
Affiliation(s)
| | | | | | - Michal Mokry
- Regenerative Medicine Utrecht.,Laboratory of Clinical Chemistry and Hematology, and
| | | | - Peter Gj Nikkels
- Department of Pathology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Netherlands
| | - Bas B van Rijn
- Wilhelmina Children's Hospital Birth Center.,Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
26
|
Arroyo Hornero R, Hamad I, Côrte-Real B, Kleinewietfeld M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front Immunol 2020; 11:253. [PMID: 32153577 PMCID: PMC7047770 DOI: 10.3389/fimmu.2020.00253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in the prevalence of autoimmune diseases in developed societies has been associated with a change in lifestyle patterns. Among other factors, increased consumption of certain dietary components, such as table salt and fatty acids and excessive caloric intake has been associated with defective immunological tolerance. Dietary nutrients have shown to modulate the immune response by a direct effect on the function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue inflammation and autoimmune disease. It is now well-recognized that Tregs show certain degree of plasticity and can gain effector functions to adapt their regulatory function to different physiological situations during an immune response. However, plasticity of Tregs might also result in conversion into effector T cells that may contribute to autoimmune pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is currently poorly understood, but it is of significant importance for therapeutic purposes. Here we review the current understanding on the effect of certain dietary nutrients that characterize Western diets in Treg metabolism, stability, and function. Moreover, we will discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based interventions to modulate Treg function in disease.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Beatriz Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| |
Collapse
|
27
|
McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2019; 18:514-525. [PMID: 29717233 DOI: 10.1038/s41577-018-0013-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal epithelial barrier is patrolled by resident intraepithelial lymphocytes (IELs) that are involved in host defence against pathogens, wound repair and homeostatic interactions with the epithelium, microbiota and nutrients. Intestinal IELs are one of the largest populations of lymphocytes in the body and comprise several distinct subsets, the identity and lineage relationships of which have long remained elusive. Here, we review advances in unravelling the complexity of intestinal IEL populations, which comprise conventional αβ T cell receptor (TCRαβ)+ subsets, unconventional TCRαβ+ and TCRγδ+ subsets, group 1 innate lymphoid cells (ILC1s) and ILC1-like cells. Although these intestinal IEL lineages have partially overlapping effector programmes and recognition properties, they have strikingly different developmental pathways. We suggest that evolutionary pressure has driven the recurrent generation of cytolytic effector lymphocytes to protect the intestinal epithelial layer, but they may also precipitate intestinal inflammatory disorders, such as coeliac disease.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Regulatory T cell adaptation in the intestine and skin. Nat Immunol 2019; 20:386-396. [PMID: 30890797 DOI: 10.1038/s41590-019-0351-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
The intestine and skin are distinct microenvironments with unique physiological functions and are continually exposed to diverse environmental challenges. Host adaptation at these sites is an active process that involves interaction between immune cells and tissue cells. Regulatory T cells (Treg cells) play a pivotal role in enforcing homeostasis at barrier surfaces, illustrated by the development of intestinal and skin inflammation in diseases caused by primary deficiency in Treg cells. Treg cells at barrier sites are phenotypically distinct from their lymphoid-organ counterparts, and these 'tissue' signatures often reflect their tissue-adapted function. We discuss current understanding of Treg cell adaptation in the intestine and skin, including unique phenotypes, functions and metabolic demands, and how increased knowledge of Treg cells at barrier sites might guide precision medicine therapies.
Collapse
|
29
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure Depends on Metabolic Properties. Nutrients 2019; 11:nu11020325. [PMID: 30717413 PMCID: PMC6412585 DOI: 10.3390/nu11020325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that probiotic functionality is not accurately predicted by their taxonomy. Here, we have set up a study to investigate the effectiveness of two probiotic formulations containing a blend of seven bacterial species in modulating intestinal inflammation in two rodent models of colitis, induced by treating mice with 2,4,6-Trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulfate (DSS). Despite the taxonomy of the bacterial species in the two probiotic formulations being similar, only one preparation (Blend 2-Vivomixx) effectively attenuated the development of colitis in both models. In the TNBS model of colitis, Blend 2 reduced the expression of pro-inflammatory genes while increasing the production of anti-inflammatory cytokines, promoting the expansion M2 macrophages and the formation of IL-10-producing Treg cells in the colon's lamina propria. In the DSS model of colitis, disease attenuation and Treg formation was observed only in mice administered with Blend 2, and this effect was associated with intestinal microbiota remodeling and increased formation of lactate, butyrate, and propionate. None of these effects were observed in mice administered with Blend 1 (VSL#3). In summary, we have shown that two probiotic mixtures obtained by combining taxonomically similar species produced with different manufacturing methods exert divergent effects in mouse models of colitis.
Collapse
|
31
|
McDonnell WJ, Koethe JR, Mallal SA, Pilkinton MA, Kirabo A, Ameka MK, Cottam MA, Hasty AH, Kennedy AJ. High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced Obesity. Diabetes 2018; 67:2361-2376. [PMID: 30181158 PMCID: PMC6198339 DOI: 10.2337/db18-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in obese AT, but the presence and clonal expansion of specific TCR sequences in obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep sequencing of the TCRβ chain to quantify clonal expansion, gene usage, and CDR3 sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively charged and less polarized amino acids. Although TCR repertoire alone could distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells within AT. IsoLG-adducted protein species were significantly higher in AT macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR expansion that favors positively charged CDR3s accompanies HFD-induced obesity, which may be an antigen-driven response to isoLG accumulation in macrophages.
Collapse
Affiliation(s)
- Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - John R Koethe
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Pilkinton
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalene K Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alyssa H Hasty
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
32
|
Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of Short Chain Fatty Acids in Controlling T regs and Immunopathology During Mucosal Infection. Front Microbiol 2018; 9:1995. [PMID: 30197637 PMCID: PMC6117408 DOI: 10.3389/fmicb.2018.01995] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Interactions between mucosal tissues and commensal microbes control appropriate host immune responses and inflammation, but very little is known about these interactions. Here we show that the depletion of resident bacteria using antibiotics (Abx) causes oral and gut immunopathology during oropharyngeal candidiasis (OPC) infection. Antibiotic treatment causes reduction in the frequency of Foxp3+ regulatory cells (Tregs) and IL-17A producers, with a concomitant increase in oral tissue pathology. While C. albicans (CA) is usually controlled in the oral cavity, antibiotic treatment led to CA dependent oral and gut inflammation. A combination of short chain fatty acids (SCFA) controlled the pathology in Abx treated mice, correlating to an increase in the frequency of Foxp3+, IL-17A+, and Foxp3+IL-17A+ double positive (Treg17) cells in tongue and oral draining lymph nodes. However, SCFA treatment did not fully reverse the gut inflammation suggesting that resident microbiota have SCFA independent homeostatic mechanisms in gut mucosa. We also found that SCFA potently induce Foxp3 and IL-17A expression in CD4+ T cells, depending on the cytokine milieu in vitro. Depletion of Tregs alone in FDTR mice recapitulated oral inflammation in CA infected mice, showing that Abx mediated reduction of Tregs was involved in infection induced pathology. SCFA did not control inflammation in Treg depleted mice in CA infected FDTR mice, showing that Foxp3+ T cell induction was required for the protective effect mediated by SCFA. Taken together, our data reveal that SCFA derived from resident bacteria play a critical role in controlling immunopathology by regulating T cell cytokines during mucosal infections. This study has broader implications on protective effects of resident microbiota in regulating pathological infections.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cheriese Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Clarissa Paw
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Shivani Butala
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
33
|
Non-canonicaly recruited TCRαβCD8αα IELs recognize microbial antigens. Sci Rep 2018; 8:10848. [PMID: 30022086 PMCID: PMC6052027 DOI: 10.1038/s41598-018-29073-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical αβTCRs and this overlap raised parallel to a surge in the diversity of microbial flora. We also found that an opportunistic pathogen (Staphylococcus aureus) isolated from mouse small intestine specifically activated CD8αα+ IELs and CD4+ derived T cell hybridomas suggesting that some of TCRαβCD8αα+ clones with microbial specificities have extrathymic origin. We also report that CD8ααCD4+ IELs and Foxp3CD4+ T cells from the small intestine shared many αβTCRs, regardless whether the later subset was isolated from Foxp3CNS1 sufficient or Foxp3CNS1 deficient mice that lacks peripherally-derived Tregs. Overall, our results imply that repertoire of TCRαβCD8αα+ in small intestine expends in situ in response to changes in microbial flora.
Collapse
|
34
|
Schattgen SA, Thomas PG. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Immunol Rev 2018; 284:79-90. [PMID: 29944761 PMCID: PMC6128411 DOI: 10.1111/imr.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last several decades, novel populations of unconventional T cells have been identified; defined by an invariant (or nearly invariant) T cell receptor (TCR) with a fixed specificity to non-canonical antigens and major histocompatibility (MHC) molecules, they form large, functionally monoclonal populations tasked with surveying for their specific antigens. With residence in both lymphoid and non-lymphoid tissues coupled with their ability to rapidly produce a spectrum of cytokines and effector molecules, the unconventional T cells are poised as some of the first responders to infection/damage and are thought to provide critical coverage before more focused, conventional T cell responses are mobilized. However, new technologies for the measurement and characterization of TCR repertoires have identified an underappreciated amount of TCR diversity in the unconventional T cells. In many cases, the specificities of these diverse TCRs converge on the same or similar antigens as their invariant counterparts, while others have yet to be defined. Here, we will review the current knowledge of the TCR repertoires of unconventional T cells and discuss how repertoires might be used as a framework for their organization, and further our understanding of their role not only during an immune response, but also their contribution in maintaining homeostasis.
Collapse
Affiliation(s)
| | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
35
|
van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0531. [PMID: 29203716 DOI: 10.1098/rstb.2016.0531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Experimental models of autoimmune diseases have revealed the disease protective role of heat shock proteins (HSPs). Both the administration of exogenous extracellular, mostly recombinant, HSP and the experimental co-induction of endogenous intracellular HSP in models have been shown to lead to production of disease protective regulatory T cells (Tregs). Similar to HSP taken up from extracellular bodily fluids, due to stress-related autophagy upregulated HSP also from intracellular sources is a major provider for the major histocompatibility class II (MHCII) ligandome; therefore, both extracellular and intracellular HSP can be prominent targets of Treg. The development of therapeutic peptide vaccines for the restoration of immune tolerance in inflammatory diseases is an area of intensive research. In this area, HSPs are a target for tolerance-inducing T-cell therapy, because of their wide expression in inflamed tissues. In humans, in whom the actual disease trigger is frequently unknown, HSP peptides offer chances for tolerance-promoting interventions through induction of HSP-specific Treg. Recently, we have shown the ability of a bacterial HSP70-derived peptide, HSP70-B29, to induce HSP-specific Tregs that suppressed arthritis by cross-recognition of their mammalian HSP70 homologues, abundantly present in the MHCII ligandome of stressed mouse and human antigen-presenting cells in inflamed tissues.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| |
Collapse
|
36
|
Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Ploegh HL, Dougan SK. Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:159-171. [PMID: 28576977 PMCID: PMC5518629 DOI: 10.4049/jimmunol.1700214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Transfer Techniques
- Organ Specificity
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Gui Zhen Chen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Marta Barisa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Patrick J Brennan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02215
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| |
Collapse
|
37
|
Faria AMC, Reis BS, Mucida D. Tissue adaptation: Implications for gut immunity and tolerance. J Exp Med 2017; 214:1211-1226. [PMID: 28432200 PMCID: PMC5413340 DOI: 10.1084/jem.20162014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Faria et al. discuss the concept that immune cells undergo specialized adaptation to tissue-specific conditions and its potential implications for tolerance and immunity. Tissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function.
Collapse
Affiliation(s)
- Ana M C Faria
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065 .,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|