1
|
Perfilyeva YV, Kali A, Aben DS, Abdusattarova YR, Lushova AV, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Sharipov KO, Davlyatshin TI, Abdolla N. Effect of calcitriol on myeloid-derived suppressor cells in physiological aging. J Steroid Biochem Mol Biol 2025; 251:106768. [PMID: 40316223 DOI: 10.1016/j.jsbmb.2025.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The active hormonal form of vitamin D, 1,25(OH)2D, regulates many components of the immune system and previous research shows that 1,25(OH)2D reduces the number and suppressive activity of MDSCs in tumors. This study aimed to evaluate the effects of calcitriol treatment on MDSCs in aged mice. We showed that aged BALB/c and CD1 mice exhibited increased levels of CD11b+Gr1+ cells in both the spleen and bone marrow compared to young mice. These cells displayed a less mature phenotype marked by reduced F4/80 expression and demonstrated robust T cell suppressive activity, as evidenced by their ability to inhibit the production of IFNγ and TNFα. Treatment of aged mice with calcitriol, administered twice weekly at a dose equivalent to 1 µg/kg for 4 weeks, significantly increased the population of CD11b+Gr1+ cells in the spleen, but not in the bone marrow of the animals, and promoted their differentiation into a more mature phenotype characterized by elevated F4/80 expression. In addition, calcitriol-treated aged mice exhibited significantly improved T cell responses, as indicated by increased IFNγ production upon specific antigen stimulation compared to the control group of mice. In vitro, calcitriol treatment of bone marrow-derived MDSCs similarly enhanced F4/80 expression without altering other markers such as CD11b, CD11c, or MHCII, and led to reduced expression of reactive oxygen species by these cells. Our study highlights the consistency of MDSC expansion across inbred and outbred mouse strains and supports the immunomodulatory role of calcitriol in promoting MDSC maturation and alleviating immune suppression in aging.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Diana S Aben
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yulduz R Abdusattarova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Anzhelika V Lushova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Yekaterina O Ostapchuk
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Timur I Davlyatshin
- Clinical diagnostic laboratory 'Omikron 3D', 24 Amanzhol St., Almaty 050052, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan.
| |
Collapse
|
2
|
Li C, Xing X, Li M, Liu Y, Huang S, Zhu T, Gu W, Yan B. Bile acids produced by gut microbiota activate TGR5 to promote colorectal liver metastasis progression by inducing MDSCs infiltration in liver. Int Immunopharmacol 2025; 158:114829. [PMID: 40367692 DOI: 10.1016/j.intimp.2025.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND CRLM (Colorectal liver metastasis), a prevalent form of distant metastasis in colorectal cancer, is a leading cause of mortality in affected patients. Despite advancements in immunotherapy for colorectal cancer, clinical benefits in CRLM patients remain limited. The immunosuppressive liver microenvironment plays a pivotal role in facilitating metastatic colonization and disease progression. METHODS We performed fecal metabolomics in ABX (antibiotic-treated) mice and single-cell RNA sequencing on hepatic tissues from four cohorts: CRC (colorectal cancer) , CRLM, LCA-fed CRC, and LCA-fed CRLM mice, to delineate intergroup immune heterogeneity. Cellular and molecular profiling across groups was conducted via Luminex multiplex assays, flow cytometry, and immunofluorescence. Integrated multi-omics analyses elucidated LCA-driven pathways modulating metastatic progression RESULTS: We demonstrated that LCA (lithocholic acid), a gut microbiota-derived metabolite, activates TGR5 in hepatic CAFs (cancer-associated fibroblasts) to upregulate CCL3 secretion. Elevated CCL3 levels subsequently recruit MDSCs (myeloid-derived suppressor cells) into metastatic niches. While MDSCs primarily suppress T-cell activation, we identified a paradoxical role of MDSC-derived CCL2 in attenuating immunosuppression via CCR2 signaling, suggesting a compensatory pro-inflammatory axis within the tumor microenvironment CONCLUSIONS: These findings suggest new immunotherapeutic strategies for the treatment of CRLM.
Collapse
Affiliation(s)
- Chenghui Li
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Xiao Xing
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Mingzhi Li
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Yonglei Liu
- Medical Research Center Laboratory, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Sinian Huang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Ting Zhu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Wei Gu
- Department of Obstetrics and Gynecology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China
| | - Bin Yan
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201799, China.
| |
Collapse
|
3
|
Liu C, Li M, Liu L, Xu Q, Zheng L, Wu C, Ren J, Zhang T, Wang H, Lin Z. TGF-β1 induces autophagy and mediates the effect on macrophages differentiation in primary liver cancer. Int Immunopharmacol 2025; 157:114799. [PMID: 40339499 DOI: 10.1016/j.intimp.2025.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are closely associated with tumor development and patient outcomes due to their plasticity and polarization capacity. Several distinct TAMs have been proposed, but a complete understanding of heterogeneity and differentiation spectrum of macrophage in human primary liver cancer remains elusive. METHODS Deep single-cell RNA sequencing (scRNA-seq) data from 19 primary liver cancer patients were used to profile the transcriptomes of TAMs in liver cancer. Ingenuity pathway analysis (IPA) and in vitro experiments were used to explore possible mechanisms responsible for related signaling pathways altered at the transcriptional level. Finally, we analyzed the relationship between the abundance of the TAMs and the survival outcomes of the 428 patients in the Cancer Genome Atlas (TCGA). RESULTS Transcriptional profiles allowed us to identify four distinct TAMs cell subsets based on molecular and functional properties and to reconstruct their developmental trajectory. Specifically, TAM_c4 was preferentially enriched and potentially expanded in the advanced-stage patients or those receiving immune checkpoint blockade therapy (ICT). Gene pathway analysis revealed aberrant TGFB1 activation in TAM_c4, which was experimentally confirmed to drive TAM phenotypic transitions via autophagy signaling. High abundance of TAM_c4 is found to be related to a short survival time and low abundance of CD8+ T cells in primary liver cancers. CONCLUSIONS This integrated transcriptome compendium and experimental validation offer both mechanistic insights and a resource for understanding TAM heterogeneity in primary liver cancers.
Collapse
Affiliation(s)
- Chao Liu
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, People's Republic of China
| | - Mingjie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lichao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linlin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cailing Wu
- Faculty of Medicine, JiuJiang University, Jiujiang, People's Republic of China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025; 48:559-590. [PMID: 39998754 PMCID: PMC12119771 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Sheng W, Ding Y, Su Y, Hu J, Wang L, Guo M, Yuan X, Wang D, Dai C, Wang X. The predictive value of peripheral blood monocytic myeloid-derived suppressor cells for survival and immunotherapy responses in tumor patients. BMC Immunol 2025; 26:41. [PMID: 40410668 PMCID: PMC12102814 DOI: 10.1186/s12865-025-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The identification of affordable and easily accessible indicators to predict overall survival is important for tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which promote tumor immune escape in the tumor microenvironment (TME). This study aimed to determine whether peripheral blood MDSCs could determine their potential as predictors of survival in tumor patients with immunotherapy. METHODS Flow cytometry was used to detect peripheral blood monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs) in 126 patients. Multivariate Cox regression analysis was conducted to examine the associations between peripheral blood MDSCs and patient survival. The receiver operating characteristic (ROC) curve determined the optimal cutoff value for peripheral blood MDSCs and grouped the indicators. The relationship between peripheral blood M-MDSCs and the prognosis and treatment outcome of tumor patients was explored. RESULTS The proportion of peripheral blood M-MDSCs was associated with the prognosis of patients with tumors, as were tumor metastasis, the red blood cell count, absolute neutrophil count, absolute monocyte count, and BMI. Multivariate Cox regression analysis revealed that M-MDSCs, absolute lymphocyte value, and tumor metastasis were independent risk factors affecting the prognosis of patients with tumors. Detection of peripheral blood M-MDSCs obtained high sensitivity and specificity for tumor diagnosis. Patients with high M-MDSCs percentage demonstrated reduced survival durations and diminished responses to immunotherapy compared to those with low M-MDSCs percentage. CONCLUSIONS Peripheral blood M-MDSCs may be used to predict overall survival and immunotherapy efficacy outcomes. This study provides a putative predictive biomarker for clinicians to choose from to predict tumor patients' survival and the selection of receiving immunotherapy regimens.
Collapse
Affiliation(s)
- Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Ding
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jing Hu
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Wang
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Chunhua Dai
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Hsieh LL, Thompson EA, Jairam NP, Roznik K, Figueroa A, Aytenfisu T, Zhou W, Gour N, Chao KH, Milstone AM, Egbert E, D'Alessio F, Karakousis PC, Ordoñez A, Scully EP, Pekosz A, Karaba AH, Cox AL. SARS-CoV-2 induces neutrophil degranulation and differentiation into myeloid-derived suppressor cells associated with severe COVID-19. Sci Transl Med 2025; 17:eadn7527. [PMID: 40397714 DOI: 10.1126/scitranslmed.adn7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/18/2024] [Accepted: 04/01/2025] [Indexed: 05/23/2025]
Abstract
Severe COVID-19 presents with a distinct immunological profile, characterized by elevated neutrophil and reduced lymphocyte counts, seen commonly in fungal and bacterial infections. This study demonstrates that patients hospitalized with COVID-19 show evidence of neutrophil degranulation and have increased expression of neutrophil surface lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a marker of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Both early LOX-1 and programmed death-ligand 1 (PD-L1) expression on neutrophils were associated with development of severe disease. To determine whether tissue damage or inflammation is required to induce PMN-MDSCs or whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly activates neutrophils to become PMN-MDSCs, we incubated healthy human neutrophils with SARS-CoV-2. SARS-CoV-2 rapidly induced LOX-1 surface expression in healthy neutrophils independent of productive infection. LOX-1 induction was dependent on granule exocytosis and promoted up-regulation of reactive oxygen species, CD63, and PD-L1, enabling LOX-1+ neutrophils to suppress autologous T cell proliferation in vitro. These results support a role for PMN-MDSCs in mediating severe COVID-19, and inhibition of PD-L1 represents a potential therapeutic strategy for enhancing the immune response in acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leon L Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Elizabeth A Thompson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Nirvani P Jairam
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tihitina Aytenfisu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Naina Gour
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kuan-Hao Chao
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Aaron M Milstone
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Egbert
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Franco D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Alvaro Ordoñez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eileen P Scully
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Andrew H Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Kato KT, Ferreira GCS, Fonseca DLM, Moretti EH, Trzan IFL, Filgueiras IS, Nobile AL, Adri AS, Fonseca MT, Souza RN, Matos CM, Sales MOR, Lino CA, Teramoto MM, Muxel SM, Cabral-Marques O, Steiner AA. The greater splanchnic nerve preferentially regulates neutrophils over macrophages in a rat model of septic peritonitis. Brain Behav Immun 2025; 129:30-41. [PMID: 40389038 DOI: 10.1016/j.bbi.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025] Open
Abstract
The sympathetic splanchnic nerve is a major player in immunoregulation, but its specific roles during infection have yet to be elucidated. Here, we evaluated how bilateral ablation of the greater splanchnic nerve (SplancX) impacts bacterial burden and immune function in a rat model of E. coli-induced septic peritonitis. SplancX had a major effect on bacterial burden within 24 h, reducing it to 4 % in the peritoneum and to 8 % in the spleen of what was found in the sham-operated controls. Such a major effect was not explained by gross changes in the infiltration of these sites with innate immune cells (neutrophils and macrophages), as assessed by flow cytometry. Single-cell RNA sequencing was then employed to evaluate the cellular activation programs of leukocyte subsets. Of the nine cellular clusters identified in the peritoneum of the infected rats, three of them had a transcriptional signature of activated neutrophils and two of them corresponded to quiescent neutrophils with an immunosuppressive signature. SplancX shifted the balance between these neutrophil subsets in a way consistent with heightened immunity, i.e., the activated neutrophils were augmented whereas the quiescent neutrophils were reduced in the SplancX group. The remainder of the clusters consisted of macrophages and erythrocytes, none of which changed in a way that could account for the observed effects on bacterial clearance. Confirming that SplancX resulted in heightened neutrophil activation, protein markers of neutrophil degranulation and NETosis were found to be elevated in the peritoneal lavage of the SplancX group. Taken together, the data show that the splanchnic nerve exerts a major effect on bacterial clearance in the acute phase of infection, presumably owing to selective changes in the balance between microbicidal and quiescent subsets of neutrophils.
Collapse
Affiliation(s)
- Kathia T Kato
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Gabriela C S Ferreira
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Dennyson L M Fonseca
- Programa Interunidades de Pos-graduação em Bioinformática, Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Isis F L Trzan
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Igor Salerno Filgueiras
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Adriel L Nobile
- Departamento de Analises Clinicas e Toxicologicas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, Sao Paulo, SP 05505-000, Brazil
| | - Anny S Adri
- Departamento de Analises Clinicas e Toxicologicas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, Sao Paulo, SP 05505-000, Brazil
| | - Monique T Fonseca
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Rayssa N Souza
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Caroline M Matos
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Manoela O R Sales
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Caroline A Lino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Mariana M Teramoto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Sandra M Muxel
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Otávio Cabral-Marques
- Programa Interunidades de Pos-graduação em Bioinformática, Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil; Departamento de Analises Clinicas e Toxicologicas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, Sao Paulo, SP 05505-000, Brazil; Departamento de Clinica Medica, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246-903, Brazil; Instituto D'OR de Pesquisa e Ensino, Rio de Janeiro, RJ 22281-100, Brazil
| | - Alexandre A Steiner
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
8
|
Kwak JW, Houghton AM. Targeting neutrophils for cancer therapy. Nat Rev Drug Discov 2025:10.1038/s41573-025-01210-8. [PMID: 40374764 DOI: 10.1038/s41573-025-01210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Neutrophils are among the most abundant immune cell types in the tumour microenvironment and have been associated with poor outcomes across multiple cancer types. Yet despite mounting evidence of their role in tumour progression, therapeutic strategies targeting neutrophils have only recently gained attention and remain limited in scope. This is probably due to the increasing number of distinct neutrophil subtypes identified in cancer and the limited understanding of the mechanisms by which these subsets influence tumour progression and immune evasion. In this Review, we discuss the spectrum of neutrophil subtypes - including those with antitumour activity - and their potential to polarize towards tumour-suppressive phenotypes. We explore the molecular pathways and effector functions by which neutrophils modulate cancer progression, with an emphasis on identifying tractable therapeutic targets. Finally, we examine emerging clinical trials aimed at modulating neutrophil lineages and consider their implications for patient outcomes.
Collapse
Affiliation(s)
- Jeff W Kwak
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - A McGarry Houghton
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Ishiwata R. Ontogeny, dynamics, and characteristics of neutrophils during the perinatal period. Exp Hematol 2025:104798. [PMID: 40349749 DOI: 10.1016/j.exphem.2025.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
This review examines the dynamic development and unique characteristics of neutrophils during the perinatal period, a critical window when the immune system undergoes rapid reprogramming, based on the mouse studies. In the mouse fetal liver-the primary hematopoietic niche before birth-hematopoietic stem cells and progenitor cells expand in parallel, with granulocyte-monocyte progenitors preferentially differentiating into neutrophils during late gestation. This process, partly driven by granulocyte colony-stimulating factor (G-CSF), substantially increases the number of neutrophils, preparing the neonates for microbial challenges after birth. After birth, there is a surge in circulating neutrophils, likely due to the mobilization of neutrophils from the liver, followed by a microbiota-dependent activation of granulopoiesis in the bone marrow. In addition to their antimicrobial functions, neonatal neutrophils exhibit immunomodulatory characteristics, such as reduced pro-inflammatory signaling and diminished neutrophil extracellular trap formation. These traits may contribute to tolerance to the microbes and help mitigate excessive inflammation. Finally, unresolved issues related to the phenotypic diversity and precise physiological roles of neutrophils during the perinatal period are addressed, highlighting the need for further research. Teaser abstract This review examines the dynamic development of neutrophils during the perinatal period, mainly based on the mouse studies. In the mouse fetal liver, hematopoietic stem and progenitor cells expand in parallel, and neutrophils massively accumulate, preparing neonates for postnatal microbial challenges. After birth, neutrophil numbers surge due to liver mobilization and subsequent microbiota-driven bone marrow granulopoiesis. In addition to their antimicrobial role, neonatal neutrophils display immunomodulatory features that may help control excessive inflammation. Unresolved issues regarding their diversity and functions are addressed.
Collapse
Affiliation(s)
- Ryo Ishiwata
- Department of Physiology, National Defense Medical College, Japan.
| |
Collapse
|
10
|
Krémer V, Rambault M, Schmutz S, Montcuquet N, Bruhns P, de Chaisemartin L, Jönsson F. Deep phenotyping of human neutrophils in whole blood using a 33-color spectral flow cytometry panel. J Leukoc Biol 2025; 117:qiaf049. [PMID: 40244916 DOI: 10.1093/jleuko/qiaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 04/16/2025] [Indexed: 04/19/2025] Open
Abstract
Neutrophils are the most abundant leukocytes in the circulation and critical players in host defense and inflammation. They respond rapidly to numerous biological, chemical, and physical stimuli, making it challenging to characterize their steady-state phenotypes, activation states, and subsets in an unbiased and precise manner. To address this problem, we designed a 33-color spectral flow cytometry panel for the deep profiling of unprocessed neutrophils in human blood. This panel allows the profiling of neutrophil phenotypes related to activation, immune modulation, granule release, ontogeny, phagocytic capacity, and migration, in addition to monitoring all major human leukocyte populations. We validated the panel using whole blood stimulations that induce distinct phenotypic shifts in the neutrophil population. This optimized spectral flow cytometry panel allows comprehensive immune profiling of the functional heterogeneity of human blood neutrophils and is suitable for longitudinal or exploratory analysis of neutrophil dynamics and activation states in clinical cohorts.
Collapse
Affiliation(s)
- Vanessa Krémer
- Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Marion Rambault
- Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Sandrine Schmutz
- Cytometry Platform, Institut Pasteur, Université Paris Cité, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Nicolas Montcuquet
- Sony Biotechnology Europe, Sony Europe B.V, The Heights, Brooklands, Weybridge, Surrey, KT13 0XW, United Kingdom
| | - Pierre Bruhns
- Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Luc de Chaisemartin
- Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 25-28 rue du docteur Roux, 75015 Paris, France
- Immunology Department, Assistance Publique-Hôpitaux de Paris (APHP), Bichat Hospital, 46 rue Henri Huchard, 75018 Paris, France
- Université Paris Cité, INSERM UMR1149, Centre de Recherche sur l'Inflammation, 16 Rue Henri Huchard, 75018 Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 25-28 rue du docteur Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
11
|
Alhajahjeh A, Stahl M, Kim TK, Kewan T, Stempel JM, Zeidan AM, Bewersdorf JP. Contemporary understanding of myeloid-derived suppressor cells in the acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) tumor microenvironment. Expert Rev Anticancer Ther 2025; 25:435-456. [PMID: 40122075 DOI: 10.1080/14737140.2025.2483855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Myeloid-derived suppressor cells (MDSCs) are a key immunosuppressive component in the tumor microenvironment, contributing to immune evasion and disease progression in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). AREAS COVERED We searched PubMed for literature that evaluated the effect of MDSCs in myeloid diseases. MDSCs impact outcomes by facilitating leukemic stem cell survival, impairing immune checkpoint efficacy, and modulating the bone marrow niche. While these immunosuppressive properties can mitigate graft-versus-host disease post-transplantation, sustained MDSC-mediated immunosuppression can also increase the risk of leukemia relapse.We review MDSC development and function, including metabolic reprogramming, epigenetic modifications, and cytokine-mediated pathways. Therapeutic strategies targeting MDSCs, such as depletion, functional reprogramming, and inhibition of key metabolic and immune pathways, show promising data in preclinical models. However, clinical translation remains hindered by challenges in MDSC quantification and standardization of functional assays. This review underscores the potential of combining MDSC-targeted therapies with conventional and novel treatments to improve patient outcomes in AML and MDS. EXPERT OPINION Future studies should focus on standardizing MDSC assessment, elucidate their dynamic roles in therapy, and optimize combination approaches for clinical application.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- School of Medicine, The University of Jordan, Amman, Jordan
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman, Jordan
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tae K Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tariq Kewan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jessica M Stempel
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
13
|
Siemińska I, Lenart M. Immunometabolism of Innate Immune Cells in Gastrointestinal Cancer. Cancers (Basel) 2025; 17:1467. [PMID: 40361394 PMCID: PMC12071029 DOI: 10.3390/cancers17091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer cells are often described as voracious consumers of nutrients, with glucose frequently cited as a key energy source; however, their metabolic plasticity allows them to adapt and utilize various substrates, including lipids and amino acids, to sustain growth and survival. However, the metabolic demands of immune cells within the tumor microenvironment (TME) are less commonly discussed despite their critical role in shaping the immune response. In this review, we explored the intricate interplay between immunometabolism and innate immunity cells in gastrointestinal cancers. We focused on how metabolic pathways, including glycolysis, fatty acid oxidation, and amino acid metabolism, drive the immunosuppressive functions of myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs), tumor-associated macrophages (TAMs) and innate lymphocyte subsets such as NK cells. These cells contribute to a hostile immune landscape, supporting tumor growth and evasion from immune surveillance in a phenomenon of tumor-derived immunosuppression. Additionally, we investigated the influence of dietary interventions on the metabolic reprogramming of these immune cells, highlighting how nutrition can modulate the TME. Finally, we discussed emerging therapeutic strategies that target metabolic vulnerabilities in MDSCs, TANs, NK cells, and monocytes, offering a novel avenue for enhancing antitumor immunity. By dissecting these mechanisms, we aim to provide insights into how metabolic pathways can be harnessed to improve cancer treatment outcomes. This review underscores the importance of understanding immunometabolism not only as a driver of immune suppression but also as a potential therapeutic target in gastrointestinal cancer.
Collapse
Affiliation(s)
- Izabela Siemińska
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| |
Collapse
|
14
|
Fu Y, Wen Z, Fan J. Interaction of low-density neutrophils with other immune cells in the mechanism of inflammation. Mol Med 2025; 31:133. [PMID: 40205584 PMCID: PMC11983930 DOI: 10.1186/s10020-025-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Low-density neutrophils (LDNs) are a unique subpopulation of neutrophils, play a significant role in regulating innate and adaptive immunity in various inflammation-related diseases. Emerging evidence suggests that LDNs play a significant role in the pathogenesis and progression of various diseases, including infections, autoimmune disorders, and cancer. In this review, we address the origin, development, and heterogeneity of LDNs, and the roles of LDNs in system homeostasis and diseases. We will focus on the findings of the interaction between LDNs and other immune cells. We will then discuss potential novel therapeutic strategies of intervention in diseases by targeting LDNs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Fan
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
15
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
16
|
Tang FH, Wong HYT, Tsang PSW, Yau M, Tam SY, Law L, Yau K, Wong J, Farah FHM, Wong J. Recent advancements in lung cancer research: a narrative review. Transl Lung Cancer Res 2025; 14:975-990. [PMID: 40248731 PMCID: PMC12000946 DOI: 10.21037/tlcr-24-979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 04/19/2025]
Abstract
Background and Objective Lung cancer remains the leading cause of cancer-related mortality worldwide, with a 5-year survival rate ranging from 10% to 20%. The majority of cases are categorized as non-small cell lung cancer (NSCLC) (80%) and small cell lung cancer (SCLC) (20%), with NSCLC being the more prevalent type. Tobacco use, particularly cigarette smoking, is a significant contributor to over 80% of lung cancer cases. Early diagnosis is challenging due to limitations in screening methods, resulting in many cases being identified only in advanced stages. Moreover, current treatment options often exhibit low efficacy, partly due to an inadequate understanding of the disease's pathogenesis. This narrative review aims to summarize recent discoveries and advancements in lung cancer research, focusing on improvements in diagnosis, treatment, and understanding of the disease. Methods A comprehensive literature review was performed utilizing the PubMed Central database to identify recent studies relevant to lung cancer. This review synthesizes findings from various research articles to provide a cohesive summary of advancements in the field. Key Content and Findings In the past decade, notable progress has been achieved in lung cancer research, particularly concerning diagnostics and treatment strategies. Novel therapeutic approaches, including immunotherapy and genomic-targeted therapies, have demonstrated promising results. Understanding the tumor microenvironment (TME) and the role of T lymphocytes has become crucial for developing effective treatments. Additionally, advancements in immune checkpoint inhibitors (ICIs) have shown potential in enhancing patient outcomes. Improvements in tumor detection technologies are also anticipated to facilitate earlier diagnosis, ultimately contributing to better survival rates. Conclusions Significant strides have been made in lung cancer research over the last ten years, particularly in diagnostics and treatment methodologies. Future research should prioritize exploring the TME, the function of T lymphocytes, and the efficacy of ICIs while continuing to innovate in tumor detection technologies. Such efforts are essential for enhancing treatment outcomes and improving the overall quality of life for lung cancer patients.
Collapse
Affiliation(s)
- Fuk Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Heylie Y. T. Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | - Mabel Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Shing Yau Tam
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Lawla Law
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Katherine Yau
- School of Nursing, Tung Wah College, Hong Kong, China
| | - Jade Wong
- Library, Tung Wah College, Hong Kong, China
| | | | - Jacky Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| |
Collapse
|
17
|
Liu X, Kang X, Kang H, Yan H. The immunosuppressive role of MDSCs in HCC: mechanisms and therapeutic opportunities. Cell Commun Signal 2025; 23:155. [PMID: 40148954 PMCID: PMC11951757 DOI: 10.1186/s12964-025-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy with a significant global burden. Despite substantial advancements in HCC treatment in recent years, therapeutic efficacy remains constrained by immune evasion mechanisms within the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs), as critical immunosuppressive elements of the TME, have garnered increasing attention for their role in tumor progression. Recent studies emphasize their central involvement in promoting immune evasion, tolerance, and immunosuppression in HCC. This review examines the contributions of MDSCs to HCC pathogenesis, elucidates their underlying mechanisms, and discusses ongoing clinical trials, emphasizing their potential as therapeutic targets for improving clinical outcomes.
Collapse
Affiliation(s)
- Xiling Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Xichun Kang
- Beijing Fangshan District Center for Disease Control and Prevention, Beijing, 102488, China
| | - Haiyan Kang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
- Department of the Sixth Infection, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Huimin Yan
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.
| |
Collapse
|
18
|
Maeda M, Mabuchi S, Akazawa T, Mizote Y, Sasano T, Komura N, Sakata M, Takiuchi T, Matsuzaki S, Hisa T, Nakamura H, Ekawa T, Kamiura S, Kimura T, Tahara H. Roles of C-reactive protein and LOX-1 on cancer and myeloid-derived suppressor cells in the progression of uterine cervical cancer. Sci Rep 2025; 15:8774. [PMID: 40082457 PMCID: PMC11906838 DOI: 10.1038/s41598-025-91858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
We investigated clinical implications of CRP and its receptor, LOX-1, in cervical cancer progression and the underlying mechanisms. Clinical data from 121 patients with cervical cancer administered definitive radiotherapy were analyzed to investigate the relationship among pretreatment serum CRP levels, tumor LOX-1 expression, and treatment outcomes. Clinical samples, cervical cancer cell lines, and mouse xenograft models of cervical cancer were employed to elucidate the mechanisms for CRP-mediated progression of cervical cancer, focusing on LOX-1 expression on cancer and myeloid-derived suppressor (MDSCs) cells. Patients with elevated pretreatment CRP levels showed significantly shorter overall survival when their cervical tumor expressed LOX-1. In contrast, elevated pretreatment CRP levels had no prognostic relevance in patients with cervical tumors not expressing LOX-1. CRP treatment of LOX1-expressing cervical cancer cells induced ERK phosphorylation and stimulated cell proliferation in vitro. In vivo, CRP treatment promoted the progression of LOX-1-expressing cervical cancer. In vitro, it stimulated MDSC survival and augmented their suppressive activity. However, the tumor-promoting effects of CRP were minimal in tumors not expressing LOX-1. In conclusion, CRP facilitates progression of LOX-1-expressing cervical cancer by stimulating LOX-1 and its downstream effectors in cancer cells and MDSCs. Novel treatments targeting CRP or LOX-1 may be against LOX1-expressing cancer.
Collapse
Affiliation(s)
- Michihide Maeda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Seiji Mabuchi
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan.
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan.
- Department of Obstetrics and Gynecology, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8131, Japan.
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Tomoyuki Sasano
- Department of Obstetrics and Gynecology, Osaka Saiseikai Nakatsu Hospital, 2-10-39 Shibata, Kita-ku, Osaka, 530-0012, Japan
| | - Naoko Komura
- Department of Obstetrics and Gynecology, Kaizuka City Hospital, 3-10-20 Hori, Kaizuka, Osaka, 597-0015, Japan
| | - Mina Sakata
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Tsuyoshi Takiuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Tsuyoshi Hisa
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Harumi Nakamura
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Shoji Kamiura
- Department of Gynecology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
- Center for Clinical Research, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 540-0008, Japan
| |
Collapse
|
19
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
20
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
21
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
22
|
Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y, Ma Y, Yang J. Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution. Cancer Med 2025; 14:e70684. [PMID: 40035165 PMCID: PMC11877002 DOI: 10.1002/cam4.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) serves as a crucial hub for protein synthesis and processing, playing an essential role in maintaining protein homeostasis. Perturbations, such as hypoxia, oxidative stress, inadequate amino acid supply, Ca2+ imbalance, and acidosis, can disrupt cellular equilibrium and result in the accumulation of misfolded/unfolded proteins within the ER lumen. This triggers ER stress. In response to this stress, an unfolded protein response (UPR) is activated as a mechanism to cope with the stress and restore internal balance. The UPR is regulated by three sensors located in the ER: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). However, the UPR can promote tumor growth in vivo by affecting tumor angiogenesis, cell migration, cell metabolism, and treatment resistance, and has a huge impact on the tumor microenvironment. MATERIALS AND METHODS We conducted a literature review of scientific papers on the topic of ER stress in the tumor microenvironment. RESULTS AND DISCUSSION This review focuses on the inducing factors of ER stress, the mechanism of the UPR signaling pathway induced by ER stress, and the effect of ER stress on the tumor microenvironment and immune-infiltrating cells. Tumors can regulate their evolution by affecting themselves and the tumor microenvironment through endoplasmic reticulum stress. This study reveals the important role of endoplasmic reticulum stress in the occurrence and development of tumors, and provides new ideas and potential therapeutic targets for the precision treatment of tumors. Future studies can further explore the molecular mechanism of ER stress regulating tumor microenvironment and explore its application potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaosheng Peng
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Juan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Shu Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yan Zhao
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Haoyuan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuhao Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuxuan Ma
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Jianjun Yang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
23
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
24
|
KA HYEIN, MUN SEHWAN, HAN SORA, YANG YOUNG. Targeting myeloid-derived suppressor cells in the tumor microenvironment: potential therapeutic approaches for osteosarcoma. Oncol Res 2025; 33:519-531. [PMID: 40109854 PMCID: PMC11915044 DOI: 10.32604/or.2024.056860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 03/22/2025] Open
Abstract
Osteosarcoma is a bone malignancy characterized by strong invasiveness and rapid disease progression. The tumor microenvironment of osteosarcoma contains various types of immune cells, including myeloid-derived suppressor cells, macrophages, T cells, and B cells. Imbalances of these immune cells can promote the proliferation and metastasis of osteosarcoma. Recent studies have indicated a substantial increase in the levels of myeloid-derived suppressor cells, an immune cell associated with immunosuppressive and pro-cancer effects, in the peripheral blood of patients with osteosarcoma. Moreover, the levels of the pro-inflammatory cytokine interleukin 18 are positively correlated with those of myeloid-derived suppressor cells in the peripheral blood of animal models of osteosarcoma. In this review, we explore the function of myeloid-derived suppressor cells in osteosarcoma based on the clinical diagnoses of patients with osteosarcoma and discuss future therapeutic approaches for targeting osteosarcoma. Targeting myeloid-derived suppressor cells represents a promising approach to improving the prognosis and survival rates of patients with osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - YOUNG YANG
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul, 04312, Republic of Korea
| |
Collapse
|
25
|
Zhang J, Shao Y, Wu J, Zhang J, Xiong X, Mao J, Wei Y, Miao C, Zhang H. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal 2025; 23:87. [PMID: 39953528 PMCID: PMC11827254 DOI: 10.1186/s12964-025-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Sepsis remains the leading cause of death in intensive care units. Despite newer antimicrobial and supportive therapies, specific treatments are still lacking. Neutrophils are pivotal components of the effector phase of the host immune defense against pathogens and play a crucial role in the control of infections under normal circumstances. In addition to its anti-infective effects, the dysregulation and overactivation of neutrophils may lead to severe inflammation or tissue damage and are potential mechanisms for poor prognosis in sepsis. This review focuses on recent advancements in the understanding of the functional status of neutrophils across various pathological stages of sepsis to explore the mechanisms by which neutrophils participate in sepsis progression and provide insights for the treatment of sepsis by targeting neutrophils.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Xiangsheng Xiong
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jingjing Mao
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
27
|
Xu Z, Kuhlmann-Hogan A, Xu S, Tseng H, Chen D, Tan S, Sun M, Tripple V, Bosenberg M, Miller-Jensen K, Kaech SM. Scavenger Receptor CD36 in Tumor-Associated Macrophages Promotes Cancer Progression by Dampening Type-I IFN Signaling. Cancer Res 2025; 85:462-476. [PMID: 39546763 PMCID: PMC11788022 DOI: 10.1158/0008-5472.can-23-4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Tumor-associated macrophages (TAM) are a heterogeneous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment. In this study, we unveiled a mechanism by which scavenger receptor cluster of differentiation 36 (CD36) suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I IFN (IFNI) production, mirroring the inverse correlation between CD36 and IFNI response observed in patients with cancer. IFNI, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFNI signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacologic inhibition of CD36 to rejuvenate antitumor immunity. Significance: CD36 in tumor-associated macrophages mediates immunosuppression and can be targeted as a therapeutic avenue for stimulating interferon production and increasing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | - Alexandra Kuhlmann-Hogan
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Hubert Tseng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Shirong Tan
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Ming Sun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
28
|
Deguchi A, Maru Y. S100A8 as a potential therapeutic target for cancer metastasis. Cancer Sci 2025; 116:322-328. [PMID: 39581861 PMCID: PMC11786323 DOI: 10.1111/cas.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Similar to the tumor microenvironment formation, the premetastatic niche develops in distant organs before the arrival of tumor cells. Elucidating the mechanism(s) underlying premetastatic niche formation could contribute to the establishment of effective therapeutic targets for metastasis. Our research indicates that primary tumors hijack Toll-like receptor 4 (TLR4) signaling to establish a premetastatic niche in the lungs by utilizing an endogenous ligand S100A8. S100A8 is expressed not only in immune cells but also in various types of tumor cells. By focusing on S100A8 as a therapeutic target, we identified at least three multivalent S100A8 inhibitory peptides. Here, we review the tumor-promoting role of S100A8-mediated TLR4 signaling and propose S100A8 as a potential therapeutic target for aggressive cancer.
Collapse
Affiliation(s)
- Atsuko Deguchi
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical UniversityTokyoJapan
- Department of PharmacologyTokyo Women's Medical UniversityTokyoJapan
| | - Yoshiro Maru
- Department of PharmacologyTokyo Women's Medical UniversityTokyoJapan
- Future Robotics OrganizationWaseda UniversityTokyoJapan
| |
Collapse
|
29
|
Scalambra L, Ruzzi F, Pittino OM, Semprini MS, Cappello C, Angelicola S, Palladini A, Nanni P, Goksøyr L, Fougeroux C, Penichet ML, Sander AF, Lollini PL. Targeting PCSK9, through an innovative cVLP-based vaccine, enhanced the therapeutic activity of a cVLP-HER2 vaccine in a preclinical model of HER2-positive mammary carcinoma. J Transl Med 2025; 23:136. [PMID: 39885551 PMCID: PMC11784117 DOI: 10.1186/s12967-025-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells. We present an innovative immunization approach combining capsid virus-like particle (cVLP)-based vaccines against HER2 and PCSK9. METHODS The therapeutic activity of the combined vaccine was evaluated in female mice challenged with HER2-positive mammary carcinoma cells. Controls included untreated mice and mice treated with cVLP-PCSK9 and cVLP-HER2 as standalone therapies. Antibodies elicited by vaccinations were detected through ELISA immunoassay. The functional activity of the antibodies was tested in 3D-soft agar assay on human HER2 + + + trastuzumab sensitive and resistant cells. RESULTS Mice vaccinated with cVLP-HER2 + cVLP-PCSK9 displayed tumor regression from the 40th day after cell challenge in 100% of mice remaining tumor-free even 4 months later. In contrast, 83% of mice treated with cVLP-HER2 vaccine alone experienced an initial tumor regression, followed by tumor relapse in 60% of subjects. Untreated mice and mice treated with the cVLP-PCSK9 vaccine alone developed progressive tumors within 1-2 months after cell injection. The combined vaccine approach elicited strong anti-human HER2 antibody responses (reaching 1-2 mg/ml range) comprising multiple immunoglobulins isotypes. cVLP-PCSK9 vaccine elicited anti-PCSK9 antibody responses, resulting in a marked reduction in PCSK9 serum levels. Although the anti-PCSK9 response was reduced when co-administered with cVLP-HER2, it remained significant. Moreover, both cVLP-HER2 + cVLP-PCSK9 and cVLP-HER2 alone induced anti-HER2 antibodies able to inhibit the 3D growth of human HER2 + + + BT-474 and trastuzumab-resistant BT-474 C5 cells. Strikingly, antibodies elicited by the combined vaccination were more effective than those elicited by the cVLP-HER2 vaccine alone in the inhibition of trastuzumab-resistant C5 cells. CONCLUSIONS The results indicate that cVLP-PCSK9 vaccination shows adjuvant activity when combined with cVLP-HER2 vaccine, enhancing its therapeutic efficacy against HER2-positive breast cancer and holding promise in overcoming the challenges posed by resistance and incomplete responses to HER2-targeted therapy.
Collapse
Affiliation(s)
- Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Oncology Division, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular GeneticsThe Molecular Biology InstituteJonsson Comprehensive Cancer Centre, University of California, Los Angeles (UCLA), CA, USA
| | - Adam Frederik Sander
- AdaptVac Aps, Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy.
| |
Collapse
|
30
|
Li C, Xiong L, Yang Y, Jiang P, Wang J, Li M, Wei S, Tian S, Wang Y, Zhang M, Tang J. Sorafenib enhanced the function of myeloid-derived suppressor cells in hepatocellular carcinoma by facilitating PPARα-mediated fatty acid oxidation. Mol Cancer 2025; 24:34. [PMID: 39876004 PMCID: PMC11773820 DOI: 10.1186/s12943-025-02238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME). METHODS Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing. MDSCs were analyzed for chemotaxis, immunosuppressive functions, fatty acid oxidation (FAO), and PPARα expression. The impact of sorafenib on tumor growth, MDSC infiltration, differentiation, and immunosuppressive function was assessed, alongside the modulation of these processes by PPARα. RESULTS Here, we revealed increased infiltration and enhanced function of MDSCs in TME after treatment with sorafenib. Moreover, our results indicated that sorafenib induced the accumulation of MDSCs mediated by CCR2, and pharmacological blockade of CCR2 markedly reduced MDSCs migration and tumor growth. Mechanistically, sorafenib promoted the effect and fatty acid uptake ability of MDSCs and modulated peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid oxidation (FAO). In addition, tumor-bearing mice fed a high-fat diet (HFD) at the beginning of sorafenib administration had worse outcomes than mice fed a regular diet. Genetic deficiency of PPARα weakens the effect of sorafenib on MDSCs in mice with HCC. Pharmacological inhibition of PPARα has a synergistic anti-tumor effect with sorafenib, which is attenuated by the inhibition of MDSCs. Mechanistically, sorafenib significantly inhibited the differentiation of macrophages by upregulating PPARα expression and suppressing the PU.1-CSF1R pathway. CONCLUSION Overall, our study demonstrated that sorafenib enhanced the function of MDSCs by facilitating PPARα-mediated FAO and further augmenting sorafenib resistance, which sheds light on dietary management and improves the therapeutic response in HCC.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Suqing Tian
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuexuan Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Mi Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Tang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
31
|
Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X. Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Genes Dis 2025; 12:101239. [PMID: 39552788 PMCID: PMC11566696 DOI: 10.1016/j.gendis.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 11/19/2024] Open
Abstract
In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, etc., are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.
Collapse
Affiliation(s)
- Wenyige Zhang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Feifei Teng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiayi Wang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaomeng Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hanqing Zhao
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuxuan Xie
- The Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaili Liao
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
32
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 PMCID: PMC12055240 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
33
|
Tan R, Wen M, Yang W, Zhan D, Zheng N, Liu M, Zhu F, Chen X, Wang M, Yang S, Xie B, He Q, Yuan K, Sun L, Wang Y, Qin J, Zhang Y. Integrated proteomics and scRNA-seq analyses of ovarian cancer reveal molecular subtype-associated cell landscapes and immunotherapy targets. Br J Cancer 2025; 132:111-125. [PMID: 39548315 PMCID: PMC11723995 DOI: 10.1038/s41416-024-02894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) represents the most lethal gynaecological malignancy, yet understanding the connections between its molecular subtypes and their therapeutic implications remains incomplete. METHODS We conducted mass spectrometry-based proteomics analyses of 154 EOC tumour samples and 29 normal fallopian tubes, and single-cell RNA sequencing (scRNA-seq) analyses of an additional eight EOC tumours to classify proteomic subtypes and assess their cellular ecosystems and clinical significance. The efficacy of identified therapeutic targets was evaluated in patient-derived xenograft (PDX) and orthotopic mouse models. RESULTS We identified four proteomic subtypes with distinct clinical relevance: malignant proliferative (C1), immune infiltrating (C2), Fallopian-like (C3) and differentiated (C4) subtypes. C2 subtype was characterized by lymphocyte infiltration, notably an increased presence of GZMK CD8+ T cells and phagocytosis-like MRC+ macrophages. Additionally, we identified CD40 as a specific prognostic factor for C2 subtype. The interaction between CD40+ phagocytosis-like macrophages and CD40RL+ IL17R CD4+ T cells was correlated with a favourable prognosis. Finally, we established a druggable landscape for non-immune EOC patients and verified a TYMP inhibitor as a promising therapeutic strategy. CONCLUSIONS Our study refines the current immune subtype for EOC, highlighting CD40 agonists as promising therapies for C2 subtype patients and targeting TYMP for non-immune patients.
Collapse
Affiliation(s)
- Rong Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ming Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Beijing Pineal Diagnostics Co., Ltd., Beijing, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Xiaodan Chen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
34
|
Zhao YF, Zuo ZA, Li ZY, Yuan Y, Hong SC, Fu WG, Zhou B, Wang LX. Integrated multi-omics profiling reveals neutrophil extracellular traps potentiate Aortic dissection progression. Nat Commun 2024; 15:10736. [PMID: 39737994 PMCID: PMC11686284 DOI: 10.1038/s41467-024-55038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects. The integrated multi-omics profiling identifies that highly phenotype-associated macrophages orchestrate neutrophil extracellular traps (NETs) through CXCL3/CXCR2 axis, thereby promoting the development of AD. Increased NETs formation is a defining feature of systemic immunity and aortic microenvironment of AD. Inhibiting NETs formation through the blockade of citrullinated histone H3 or CXCL3/CXCR2 axis ameliorates the progression and rupture of aortic dissection in male mice. The plasma level of citrullinated histone H3 predicts AAEs following endovascular therapy, facilitating the risk stratification and prognostic evaluation for patients with AD.
Collapse
Affiliation(s)
- Yu-Fei Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 200032, Shanghai, China
| | - Zi-Ang Zuo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhe-Yun Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shi-Chai Hong
- Department of Vascular Surgery (Xiamen), Zhongshan hospital, Fudan University, 361015, Xiamen, China
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen, China
| | - Wei-Guo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Vascular Surgery (Xiamen), Zhongshan hospital, Fudan University, 361015, Xiamen, China
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Li-Xin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Vascular Surgery Institute of Fudan University, Fudan University, 200032, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Department of Vascular Surgery (Xiamen), Zhongshan hospital, Fudan University, 361015, Xiamen, China.
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen, China.
| |
Collapse
|
35
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
36
|
Sant'Ana AN, Dias CK, Nunes VBS, Farias MG, Alegretti AP, Portela P, Calvache ET, Meirelles MF, Daudt LE, Michalowski MB, Paz AA, Figueiró F. Prognostic value of myeloid-derived suppressor-like cells in acute myeloid leukemia: insights from immunophenotyping and clinical correlations. Immunol Res 2024; 73:11. [PMID: 39673675 DOI: 10.1007/s12026-024-09558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population that acts on both innate and adaptive immunity, fostering immune escape in tumors and contributing to cancer progression. Despite the lack of definitive markers for immunophenotyping MDSCs, particularly the polymorphonuclear (PMN-MDSC) subset, these cells seem to play a crucial role in acute myeloid leukemia (AML) patients' prognosis. Additionally, the maturation stage of MDSCs remains a subject of debate and is largely unknown within the AML context. In this study, we conducted a retrospective analysis of flow cytometry immunophenotyping data obtained at the diagnosis of AML patients. We explored how the enrichment of neutrophil maturation stages, the frequency of PMN-MDSC-like cells and monocytic MDSC-like population (M-MDSC-like), and the ratios of MDSC-like cells to T lymphocytes correlate with relevant prognostic indicators. Our findings revealed that CD45+CD33lowHLA-DR-CD36+ PMN-MDSC-like cells and mature CD13+CD11b+CD10+ neutrophils correlate poor survival in AML patients. Furthermore, PMN-MDSC-like cells, and their ratio to T lymphocytes, are elevated in patients with adverse-risk stratification. Similarly, the M-MDSC-like population is increased in FLT3-ITD mutation carrier patients. Notably, we observed confirmational evidence of CD36 relevance in the AML context, which has emerged recently as a potential marker for PMN-MDSCs. Our study highlights significant findings associating increased MDSC-like subsets and poor prognostic factors in AML.
Collapse
MESH Headings
- Humans
- Myeloid-Derived Suppressor Cells/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Immunophenotyping
- Prognosis
- Female
- Male
- Middle Aged
- Adult
- Aged
- Neutrophils/immunology
- Retrospective Studies
- Flow Cytometry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Antigens, CD/metabolism
- Aged, 80 and over
- T-Lymphocytes/immunology
- Young Adult
- Mutation
Collapse
Affiliation(s)
- Alexia N Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Camila K Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Vitória B S Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariela G Farias
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ana P Alegretti
- Setor de Inovação, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Pâmela Portela
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ebellins T Calvache
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Maria F Meirelles
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Liane E Daudt
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana B Michalowski
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Alessandra A Paz
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
37
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
38
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
39
|
Leonard J, Kepplinger D, Torres E, Hu CH, Veneziano R, Hoemann CD. Comparative analysis of Lox-1 and CD36 expression in human platelets and on circulating microparticles during ARDS-induced coagulopathy. Thromb Res 2024; 244:109202. [PMID: 39546984 DOI: 10.1016/j.thromres.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) patients are at risk of thrombosis through mechanisms implicating oxidized low-density lipoprotein (oxLDL). Endothelial cells, immune cells and platelets were reported to express scavenger receptors for oxLDL: Lox-1 and CD36. We hypothesized that platelets shed a soluble Lox-1 ectodomain (sLox-1) and release CD36-bearing procoagulant microparticles (MPs), that both become elevated in subjects with ARDS-induced coagulopathy. METHODS Using anti-extracellular and anti-intracellular Lox-1 antibodies, we first tested by western blot whether platelets express Lox-1 and shed sLox-1 upon activation. Next, we measured sLox-1 in blood plasma of 23 healthy donors and 48 ARDS Omega patients with and without coagulopathy, and assessed the corresponding MP fraction for Lox-1/sLox-1 and CD36. We evaluated mechanisms of sLox-1-MP association. Recombinant proteins were used as controls. RESULTS Resting platelets expressed abundant CD36 (7.8 ng/μg protein extract) which was released upon oxLDL stimulation, but undetectable levels of full-length 37 kDa Lox-1 receptor or 24 kDa sLox-1 (below 10 pg/μg). In an RNAseq meta-analysis, platelets expressed negligible OLR1, the mRNA encoding Lox-1, compared to CD36. A subset of ARDS patients showed elevated plasma sLox-1 and MP-associated sLox-1 compared to healthy controls that was positively associated with 90-day survival and low coagulopathy. MP-associated CD36 was reduced in ARDS plasma compared to healthy donors and did not correlate with survival, coagulopathy, or sLox-1. oxLDL promoted sLox-1 binding to CD36-deficient MPs. CONCLUSION sLox-1 arising from a non-platelet cell source associates with circulating MPs which could serve a protective role in ARDS.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - David Kepplinger
- Department of Statistics, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, United States of America
| | - Elmer Torres
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Chih-Hsiang Hu
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Caroline D Hoemann
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America.
| |
Collapse
|
40
|
Akkari L, Amit I, Bronte V, Fridlender ZG, Gabrilovich DI, Ginhoux F, Hedrick CC, Ostrand-Rosenberg S. Defining myeloid-derived suppressor cells. Nat Rev Immunol 2024; 24:850-857. [PMID: 38969773 DOI: 10.1038/s41577-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France.
- Paris-Saclay University, Paris, France.
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
41
|
Lin C, Herlihy SE, Li M, Deng H, Kim R, Bernabei L, Rosenwasser M, Gabrilovich DI, Vogl DT, Nefedova Y. Neutrophil extracellular traps promote tumor chemoresistance to anthracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622533. [PMID: 39605505 PMCID: PMC11601256 DOI: 10.1101/2024.11.07.622533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The microenvironment plays an important role in promoting tumor cell chemoresistance, but the mechanisms responsible for this effect are not clear. Here, using models of multiple myeloma (MM) and solid cancers, we demonstrate a novel mechanism mediated by neutrophils, a major cell population in the bone marrow (BM), that protects cancer cells from chemotherapeutics. We show that in response to tumor-derived soluble factors, BM neutrophils release their DNA in the form of neutrophil extracellular traps (NETs). Cell-free DNA derived from NETs is then taken up by tumor cells via endocytosis and localizes to the cytoplasm. We found that both NETs and cell-free DNA taken up by tumor cells can bind anthracyclines, leading to tumor cell resistance to this class of chemotherapeutic agents. Targeting cell-free DNA with Pulmozyme or blocking NET formation with a PAD4 inhibitor abrogates the chemoprotective effect of neutrophils and restores sensitivity of tumor cells to anthracyclines.
Collapse
|
42
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Merimma Grasso
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
43
|
Guo M, Sheng W, Yuan X, Wang X. Neutrophils as promising therapeutic targets in pancreatic cancer liver metastasis. Int Immunopharmacol 2024; 140:112888. [PMID: 39133956 DOI: 10.1016/j.intimp.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Pancreatic cancer is characterized by an extremely poor prognosis and presents significant treatment challenges. Liver metastasis is the leading cause of death in patients with pancreatic cancer. Recent studies have highlighted the significant impact of neutrophils on tumor occurrence and progression, as well as their crucial role in the pancreatic cancer tumor microenvironment. Neutrophil infiltration plays a critical role in the progression and prognosis of pancreatic cancer. Neutrophils contribute to pancreatic cancer liver metastasis through various mechanisms, including angiogenesis, immune suppression, immune evasion, and epithelial-mesenchymal transition (EMT). Therefore, targeting neutrophils holds promise as an important therapeutic strategy for inhibiting pancreatic cancer liver metastasis. This article provides a summary of research findings on the involvement of neutrophils in pancreatic cancer liver metastasis and analyzes their potential as therapeutic targets. This research may provide new insights for the treatment of pancreatic cancer and improve the prognosis of patients with this disease.
Collapse
Affiliation(s)
- Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Institute of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
44
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
45
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
46
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
47
|
Deng XH, Huang LX, Sun Q, Li CG, Xie YC, Liu XQ, Fu QL. Increased circulating LOX-1 + neutrophils activate T cells and demonstrate a pro-inflammatory role in allergic rhinitis. Heliyon 2024; 10:e36218. [PMID: 39281616 PMCID: PMC11398634 DOI: 10.1016/j.heliyon.2024.e36218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Low-density neutrophils are heterogeneous immune cells with immunosuppressive (such as polymorphonuclear myeloid-derived suppressor cells [PMN-MDSC]) or pro-inflammatory (such as low-density granulocytes [LDG]) properties that have been well described in multiple cancers and immune diseases. However, its role in allergic rhinitis (AR) is still unclear. Methods In the present study, we defined low-density neutrophils as CD14-CD11B+CD15+LOX-1+ (LOX-1+ neutrophils), and their levels in the peripheral blood (PB) were evaluated and compared between patients with AR and healthy donors using flow cytometric analysis. LOX-1 expression on polymorphonuclear neutrophils was identified. Carboxyfluorescein succinimidyl ester (CFSE)-stained CD3+ T cells were cultured alone or with LOX-1+ neutrophils, T cell proliferation was assessed using flow cytometry, and pro-inflammatory cytokines in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). Clinicopathological analyses were performed to gain a thorough understanding of LOX-1+ neutrophils. Results We determined that LOX-1+ neutrophils were significantly increased in the PB of patients with AR, and LOX-1 expression in neutrophils from patients with AR was elevated. Interestingly, LOX-1+ neutrophils derived from patients with AR, unlike PMN-MDSC, promoted T cell proliferation and pro-inflammatory cytokine production. Moreover, clinicopathological analysis revealed that there was no any relation between circulating LOX-1+ neutrophil levels and the levels of IgE, age and sex. Conclusion These findings indicate that elevated circulating LOX-1+ neutrophils play a pro-inflammatory role in AR.
Collapse
Affiliation(s)
- Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Long-Xin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Qi- Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Ying-Chun Xie
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
- Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| |
Collapse
|
48
|
Luo H, Ikenaga N, Nakata K, Higashijima N, Zhong P, Kubo A, Wu C, Tsutsumi C, Shimada Y, Hayashi M, Oyama K, Date S, Abe T, Ideno N, Iwamoto C, Shindo K, Ohuchida K, Oda Y, Nakamura M. Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2024; 43:258. [PMID: 39261943 PMCID: PMC11389261 DOI: 10.1186/s13046-024-03178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) constitute an abundant component among tumor-infiltrating immune cells and have recently emerged as a critical player in pancreatic ductal adenocarcinoma (PDAC) progression. This study aimed to elucidate the pro-tumor mechanisms of TAN and identify a novel target for effective immunotherapy against PDAC. METHODS Microarray and cytokine array analyses were performed to identify the mechanisms underlying the function of TANs. Human and mouse TANs were obtained from differentiated HL-60 cells and orthotopically transplanted PDAC tumors, respectively. The interactions of TANs with cancer and cytotoxic T-cells were evaluated through in vitro co-culture and in vivo orthotopic or subcutaneous models. Single-cell transcriptomes from patients with PDAC were analyzed to validate the cellular findings. RESULTS Increased neutrophil infiltration in the tumor microenvironment was associated with poor survival in patients with PDAC. TANs secreted abundant amounts of chemokine ligand 5 (CCL5), subsequently enhancing cancer cell migration and invasion. TANs subpopulations negatively correlated with cytotoxic CD8+ T-cell infiltration in PDAC and promoted T-cell dysfunction. TANs upregulated the membranous expression of Nectin2, which contributed to CD8+ T-cell exhaustion. Blocking Nectin2 improved CD8+ T-cell function and suppressed tumor progression in the mouse model. Single-cell analysis of human PDAC revealed two immunosuppressive TANs phenotypes: Nectin2+ TANs and OLR1+ TANs. Endoplasmic reticulum stress regulated the protumor activities in TANs. CONCLUSIONS TANs enhance PDAC progression by secreting CCL5 and upregulating Nectin2. Targeting the immune checkpoint Nectin2 could represent a novel strategy to enhance immunotherapy efficacy in PDAC.
Collapse
Affiliation(s)
- Haizhen Luo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, 812- 8582, Japan.
- Department of International Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan.
| | - Nobuhiro Higashijima
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Akihiro Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chenyi Wu
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Shimada
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masataka Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satomi Date
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Noboru Ideno
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
49
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
50
|
Dwivedi A, Ui Mhaonaigh A, Carroll M, Khosravi B, Batten I, Ballantine RS, Hendricken Phelan S, O’Doherty L, George AM, Sui J, Hawerkamp HC, Fallon PG, Noppe E, Mason S, Conlon N, Ni Cheallaigh C, Finlay CM, Little MA, Bioresource OBOTSJATTAR(STTAR. Emergence of dysfunctional neutrophils with a defect in arginase-1 release in severe COVID-19. JCI Insight 2024; 9:e171659. [PMID: 39253969 PMCID: PMC11385094 DOI: 10.1172/jci.insight.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Batten
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Laura O’Doherty
- Wellcome Trust, Clinical Research Facility
- Department of Infectious Diseases; and
| | | | - Jacklyn Sui
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute
- Department of Immunology, Trinity Translational Medicine Institute; and
| | - Elnè Noppe
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sabina Mason
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Infectious Diseases; and
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|