1
|
Rodrigues A, Weber JI, Durães-Oliveira J, Moreno C, Ferla M, de Aires Pereira M, Valério-Bolas A, de Freitas BE, Nunes T, Antunes WT, Alexandre-Pires G, Pereira da Fonseca I, Santos-Gomes GM. Extracellular Vesicles Derived from Trypanosomatids: The Key to Decoding Host-Parasite Communication. Int J Mol Sci 2025; 26:4302. [PMID: 40362539 PMCID: PMC12072767 DOI: 10.3390/ijms26094302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Trypanosomatids constitute a family of parasitic protozoa that cause significant human and veterinary diseases that are classified as neglected zoonotic diseases (NZDs). In a rapidly evolving world, these diseases have the potential to become a world health problem no longer solely associated with low-income countries. Therefore, the development of new strategies to control and restrain the dissemination of trypanosomatids is imperative. Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed vesicles released by prokaryotic and eukaryotic cells. They can be found in diverse body fluids that carry biologically active molecules, including proteins, nucleic acids, lipids, and carbohydrates. EVs participate in cell-to-cell communication by delivering their cargo content to recipient cells. Thus, EVs play a role in regulating normal physiological processes, including immune surveillance and tissue repair, as well as being involved in pathological conditions, like cancer. In recent years, EVs have attracted significant attention from the scientific community, mainly due to their immune regulatory properties. Therefore, this review examines the role played by trypanosomatid-derived EVs in leishmaniases and trypanosomiasis, highlighting their biological role in host-parasite communication and exploring their potential future applications in controlling NZDs, especially those caused by trypanosomatids.
Collapse
Grants
- EXPL/CVT-CVT/0175/2021 (DOI 10.54499/EXPL/CVT-CVT/0175/2021) FCT-Foundation for Science and Technology, I.P.
- FPTDC/CVT-CVT/0228/2020 (DOI 10.54499/PTDC/CVT-CVT/0228/2020) FCT-Foundation for Science and Technology, I.P.
- CIISA, UIDB/00276/2020 FCT-Foundation for Science and Technology, I.P.
- Al4Animals, LA/P/0059/2020 FCT-Foundation for Science and Technology, I.P.
- CERNAS, UIDB/00681/2020 Foundation for Science and Technology, I.P.
- GHTM, UID/04413/2020 Foundation for Science and Technology, I.P.
- LA-REAL, LA/P/0117/2020) Foundation for Science and Technology, I.P.
- CEECIND/CP1725/CT0023 (10.54499/2022.00499.CEECIND/CP1725/CT0023) FCT-Foundation for Science and Technology, I.P.
- 2022.13899.BD FCT-Foundation for Science and Technology, I.P.
Collapse
Affiliation(s)
- Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - Juliana Inês Weber
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - Micheli Ferla
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - Maria de Aires Pereira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
- CERNAS-IPV Research Centre, Instituto Politécnico de Viseu, Campus Politécnico, Repeses, 3504-510 Viseu, Portugal
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| | - Bruna Eugênia de Freitas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
- Instituto de Ciências Biológicas, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon-FCUL-BioISI Ce3CE, 1749-016 Lisboa, Portugal;
| | - Wilson T. Antunes
- Instituto Universitário Militar (IUM), Centro de Investigação, Desenvolvimento e Inovação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), 1849-012 Lisboa, Portugal;
| | - Graça Alexandre-Pires
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Gabriela M. Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008 Lisboa, Portugal; (J.I.W.); (J.D.-O.); (C.M.); (M.F.); (M.d.A.P.); (A.V.-B.); (B.E.d.F.); (G.M.S.-G.)
| |
Collapse
|
2
|
Farshchi F, Dias-Lopes G, Monteiro de Castro Cortes L, Cysne-Finkelstein L, Souza-Silva F, Alves CR. Leishmania (Viannia) braziliensis Thor strain and subpopulations Thor03, Thor10, and Thor22 have differences in the surface membrane proteases activity profile. Biochimie 2025; 234:20-28. [PMID: 40132668 DOI: 10.1016/j.biochi.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The Leishmania (Viannia) braziliensis Thor strain is composed of subpopulations with distinct biological features, as differences of the virulence profile in vitro and in vivo in murine model. As the surface of these parasites is the first contact with the host, this study assesses comparative approaches of surface membrane proteases of promastigotes and axenic amastigotes of L. (V.) braziliensis Thor strain and Thor03, Thor10, and Thor22 subpopulations, accessing differential profiles among these parasites. Here is explored the phospholipase C (PLC) property as a pivotal tool to selectively recover surface proteases of these parasites. The treatment of parasites with PLC yielded protein fractions with metalloprotease, cysteine protease, and serine protease activities, which were detectable by gelatin-SDS-PAGE and fluorogenic substrates and specific inhibitors, showing distinct profiles from both promastigotes and axenic amastigotes of the Thor strain, Thor03, Thor10, and Thor22 subpopulations. Data of protease activity quantitative in solution show metalloprotease as the highest activity, followed by cysteine protease and serine protease onto the surface of promastigotes and axenic amastigotes. The biological significance of these findings points to the potential of the Thor strain, helped by respective subpopulations, to adapt to hosts, as well as reinforcing the importance of this class of enzyme in the first hours of infection.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil; Universidade do Estado do Rio de Janeiro, Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcântara Gomes, Rua Arízio Gomes da Costa - 186, Jardim Flamboyant, CEP - 28905-320, Cabo Frio, RJ, Brazil.
| | - Luzia Monteiro de Castro Cortes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Léa Cysne-Finkelstein
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Avenida Brasil 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, RJ, Brazil; Universidade Iguaçu, Avenida Abílio Augusto Távora 2134, Dom Rodrigo, CEP 26260-045, Nova Iguaçu, RJ, Brazil.
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Katebi A, Nouri M, Behrouzi A, Ajdary S, Riazi-Rad F. The pro-inflammatory responses of innate immune cells to Leishmania RNA virus 2-infected L. major support the survival and proliferation of the parasites. Biochimie 2025; 230:10-22. [PMID: 39455049 DOI: 10.1016/j.biochi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Infection of Leishmania by Leishmania RNA virus (LRV) has been proposed as a pathogenic factor that induces pro-inflammatory responses through the TLR3/TLR4 signaling pathway. We investigated the effect of L. major infection by LRV2 on innate immune cell responses (human neutrophil (HL-60) and macrophage (THP-1) cell lines). The expression levels of pro- and anti-inflammatory cytokine and chemokine genes as well as genes involved in the amino acid metabolism of arginine were then investigated by RT-qPCR. Moreover, the expression of TLR genes and their downstream signaling pathways were compared in THP-1 cells infected with the two isolates. Apoptosis was also evaluated in infected THP-1 and HL-60 cells using the PI/Annexin V flow cytometry assay. In both cell lines, the expression of pro-inflammatory cytokines increased in response to LRV2+ L. major (Lm+), and the expression of chemokines shifted toward macrophage recruitment. In contrast to LRV2- L. major (Lm-), Lm + infected THP-1 cells acquired the M2-like phenotype. The presence of LRV2 increased the gene expression of TLRs and their signaling pathways, especially TLR3 and TLR4, which was proportional to the increase in pro-inflammatory cytokines. In addition, Lm + increased the expression of IL-10 and IFN-β, which contribute to the survival and growth of the parasite in the phagolysosome. Altogether, our results showed that Lm + could stimulate pro-inflammatory responses that promote parasite replication and stabilization in the host.
Collapse
Affiliation(s)
- Asal Katebi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ava Behrouzi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Goto Y. Immunomodulation by Leishmania parasites: Potential for controlling other diseases. Parasitol Int 2025; 104:102987. [PMID: 39515578 DOI: 10.1016/j.parint.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian hosts, Leishmania parasites survive and proliferate within phagolysosomes of macrophages. To avoid being killed by the immune cells, Leishmania parasites utilize their molecules to manipulate macrophages' functions for survival. Targets of such immunomodulatory molecules are not limited to macrophages, as Leishmania-derived molecules sometimes show influence on other immune cells such as neutrophils, dendritic cells, T cells and B cells. This review covers research on immunomodulation of host immunity by Leishmania parasites and introduces some examples of parasite-derived molecules participating in the immunomodulation. For example, Leishmania cell surface lipophosphoglycan (LPG) can modulate TLR2 signaling and PI3K/Akt axis in macrophages leading to induction of Th2 cells. Because chronic secretion of inflammatory cytokines is one of the causes of immune-mediated diseases such as atherosclerosis, Crohn's disease, and rheumatoid arthritis, LPG may be useful as a drug to suppress the inflammatory conditions. The unique characteristics of leishmanial molecules pose a promise as a source of immunomodulatory drugs for controlling diseases other than leishmaniasis.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| |
Collapse
|
5
|
Sebastian P, Namdeo M, Devender M, Anand A, Kumar K, Veronica J, Maurya R. Polyamine-Enriched Exosomes from Leishmania donovani Drive Host Macrophage Polarization via Immunometabolism Reprogramming. ACS Infect Dis 2024; 10:4384-4399. [PMID: 39560603 DOI: 10.1021/acsinfecdis.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Leishmania donovani (Ld) promastigotes secrete exosomes that are crucial in host-pathogen interactions and intercellular communication by carrying parasite-specific molecules. Although the composition of cargos in Leishmania exosomes is known, the effects of the unique metabolic repertoire on immunometabolism rewiring of macrophage polarization are poorly understood. Interestingly, we found the enrichment of polyamines (PAs) such as spermidine and putrescine in the Ld-exosomes. Herein, we investigate the critical polycationic molecules and their crucial role in parasite survival. Our study shows that PA inhibition or depletion significantly impairs parasite growth and fitness, particularly in drug-resistant strains. Furthermore, we aimed to elucidate the impact of PAs-enriched Ld-exosomes on host macrophages. The data demonstrated that macrophages efficiently internalized these exosomes, leading to heightened phagocytic activity and infectivity. In addition, internalized Ld-exosomes induced M2 macrophage polarization characterized by elevated Arginase-1 expression and activity. The increased expression of the solute carrier gene (SLC3A2) and elevated intracellular spermidine levels suggest that Ld-exosomes contribute to the host PAs pool and create an anti-inflammatory milieu. These findings highlight the essential role of PAs-enriched Ld-exosomes in parasite survival and establishing a pro-parasitic environment in the host macrophage.
Collapse
Affiliation(s)
- Prince Sebastian
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Madhulika Namdeo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anjali Anand
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Krishan Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jalaja Veronica
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
6
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
7
|
Kozela E, Meneghetti P, Regev-Rudzki N, Torrecilhas AC, Porat Z. Subcellular particles for characterization of host-parasite interactions. Microbes Infect 2024; 26:105314. [PMID: 38367661 DOI: 10.1016/j.micinf.2024.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Parasitic diseases remain a major global health problem for humans. Parasites employ a variety of strategies to invade and survive within their hosts and to manipulate host defense mechanisms, always in the pathogen's favor. Extracellular vesicles (EVs), membrane-bound nanospheres carrying a variety of bioactive compounds, were shown to be released by the parasites during all stages of the infection, enabling growth and expansion within the host and adaptation to frequently changing environmental stressors. In this review, we discuss how the use of existing nanotechnologies and high-resolution imaging tools assisted in revealing the role of EVs during parasitic infections, enabling the quantitation, visualization, and detailed characterization of EVs. We discuss here the cases of malaria, Chagas disease and leishmaniasis as examples of parasitic neglected tropical diseases (NTDs). Unraveling the EVs' role in the NTD pathogenesis may enormously contribute to their early and reliable diagnostic, effective treatment, and prevention.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Meneghetti
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Claudia Torrecilhas
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil.
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, WIS, Rehovot, Israel.
| |
Collapse
|
8
|
Khandibharad S, Singh S. Mechanistic study of inhibitory peptides with SHP-1 in hypertonic environment for infection model. Biochim Biophys Acta Gen Subj 2024; 1868:130670. [PMID: 38996989 DOI: 10.1016/j.bbagen.2024.130670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Cutaneous Leishmaniasis, an infectious disease is globally the most prevalent form of leishmaniasis accounting for approximately 1 million cases every year as per world health organization. Infected individuals develop skin lesion which has been reported to be infiltrated by immune cells and parasite with high sodium accumulation creating hypertonic environment. In our work, we tried to mimic the hypertonic environment in virtual environment to study dynamicity of SHP-1 and NFAT5 along with their interactions through molecular dynamics simulation. We validated the SHP-1 and NFAT5 dynamics in infection and HSD conditions to study the impact of hypertonicity derived NFAT5 mediated response to L.major infection. We also evaluated our therapeutic peptides for their binding to SHP-1 and to form stable complex. Membrane stability with the peptides was analyzed to understand their ability to sustain mammalian membrane. We identified PepA to be a potential candidate to interact with SHP-1. Inhibition of SHP-1 through PepA to discern IL-10 and IL-12 reciprocity may be assessed in future and furnish us with a potential therapeutic molecule. HSD mice exhibited high pro-inflammatory response to L.major infection which resulted in reduced lesion size. Contrary to observations in HSD mice, infection model exhibited low pro-inflammatory response and increased lesion size with high parasite load. Thus, increase in NFAT5 expression and reduced SHP-1 expression may result in disease resolving effect which can be further studied through incorporation of synthetic circuit using PepA to modulate IL-10 and IL-12 reciprocity.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, INDIA
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, INDIA.
| |
Collapse
|
9
|
Leroux M, Lafleur A, Villalba-Guerrero C, Beaulieu M, Lira AB, Olivier M. Extracellular vesicles in parasitic protozoa: Impact of Leishmania exosomes containing Leishmania RNA virus 1 (LRV1) on Leishmania infectivity and disease progression. CURRENT TOPICS IN MEMBRANES 2024; 94:157-186. [PMID: 39370206 DOI: 10.1016/bs.ctm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence. The presence of virulence factors such as GP63 within these EVs further underscores their role in the parasite's immunopathogenesis. Over the last few decades, LRVs have been established as drivers of the severity and persistence of leishmaniasis by exacerbating inflammatory responses and potentially influencing treatment outcomes. This chapter discusses the evolutionary origins and classification of these viruses, and explores their role in parasitic pathogenicity, highlighting their ubiquity across protozoan parasites and their impact on disease progression.
Collapse
Affiliation(s)
- Marine Leroux
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andrea Lafleur
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Carlos Villalba-Guerrero
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Myriam Beaulieu
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andressa Brito Lira
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
da Silva Lira Filho A, Lafleur A, Alvarez F, Piccirillo CA, Olivier M. Implication of the Annexin 1/FPR axis in leishmanial exosome-mediated Leishmania major skin hyperpathogenesis. Front Immunol 2024; 15:1436151. [PMID: 39076982 PMCID: PMC11284082 DOI: 10.3389/fimmu.2024.1436151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
11
|
Su D, Zhu S, Xu K, Hou Z, Hao F, Xu F, Lin Y, Zhu Y, Liu D, Duan Q, Zhang X, Yuan Y, Xu J, Tao J. Phosphoproteomic analysis reveals changes in A-Raf-related protein phosphorylation in response to Toxoplasma gondii infection in porcine macrophages. Parasit Vectors 2024; 17:191. [PMID: 38643189 PMCID: PMC11031963 DOI: 10.1186/s13071-024-06273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that causes severe threats to humans and livestock. Macrophages are the cell type preferentially infected by T. gondii in vivo. Protein phosphorylation is an important posttranslational modification involved in diverse cellular functions. A rapidly accelerated fibrosarcoma kinase (A-Raf) is a member of the Raf family of serine/threonine protein kinases that is necessary for MAPK activation. Our previous research found that knockout of A-Raf could reduce T. gondii-induced apoptosis in porcine alveolar macrophages (3D4/21 cells). However, limited information is available on protein phosphorylation variations and the role of A-Raf in macrophages infected with T. gondii. METHODS We used immobilized metal affinity chromatography (IMAC) in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile changes in phosphorylation in T. gondii-infected 3D4/21 and 3D4/21-ΔAraf cells. RESULTS A total of 1647 differentially expressed phosphorylated proteins (DEPPs) with 3876 differentially phosphorylated sites (DPSs) were identified in T. gondii-infected 3D4/21 cells (p3T group) when compared with uninfected 3D4/21 cells (pho3 group), and 959 DEPPs with 1540 DPSs were identified in the p3T group compared with infected 3D4/21-ΔAraf cells (p3KT group). Venn analysis revealed 552 DPSs corresponding to 406 DEPPs with the same phosphorylated sites when comparing p3T/pho3 versus p3T/p3KT, which were identified as DPSs and DEPPs that were directly or indirectly related to A-Raf. CONCLUSIONS Our results revealed distinct responses of macrophages to T. gondii infection and the potential roles of A-Raf in fighting infection via phosphorylation of crucial proteins.
Collapse
Affiliation(s)
- Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Fan Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifan Lin
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yuyang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinjun Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
12
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
13
|
Yin S, Li J, Chen J, Zhou Q, Duan DBP, Lai M, Zhong J, He J, Chen D, Zeng Z, Su L, Luo L, Dong C, Zheng Z. LdCyPA attenuates MAPK pathway to assist Leishmania donovani immune escape in host cells. Acta Trop 2024; 251:107114. [PMID: 38190929 DOI: 10.1016/j.actatropica.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.
Collapse
Affiliation(s)
- Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Deng Bin Pei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng Lai
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China.
| |
Collapse
|
14
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Krishnan A, Malik G, Garg LC. Immunogenicity and Neutralization Potential of Recombinant Chimeric Protein Comprising the Catalytic Region of Gp63 of Leishmania and LTB against Leishmania donovani. Protein Pept Lett 2024; 31:696-705. [PMID: 39301901 DOI: 10.2174/0109298665325330240828115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
AIM To study the inhibition potential of antibody against a recombinant chimera comprising of the catalytic epitope of gp63 of Leishmania donovani and B subunit of heat-labile enterotoxin (LTB) in the functional activity of L. donovani. BACKGROUND Visceral leishmaniasis, caused by the protozoan parasite Leishmania donovani, is a major health problem and causes mortality in tropical regions. Protozoan proteases play a crucial role in the pathogenesis of the disease and in establishing infection by countering the host's innate immune responses, namely complement-mediated lysis and phagocytosis. A surface-bound metalloprotease (gp63) has been reported to be a major virulence factor resulting in the evasion of complement- mediated lysis, cleaving host extracellular and intracellular substrates, resulting in intra- phagolysosomal survival. METHODS The epitope corresponding to the catalytic motif of gp63 of Leishmania donovani was fused with the B subunit of heat-labile enterotoxin, which is known to be immunogenic. The chimera was cloned to a prokaryotic expression vector and purified using Ni NTA affinity chromatography. Antibodies were generated against the purified fusion protein and analyzed for its ability to bind to the gp63 catalytic motif peptide by ELISA. The effect of fusion protein antibody on the functional activity of gp63 was evaluated by assessing the effect of purified IgGs on the protease activity and complement-mediated lysis of L. donovani promastigotes in vitro. RESULTS The present study reports that a recombinant chimera of the catalytic epitope of gp63 and B subunit of heat-labile enterotoxin (LTB) of E. coli, a potent adjuvant of humoral response can mount significant immune response towards the catalytic epitope. ELISA and Western blot analysis showed that the anti-fusion protein antiserum could recognize the native gp63. Also, it significantly inhibited the protease activity of promastigotes and subsequently increased complement-mediated lysis of the promastigotes in vitro. CONCLUSION It could be concluded that the hybrid protein containing catalytic motif L. donovani gp63 protein and carrier protein (LTB) could elicit antibodies that could neutralise the functional activity of gp63 and thus could be a potential candidate for subunit leishmaniasis vaccine.
Collapse
Affiliation(s)
- Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi- 110062, India
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Gunjan Malik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| |
Collapse
|
16
|
Zauli RC, de Souza Perez IC, de Morais ACC, Ciaccio AC, Vidal AS, Soares RP, Torrecilhas AC, Batista WL, Xander P. Extracellular Vesicles Released by Leishmania (Leishmania) amazonensis Promastigotes with Distinct Virulence Profile Differently Modulate the Macrophage Functions. Microorganisms 2023; 11:2973. [PMID: 38138117 PMCID: PMC10746037 DOI: 10.3390/microorganisms11122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmania spp. is the aetiologic agent of leishmaniasis, a disease endemic in several developing countries. The parasite expresses and secretes several virulence factors that subvert the macrophage function and immune response. Extracellular vesicles (EVs) can carry molecules of the parasites that show immunomodulatory effects on macrophage activation and disease progression. In the present work, we detected a significantly higher expression of lpg3 and gp63 genes in Leishmania amazonensis promastigotes recovered after successive experimental infections (IVD-P) compared to those cultured for a long period (LT-P). In addition, we observed a significantly higher percentage of infection and internalized parasites in groups of macrophages infected with IVD-P. Macrophages previously treated with EVs from LT-P showed higher percentages of infection and production of inflammatory cytokines after the parasite challenge compared to the untreated ones. However, macrophages infected with parasites and treated with EVs did not reduce the parasite load. In addition, no synergistic effects were observed in the infected macrophages treated with EVs and reference drugs. In conclusion, parasites cultured for a long period in vitro and recovered from animals' infections, differently affected the macrophage response. Furthermore, EVs produced by these parasites affected the macrophage response in the early infection of these cells.
Collapse
Affiliation(s)
- Rogéria Cristina Zauli
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil; (R.C.Z.)
| | - Isabelle Carlos de Souza Perez
- Curso de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil
| | - Aline Correia Costa de Morais
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil; (R.C.Z.)
| | - Ana Carolina Ciaccio
- Curso de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil
| | - Andrey Sladkevicius Vidal
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil; (R.C.Z.)
| | - Rodrigo Pedro Soares
- Biotecnologia Aplicada a Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte 30190-002, MG, Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil (W.L.B.)
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil (W.L.B.)
| | - Patricia Xander
- Programa de Pós-Graduação Biologia-Química, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil; (R.C.Z.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 04021-001, SP, Brazil (W.L.B.)
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Unidade José Alencar, Universidade Federal de São Paulo campus Diadema, 4° andar, Rua São Nicolau, 210, Centro, Diadema 09913-030, SP, Brazil
| |
Collapse
|
17
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
19
|
Peixoto FC, Zanette DL, Cardoso TM, Nascimento MT, Sanches RCO, Aoki M, Scott P, Oliveira SC, Carvalho EM, Carvalho LP. Leishmania braziliensis exosomes activate human macrophages to produce proinflammatory mediators. Front Immunol 2023; 14:1256425. [PMID: 37841240 PMCID: PMC10569463 DOI: 10.3389/fimmu.2023.1256425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Exosomes, organelles measuring 30-200nm, are secreted by various cell types. Leishmania exosomes consist of many proteins, including heat shock proteins, annexins, Glycoprotein 63, proteins exerting signaling activity and those containing mRNA and miRNA. Studies have demonstrated that Leishmania donovani exosomes downregulate IFN-γ and inhibit the expression of microbicidal molecules, such as TNF and nitric oxide, thus creating a microenvironment favoring parasite proliferation. Despite lacking immunological memory, data in the literature suggest that, following initial stimulation, mononuclear phagocytes may become "trained" to respond more effectively to subsequent stimuli. Here we characterized the effects of macrophage sensitization using L. braziliensis exosomes prior to infection by the same pathogen. Human macrophages were stimulated with L. braziliensis exosomes and then infected with L. braziliensis. Higher levels of IL-1β and IL-6 were detected in cultures sensitized prior to infection compared to unstimulated infected cells. Moreover, stimulation with L. braziliensis exosomes induced macrophage production of IL-1β, IL-6, IL-10 and TNF. Inhibition of exosome secretion by L. braziliensis prior to macrophage infection reduced cytokine production and produced lower infection rates than untreated infected cells. Exosome stimulation also induced the consumption/regulation of NLRP3 inflammasome components in macrophages, while the blockade of NLRP3 resulted in lower levels of IL-6 and IL-1β. Our results suggest that L. braziliensis exosomes stimulate macrophages, leading to an exacerbated inflammatory state that may be NLRP3-dependent.
Collapse
Affiliation(s)
- Fabio C. Peixoto
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
| | - Dalila L. Zanette
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas – Oswaldo Cruz Foundation (FIOCRUZ) Paraná (ICC), Curitiba, Paraná, Brazil
| | - Thiago M. Cardoso
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Mauricio T. Nascimento
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
| | - Rodrigo C. O. Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Aoki
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas – Oswaldo Cruz Foundation (FIOCRUZ) Paraná (ICC), Curitiba, Paraná, Brazil
| | - Phillip Scott
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, United States
| | - Sérgio C. Oliveira
- Departamento de Imunologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
20
|
Sharma M, Lozano-Amado D, Chowdhury D, Singh U. Extracellular Vesicles and Their Impact on the Biology of Protozoan Parasites. Trop Med Infect Dis 2023; 8:448. [PMID: 37755909 PMCID: PMC10537256 DOI: 10.3390/tropicalmed8090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane-bound structures produced naturally by all cells and have a variety of functions. EVs act as vehicles for transporting important molecular signals from one cell to another. Several parasites have been shown to secrete EVs, and their biological functions have been extensively studied. EVs have been shown to facilitate communication with the host cells (such as modulation of the host's immune system or promoting attachment and invasion into the host cells) or for communication between parasitic cells (e.g., transferring drug-resistance genes or factors modulating stage conversion). It is clear that EVs play an important role in host-parasite interactions. In this review, we summarized the latest research on the EVs secreted by protozoan parasites and their role in host-parasite and parasite-parasite communications.
Collapse
Affiliation(s)
- Manu Sharma
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.S.); (D.L.-A.); (D.C.)
| | - Daniela Lozano-Amado
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.S.); (D.L.-A.); (D.C.)
| | - Debabrata Chowdhury
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.S.); (D.L.-A.); (D.C.)
| | - Upinder Singh
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.S.); (D.L.-A.); (D.C.)
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
22
|
Sreedharan V, Rao KB. Protease inhibitors as a potential agent against visceral Leishmaniasis: A review to inspire future study. Braz J Infect Dis 2023; 27:102739. [PMID: 36603827 PMCID: PMC9871078 DOI: 10.1016/j.bjid.2022.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is transmitted by sandfly which carries the intracellular protozoa in their midgut. Among visceral, cutaneous and mucocutaneous leishmaniasis, visceral type that is caused by Leishmania donovani is the most lethal one. Findings of leishmanial structure and species took place in 19th century and was initiated by Donovan. Leishmaniasis is still a major concern of health issues in many endemic countries in Asia, Africa, the Americas, and the Mediterranean region. Worldwide1.5-2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis are reported each year. Leishmaniasis is endemic in nearly 90 countries worldwide and close to 12 million new cases of leishmaniasis are reported worldwide annually. Studies on antileishmanial drug development is of major concern as leishmaniasis are the second largest parasitic killer in the world and the available drugs are either toxic or costly. The major surface GP63 protease, also known as Zinc- metalloproteases present on the surface of leishmanial promastigotes, can be targeted for drug development. Protease inhibitors targeting such surface proteases show promising results. Different protease inhibitors have been isolated from marine actinobacteria against many infectious diseases. Metabolites produced by these actinobacteria may have greater importance for the discovery and development of new antileishmanial drugs. Hence, this review discusses the background, current situation, treatment, and protease inhibitors from marine actinobacteria for drug development against GP63 molecules.
Collapse
Affiliation(s)
| | - K.V. Bhaskara Rao
- Corresponding author at: Department of Biomedical Sciences, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
23
|
Santiago-Silva KMD, Bortoleti BTDS, Brito TDO, Costa IC, Lima CHDS, Macedo F, Miranda-Sapla MM, Pavanelli WR, Bispo MDLF. Exploring the antileishmanial activity of N1, N2-disubstituted-benzoylguanidines: synthesis and molecular modeling studies. J Biomol Struct Dyn 2022; 40:11495-11510. [PMID: 34355671 DOI: 10.1080/07391102.2021.1959403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, we describe the synthesis and evaluation of nine N1,N2-disubstituted-benzoylguanidines against promastigotes and amastigotes forms of Leishmania amazonensis. The derivatives 2g and 2i showed low IC50 values against promastigote form (90.8 ± 0.05 µM and 68.4 ± 0.03 µM, respectively), low cytotoxicity profile (CC50 396 ± 0.02 µM and 857.9 ± 0.06 µM) for peritoneal macrophages cells and SI of 5.5 and 12.5, respectively. Investigations about the mechanism of action of 2g and 2i showed that both compounds cause mitochondrial depolarization, increase in ROS levels, and generation of autophagic vacuoles on free promastigotes forms. These compounds were also capable of reducing the number of infected macrophages with amastigotes forms (59.5% ± 0.08% and 98.1% ± 0.46%) and the number of amastigotes/macrophages (79.80% ± 0.05% and 96.0% ± 0.16%), through increasing induction of microbicide molecule NO. Additionally, ADMET-Tox in silico predictions showed drug-like features and free of toxicological risks. The molecular docking studies with arginase and gp63 showed that relevant intermolecular interactions could explain the experimental results. Therefore, these results reinforce that benzoylguanidines could be a starting scaffold for the search for new antileishmanial drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Tiago de Oliveira Brito
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon Costa
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Fernando Macedo
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
24
|
Esteves S, Costa I, Luelmo S, Santarém N, Cordeiro-da-Silva A. Leishmania Vesicle-Depleted Exoproteome: What, Why, and How? Microorganisms 2022; 10:microorganisms10122435. [PMID: 36557688 PMCID: PMC9781507 DOI: 10.3390/microorganisms10122435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis, a vector-borne parasitic protozoan disease, is among the most important neglected tropical diseases. In the absence of vaccines, disease management is challenging. The available chemotherapy is suboptimal, and there are growing concerns about the emergence of drug resistance. Thus, a better understanding of parasite biology is essential to generate new strategies for disease control. In this context, in vitro parasite exoproteome characterization enabled the identification of proteins involved in parasite survival, pathogenesis, and other biologically relevant processes. After 2005, with the availability of genomic information, these studies became increasingly feasible and revealed the true complexity of the parasite exoproteome. After the discovery of Leishmania extracellular vesicles (EVs), most exoproteome studies shifted to the characterization of EVs. The non-EV portion of the exoproteome, named the vesicle-depleted exoproteome (VDE), has been mostly ignored even if it accounts for a significant portion of the total exoproteome proteins. Herein, we summarize the importance of total exoproteome studies followed by a special emphasis on the available information and the biological relevance of the VDE. Finally, we report on how VDE can be studied and disclose how it might contribute to providing biologically relevant targets for diagnosis, drug, and vaccine development.
Collapse
Affiliation(s)
- Sofia Esteves
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Inês Costa
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Sara Luelmo
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Nuno Santarém
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.S.); (A.C.-d.-S.)
| | - Anabela Cordeiro-da-Silva
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.S.); (A.C.-d.-S.)
| |
Collapse
|
25
|
Ferreira B, Lourenço Á, Sousa MDC. Protozoa-Derived Extracellular Vesicles on Intercellular Communication with Special Emphasis on Giardia lamblia. Microorganisms 2022; 10:microorganisms10122422. [PMID: 36557675 PMCID: PMC9788250 DOI: 10.3390/microorganisms10122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Parasitic diseases are an important worldwide problem threatening human health and affect millions of people. Acute diarrhea, intestinal bleeding, malabsorption of nutrients and nutritional deficiency are some of the issues related to intestinal parasitic infections. Parasites are experts in subvert the host immune system through different kinds of mechanisms. There are evidences that extracellular vesicles (EVs) have an important role in dissemination of the disease and in modulating the host immune system. Released by almost all types of cells, these nanovesicles are a natural secretory product containing multiple components of interest. The EVs are classified as apoptotic bodies, microvesicles, exosomes, ectosomes, and microparticles, according to their physical characteristics, biochemical composition and cell of origin. Interestingly, EVs play an important role in intercellular communication between parasites as well as with the host cells. Concerning Giardia lamblia, it is known that this parasite release EVs during it life cycle that modulate the parasite growth and adherence as well the immune system of the host. Here we review the recently updates on protozoa EVs, with particular emphasis on the role of EVs released by the flagellate protozoa G. lamblia in cellular communication and its potential for future applications as vaccine, therapeutic agent, drug delivery system and as diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Bárbara Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIVG-Vasco da Gama Research Center, EUVG-Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Ágata Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Maria do Céu Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
26
|
Sen S, Bal SK, Yadav S, Mishra P, G VV, Rastogi R, Mukhopadhyay CK. Intracellular pathogen Leishmania intervenes in iron loading into ferritin by cleaving chaperones in host macrophages as an iron acquisition strategy. J Biol Chem 2022; 298:102646. [PMID: 36309090 PMCID: PMC9700016 DOI: 10.1016/j.jbc.2022.102646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Iron (Fe) sequestration is one of the most important strategies of the host to control the growth and survival of invading pathogens. Ferritin (Ft) plays a pivotal role in the sequestration mechanism of mammalian hosts by storing Fe. Recent evidence suggests that poly(rC)-binding proteins (PCBPs) act as chaperones for loading Fe into Ft. Incidentally, modulation of host PCBPs in respect to storing Fe in Ft during any infection remains unexplored. Among PCBPs, PCBP1 and PCBP2 are present in every cell type and involved in interacting with Ft for Fe loading. Leishmania donovani (LD) resides within macrophages during the mammalian stage of infection, causing life-threatening visceral leishmaniasis. Here, we reveal the ability of LD to cleave PCBP1 and PCBP2 in host monocytes/macrophages. LD cleaves PCBP1-FLAG into two fragments and PCBP2-FLAG into multiple fragments, thus affecting their interactions with Ft and resulting in decreased Fe loading into Ft. LD-derived culture supernatant or exosome-enriched fractions are also able to cleave PCBPs, suggesting involvement of a secreted protease of the parasite. Using an immune-depletion experiment and transgenic mutants, we confirmed the involvement of zinc-metalloprotease GP63 in cleaving PCBPs. We further revealed that by cleaving host PCBPs, Leishmania could inhibit Fe loading into Ft to accumulate available Fe for higher intracellular growth. This is the first report of a novel strategy adopted by a mammalian pathogen to interfere with Fe sequestration into Ft by cleaving chaperones for its survival advantage within the host.
Collapse
|
27
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
28
|
Guay-Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M, Descoteaux A. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 2022; 18:e1010640. [PMID: 36191034 PMCID: PMC9560592 DOI: 10.1371/journal.ppat.1010640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/13/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.
Collapse
Affiliation(s)
- Marie-Michèle Guay-Vincent
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Christine Matte
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Anne-Marie Berthiaume
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Maritza Jaramillo
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
29
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
30
|
Khandibharad S, Singh S. Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166466. [PMID: 35750267 DOI: 10.1016/j.bbadis.2022.166466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
Identification of molecular targets in any cellular phenomena is a challenge and a path that one endeavors upon independently. We have identified a phosphatase SHP-1 as a point of intervention of IL-10 and IL-12 reciprocity in leishmaniasis. The therapeutic model that we have developed uniquely targets this protein but the pipeline in general can be used by the researchers for their unique targets. Naturally occurring peptides are well known for their biochemical participation in cellular functions hence we were motivated to use this uniqueness of physico-chemical properties of peptides conferred by amino acids through machine learning to channelize a mode of therapeutic exploration in infectious disease. Using computational approaches, we identified high order sequence conservation and similarity in SHP-1 sequence which was also evolutionarily conserved, complete structure of Mouse SHP-1 was predicted and validated, a unique motif of the same was identified against which library of synthetic peptides were designed and validated followed by screening the library by docking them with MuSHP-1 protein structure. Our findings showed 3 peptides had high binding affinity and in future can be validated using cell based and in vivo assays.
Collapse
Affiliation(s)
- Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA.
| |
Collapse
|
31
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
32
|
Nagai K, Goto Y. Parasitomimetics: Can We Utilize Parasite-Derived Immunomodulatory Molecules for Interventions to Immunological Disorders? Front Immunol 2022; 13:824695. [PMID: 35386686 PMCID: PMC8977410 DOI: 10.3389/fimmu.2022.824695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Because our immune system has ability to expel microorganisms invading our body, parasites need evolution to maintain their symbiosis with the hosts. One such strategy of the parasites is to manipulate host immunity by producing immunomodulatory molecules and the ability of parasites to regulate host immunity has long been a target of research. Parasites can not only manipulate host immune response specific to them, but also influence the host's entire immune system. Such ability of the parasites may sometimes bring benefit to the hosts as many studies have indicated the "hygiene hypothesis" that a decreased opportunity of parasitic infections is associated with an increased incidence of allergy and autoimmune diseases. In other words, elucidating the mechanisms of parasites to regulate host immunity could be applied not only to resolution of parasitic infections but also to treatment of non-parasitic immunological disorders. In this review, we show how much progress has been made in the research on immunomodulation of host immunity by parasites. Here, we define the word 'parasitomimetics' as emulation of parasites' immunomodulatory systems to solve immunological problems in humans and discuss potential applications of parasite-derived molecules to other diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Seth A, Kar S. Host-directed antileishmanial interventions: Harvesting unripe fruits to reach fruition. Int Rev Immunol 2022; 42:217-236. [PMID: 35275772 DOI: 10.1080/08830185.2022.2047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
34
|
da Silva Lira Filho A, Fajardo EF, Chang KP, Clément P, Olivier M. Leishmania Exosomes/Extracellular Vesicles Containing GP63 Are Essential for Enhance Cutaneous Leishmaniasis Development Upon Co-Inoculation of Leishmania amazonensis and Its Exosomes. Front Cell Infect Microbiol 2022; 11:709258. [PMID: 35186777 PMCID: PMC8851419 DOI: 10.3389/fcimb.2021.709258] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are transmitted by the bite of infected sand flies leading to a wide range of diseases called leishmaniasis. Recently, we demonstrated that Leishmania spp.-derived exosomes/extracellular vesicles (EVs/LeishEXO) were released in the lumen of the sand fly midgut and to be co-egested with the parasite during the blood meal and that LeishEXO were found to stimulate an inflammatory response conducting to an exacerbated cutaneous leishmaniasis, also it was shown that these vesicles cargo important virulence factors like GP63. Thus, this study aimed to confirm through morphological and proteomic analysis a novel model specificity utilizing another set of GP63-altered Leishmania amazonensis parasite strains. Consequently, we proposed to further study the impact of different GP63 vesicle expression levels on their ability to modulate innate inflammatory cell responses, and finally to determine the importance of GP63 vesicle content on the exacerbation of the cutaneous Leishmania spp. pathology after their host co-inoculation. Our results revealed that the protein composition of extracted extracellular vesicles were similar to each other and that GP63 was the sole virulence factor changed in the exosomes composition confirming the specificity of the chosen novel model. We further demonstrated that vesicles with different GP63 EVs cargo displayed distinctive macrophage immunomodulatory capabilities at both gene and protein expression in vitro. Finally, we showed their diverse impact on the Leishmania spp. cutaneous pathology in an in vivo setting and confirmed GP63 as a primordial component of the ability of these EVs in augmenting the inflammatory cutaneous response in Leishmania spp. infection. Our findings provide new insight on the immune response happening in cutaneous leishmaniasis, shade light on the mechanism behind the host-pathogen interaction occurring in the initial moments of infection, thus creating the opportunity of using them as the target of new pharmacological treatments and vaccinations.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Emanuella Francisco Fajardo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Pauline Clément
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
35
|
Wang ZX, Che L, Hu RS, Sun XL. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of Toxoplasma gondii Reveals Stage-Specific Patterns. Molecules 2022; 27:molecules27031022. [PMID: 35164288 PMCID: PMC8839046 DOI: 10.3390/molecules27031022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan of severe threat to humans and livestock, whose life history harbors both gamic and apogamic stages. Chinese 1 (ToxoDB#9) was a preponderant genotype epidemic in food-derived animals and humans in China, with a different pathogenesis from the strains from the other nations of the world. Posttranslational modifications (PTMs) of proteins were critical mediators of the biology, developmental transforms, and pathogenesis of protozoan parasites. The phosphoprotein profiling and the difference between the developmental phases of T. gondii, contributing to development and infectivity, remain unknown. A quantitative phosphoproteomic approach using IBT integrated with TiO2 affinity chromatography was applied to identify and analyze the difference in the phosphoproteomes between the sporulated oocysts and the tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii. A total of 4058 differential phosphopeptides, consisting of 2597 upregulated and 1461 downregulated phosphopeptides, were characterized between sporulated the oocysts and tachyzoites. Twenty-one motifs extracted from the upregulated phosphopeptides contained 19 serine motifs and 2 threonine motifs (GxxTP and TP), whereas 16 motifs identified from downregulated phosphopeptides included 13 serine motifs and 3 threonine motifs (KxxT, RxxT, and TP). Beyond the traditional kinases, some infrequent classes of kinases, including Ab1, EGFR, INSR, Jak, Src and Syk, were found to be corresponding to motifs from the upregulated and downregulated phosphopeptides. Remarkable functional properties of the differentially expressed phosphoproteins were discovered by GO analysis, KEGG pathway analysis, and STRING analysis. S8GFS8 (DNMT1-RFD domain-containing protein) and S8F5G5 (Histone kinase SNF1) were the two most connected peptides in the kinase-associated network. Out of these, phosphorylated modifications in histone kinase SNF1 have functioned in mitosis and interphase of T. gondii, as well as in the regulation of gene expression relevant to differentiation. Our study discovered a remarkable difference in the abundance of phosphopeptides between the sporulated oocysts and tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii, which may provide a new resource for understanding stage-specific differences in PTMs and may enhance the illustration of the regulatory mechanisms contributing to the development and infectivity of T. gondii.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
- Correspondence:
| | - Liang Che
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
| | - Rui-Si Hu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Xiao-Lin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (X.-L.S.)
| |
Collapse
|
36
|
Abhishek K, Kumar A, Sardar AH, Vijayakumar S, Dikhit MR, Kumar A, Kumar V, Das S, Das P. Differential translational regulation of host exosomal proteins play key role in immunomodulation in antimony resistance in Visceral Leishmaniasis: A proteomic profiling study. Acta Trop 2022; 226:106268. [PMID: 34890541 DOI: 10.1016/j.actatropica.2021.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 11/01/2022]
Abstract
In host-pathogen interactions, exosomal secretions are crucial for cell to cell communication and have an established role in immunomodulation. Protozoans, including Leishmania, modulates their host vesicular secretions for better survival; although the role of exosomal secretions in unresponsive against sodium antimony gluconate (SAG) has never been documented. In this study, the exosomal proteome of RAW macrophages infected with either SAG responsive (SAGS) or SAG unresponsive (SAGR) L. donovani parasites has been compared with uninfected RAW macrophages. Proteins isolated from exosomes were labelled with iTRAQ reagents; followed by subsequent LC-TOF/-MS analysis. In total, 394 proteins (p < 0.05) were identified which were shared common among all sets. Highly differentially expressed proteins were sorted by log2 value -1 and +1 as down regulated and up regulated respectively which yielded 58 proteins in SAGR and 41 proteins during SAGS infection. Out of the 58 proteins identified during SAGR infection, 17 proteins were of immune modulatory function. Network visualization model and pathway analysis revealed the interactions among these proteins via different immunological pathways with reported involvement of some proteins in SAG resistance and host immune modulation. Hence, the differential abundance of immune pathway related proteins in exosomes of infected host during SAGR infection supports the immune modulatory strategy adopted by SAG resistant parasites for enhanced survival .
Collapse
|
37
|
Pinho N, Bombaça AC, Wiśniewski JR, Dias-Lopes G, Saboia-Vahia L, Cupolillo E, de Jesus JB, de Almeida RP, Padrón G, Menna-Barreto R, Cuervo P. Nitric Oxide Resistance in Leishmania ( Viannia) braziliensis Involves Regulation of Glucose Consumption, Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes. Antioxidants (Basel) 2022; 11:277. [PMID: 35204161 PMCID: PMC8868067 DOI: 10.3390/antiox11020277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO.
Collapse
Affiliation(s)
- Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Ana Cristina Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Planegg, Germany;
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Leonardo Saboia-Vahia
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - José Batista de Jesus
- Departamento de Medicina, Universidade Federal de São João Del Rei, São João del Rei 35501-296, MG, Brazil;
| | - Roque P. de Almeida
- Department of Medicine, Hospital Universitário, EBSERH, Universidade Federal de Sergipe, Aracaju 49100-000, SE, Brazil;
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| |
Collapse
|
38
|
Oliveira LG, Souza-Testasicca MC, Ricotta TNQ, Vago JP, dos Santos LM, Crepaldi F, Lima KM, Queiroz-Junior C, Sousa LP, Fernandes AP. Temporary Shutdown of ERK1/2 Phosphorylation Is Associated With Activation of Adaptive Immune Cell Responses and Disease Progression During Leishmania amazonensis Infection in BALB/c Mice. Front Immunol 2022; 13:762080. [PMID: 35145518 PMCID: PMC8821891 DOI: 10.3389/fimmu.2022.762080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Leandro G. Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tiago Nery Queiroga Ricotta
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane M. dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Crepaldi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M. Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ana Paula Fernandes,
| |
Collapse
|
39
|
Lymphatic filariasis and visceral leishmaniasis coinfection: A review on their epidemiology, therapeutic, and immune responses. Acta Trop 2021; 224:106117. [PMID: 34464587 DOI: 10.1016/j.actatropica.2021.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Coinfection is less commonly observed in individuals around the world, yet it is more common than the single infection. Around 800 million people worldwide are infected with helminths as a result of various diseases. Lymphatic filariasis (LF) and visceral leishmaniasis (VL) are chronic, deadly, crippling, and debilitating neglected tropical diseases (NTDs) that are endemic in tropical and subtropical regions of the world. Due to poor hygienic conditions, poverty, and genetic predisposition, those living in endemic areas are more likely to develop both leishmaniasis and filariasis. One of the key challenges in the management of LF/VL coinfection is the development of an effective therapeutic strategy that not only treats the first episode of VL but also prevents LF. However, there is a scarcity of knowledge and data on the relationship between LF and VL coinfection. While reviewing it was apparent that only a few studies relevant to LF/VL coinfections have been reported from southeastern Spain, Sudan, and the Indian subcontinents, highlighting the need for greater research in the most affected areas. We also looked at LF and VL as a single disease and also as a coinfection. Some features of the immune response evolved in mammalian hosts against LF and VL alone or against coinfection are also discussed, including epidemiology, therapeutic regimens, and vaccines. In addition to being potentially useful in clinical research, our findings imply the need for improved diagnostic methodology and therapeutics, which could accelerate the deployment of more specific and effective diagnosis for treatments to lessen the impact of VL/LF coinfections in the population.
Collapse
|
40
|
Antonia AL, Barnes AB, Martin AT, Wang L, Ko DC. Variation in Leishmania chemokine suppression driven by diversification of the GP63 virulence factor. PLoS Negl Trop Dis 2021; 15:e0009224. [PMID: 34710089 PMCID: PMC8577781 DOI: 10.1371/journal.pntd.0009224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/09/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection. Leishmaniasis is a neglected tropical disease caused by Leishmania parasites and spread by the bites of infected sand flies. Most cases of leishmaniasis present as self-healing sores that are resolved by a balanced immune response. Other cases of leishmaniasis involve spread to sites distant from the original bite, including damage of the inner surfaces of the mouth and nose. These cases of leishmaniasis involve an excessive immune response. Leishmania parasites produce virulence factor proteins, such as GP63, to trick the immune system into mounting a weaker response. GP63 specifically degrades signaling proteins that attract and activate certain immune cells. Here, we demonstrate that Leishmania parasite species have evolved to differ in their ability to degrade signaling proteins. In Leishmania species known to cause more immune-mediated tissue damage, the GP63 virulence factor has evolved to not degrade specific immune signaling proteins, thus attracting, and activating more immune cells. Our results demonstrate how diversity among Leishmania parasite species can contribute to variation in immune responses that may play critical roles in the outcome of infection.
Collapse
Affiliation(s)
- Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Alyson B. Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Amelia T. Martin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression. J Biol Chem 2021; 297:101198. [PMID: 34534548 PMCID: PMC8502904 DOI: 10.1016/j.jbc.2021.101198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills various physiological roles that are unrelated to its glycolytic function. However, to date, the nonglycolytic function of GAPDH in trypanosomal parasites is absent from the literature. Exosomes secreted from Leishmania, like entire parasites, were found to have a significant impact on macrophage cell signaling and function, indicating cross talk with the host immune system. In this study, we demonstrate that the Leishmania GAPDH (LmGAPDH) protein is highly enriched within the extracellular vesicles (EVs) secreted during infection. To understand the function of LmGAPDH in EVs, we generated control, overexpressed, half-knockout (HKO), and complement cell lines. HKO cells displayed lower virulence compared with control cells when macrophages and BALB/c mice were infected with them, implying a crucial role for LmGAPDH in Leishmania infection and disease progression. Furthermore, upon infection of macrophages with HKO mutant Leishmania and its EVs, despite no differences in TNFA mRNA expression, there was a considerable increase in TNF-α protein expression compared with control, overexpressed, and complement parasites as determined by ELISA, RT-PCR, and immunoblot data. In vitro protein translation studies suggest that LmGAPDH-mediated TNF-α suppression occurs in a concentration-dependent manner. Moreover, mRNA binding assays also verified that LmGAPDH binds to the AU-rich 3′-UTR region of TNFA mRNA, limiting its production. Together, these findings confirmed that the LmGAPDH contained in EVs inhibits TNF-α expression in macrophages during infection via posttranscriptional repression.
Collapse
|
42
|
Gomez MA, Belew AT, Navas A, Rosales-Chilama M, Murillo J, Dillon LAL, Alexander TA, Martinez-Valencia A, El-Sayed NM. Early Leukocyte Responses in Ex-Vivo Models of Healing and Non-Healing Human Leishmania (Viannia) panamensis Infections. Front Cell Infect Microbiol 2021; 11:687607. [PMID: 34557423 PMCID: PMC8453012 DOI: 10.3389/fcimb.2021.687607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Early host-pathogen interactions drive the host response and shape the outcome of natural infections caused by intracellular microorganisms. These interactions involve a number of immune and non-immune cells and tissues, along with an assortment of host and pathogen-derived molecules. Our current knowledge has been predominantly derived from research on the relationships between the pathogens and the invaded host cell(s), limiting our understanding of how microbes elicit and modulate immunological responses at the organismal level. In this study, we explored the early host determinants of healing and non-healing responses in human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) panamensis. We performed a comparative transcriptomic profiling of peripheral blood mononuclear cells from healthy donors (PBMCs, n=3) exposed to promastigotes isolated from patients with chronic (CHR, n=3) or self-healing (SH, n=3) CL, and compared these to human macrophage responses. Transcriptomes of L. V. panamensis-infected PBMCs showed enrichment of functional gene categories derived from innate as well as adaptive immune cells signatures, demonstrating that Leishmania modulates adaptive immune cell functions as early as after 24h post interaction with PBMCs from previously unexposed healthy individuals. Among differentially expressed PBMC genes, four broad categories were commonly modulated by SH and CHR strains: cell cycle/proliferation/differentiation, metabolism of macromolecules, immune signaling and vesicle trafficking/transport; the first two were predominantly downregulated, and the latter upregulated in SH and CHR as compared to uninfected samples. Type I IFN signaling genes were uniquely up-regulated in PBMCs infected with CHR strains, while genes involved in the immunological synapse were uniquely downregulated in SH infections. Similarly, pro-inflammatory response genes were upregulated in isolated macrophages infected with CHR strains. Our data demonstrate that early responses during Leishmania infection extend beyond innate cell and/or phagocytic host cell functions, opening new frontiers in our understanding of the triggers and drivers of human CL.
Collapse
Affiliation(s)
- Maria Adelaida Gomez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad IcesiI, Cali, Colombia
| | - Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Adriana Navas
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad IcesiI, Cali, Colombia
| | - Julieth Murillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Pontificia Universidad Javeriana, Cali, Colombia
| | - Laura A. L. Dillon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Theresa A. Alexander
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | | | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
43
|
Anti-Leishmania braziliensis activity of 1,10-phenanthroline-5,6-dione and its Cu(II) and Ag(I) complexes. Parasitol Res 2021; 120:3273-3285. [PMID: 34363115 DOI: 10.1007/s00436-021-07265-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Leishmaniasis, included in the priority list of the WHO, remains as a neglected disease caused by parasites of the Leishmania genus. There is no vaccine available for human leishmaniasis, and the current treatment is based on old drugs that cause serious side effects. Herein, we initially studied the cellular distribution of the virulence factor gp63, the major metallopeptidase, in a virulent strain of Leishmania braziliensis, and then we measured the inhibitory effects of 1,10-phenanthroline-5,6-dione (phendione), and its metal complexes, [Cu(phendione)3](ClO4)2.4H2O and [Ag(phendione)2]ClO4, on both cellular and extracellular metallopeptidases produced by promastigotes. The action of the three compounds on parasite viability and on parasite-macrophage interaction was also determined. Gp63 molecules were detected in several parasite compartments, including the cytoplasm, the membrane lining the cell body and flagellum, and in the flagellar pocket, which explains the presence of gp63 in the culture medium. The test compounds inhibited parasite metallopeptidases in a typical dose-dependent manner, and they also caused a significant and irreversible inhibition of parasite motility. Moreover, the pre-treatment of promastigotes with the test compounds induced a decrease in the association index with macrophages. Collectively, phendione and its Cu(II) and Ag(I) complexes are excellent prototypes for the development of new anti-L. braziliensis drugs.
Collapse
|
44
|
Schoina C, Rodenburg SYA, Meijer HJG, Seidl MF, Lacambra LT, Bouwmeester K, Govers F. Mining oomycete proteomes for metalloproteases leads to identification of candidate virulence factors in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:551-563. [PMID: 33657266 PMCID: PMC8035641 DOI: 10.1111/mpp.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Pathogens deploy a wide range of pathogenicity factors, including a plethora of proteases, to modify host tissue or manipulate host defences. Metalloproteases (MPs) have been implicated in virulence in several animal and plant pathogens. Here we investigated the repertoire of MPs in 46 stramenopile species including 37 oomycetes, 5 diatoms, and 4 brown algae. Screening their complete proteomes using hidden Markov models (HMMs) trained for MP detection resulted in over 4,000 MPs, with most species having between 65 and 100 putative MPs. Classification in clans and families according to the MEROPS database showed a highly diverse MP repertoire in each species. Analyses of domain composition, orthologous groups, distribution, and abundance within the stramenopile lineage revealed a few oomycete-specific MPs and MPs potentially related to lifestyle. In-depth analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 protein families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling showed different patterns of MP gene expression during pre-infection and infection stages. When expressed in leaves of Nicotiana benthamiana, 12 MPs changed the sizes of lesions caused by inoculation with P. infestans; with 9 MPs the lesions were larger, suggesting a positive effect on the virulence of P. infestans, while 3 MPs had a negative effect, resulting in smaller lesions. To the best of our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study pinpointing MPs as potential pathogenicity factors in Phytophthora.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Enza Zaden Research and Development B. V.EnkhuizenNetherlands
| | - Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Bioinformatics GroupWageningen University and ResearchWageningenNetherlands
- Present address:
The Hyve B. V.UtrechtNetherlands
| | - Harold J. G. Meijer
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenNetherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Theoretical Biology & Bioinformatics groupDepartment of BiologyUtrecht UniversityUtrechtNetherlands
| | - Lysette T. Lacambra
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
East‐West Seed Knowledge TransferNonthaburiThailand
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Biosystematics GroupWageningen University and ResearchWageningenNetherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
45
|
Dong G, Wagner V, Minguez-Menendez A, Fernandez-Prada C, Olivier M. Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Mol Immunol 2021; 135:73-83. [PMID: 33873096 DOI: 10.1016/j.molimm.2021.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are small, membrane-bound "delivery trucks" that are present in the extracellular environment, including biological fluids. EVs are capable of inducing changes in the physiological status of neighboring cells through the transfer of key macromolecules, and are thought to play a role in a number of pathological processes. Leishmaniasis, caused by the protozoan parasite Leishmania, is an important example. The biology of Leishmania EVs has been studied in detail, and findings point to their role in exacerbation of disease and potential involvement in the perpetuation of drug resistance. Furthermore, the use of EVs for development of vaccines has been explored, as well as their potential use in a number of fields as biomarkers of disease and drug resistance. Here we discuss the latest findings on EVs, with a particular focus on Leishmania, as well as potential avenues for their future development and clinical applications.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Victoria Wagner
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada.
| | - Martin Olivier
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
46
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
47
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
48
|
Shams M, Nourmohammadi H, Basati G, Adhami G, Majidiani H, Azizi E. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
50
|
Rodríguez-Vega A, Losada-Barragán M, Berbert LR, Mesquita-Rodrigues C, Bombaça ACS, Menna-Barreto R, Aquino P, Carvalho PC, Padrón G, de Jesus JB, Cuervo P. Quantitative analysis of proteins secreted by Leishmania (Viannia) braziliensis strains associated to distinct clinical manifestations of American Tegumentary Leishmaniasis. J Proteomics 2020; 232:104077. [PMID: 33309930 DOI: 10.1016/j.jprot.2020.104077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
The role of Leishmania braziliensis in the development of different clinical forms of American Tegumentary Leishmaniasis (ATL) is unclear, but it has been suggested that molecules secreted/released by parasites could modulate the clinical outcome. Here, we analyzed the infection rate and cytokine profile of macrophages pretreated with the secretome of two L. braziliensis strains associated with polar clinical forms of ATL: one associated with localized self-healing cutaneous leishmaniasis (LCL) and other associated with the disseminated form (DL). Besides, we use an iTRAQ-based quantitative proteomics approach to compare the abundance of proteins secreted by those strains. In vitro infection demonstrated that pretreatment with secretome resulted in higher number of infected macrophages, as well as higher number of amastigotes per cell. Additionally, macrophages pretreated with LCL secretome exhibited a proinflammatory profile, whereas those pretreated with the DL one did not. These findings suggest that secretomes made macrophages more susceptible to infection and that molecules secreted by each strain modulate, differentially, the macrophages' cytokine profile. Indeed, proteomics analysis showed that the DL secretome is rich in molecules involved in macrophage deactivation, while is poor in proteins that activate proinflammatory pathways. Together, our results reveal new molecules that may contribute to the infection, persistence and dissemination of the parasite. SIGNIFICANCE: Leishmania braziliensis is associated to localized self-healing cutaneous lesions (LCL), disseminated leishmaniasis (DL), and mucocutaneous lesions (MCL). To understand the role of the parasite in those distinct clinical manifestations we evaluated infection rates and cytokine profiles of macrophages pre-treated with secretomes of two L. braziliensis strains associated with DL and LCL, and quantitatively compared these secretomes. The infection index of macrophages pretreated with the DL secretome was significantly higher than that exhibited by non-treated cells. Interestingly, whereas the LCL secretome stimulated a proinflammatory setting, favoring an effector cell response that would explain the proper resolution of the disease caused by this strain, the DL strain was not able to elicit such response or has mechanisms to prevent this activation. Indeed, DL secretome is rich in peptidases that may deactivate cell pathways crucial for parasite elimination, while is poor in proteins that could activate proinflammatory pathways, favoring parasite infection and persistence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Monica Losada-Barragán
- Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Luiz Ricardo Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Priscila Aquino
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Fiocruz-Paraná, PR, Brazil
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jose Batista de Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Universidade Federal de São João Del Rei, São João del Rei, MG, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|