1
|
Li W, Feng Y, Chen H, Ao J, Chen X. Identification of a type I IFN- and IRF-inducible enhancer in the 5'-UTR intron of MAVS in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110241. [PMID: 40020953 DOI: 10.1016/j.fsi.2025.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The mitochondrial antiviral signaling protein (MAVS) relays signals from RIG-I-like receptors (RLRs) to induce type I interferon (IFN) production. In teleost fish, MAVS expression is significantly upregulated in response to viral infections or synthetic double-stranded RNA (dsRNA), whereas mammalian MAVS does not exhibit a similar response. However, the mechanisms regulating MAVS expression in teleosts remain unclear. In this study, we demonstrate that the viral mimic poly(I:C)-induced upregulation of Larimichthys crocea (Lc) MAVS occurs via the type I IFN signaling pathway. Inhibition of the JAK-STAT pathway significantly suppressed both poly(I:C)- and LcIFNi-induced LcMAVS expression. Further analysis revealed that an enhancer in the 5'- untranslated region (UTR) intron of LcMAVS contains two functional interferon-stimulated response elements (ISREs), which are crucial for its activation. The enhancer activity of LcMAVS is regulated by interferon regulatory factors (IRFs), including IRF1, IRF3, IRF7, IRF9, and IRF11. These IRFs form several heterodimeric complexes, such as IRF1/3, IRF1/7, IRF3/7, and IRF3/11, to mediate LcMAVS enhancer activation. Structural analysis indicates that the ISRE motifs in the intronic enhancer can accommodate two or three DNA-binding domains (DBDs) from IRFs. These findings provide a potential explanation for the differential regulation of MAVS in response to stimuli in teleosts and mammals. Furthermore, our study demonstrates that MAVS is an interferon-stimulated gene (ISG) in a marine fish, providing insights into the evolutionary divergence of the vertebrate RLR signaling pathway.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huazhi Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
2
|
Li JX, Zhang J, Li CH, Li YF, Chen HM, Li T, Zhang Q, Kong BH, Wang PH. Human papillomavirus E1 proteins inhibit RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT signaling pathways to evade innate antiviral immunity. Front Immunol 2025; 16:1549766. [PMID: 40330484 PMCID: PMC12052760 DOI: 10.3389/fimmu.2025.1549766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Human papillomavirus (HPV) is a major etiological agent of both malignant and benign lesions, with high-risk types, such as HPV16 and HPV18, being strongly linked to cervical cancer, while low-risk types like HPV11 are associated with benign conditions. While viral proteins such as E6 and E7 are well-established regulators of immune evasion, the role of E1 in modulating the host antiviral responses remains insufficiently characterized. This study investigates the immunomodulatory functions of HPV16 and HPV11 E1 in suppressing innate antiviral immune signaling pathways. Through a combination of RT-qPCR and luciferase reporter assays, we demonstrate that E1 suppresses the production of interferons and interferon-stimulated genes triggered by viral infections and the activation of RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT pathways. Co-immunoprecipitation assays reveal that E1 interacts directly with key signaling molecules within these pathways. E1 also impairs TBK1 and IRF3 phosphorylation and obstructs the nuclear translocation of IRF3, thereby broadly suppressing IFN responses. Additionally, E1 disrupts the JAK-STAT pathway by binding STAT1, which prevents the assembly and nuclear localization of the ISGF3 complex containing STAT1, STAT2, and IRF9, thereby further diminishing antiviral response. These findings establish E1 as a pivotal regulator of immune evasion and suggest its potential as a novel therapeutic target to enhance antiviral immunity in HPV-associated diseases.
Collapse
MESH Headings
- Humans
- Immunity, Innate
- Signal Transduction/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/immunology
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/immunology
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/immunology
- Toll-Like Receptor 3/metabolism
- Toll-Like Receptor 3/immunology
- Immune Evasion
- Papillomavirus Infections/immunology
- Papillomavirus Infections/virology
- Human papillomavirus 16/immunology
- Receptors, Immunologic
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Human papillomavirus 11/immunology
- HEK293 Cells
- STAT Transcription Factors/metabolism
- Interferon Regulatory Factor-3
- Human Papillomavirus Viruses
Collapse
Affiliation(s)
- Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yun-Fang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui-Min Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Bei-Hua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Gaugel J, Jähnert M, Neumann A, Heyd F, Schürmann A, Vogel H. Alternative splicing landscape in mouse skeletal muscle and adipose tissue: Effects of intermittent fasting and exercise. J Nutr Biochem 2025; 137:109837. [PMID: 39725041 DOI: 10.1016/j.jnutbio.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS. Diet and exercise interventions triggered comparable levels of splicing changes, although the splicing profile of skeletal muscle appeared to be more flexible than that of adipose tissue, with 72-114 differential splicing events in muscle and less than 25 in adipose tissue. Splicing changes induced by time-restricted feeding, alternate-day fasting and exercise were generally mild, with a maximal percent spliced in (PSI) difference of 67%, indicating that alternative splicing plays a rather minor role in lifestyle-induced adaptations of muscle and adipose tissue in mice. However, intron retention contributed to the regulation of gene expression, influencing genes whose expression was directly linked to phenotypic parameters (e.g. Eno2 and Pan2). Alternate-day fasting promoted skipping of exon 7 in Mlxipl (coding for ChREBP), thereby affecting the glucose sensing module of this carbohydrate-responsive transcription factor. Both intermittent fasting and exercise training led to alternative splicing of known diabetes-related GWAS genes (e.g. Abcc8, Ifnar2, Smarcad1), highlighting the potential metabolic relevance of these changes.
Collapse
Affiliation(s)
- Jasmin Gaugel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Markus Jähnert
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Neumann
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Omiqa Bioinformatics, Berlin, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annette Schürmann
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Heike Vogel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany.
| |
Collapse
|
4
|
Song Y, Zhao X, Chen Y, Yu X, Su T, Wang J, He T, Yin Z, Jia R, Zhao X, Zhou X, Li L, Zou Y, Li M, Zhang D, Zhang Y, Song X. The antiviral activity of myricetin against pseudorabies virus through regulation of the type I interferon signaling pathway. J Virol 2025; 99:e0156724. [PMID: 39601590 PMCID: PMC11784099 DOI: 10.1128/jvi.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The type I interferon signaling pathway constitutes a pivotal component of the innate immune response, encompassing the cGAS/STING and JAK/STAT pathways. Drugs that affect the body's innate immune response could potentially be used as broad-spectrum antivirals. In this study, the antiviral activities of 25 flavonoids against pseudorabies virus (PRV) were tested in PK-15 cells. Eight active flavonoids were identified, with IC50 values ranging from 23.24 to 323.09 µM. Subsequently, the regulatory effects of these flavonoids on the cGAS/STING pathway in PRV-infected cells were investigated. It was found that Myricetin significantly increased the transcriptional levels of cGAS, STING, IRF3, and IFN-β, which had been reduced by PRV infection. The regulation of the type I interferon signaling pathways by myricetin following PRV infection was further investigated through the production of cGAMP and the assessment of transcriptional and protein levels of pivotal genes and proteins. To confirm the activation of the innate immune response, a dual luciferase gene reporter study found that the expression of the IFN-β promoter in the myricetin-treated group was significantly elevated in a cellular model of type I interferon signaling pathway, and the contents of IFN-β were also significantly higher than those observed in the infected-untreated group in a PRV-infected mice model. Moreover, the transcriptional and protein levels of key genes and proteins in cell and mouse models exhibited analogous outcomes to those observed in PRV-infected cells. These findings suggest that myricetin can effectively activate the type I interferon signaling pathway, thereby enhancing the innate immune response during PRV infection. IMPORTANCE PRV, belonging to the Herpesviridae family, is an easily overlooked zoonotic pathogen that can threaten human health. The immunoprotective efficacy of conventional vaccines is significantly reduced due to the continuous mutation of the PRV genome, which constantly generates new viral strains. Therefore, there is a need to develop potent therapeutic drugs. PRV is capable of evading the host's natural immunity by suppressing the host's type I interferon signaling pathway, and the search for drugs that activate natural immunity can induce the body to produce type I IFN interferon and exert antiviral effects. Accordingly, the present study sought to identify active compounds from flavonoids that modulate the type I IFN interferon signaling pathway and thus inhibit the proliferation of PRV, which provides a new idea for the development of anti-PRV drugs from flavonoids that modulate the type I IFN interferon signaling pathway to enhance the body's antiviral immunity.
Collapse
Affiliation(s)
- Yizhen Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xufan Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Yu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tingke He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingyue Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Zhang L, Liang D, Tian Y, Liang J, Li X, Liu C, Liang J, Luo TR, Li X. Classical Swine Fever Virus Envelope Glycoproteins E rns, E1, and E2 Activate IL-10-STAT1-MX1/OAS1 Antiviral Pathway via Replacing Classical IFNα/β. Biomolecules 2025; 15:200. [PMID: 40001503 PMCID: PMC11853677 DOI: 10.3390/biom15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Classical swine fever (CSF) is an acute and often fatal disease caused by CSF virus (CSFV) infection. In the present study, we investigated the transcriptional profiles of peripheral blood mononuclear cells (PBMCs) in pigs infected with CSFV. The results revealed that CSFV inhibits IFNα/β production, but up-regulates the expression of signal transducer and activator of transcription 1 (STAT1); this result was verified in vitro. Interestingly, STAT1 is typically a downstream target of IFNα/β, raising the question of how CSFV can inhibit IFNα/β expression, yet up-regulate STAT1 expression. To explore this further, we observed that UV-treated CSFV induced STAT1 expression. Our results demonstrated that CSFV Erns, E1, and E2 could up-regulate STAT1 expression within the host cell cytoplasm and facilitate its translocation into the nucleus. The Erns, E1, and E2 proteins also separately induced the up-regulation of interleukin (IL)-10; IL-10 acts as the communicator connecting Erns, E1, and E2 proteins to STAT1, leading to the subsequent up-regulation, phosphorylation, and nuclear translocation of STAT1. Silencing of IL-10 down-regulated STAT1 expression. Finally, MX1 and OAS1 were identified as downstream targets of the IL-10-STAT1 pathway. In summary, a novel IL-10-STAT1 pathway independent of IFNα/β induced by CSFV Erns, E1, and E2 was identified in this study.
Collapse
Affiliation(s)
- Liyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yu Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jiaxin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
6
|
Hsiao YJ, Hsieh MS, Chang GC, Hsu YC, Wang CY, Chen YM, Chen YL, Yang PC, Yu SL. Tp53 determines the spatial dynamics of M1/M2 tumor-associated macrophages and M1-driven tumoricidal effects. Cell Death Dis 2025; 16:38. [PMID: 39843434 PMCID: PMC11754596 DOI: 10.1038/s41419-025-07346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The spatial role of M1 and M2 tumor-associated macrophages (M1/M2 TAMs) in precision medicine remains unclear. EGFR and TP53 are among the most frequently mutated genes in lung adenocarcinoma. We characterized the mutation status and density of M1/M2 TAMs within tumor islets and stroma in 117 lung adenocarcinomas using next-generation sequencing and immunohistochemistry, respectively. Stromal M1 TAMs were positively correlated with disease progression and smoking history. In contrast, islet M1/M2 TAMs were predominantly found in tumors with wild-type TP53 (wtp53) but not associated with EGFR status. The presence of wtp53 was associated with the spatial distribution of M1/M2 TAMs in tumor islets and stroma. Additionally, dominance of islet M1 TAMs and M1-signature were significantly associated with improved survival in patients with wtp53 lung adenocarcinoma, unlike in those with mutant TP53. Conditioned medium from M1 macrophages (M1 CM) induced apoptosis in wtp53 cells through increased p53 accumulation. We found that interferons in M1 CM activate JAK1/TYK2 via IFNARs, leading to enhanced STAT1 expression and Y701 phosphorylation. This activation facilitates p53-STAT1 interactions, reduces the interaction between p53 and MDM2, and subsequently decreases p53 ubiquitination. M1 CM inhibited tumorigenesis, and silencing p53 reduced the anti-tumor efficacy of polyinosinic:polycytidylic acid (poly I:C) in vivo. Furthermore, higher M1-signature was significantly associated with better responses and survival following anti-PD1 treatment in wtp53 melanomas. IFNs/STAT1/p53 signaling was critical for the anti-tumor activity of M1 macrophages. These findings suggest that p53 modulates the spatial balance of M1/M2 TAMs, and the tumoricidal effects of M1 TAMs depend on p53 status. Thus, p53 companion diagnostics could facilitate the development of M1-oriented therapies, which may be particularly beneficial for wtp53 patients when combined with immunotherapy.
Collapse
Affiliation(s)
- Yi-Jing Hsiao
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital Taichung, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yan-Ming Chen
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chen
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 PMCID: PMC11682929 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
8
|
Randolph HE, Aguirre-Gamboa R, Brunet-Ratnasingham E, Nakanishi T, Locher V, Ketter E, Brandolino C, Larochelle C, Prat A, Arbour N, Dumaine A, Finzi A, Durand M, Richards JB, Kaufmann DE, Barreiro LB. Widespread gene-environment interactions shape the immune response to SARS-CoV-2 infection in hospitalized COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626676. [PMID: 39677792 PMCID: PMC11642875 DOI: 10.1101/2024.12.03.626676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Genome-wide association studies performed in patients with coronavirus disease 2019 (COVID-19) have uncovered various loci significantly associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. However, the underlying cis-regulatory genetic factors that contribute to heterogeneity in the response to SARS-CoV-2 infection and their impact on clinical phenotypes remain enigmatic. Here, we used single-cell RNA-sequencing to quantify genetic contributions to cis-regulatory variation in 361,119 peripheral blood mononuclear cells across 63 COVID-19 patients during acute infection, 39 samples collected in the convalescent phase, and 106 healthy controls. Expression quantitative trait loci (eQTL) mapping across cell types within each disease state group revealed thousands of cis-associated variants, of which hundreds were detected exclusively in immune cells derived from acute COVID-19 patients. Patient-specific genetic effects dissipated as infection resolved, suggesting that distinct gene regulatory networks are at play in the active infection state. Further, 17.2% of tested loci demonstrated significant cell state interactions with genotype, with pathways related to interferon responses and oxidative phosphorylation showing pronounced cell state-dependent variation, predominantly in CD14+ monocytes. Overall, we estimate that 25.6% of tested genes exhibit gene-environment interaction effects, highlighting the importance of environmental modifiers in the transcriptional regulation of the immune response to SARS-CoV-2. Our findings underscore the importance of expanding the study of regulatory variation to relevant cell types and disease contexts and argue for the existence of extensive gene-environment effects among patients responding to an infection.
Collapse
Affiliation(s)
- Haley E Randolph
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Raúl Aguirre-Gamboa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Tomoko Nakanishi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Ellen Ketter
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Cary Brandolino
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anne Dumaine
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King’s College London, London, UK
- Five Prime Sciences Inc, Montréal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Rynda-Apple A, Reyes Servin J, Lenz J, Roemer J, Benson EE, Hall MN, Shepardson KM. IFN Receptor 2 Regulates TNF-α-Mediated Damaging Inflammation during Aspergillus Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1202-1211. [PMID: 39212415 PMCID: PMC11816899 DOI: 10.4049/jimmunol.2200686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The increased incidence of invasive pulmonary aspergillosis, caused by Aspergillus fumigatus, occurring in patients infected with severe influenza or SARS-CoV-2, suggests that antiviral immune responses create an environment permissive to fungal infection. Our recent evidence suggests that absence of the type I IFN receptor 2 subunit (IFNAR2) of the heterodimeric IFNAR1/2 receptor is allowing for this permissive immune environment of the lung through regulation of damage responses. Because damage is associated with poor outcome to invasive pulmonary aspergillosis, this suggested that IFNAR2 may be involved in A. fumigatus susceptibility. In this study, we determined that absence of IFNAR2 resulted in increased inflammation, morbidity, and damage in the lungs in response to A. fumigatus challenge, whereas absence of IFNAR1 did not. Although the Ifnar2-/- mice had increased morbidity, we found that the Ifnar2-/- mice cleared more conidia compared with both wild-type and Ifnar1-/- mice. However, this early clearance did not prevent invasive disease from developing in the Ifnar2-/- mice as infection progressed. Importantly, by altering the inflamed environment of the Ifnar2-/- mice early during A. fumigatus infection, by neutralizing TNF-α, we were able to reduce the morbidity and fungal clearance in these mice back to wild-type levels. Together, our results establish a distinct role for IFNAR2 in regulating host damage responses to A. fumigatus and contributing to an A. fumigatus-permissive environment through regulation of inflammation. Specifically, our data reveal a role for IFNAR2 in regulating TNF-α-mediated damage and morbidity during A. fumigatus infection.
Collapse
Affiliation(s)
| | - Jazmin Reyes Servin
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| | - Julianna Lenz
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| | - Julia Roemer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Evelyn E Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Monica N Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Kelly M Shepardson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| |
Collapse
|
11
|
Huang Z, Kong C, Zhang W, You J, Gao C, Yi J, Mai Z, Chen X, Zhou P, Gong L, Zhang G, Wang H. pK205R targets the proximal element of IFN-I signaling pathway to assist African swine fever virus to escape host innate immunity at the early stage of infection. PLoS Pathog 2024; 20:e1012613. [PMID: 39405340 PMCID: PMC11508493 DOI: 10.1371/journal.ppat.1012613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
African swine fever virus (ASFV) is a nuclear cytoplasmic large DNA virus (NCLDV) that causes devastating hemorrhagic diseases in domestic pigs and wild boars, seriously threatening the development of the global pig industry. IFN-I plays an important role in the body's antiviral response. Similar to other DNA viruses, ASFV has evolved a variety of immune escape strategies to antagonize IFN-I signaling and maintain its proliferation. In this study, we showed that the ASFV early protein pK205R strongly inhibited interferon-stimulated genes (ISGs) as well as the promoter activity of IFN-stimulated regulatory elements (ISREs). Mechanistically, pK205R interacted with the intracellular domains of IFNAR1 and IFNAR2, thereby inhibiting the interaction of IFNAR1/2 with JAK1 and TYK2 and hindering the phosphorylation and nuclear translocation of STATs. Subsequently, we generated a recombinant strain of the ASFV-pK205R point mutation, ASFV-pK205R7PM. Notably, we detected higher levels of ISGs in porcine alveolar macrophages (PAMs) than in the parental strain during the early stages of ASFV-pK205R7PM infection. Moreover, ASFV-pK205R7PM attenuated the inhibitory effect on IFN-I signaling. In conclusion, we identified a new ASFV immunosuppressive protein that increases our understanding of ASFV immune escape mechanisms.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jiangnan Yi
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
12
|
Ng M, Gao AS, Phu TA, Vu NK, Raffai RL. M2 Macrophage Exosomes Reverse Cardiac Functional Decline in Mice with Diet-Induced Myocardial Infarction by Suppressing Type 1 Interferon Signaling in Myeloid Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612924. [PMID: 39345592 PMCID: PMC11429744 DOI: 10.1101/2024.09.13.612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Effective treatment strategies to alleviate heart failure that develops as a consequence of myocardial infarction (MI) remain an unmet need in cardiovascular medicine. In this study, we uncovered that exosomes produced by human THP-1 macrophages cultured with the cytokine IL-4 (THP1-IL4-exo), reverse cardiac functional decline in mice that develop MI as a consequence of diet-induced occlusive coronary atherosclerosis. Therapeutic benefits of THP1-IL4-exo stem from their ability to reprogram circulating Ly-6Chi monocytes into an M2-like phenotype and suppress Type 1 Interferon signaling in myeloid cells within the bone marrow, the circulation, and cardiac tissue. Collectively, these benefits suppress myelopoiesis, myeloid cell recruitment to cardiac tissue, and preserve populations of resident cardiac macrophages that together mitigate cardiac inflammation, adverse ventricular remodeling, and heart failure. Our findings introduce THP1-IL4-exo, one form of M2-macrophage exosomes, as novel therapeutics to preserve cardiac function subsequent to MI.
Collapse
Affiliation(s)
- Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
14
|
Hayashi H, Mak TW, Tanaka Y, Kubo Y, Izumida M, Urae R, Matsuyama T. Development of a highly sensitive platform for protein-protein interaction detection and regulation of T cell function. Proc Natl Acad Sci U S A 2024; 121:e2318190121. [PMID: 39106307 PMCID: PMC11331103 DOI: 10.1073/pnas.2318190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
We developed a highly sensitive assay for detecting protein-protein interaction using chimeric receptors comprising two molecules of interest in the extracellular domain and interferon alpha and beta receptor subunit 1 or 2 (IFNAR1/2) in the intracellular domain. This intracellular IFNAR1/2 reconstitution system (IFNARRS) proved markedly more sensitive than the NanoBiT system, currently considered one of the best detection systems for protein interaction. Employing chimeric receptors with extracellular domains from the IFNγ or IL-2 receptor and the intracellular domains of IFNAR1/2, the IFNARRS system effectively identifies low IFNγ or IL-2 levels. Cells stably expressing these chimeric receptors responded to IFNγ secreted by activated T cells following various stimuli, including a specific peptide-antigen. The activation signals were further enhanced by the expression of relevant genes, such as costimulators, via IFN-stimulated response elements in the promoters. Besides IFNγ or IL-2, the IFNARRS system demonstrated the capability to detect other cytokines by using the corresponding extracellular domains from these target cytokine receptors.
Collapse
Affiliation(s)
- Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki852-8523, Japan
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong Special Administrative Region 999077, China
| | - Tak Wah Mak
- Center for Medical Innovation, Nagasaki University, Nagasaki852-8588, Japan
- Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 2M9, Canada
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Yoshimasa Tanaka
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong Special Administrative Region 999077, China
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki852-8523, Japan
| | - Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki852-8523, Japan
| | - Ryuji Urae
- Souseikai Clinical Research Center, Fukuoka812-0025, Japan
| | - Toshifumi Matsuyama
- Department of Forensic Pathology and Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki852-8523, Japan
| |
Collapse
|
15
|
Huang Z, Mai Z, Kong C, You J, Lin S, Gao C, Zhang W, Chen X, Xie Q, Wang H, Tang S, Zhou P, Gong L, Zhang G. African swine fever virus pB475L evades host antiviral innate immunity via targeting STAT2 to inhibit IFN-I signaling. J Biol Chem 2024; 300:107472. [PMID: 38879005 PMCID: PMC11328877 DOI: 10.1016/j.jbc.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
16
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
17
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
18
|
Mathavarajah S, Dellaire G. LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease. Biochem Cell Biol 2024; 102:38-46. [PMID: 37643478 DOI: 10.1139/bcb-2023-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.
Collapse
Affiliation(s)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
de Weerd NA, Kurowska A, Mendoza JL, Schreiber G. Structure-function of type I and III interferons. Curr Opin Immunol 2024; 86:102413. [PMID: 38608537 PMCID: PMC11057355 DOI: 10.1016/j.coi.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton 3168, Victoria, Australia
| | - Aleksandra Kurowska
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Juan L. Mendoza
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel, 76100
| |
Collapse
|
20
|
Xu H, Wang Z, Wang Y, Pan S, Zhao W, Chen M, Chen X, Tao T, Ma L, Ni Y, Li W. GSTM2 alleviates heart failure by inhibiting DNA damage in cardiomyocytes. Cell Biosci 2023; 13:220. [PMID: 38037116 PMCID: PMC10688053 DOI: 10.1186/s13578-023-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms underlying HF are still not fully clear. RESULTS In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur during HF. We found substantial differences in protein expression changes between the atria and ventricles of myocardial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues. CONCLUSIONS Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the functional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Hongfei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Zhen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yalin Wang
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shaobo Pan
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenting Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Miao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Xiaofan Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Tingting Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| | - Weidong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
21
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
23
|
Kim A, Park JH, Lee MJ, Kim SM. Interferon alpha and beta receptor 1 knockout in human embryonic kidney 293 cells enhances the production efficiency of proteins or adenoviral vectors related to type I interferons. Front Bioeng Biotechnol 2023; 11:1192291. [PMID: 37476482 PMCID: PMC10355049 DOI: 10.3389/fbioe.2023.1192291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/22/2023] Open
Abstract
Human embryonic kidney (HEK) 293 cells are widely used in protein and viral vector production owing to their high transfection efficiency, rapid growth, and suspension growth capability. Given their antiviral, anticancer, and immune-enhancing effects, type I interferons (IFNs) have been used to prevent and treat human and animal diseases. However, the binding of type I IFNs to the IFN-α and-β receptor (IFNAR) stimulates the expression of IFN-stimulated genes (ISGs). This phenomenon induces an antiviral state and promotes apoptosis in cells, thereby impeding protein or viral vector production. In this study, we generated an IFNAR subtype 1 knockout (KO) HEK 293 suspension (IFNAR-KO) cell line by using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) technology. Upon treatment with human IFN-α, the IFNAR-KO cells showed a constant expression of ISGs, including 2'-5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance 1 (Mx1), protein kinase RNA-activated (PKR), and IFN-induced transmembrane protein 1 (IFITM1), when compared with the wild-type HEK 293 (WT) cells, wherein the ISGs were significantly upregulated. As a result, the titer of recombinant adenovirus expressing porcine IFN-α was significantly higher in the IFNAR-KO cells than in the WT cells. Furthermore, the IFNAR-KO cells continuously produced higher amounts of IFN-α protein than the WT cells. Thus, the CRISPR-Cas9-mediated IFNAR1 KO cell line can improve the production efficiency of proteins or viral vectors related to IFNs. The novel cell line may be used for producing vaccines and elucidating the type I IFN signaling pathway in cells.
Collapse
|
24
|
Zhu G, Badonyi M, Franklin L, Seabra L, Rice GI, Anne-Boland-Auge, Deleuze JF, El-Chehadeh S, Anheim M, de Saint-Martin A, Pellegrini S, Marsh JA, Crow YJ, El-Daher MT. Type I Interferonopathy due to a Homozygous Loss-of-Inhibitory Function Mutation in STAT2. J Clin Immunol 2023; 43:808-818. [PMID: 36753016 PMCID: PMC10110676 DOI: 10.1007/s10875-023-01445-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. METHODS Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. RESULTS WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. CONCLUSION Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling.
Collapse
Affiliation(s)
- Gaofeng Zhu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Lina Franklin
- Cytokine Signalling Unit, Institut Pasteur, Paris, France
| | | | - Gillian I Rice
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Anne-Boland-Auge
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | | | - Mathieu Anheim
- Service de Neurologie, Centre de Référence Des Maladies Neurogénétiques Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Médecine de Strasbourg, Strasbourg, France
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, UMR7104, INSERM-U964/CNRS, Université de Strasbourg, Illkirch, France
| | - Anne de Saint-Martin
- Unité de Neurologie Pédiatrique, Centre de Référence Des Epilepsies Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- UMR 7104 INSERM U1258, IGBMC-CNRS, Strasbourg, France
| | | | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
- Institut Imagine, Paris, France.
| | - Marie-Therese El-Daher
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
26
|
Cuttano R, Afanga MK, Bianchi F. MicroRNAs and Drug Resistance in Non-Small Cell Lung Cancer: Where Are We Now and Where Are We Going. Cancers (Basel) 2022; 14:5731. [PMID: 36497213 PMCID: PMC9740066 DOI: 10.3390/cancers14235731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world. The development of drug resistance represents a major challenge for the clinical management of patients. In the last years, microRNAs have emerged as critical modulators of anticancer therapy response. Here, we make a critical appraisal of the literature available on the role of miRNAs in the regulation of drug resistance in non-small cell lung cancer (NSCLC). We performed a comprehensive annotation of miRNAs expression profiles in chemoresistant versus sensitive NSCLC, of the drug resistance mechanisms tuned up by miRNAs, and of the relative experimental evidence in support of these. Furthermore, we described the pros and cons of experimental approaches used to investigate miRNAs in the context of therapeutic resistance, to highlight potential limitations which should be overcome to translate experimental evidence into practice ultimately improving NSCLC therapy.
Collapse
Affiliation(s)
| | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
27
|
Cao W, Lu H, Zhang L, Wang S, Deng W, Jiang T, Lin Y, Yang L, Bi X, Lu Y, Zhang L, Shen G, Liu R, Chang M, Wu S, Gao Y, Hao H, Xu M, Chen X, Hu L, Xie Y, Li M. Functional molecular expression of nature killer cells correlated to HBsAg clearance in HBeAg-positive chronic hepatitis B patients during PEG-IFN α-2a therapy. Front Immunol 2022; 13:1067362. [PMID: 36479104 PMCID: PMC9720173 DOI: 10.3389/fimmu.2022.1067362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To explore whether the frequencies and functional molecules expression of Natural Killer cells (NK cells) are related to hepatitis B surface antigen (HBsAg) disappearance in hepatitis B e envelope antigen (HBeAg)-positive patients with chronic hepatitis B (CHB) throughout peginterferon alpha-2a (PEG-IFN α-2a) treatment. METHODS In this prospective research, HBeAg-positive patients with CHB received PEG-IFN α-2a treatment, completing 4-year follow-up. After PEG-IFN α-2a treatment, undetectable HBV DNA, HBsAg loss, and HBeAg disappearance were defined as functional cure. Proportions of NK, CD56dim, CD56bright, NKp46+, NKp46dim, NKp46high, and interferon alpha receptor 2 (IFNAR2)+ NK cells, and the mean fluorescence intensity (MFI) of NK cell surface receptors IFNAR2 and NKp46 were detected. RESULTS 66 patients were enrolled into the study in which 17 patients obtained functional cure. At baseline, hepatitis B virus desoxyribose nucleic acid (HBV DNA) titer in patients with functional cure was remarkably lower than that in Non-functional cure group. Compared with baseline, HBV DNA levels, HBsAg levels, and HBeAg levels significantly declined at week 12 and 24 of therapy in patients with functional cure. At baseline, the negative correlation between CD56bright NK% and HBV DNA and the negative correlation between CD56dim NK% and HBV DNA was showed; CD56bright NK% and IFNAR2 MFI in patients with functional cure were remarkably higher than those in patients without functional cure. After therapy, CD56bright NK% and NKp46high NK% in patients with functional cure were higher than those in patients without functional cure. In Functional cure group, after 24 weeks of treatment NK%, CD56bright NK%, IFNAR2 MFI weakly increased, and NKp46high NK% and NKp46 MFI significantly increased, meanwhile, CD56dim NK% and NKp46dim NK% decreased. Only NKp46 MFI increased after therapy in patients without functional cure. CONCLUSION The lower HBV DNA load and the higher CD56bright NK% before therapy, and the higher the post-treatment CD56bright NK%, IFNAR2 MFI, NKp46high NK%, the easier to achieve functional cure.
Collapse
Affiliation(s)
- Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Miyun Teaching Hospital, Capital Medical University, Beijing, China
| | - Huihui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxue Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Infectious Disease Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
28
|
Zhang L, Ma J, Jin X, Zhang L, Zhang M, Li PZ, Li J, Zhang L. Human IFNAR2 Mutant Generated by CRISPR/Cas9-Induced Exon Skipping Upregulates a Subset of Tonic-Like Interferon-Stimulated Genes Upon IFNβ Stimulation. J Interferon Cytokine Res 2022; 42:580-589. [DOI: 10.1089/jir.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Linnan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Ma
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyang Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengfan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Patrick Z. Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Sequí-Sabater JM, Beretta L. Defining the Role of Monocytes in Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms232112765. [PMID: 36361554 PMCID: PMC9654893 DOI: 10.3390/ijms232112765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Sjögren's syndrome is one of the most prevalent autoimmune diseases after rheumatoid arthritis, with a preference for middle age, and is characterised by exocrine glandular involvement leading to xerostomia and xerophthalmia. It can have systemic implications with vascular, neurological, renal, and pulmonary involvement, and in some cases, it may evolve to non-Hodgkin's lymphoma. For a long time, B- and T-lymphocytes have been the focus of research and have been considered key players in Sjögren's syndrome pathogenesis and evolution. With the development of new technologies, including omics, more insights have been found on the different signalling pathways that lead to inflammation and activation of the immune system. New evidence indicates that a third actor linking innate and adaptive immunity plays a leading role in the Sjögren's syndrome play: the monocyte. This review summarises the recent insights from transcriptomic, proteomic, and epigenetic studies that help us to understand more about the Sjögren's syndrome pathophysiology and redefine the involvement of monocytes in this disease.
Collapse
Affiliation(s)
- Jose Miguel Sequí-Sabater
- Rheumatology Department, Reina Sofía University Hospital, Menéndez Pidal Ave., 14005 Córdoba, Spain
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, Menéndez Pidal Ave., 14005 Córdoba, Spain
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico di Milano, Francesco Sforza St. 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
30
|
Zheng Q, Wang D, Lin R, Lv Q, Wang W. IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Front Immunol 2022; 13:1013322. [PMID: 36189314 PMCID: PMC9520788 DOI: 10.3389/fimmu.2022.1013322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of severe coronavirus disease 2019 (COVID-19). Staphylococcus aureus is one of the most common pathogenic bacteria in humans, rheumatoid arthritis (RA) is among the most prevalent autoimmune conditions. RA is a significant risk factor for SARS-CoV-2 and S. aureus infections, although the mechanism of RA and SARS-CoV-2 infection in conjunction with S. aureus infection has not been elucidated. The purpose of this study is to investigate the biomarkers and disease targets between RA and SARS-CoV-2 and S. aureus infections using bioinformatics analysis, to search for the molecular mechanisms of SARS-CoV-2 and S. aureus immune escape and potential drug targets in the RA population, and to provide new directions for further analysis and targeted development of clinical treatments. Methods The RA dataset (GSE93272) and the S. aureus bacteremia (SAB) dataset (GSE33341) were used to obtain differentially expressed gene sets, respectively, and the common differentially expressed genes (DEGs) were determined through the intersection. Functional enrichment analysis utilizing GO, KEGG, and ClueGO methods. The PPI network was created utilizing the STRING database, and the top 10 hub genes were identified and further examined for functional enrichment using Metascape and GeneMANIA. The top 10 hub genes were intersected with the SARS-CoV-2 gene pool to identify five hub genes shared by RA, COVID-19, and SAB, and functional enrichment analysis was conducted using Metascape and GeneMANIA. Using the NetworkAnalyst platform, TF-hub gene and miRNA-hub gene networks were built for these five hub genes. The hub gene was verified utilizing GSE17755, GSE55235, and GSE13670, and its effectiveness was assessed utilizing ROC curves. CIBERSORT was applied to examine immune cell infiltration and the link between the hub gene and immune cells. Results A total of 199 DEGs were extracted from the GSE93272 and GSE33341 datasets. KEGG analysis of enrichment pathways were NLR signaling pathway, cell membrane DNA sensing pathway, oxidative phosphorylation, and viral infection. Positive/negative regulation of the immune system, regulation of the interferon-I (IFN-I; IFN-α/β) pathway, and associated pathways of the immunological response to viruses were enriched in GO and ClueGO analyses. PPI network and Cytoscape platform identified the top 10 hub genes: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L, ISG15, HERC5, and IFIT5. The pathways are mainly enriched in response to viral and bacterial infection, IFN signaling, and 1,25-dihydroxy vitamin D3. IFI44, OAS1, IFI44L, ISG15, and HERC5 are the five hub genes shared by RA, COVID-19, and SAB. The pathways are primarily enriched for response to viral and bacterial infections. The TF-hub gene network and miRNA-hub gene network identified YY1 as a key TF and hsa-mir-1-3p and hsa-mir-146a-5p as two important miRNAs related to IFI44. IFI44 was identified as a hub gene by validating GSE17755, GSE55235, and GSE13670. Immune cell infiltration analysis showed a strong positive correlation between activated dendritic cells and IFI44 expression. Conclusions IFI144 was discovered as a shared biomarker and disease target for RA, COVID-19, and SAB by this study. IFI44 negatively regulates the IFN signaling pathway to promote viral replication and bacterial proliferation and is an important molecular target for SARS-CoV-2 and S. aureus immune escape in RA. Dendritic cells play an important role in this process. 1,25-Dihydroxy vitamin D3 may be an important therapeutic agent in treating RA with SARS-CoV-2 and S. aureus infections.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
31
|
Li Z, Klein JA, Rampam S, Kurzion R, Campbell NB, Patel Y, Haydar TF, Zeldich E. Asynchronous excitatory neuron development in an isogenic cortical spheroid model of Down syndrome. Front Neurosci 2022; 16:932384. [PMID: 36161168 PMCID: PMC9504873 DOI: 10.3389/fnins.2022.932384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The intellectual disability (ID) in Down syndrome (DS) is thought to result from a variety of developmental deficits such as alterations in neural progenitor division, neurogenesis, gliogenesis, cortical architecture, and reduced cortical volume. However, the molecular processes underlying these neurodevelopmental changes are still elusive, preventing an understanding of the mechanistic basis of ID in DS. In this study, we used a pair of isogenic (trisomic and euploid) induced pluripotent stem cell (iPSC) lines to generate cortical spheroids (CS) that model the impact of trisomy 21 on brain development. Cortical spheroids contain neurons, astrocytes, and oligodendrocytes and they are widely used to approximate early neurodevelopment. Using single cell RNA sequencing (scRNA-seq), we uncovered cell type-specific transcriptomic changes in the trisomic CS. In particular, we found that excitatory neuron populations were most affected and that a specific population of cells with a transcriptomic profile resembling layer IV cortical neurons displayed the most profound divergence in developmental trajectory between trisomic and euploid genotypes. We also identified candidate genes potentially driving the developmental asynchrony between trisomic and euploid excitatory neurons. Direct comparison between the current isogenic CS scRNA-seq data and previously published datasets revealed several recurring differentially expressed genes between DS and control samples. Altogether, our study highlights the power and importance of cell type-specific analyses within a defined genetic background, coupled with broader examination of mixed samples, to comprehensively evaluate cellular phenotypes in the context of DS.
Collapse
Affiliation(s)
- Zhen Li
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Jenny A. Klein
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ronni Kurzion
- Department of Chemistry, Boston University, Boston, MA, United States
| | | | - Yesha Patel
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| |
Collapse
|
32
|
Li X, Liu S, Rai KR, Zhou W, Wang S, Chi X, Guo G, Chen JL, Liu S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front Immunol 2022; 13:960544. [PMID: 36148221 PMCID: PMC9486978 DOI: 10.3389/fimmu.2022.960544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siya Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
34
|
Zhao L, Zhao Y, Liu Q, Huang J, Lu Y, Ping J. DDX5/METTL3-METTL14/YTHDF2 Axis Regulates Replication of Influenza A Virus. Microbiol Spectr 2022; 10:e0109822. [PMID: 35583334 PMCID: PMC9241928 DOI: 10.1128/spectrum.01098-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
DEAD-box helicase 5 (DDX5), a member of the DEAD/H-box helicases, is known to participate in all aspects of RNA metabolism. However, its regulatory effect in antiviral innate immunity during replication of influenza virus remains unclear. Herein, we found that human DDX5 promotes replication of influenza virus in A549 cells. Moreover, our results further revealed that DDX5 relies on its N terminus to interact with the nucleoprotein (NP) of influenza virus, which is independent of RNA. Of course, we also observed colocalization of DDX5 with NP in the context of transfection or infection. However, influenza virus infection had no significant effect on the protein expression and nucleocytoplasmic distribution of DDX5. Importantly, we found that DDX5 suppresses antiviral innate immunity induced by influenza virus infection. Mechanistically, DDX5 downregulated the mRNA levels of interferon beta (IFN-β), interleukin 6 (IL-6), and DHX58 via the METTL3-METTL14/YTHDF2 axis. We revealed that DDX5 bound antiviral transcripts and regulated immune responses through YTHDF2-dependent mRNA decay. Taken together, our data demonstrate that the DDX5/METTL3-METTL14/YTHDF2 axis regulates the replication of influenza A virus. IMPORTANCE The replication and transcription of influenza virus depends on the participation of many host factors in cells. Exploring the relationship between viruses and host factors will help us fully understand the characteristics and pathogenic mechanisms of influenza viruses. In this study, we showed that DDX5 interacted with the NP of influenza virus. We demonstrated that DDX5 downregulated the expression of IFN-β and IL-6 and the transcription of antiviral genes downstream from IFN-β in influenza virus-infected A549 cells. Additionally, DDX5 downregulated the mRNA levels of antiviral transcripts via the METTL3-METTL14/YTHDF2 axis. Our findings provide a novel perspective to understand the mechanism by which DDX5 regulates antiviral immunity.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Li C, Marton I, Harari D, Shemesh M, Kalchenko V, Pardo M, Schreiber G, Rudich Y. Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomater Sci Eng 2022; 8:2553-2563. [PMID: 35608934 PMCID: PMC9159517 DOI: 10.1021/acsbiomaterials.2c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
Collapse
Affiliation(s)
- Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ira Marton
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Harari
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Maya Shemesh
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vyacheslav Kalchenko
- Department
of Veterinary Resources, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
36
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
37
|
Karimian T, Hager R, Karner A, Weghuber J, Lanzerstorfer P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. BIOSENSORS 2022; 12:140. [PMID: 35323410 PMCID: PMC8946821 DOI: 10.3390/bios12030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/08/2023]
Abstract
Depositing biomolecule micropatterns on solid substrates via microcontact printing (µCP) usually requires complex chemical substrate modifications to initially create reactive surface groups. Here, we present a simplified activation procedure for untreated solid substrates based on a commercial polymer metal ion coating (AnteoBindTM Biosensor reagent) that allows for direct µCP and the strong attachment of proteins via avidity binding. In proof-of-concept experiments, we identified the optimum working concentrations of the surface coating, characterized the specificity of protein binding and demonstrated the suitability of this approach by subcellular micropatterning experiments in living cells. Altogether, this method represents a significant enhancement and simplification of existing µCP procedures and further increases the accessibility of protein micropatterning for cell biological research questions.
Collapse
Affiliation(s)
- Tina Karimian
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Roland Hager
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Andreas Karner
- School of Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria;
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
- FFoQSI GmbH, Austrian Competence Center for Feed and Food Quality, Safety & Innovation, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| |
Collapse
|
38
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|