1
|
Qiu N, Xu C, Zhang Z, Wang R, Wei X, Xie Y, Wang S, Lu D, Wang K, Xu S, Shen C, Su R, Cen B, Liu Y, Shen Y, Xu X. Autologous tumoral esterase-driven therapeutic polymers sequentially orchestrated antigen-induction, STING activation and anti-angiogenesis for systemic cancer immune therapy. Biomaterials 2025; 320:123260. [PMID: 40138966 DOI: 10.1016/j.biomaterials.2025.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Effective cancer immune therapy requires the orchestration of antigen induction, presentation and T-cell activation, further enhanced by anti-angiogenesis treatment; therefore, multiple therapeutics are generally used for such combination therapy. Herein, we report esterase-hydrolysable cationic polymers, N-[3-((4-acetoxy benzyl) oxy)-3-oxopropyl]-N-methyl-quaternized PEI (ERP) and poly{N-[2-(acryloyl-oxy) ethyl]-N-[p-acetyloxyphenyl]-N,N-dimethylammonium chloride} (PQDMA), capable of simultaneously inducing tumor cell immunogenic cell death (ICD) to release antigens, activating the cGAS-STING pathways of tumor macrophages and dendritic cells, and releasing antiangiogenic agent p-hydroxybenzyl alcohol (HBA). Thus, intratumoral injection of ERP or PQDMA systemically boosted the anti-cancer immunities and inhibited tumor angiogenesis in mouse hepatocellular carcinoma and melanoma bilateral tumor models, leading to more effective tumor growth inhibition of both treated and abscopal untreated tumors than ICD alone induced by mitoxantrone and control cationic polymers. Further study using gene knockout mice and transcriptome sequencing analysis confirmed the involvement of cGAS-STING and type I IFN signaling pathways. This work demonstrates ERP and PQDMA as the first examples of inherent therapeutic polymers, accomplishing systemic tumor inhibition without combining other therapeutic agents.
Collapse
Affiliation(s)
- Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Chang Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhen Zhang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Rui Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yangla Xie
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Chenchen Shen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Beini Cen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yanpeng Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang H, Xu X, Li S, Huang H, Zhang K, Li W, Wang X, Yang J, Yin X, Qu C, Ni J, Dong X. Advances in nanoplatform-based multimodal combination therapy activating STING pathway for enhanced anti-tumor immunotherapy. Colloids Surf B Biointerfaces 2025; 250:114573. [PMID: 39983453 DOI: 10.1016/j.colsurfb.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Activation of the cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING) has great potential to promote antitumor immunity. As a major effector of the cell to sense and respond to the aberrant presence of cytoplasmic double-stranded DNA (dsDNA), inducing the expression and secretion of type I interferons (IFN) and STING, cGAS-STING signaling pathway establishes an effective natural immune response, which is one of the fundamental mechanisms of host defense in organisms. In addition to the release of heterologous DNA due to pathogen invasion and replication, mitochondrial damage and massive cell death can also cause abnormal leakage of the body's own dsDNA, which is then recognized by the DNA receptor cGAS and activates the cGAS-STING signaling pathway. However, small molecule STING agonists suffer from rapid excretion, low bioavailability, non-specificity and adverse effects, which limits their therapeutic efficacy and in vivo application. Various types of nano-delivery systems, on the other hand, make use of the different unique structures and surface modifications of nanoparticles to circumvent the defects of small molecule STING agonists such as fast metabolism and low bioavailability. Also, the nanoparticles are precisely directed to the focal site, with their own appropriate particle size combined with the characteristics of passive or active targeting. Herein, combined with the cGAS-STING pathway to activate the immune system and kill tumor tissues directly or indirectly, which help maximize the use of the functions of chemotherapy, photothermal therapy(PTT), chemodynamic therapy(CDT), and radiotherapy(RT). In this review, we will discuss the mechanism of action of the cGAS-STING pathway and introduce nanoparticle-mediated tumor combination therapy based on the STING pathway. Collectively, the effective multimodal nanoplatform, which can activate cGAS-STING pathway for enhanced anti-tumor immunotherapy, has promising avenue clinical applications for cancer treatment.
Collapse
Affiliation(s)
- Huizhong Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohan Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiman Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huating Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ke Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjing Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinzhu Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingwen Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiaoxv Dong
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Cao X, Ren X, Song Y, Sun Q, Mao F, Shen S, Chen C, Zhou Y. High Expression of Calreticulin Affected the Tumor Microenvironment and Correlated With Worse Prognosis in Patients With Triple-Negative Breast Cancer. J Immunother 2025; 48:173-182. [PMID: 40123257 PMCID: PMC12052058 DOI: 10.1097/cji.0000000000000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Calreticulin (CALR) preserves reticular homeostasis by maintaining correct protein folding within the endoplasmic reticulum. Immunogenic cell death (ICD) is a regulated form of cell death and could activate adaptive immune response. As one of the damage-associated molecular patterns during ICD process, surface-exposed CALR resulted in the activation of adaptive immune response. Here, we evaluated the expression patterns of CALR in a cohort of 231 untreated triple-negative breast cancer (TNBC) and determined correlations between CALR expression and clinicopathologic parameters, programmed cell death ligand 1 (PD-L1) expression in immune cells (ICs), and survival. In addition, we analyzed a TNBC data set from The Cancer Genome Atlas to explore the relationship between mRNA expression of CALR and clinicopathologic features, IC infiltration, and survival. Tissue microarray results showed that high CLAR was strongly correlated with advanced stage ( P = 0.022), shorter disease-free survival ( P = 0.008) and overall survival ( P = 0.002), and independently predicted prognosis in TNBC. Spearman analyses demonstrated that CALR negatively correlated with PD-L1 in ICs ( r = -0.198, P = 0.003). Patients with low CALR and high PD-L1 in ICs had the best disease-free survival ( P = 0.013) and overall survival ( P = 0.004) compared with other patients, especially the patients with high CALR and low PD-L1 in ICs. In the "The Cancer Genome Atlas" cohort, CALR mRNA expression in tumors was significantly higher than that in normal tissues ( P < 0.001). CALR expression was strongly and positively related to other ICD-related genes. These findings demonstrated that the expression of CALR could independently predict the prognosis in patients with TNBC, and it may play a potential synergistic role in treatments involving immunotherapy.
Collapse
Affiliation(s)
- Xi Cao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Song
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Banuelos A, Baez M, Zhang A, Yılmaz L, Kasberg W, Volk R, Georgeos N, Koren-Sedova E, Le U, Burden AT, Marjon KD, Lippincott-Schwartz J, Zaro BW, Weissman IL. Macrophages release neuraminidase and cleaved calreticulin for programmed cell removal. Proc Natl Acad Sci U S A 2025; 122:e2426644122. [PMID: 40397678 DOI: 10.1073/pnas.2426644122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025] Open
Abstract
Calreticulin (CALR) is primarily an endoplasmic reticulum chaperone protein that also plays a key role in facilitating programmed cell removal (PrCR) by acting as an "eat-me" signal for macrophages, directing their recognition and engulfment of dying, diseased, or unwanted cells. Recent findings have demonstrated that macrophages can transfer their own CALR onto exposed asialoglycans on target cells, marking them for PrCR. Despite the critical role CALR plays in this process, the molecular mechanisms behind its secretion by macrophages and the formation of binding sites on target cells remain unclear. Our findings show that CALR undergoes C-terminal cleavage upon secretion, producing a truncated form that functions as the active eat-me signal detectable on target cells. We identify cathepsins as potential proteases involved in this cleavage process. Furthermore, we demonstrate that macrophages release neuraminidases, which modify the surface of target cells and facilitate CALR binding. These insights reveal a coordinated mechanism through which lipopolysaccharide (LPS)-activated macrophages regulate CALR cleavage and neuraminidase activity to mark target cells for PrCR. How they recognize the cells to be targeted remains unknown.
Collapse
Affiliation(s)
- Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Michelle Baez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Leyla Yılmaz
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Regan Volk
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Nardin Georgeos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elle Koren-Sedova
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Uyen Le
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Andrew T Burden
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Balyn W Zaro
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| |
Collapse
|
6
|
Bahmani F, Shayanmanesh M, Safari M, Alaei A, Yasaman Pouriafar, Rasti Z, Zaker F, Rostami S, Damerchiloo F, Safa M. Bone marrow microenvironment in myelodysplastic neoplasms: insights into pathogenesis, biomarkers, and therapeutic targets. Cancer Cell Int 2025; 25:175. [PMID: 40349084 PMCID: PMC12065391 DOI: 10.1186/s12935-025-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Myelodysplastic neoplasms (MDS) represent a heterogeneous group of malignant hematopoietic stem and progenitor cell (HSPC) disorders characterized by cytopenia, ineffective hematopoiesis, as well as the potential to progress to acute myeloid leukemia (AML). The pathogenesis of MDS is influenced by intrinsic factors, such as genetic insults, and extrinsic factors, including altered bone marrow microenvironment (BMM) composition and architecture. BMM is reprogrammed in MDS, initially to prevent the development of the disease but eventually to provide a survival advantage to dysplastic cells. Recently, inflammation or age-related inflammation in the bone marrow has been identified as a key pathogenic mechanism for MDS. Inflammatory signals trigger stress hematopoiesis, causing HSPCs to emerge from quiescence and resulting in MDS development. A better understanding of the role of the BMM in the pathogenesis of MDS has opened up new avenues for improving diagnosis, prognosis, and treatment of the disease. This article provides a comprehensive review of the current knowledge regarding the significance of the BMM to MDS pathophysiology and highlights recent advances in developing innovative therapies.
Collapse
Affiliation(s)
- Forouzan Bahmani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayanmanesh
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirarsalan Alaei
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Yasaman Pouriafar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rasti
- Department of Hematology, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Damerchiloo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Takimoto CH, Wick MJ. Oncolytic viruses targeting CD47: a new road to success? J Immunother Cancer 2025; 13:e011550. [PMID: 40341033 PMCID: PMC12067844 DOI: 10.1136/jitc-2025-011550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
Clinical success in the therapeutic targeting of the CD47 signaling pathway has thus far remained elusive despite a promising scientific rationale. Use of oncolytic viruses to deliver CD47 targeting agents represents a novel approach to modulate the immunological landscape of the tumor microenvironment and to generate a systemic antitumor immune response. In recent preclinical studies, an oncolytic herpes simplex virus-1 engineered to express an inhibitory CD47-binding nanobody demonstrated promising antitumor activity. Several other oncolytic viruses engineered to express CD47 inhibitory molecules are also in preclinical development. Oncolytic viruses have the potential to mitigate drug delivery issues and may avoid systemic toxicities that have limited conventional CD47 targeting therapeutics. These novel therapeutics warrant further evaluation in clinical trials. The potential advantages, limitations, and remaining critical questions regarding this strategic approach are discussed here.
Collapse
|
8
|
Huang H, Tong QS, Zhang JY, Miao WM, Yu HH, Wang J, Shen S, Du JZ. Phagocytosis-Activating Nanocomplex Orchestrates Macrophage-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500982. [PMID: 40289887 DOI: 10.1002/adma.202500982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The phagocytosis of macrophages to tumor cells represents an alluring strategy for cancer immunotherapy; however, its effectiveness is largely hindered by the detrimental upregulation of anti-phagocytic signals and insufficient expression of pro-phagocytic signals of tumor cells. Here, a pro-phagocytic polymer-based nanocomplex is designed to promote the macrophage engulfment of tumor cells through concurrent modulation of both the "eat me" and "don't eat me" signals. The nanocomplex MNCCD47i-CALRt is formed by complexing a synthetic PAMAM derivative (G4P-C7A) that is capable of intrinsically inducing the exposure of calreticulin (CALR, a crucial pro-phagocytic protein) and a small inference RNA that can inhibit the expression of CD47 (a primary anti-phagocytic protein). MNCCD47i-CALRt can significantly delay tumor growth and prolong the survival of tumor-bearing mice with negligible hematopoietic toxicity in multiple murine colorectal cancer models. Furthermore, the pro-phagocytic capacity of MNCCD47i-CALRt is validated in the patient-derived tumor organoid model. Collectively, the phagocytosis-promoting nanocomplex provides a simple and potent strategy for boosting macrophage-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Hua Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Qi-Song Tong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Wei-Min Miao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hui-Han Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
9
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
10
|
Horbatok K, Semchuk I, Horbach O, Khranovska N, Kosach V, Borysko P, Koniev S, Ulrich AS, Afonin S, Komarov IV. In vitro evaluation of the immunogenic potential of gramicidin S and its photocontrolled analogues. RSC Med Chem 2025:d5md00075k. [PMID: 40270993 PMCID: PMC12013366 DOI: 10.1039/d5md00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Three hallmarks of ICD (immunogenic cell death), release of adenosine triphosphate (ATP), release of high mobility group box 1 protein, and calreticulin exposure on the cell surface, were studied upon treatment of mammalian cells with small cyclic peptides, namely, the natural antibiotic gramicidin S (GS) and two photocontrolled GS analogues (LMB002 and LMB033). The analogues contained a photoisomerizable diarylethene fragment, and they exhibited different bioactivities in their "open" and "closed" photoisomeric forms. The data (obtained from cell cultures and spheroids) were collected in a concentration-dependent manner to assess cytotoxicity. Results showed that treatment with all peptides induced ICD at sub-IC50 and higher concentrations, indicating that GS and its derivatives have promising immunogenic potential. The "open" photoisomers of the photoswitchable GS analogues generated using visible light were as efficient as ICD inducers and the parent GS, while the UV-generated "closed" photoforms induced ICD only at higher concentrations. Herein, the cell specificity and time dependency of the observed effects are presented.
Collapse
Affiliation(s)
- Kateryna Horbatok
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
| | - Iryna Semchuk
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Oleksandr Horbach
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Natalia Khranovska
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | | | - Petro Borysko
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry Akademician Kukhar street 1 02094 Kyiv Ukraine
| | - Serhii Koniev
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- Lumobiotics Auerstraße 2 76227 Karlsruhe Germany
| |
Collapse
|
11
|
Levengood MR, Carosino CM, Zhang X, Lucas S, Ortiz DJ, Westendorf L, Chin AP, Martin AD, Wong A, Hengel SM, Sun H, Zeng W, Yumul R, Dominguez MM, Chen Y, Zheng JH, Karlsson CA, Trang VH, Senter PD, Gardai SJ. Preclinical Development of SGN-CD47M: Protease-Activated Antibody Technology Enables Selective Tumor Targeting of the Innate Immune Checkpoint Receptor CD47. Mol Cancer Ther 2025; 24:471-484. [PMID: 39463068 PMCID: PMC11962404 DOI: 10.1158/1535-7163.mct-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
CD47 is a cell-surface glycoprotein that is expressed on normal human tissues and plays a key role as a marker of self. Tumor cells have co-opted CD47 overexpression to evade immune surveillance, and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Furthermore, pro-phagocytic signals are not uniformly expressed in tumors, and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to not only serve as an additional pro-phagocytic signal but also exacerbate toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 mAb linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment (TME). Masking technology has the potential to increase the amount of drug that reaches the TME while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared with the unmasked antibody. SGN-CD47M also displays preferential activation in the TME that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-signal regulatory protein α interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hao Sun
- Pfizer, Inc., Bothell, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fang K, Yuan S, Zhang X, Zhang J, Sun SL, Li X. Regulation of immunogenic cell death and potential applications in cancer therapy. Front Immunol 2025; 16:1571212. [PMID: 40207233 PMCID: PMC11979251 DOI: 10.3389/fimmu.2025.1571212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Immunogenic cell death (ICD), a type of regulatory cell death, plays an important role in activating the adaptive immune response. Activation of the tumor-specific immune response is accompanied by the cell surface exposure of calreticulin and heat-shock proteins, the secretion of adenosine triphosphate, and the release of high mobility group box-1. In this review, we summarize and classify the latest types of ICD inducers and their molecular mechanisms, and discuss the effects and potential applications of inducing ICD by chemotherapy drugs, targeted drugs, and oncolytic viruses in clinical research. We also explore the potential role of epigenetic modifiers in the induction of ICD, and clarify the synergistic anti-tumor effects of nano-pulse stimulation, radiosensitizers for radiotherapy, photosensitizers for photodynamic therapy, photothermal therapy, and other physical stimulation, combined with radiotherapy and chemotherapy induced-ICD, in multimodal immunotherapy. In addition, we elucidate the molecular mechanism of ICD in detail, including the calcium imbalance, mitochondrial stress, and the interactions in the tumor microenvironment. Ultimately, this review aims to offer deeper insight into the factors and mechanisms of ICD induction and provide a theoretical basis for the future development of ICD-based immunotherapy.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Jingdong Zhang
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Shu-lan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Lu C, Kang T, Zhang J, Yang K, Liu Y, Song K, Lin Q, Dixit D, Gimple RC, Zhang Q, Shi Z, Fan X, Wu Q, Li D, Shan D, Gao J, Gu D, You H, Li Y, Yang J, Zhao L, Qiu Z, Yang H, Zhao N, Gao W, Tao W, Lu Y, Chen Y, Ji J, Zhu Z, Kang C, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Liu N, Zhang N, Lu M, You Y, Rich JN, Zhang W, Wang X. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat Commun 2025; 16:2974. [PMID: 40140646 PMCID: PMC11947120 DOI: 10.1038/s41467-025-58366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with intra-tumoral hierarchy of glioblastoma stem cells (GSCs). The heterogeneity of GSCs within GBM inevitably leads to treatment resistance and tumor recurrence. Molecular mechanisms of different cellular state GSCs remain unclear. Here, we find that classical (CL) and mesenchymal (MES) GSCs are enriched in reactive immune region and high CL-MES signature informs poor prognosis in GBM. Through integrated analyses of GSCs RNA sequencing and single-cell RNA sequencing datasets, we identify specific GSCs targets, including MEOX2 for the CL GSCs and SRGN for the MES GSCs. MEOX2-NOTCH and SRGN-NFκB axes play important roles in promoting proliferation and maintaining stemness and subtype signatures of CL and MES GSCs, respectively. In the tumor microenvironment, MEOX2 and SRGN mediate the resistance of CL and MES GSCs to macrophage phagocytosis. Using genetic and pharmacologic approaches, we identify FDA-approved drugs targeting MEOX2 and SRGN. Combined CL and MES GSCs targeting demonstrates enhanced efficacy, both in vitro and in vivo. Our results highlighted a therapeutic strategy for the elimination of heterogeneous GSCs populations through combinatorial targeting of MEOX2 and SRGN in GSCs.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kefan Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiankun Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C Gimple
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Qian Zhang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daqi Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zhixin Qiu
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gao
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingmei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sameer Agnihotri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael D Taylor
- Department of Pediatrics- Hematology/Oncology and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, Texas, USA
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiuxing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Chen H, Deng C, Gao J, Wang J, Fu F, Wang Y, Wang Q, Zhang M, Zhang S, Fan F, Liu K, Yang B, He Q, Zheng Q, Shen X, Wang J, Hu T, Zhu C, Yang F, He Y, Hu H, Wang J, Li Y, Zhang Y, Cao Z. Integrative spatial analysis reveals tumor heterogeneity and immune colony niche related to clinical outcomes in small cell lung cancer. Cancer Cell 2025; 43:519-536.e5. [PMID: 39983726 DOI: 10.1016/j.ccell.2025.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Recent advances have shed light on the molecular heterogeneity of small cell lung cancer (SCLC), yet the spatial organizations and cellular interactions in tumor immune microenvironment remain to be elucidated. Here, we employ co-detection by indexing (CODEX) and multi-omics profiling to delineate the spatial landscape for 165 SCLC patients, generating 267 high-dimensional images encompassing over 9.3 million cells. Integrating CODEX and genomic data reveals a multi-positive tumor cell neighborhood within ASCL1+ (SCLC-A) subtype, characterized by high SLFN11 expression and associated with poor prognosis. We further develop a cell colony detection algorithm (ColonyMap) and reveal a spatially assembled immune niche consisting of antitumoral macrophages, CD8+ T cells and natural killer T cells (MT2) which highly correlates with superior survival and predicts improving immunotherapy response in an independent cohort. This study serves as a valuable resource to study SCLC spatial heterogeneity and offers insights into potential patient stratification and personalized treatments.
Collapse
Affiliation(s)
- Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jian Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yue Wang
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Qiming Wang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Mou Zhang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Shiyue Zhang
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fanfan Fan
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Liu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Yang
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiming He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiang Zheng
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xuxia Shen
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jin Wang
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Tao Hu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Changbin Zhu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen 361000, China
| | - Fei Yang
- Janssen China Research & Development, Shanghai 200233, China
| | - Yonghong He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jialei Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Ghosh A, Bhoumick A, Paul S, Chatterjee A, Mandal S, Basu A, Mukhopadhyay S, Das K, Sen P. FVIIa-PAR2 signaling facilitates immune escape by reducing phagocytic potential of macrophages in breast cancer. J Thromb Haemost 2025; 23:903-920. [PMID: 39667690 DOI: 10.1016/j.jtha.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown. OBJECTIVES In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages. METHODS Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo. RESULTS We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies. CONCLUSION PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhasis Mandal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | - Kaushik Das
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.
| |
Collapse
|
16
|
Zheng L, Wang H, Zhong X, Jia L, Shi G, Bai C, Yang R, Huang Z, Jiang Y, Wei J, Dong Z, Li J, Long Y, Dai L, Li Z, Chen C, Wang J. Reprogramming tumor microenvironment with precise photothermal therapy by calreticulin nanobody-engineered probiotics. Biomaterials 2025; 314:122809. [PMID: 39303415 DOI: 10.1016/j.biomaterials.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Targeted therapies have revolutionized traditional cancer treatments by precisely targeting tumor cells, enhancing efficacy and safety. Despite this advancement, the proportion of cancer patients eligible for such therapies remains low due to the absence of suitable targets. Here, we investigate whether the translocation of the immunogenic cell death (ICD) marker calreticulin (CALR) from the endoplasmic reticulum (ER) to the cell surface following ICD induction can serve as a target for targeted therapies. To target CALR, a nanobody Nb215 identified from a naïve VHH phage library with high binding affinity to both human and mouse CALR was employed to engineer probiotic EcN 1917. Our results demonstrated that CALR nanobody-modified EcN-215 coupled with the photothermal dye indocyanine green (ICG) was able to exert NIR-II imaging-guide photothermal therapy (PTT). Moreover, PTT with EcN-215/ICG can reshape the tumor microenvironment by enhancing the infiltration of CD45+CD3+ T cells and CD11b+F4/80+ macrophages. Furthermore, the antitumor activity of CALR-targeted EcN-215/ICG is synergistically enhanced by blocking CD47-SIRPα axis. Collectively, our study provides a proof of concept for CALR-targeted therapy. Given that CALR translocation can be induced by various anticancer therapies across numerous tumor cell lines, CALR-targeted therapies hold promise as a novel approach for treating multiple types of cancers.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaoru Zhong
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangwei Shi
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528399, China
| | - Chongzhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528399, China
| | - Zhenhui Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuke Jiang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jinxi Wei
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Zhiyu Dong
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Jiexuan Li
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Ying Long
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Zhijie Li
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Krishnamoorthy M, Seelige R, Brown CR, Chau N, Nielsen Viller N, Johnson LDS, Linderoth E, Wang JCY, Dillon CP, Abayasiriwardana K, Lees C, Wong M, Kaneda MM, Uger RA, Lin GHY. Maplirpacept: a CD47 decoy receptor with minimal red blood cell binding and robust anti-tumor efficacy. Front Immunol 2025; 16:1518787. [PMID: 40078999 PMCID: PMC11897230 DOI: 10.3389/fimmu.2025.1518787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction CD47 is highly expressed on cancer cells and triggers an anti-phagocytic "don't eat me" signal when bound by the inhibitory signal regulatory protein α (SIRPα) expressed on macrophages. While CD47 blockade can mitigate tumor growth, many CD47 blockers also bind to red blood cells (RBCs), leading to anemia. Maplirpacept (TTI-622, PF-07901801) is a CD47 blocking fusion protein consisting of a human SIRPα fused to an IgG4 Fc region and designed to limit binding to RBCs. Methods To determine maplirpacept binding to RBCs and interference with blood tests, human blood samples were used. The ability of maplirpacept to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy as a monotherapy and in combination with other therapeutic agents was evaluated in xenograft models. Results In the current study, we demonstrate that maplirpacept has limited binding to RBCs while driving enhanced macrophage-mediated phagocytosis of hematological tumor cells in vitro and reducing tumor burden in human xenograft models. Moreover, phagocytosis of neoplastic cells can be enhanced when maplirpacept is combined with other therapeutic agents, including antibodies or chemotherapeutic agents. Conclusion These preclinical results establish maplirpacept as an effective CD47 blocker that mitigates the potential for anemia in patients.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Ruth Seelige
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | | | - Nancy Chau
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | | | - Lisa D. S. Johnson
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Emma Linderoth
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Jean C. Y. Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Clare Lees
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
| | - Mark Wong
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | | | - Robert A. Uger
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| | - Gloria H. Y. Lin
- Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States
- Research and Development, Trillium Therapeutics Inc., Mississauga, ON, Canada
| |
Collapse
|
18
|
Ding J, Zhao X, Long S, Sun W, Du J, Fan J, Peng X. A Dual Stimuli-Responsive Nanoimmunomodulator for Antitumor Synergy of Macrophages and T Cells. ACS NANO 2025; 19:6468-6478. [PMID: 39919169 DOI: 10.1021/acsnano.4c17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Only a minority of patients benefit from current T-cell-focused adaptive immunotherapies, underscoring the need to engage innate immune cells, particularly macrophages, for multilayered tumor control. However, high-efficacy therapeutics capable of orchestrating multiple immune cells remain scarce. Herein, a dual stimuli-responsive nanoimmunomodulator (6EPP@si) that caters specifically to the tumor microenvironment (TME) is presented for the antitumor synergy of macrophages and T cells. Using the functional polymer-based carrier, we co-deliver the endoplasmic reticulum (ER)-localized photosensitizer 6E and small interfering RNA targeting CD47 (siCD47) into breast tumors. Within the acidic and high-glutathione TME, 6EPP@si undergoes self-lysosome escape and nanocleavage for precise, on-demand drug release. Consequently, siCD47 released into the cytoplasm enables potent CD47 silencing, while the ER-targeted photosensitizer 6E induces immunogenic cell death through reactive oxygen species-based ER stress, triggering the release of damage-associated molecular patterns, including calreticulin surface translocation. 6EPP@si enhances macrophage phagocytosis by modulating both antiphagocytic and prophagocytic signals and also promotes antigen presentation to activate T cells. In orthotopic breast tumor and spontaneous lung metastatic tumor models, this combined approach demonstrates robust antitumor effects and effective antimetastatic immunity, offering a meaningful strategy to simultaneously activate multiple immune cells for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Junying Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueze Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Li S, Zhang J, Yu T, Song G, Ke J, Wang K, Xu Y, Hong Y, Meng T, Hong Y, Yuan H, Hu F. Microglia membrane-mediated trans-blood-brain barrier prodrug micelles enhance phagocytosis for glioblastoma chemo-immunotherapy. J Control Release 2025; 378:932-948. [PMID: 39724944 DOI: 10.1016/j.jconrel.2024.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma-associated macrophages & microglia (GAMs) are critical immune cells within the glioblastoma (GBM) microenvironment. Their phagocytosis of GBM cells is crucial for initiating both innate and adaptive immune responses. GBM cells evade this immune attack by upregulating the anti-phagocytic molecule CD47 on their surface. Although CD47 knockdown has shown promise in reducing tumor volume and increasing survival in GBM models, the efficacy of anti-CD47 antibodies remains limited clinically, partly due to the blood-brain tumor barrier (BBTB) and the insufficient pro-phagocytosis efficacy of CD47 blockade alone. Here, we introduce CSSOssMIT@MM-PEP20, a PEP20-linked microglia membrane (MM) camouflaged CSSOssMIT prodrug micelle. The MM targets vascular cell adhesion molecule-1 on the BBTB and enhances the penetration of CSSOssMIT@MM-PEP20 into the GBM tissue. CSSOssMIT@MM-PEP20 disassembles into MM-PEP20 and CSSOssMIT through the proton sponge effect in the acidic microenvironment. MM-PEP20 blocks the CD47-SIRPα axis, disabling the 'don't eat me' signal, while CSSOssMIT releases MIT within tumor cells to promote immunogenic cell death and amplify the 'eat me' signal. In an orthotopic GBM mouse model, CSSOssMIT@MM-PEP20 increased GAMs-mediated phagocytosis of GBM cells by 5.01-fold and enhanced CD8+ T cell infiltration by 8.63-fold, demonstrating significant GBM inhibition. Overall, this study presents a noninvasive strategy to traverse the BBTB and modulate GAMs phagocytosis, thereby facilitating effective anti-GBM chemo-immunotherapy.
Collapse
Affiliation(s)
- Sufen Li
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Zhang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Tong Yu
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou 311200, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jia Ke
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yichong Xu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiling Hong
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yun Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
21
|
Okura GC, Bharadwaj AG, Waisman DM. Calreticulin-From the Endoplasmic Reticulum to the Plasma Membrane-Adventures of a Wandering Protein. Cancers (Basel) 2025; 17:288. [PMID: 39858072 PMCID: PMC11764459 DOI: 10.3390/cancers17020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca2+-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca2+ homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER. However, the identification of CRT in the nucleus and cytosol has established that CRT is a multi-compartmental, multifunctional protein. CRT also plays an important role in cancer progression. Most recently, CRT was identified on the cell surface and shown to be a potent 'eat-me' signal that plays a key role in the uptake of apoptotic and viable cancer cells by phagocytes. Elevated CRT exposure on the outer leaflet of cancer cells has been linked with anticancer immunity and superior therapeutic outcomes in patients with non-small cell lung carcinoma, colorectal carcinoma, acute myeloid leukemia, ovarian cancer, and high-grade serous carcinomas. Mutations in the CRT gene have been identified in a subset of patients with myeloproliferative neoplasms. The most recent studies from our laboratory have revealed a new and significant function for extracellular CRT as a plasminogen receptor. This discovery has profound implications for our understanding of the role of CRT in myeloproliferative neoplasms, specifically, essential thrombocythemia.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
22
|
Song CW, Kim H, Kim MS, Park HJ, Paek SH, Terezakis S, Cho LC. Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy. Cancer Res Treat 2025; 57:1-10. [PMID: 38853541 PMCID: PMC11729307 DOI: 10.4143/crt.2024.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Tumor microenvironment is intrinsically hypoxic with abundant hypoxia-inducible factors-1α (HIF-1α), a primary regulator of the cellular response to hypoxia and various stresses imposed on the tumor cells. HIF-1α increases radioresistance and chemoresistance by reducing DNA damage, increasing repair of DNA damage, enhancing glycolysis that increases antioxidant capacity of tumors cells, and promoting angiogenesis. In addition, HIF-1α markedly enhances drug efflux, leading to multidrug resistance. Radiotherapy and certain chemotherapy drugs evoke profound anti-tumor immunity by inducing immunologic cell death that release tumor-associated antigens together with numerous pro-immunological factors, leading to priming of cytotoxic CD8+ T cells and enhancing the cytotoxicity of macrophages and natural killer cells. Radiotherapy and chemotherapy of tumors significantly increase HIF-1α activity in tumor cells. Unfortunately, HIF-1α effectively promotes various immune suppressive pathways including secretion of immune suppressive cytokines, activation of myeloid-derived suppressor cells, activation of regulatory T cells, inhibition of T cells priming and activity, and upregulation of immune checkpoints. Consequently, the anti-tumor immunity elevated by radiotherapy and chemotherapy is counterbalanced or masked by the potent immune suppression promoted by HIF-1α. Effective inhibition of HIF-1α may significantly increase the efficacy of radiotherapy and chemotherapy by increasing radiosensitivity and chemosensitivity of tumor cells and also by upregulating anti-tumor immunity.
Collapse
Affiliation(s)
- Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hyunkyung Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Heon J Park
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Sun-Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - L Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
23
|
Che Z, Wang W, Zhang L, Lin Z. Therapeutic strategies targeting CD47-SIRPα signaling pathway in gastrointestinal cancers treatment. J Pharm Anal 2025; 15:101099. [PMID: 39881799 PMCID: PMC11772969 DOI: 10.1016/j.jpha.2024.101099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025] Open
Abstract
Gastrointestinal (GI) cancers are prevalent globally, with leading incidence and mortality rates among malignant tumors. Despite notable advancements in surgical resection, radiotherapy, and chemotherapy, the overall survival rates remain low. Hence, it is imperative to explore alternative approaches that enhance patient outcomes. Cluster of differentiation 47 (CD47), serving as an early diagnostic marker, is predominantly overexpressed in GI cancers and associated with poor prognosis. Targeting the CD47-signal regulatory protein alpha (SIRPα) signaling pathway may provide a novel strategy for GI cancers treatment. This study summarizes current knowledge of the structure and function of CD47 and SIRPα, their roles in signaling pathways, the prognostic significance of CD47, therapeutic strategies targeting the CD47-SIRPα signaling pathway in GI cancer, and highlights key issues for future investigations.
Collapse
Affiliation(s)
- Zhengping Che
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing, 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
24
|
Ishiguro T, Takeda K, Takayanagi D, Mura E, Suzuki R, Tsurui T, Iriguchi N, Hirasawa Y, Ohkuma R, Shimokawa M, Ariizumi H, Kubota Y, Horiike A, Izumizaki M, Wada S, Yoshimura K, Hoffman RM, Tsunoda T. Immune Stress-induced Tumor Mutation Burden and Neoantigen Expression in 4T1 Mammary Cancer Cells: A Potential Mechanism for Long-term Survival in Patients Treated With Immune Checkpoint Inhibitors. Cancer Genomics Proteomics 2025; 22:1-12. [PMID: 39730175 PMCID: PMC11696327 DOI: 10.21873/cgp.20481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM The Kaplan-Meier curves for patients treated with immune checkpoint inhibitors (ICIs) display a small group of potentially-cured patients with long-term survival, creating a 'kangaroo-tail' shape of the survival curve. However, the mechanistic basis of this phenomenon and what occurs in patients whose cancer is resistant to ICIs remain unclear. The present study aimed to answer these questions. MATERIALS AND METHODS We analyzed mutations in mouse 4T1 mammary-gland-derived cancer cells expressing the hemagglutinin antigen (4T1-HA), which were grown in either wild-type mice or cytotoxic T-lymphocyte (CTL)-loaded immunocompromised mice (RAG-/- + ACT) under immune stress. These mutations were compared to those in 4T1-HA cells grown in RAG-/- mice without immune stress as a control. RESULTS The number of gene mutations, the tumor mutation burden (TMB) and microsatellite instability (MSI) scores were increased in the cancer cells under immune stress. The mutations in the antigen protein were such that the protein retained its immunogenicity and could still function as a neoantigen. Repeated immune recognition of additional neoantigens may lead to the kangaroo-tail survival phenomenon. The common genetic mutations of the analyzed 4T1-HA cells under immune stress included genes related to immune response. Analysis of alternative splicing of genes showed that are accumulated gene alterations under immune stress related to cancer-cell proliferation. Copy-number variation (CNV) analysis indicated that normal-antigen presentation and immune responses may be impaired under immune stress. CONCLUSION Cancer cells, under immune stress, may acquire both immune escape capabilities and increased immunogenicity. This dual effect could lead to either resistance or response to ICIs, respectively.
Collapse
Affiliation(s)
- Tomoyuki Ishiguro
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuyuki Takeda
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daisuke Takayanagi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Emiko Mura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Risako Suzuki
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Toshiaki Tsurui
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Nana Iriguchi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Ryotaro Ohkuma
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiro Shimokawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Atsushi Horiike
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan;
| |
Collapse
|
25
|
Andersen MD, Wolter K, Enemark MBH, Pedersen MA, Gormsen LC, Lauridsen KL, Starklint J, Hamilton‐Dutoit SJ, d'Amore F, Ludvigsen M, Honoré B, Kamper P. Proteomic Profiling of Lymph Nodes Differentiates Classic Hodgkin Lymphoma With and Without Skeletal Involvement. Eur J Haematol 2025; 114:173-185. [PMID: 39394762 PMCID: PMC11613579 DOI: 10.1111/ejh.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Classic Hodgkin lymphoma (CHL) is a highly curable disease, even in advanced stages. Controversy remains over whether bone involvement negatively affects overall and progression-free survival in patients treated with intensive chemotherapy regimens. Whether cases that present with bone lesions harbor specific tumor microenvironmental features is unknown. We investigated protein expression in diagnostic lymph node biopsies from CHL patients with and without skeletal involvement at diagnosis to identify potential markers of skeletal disease. Protein expression patterns in diagnostic formalin-fixed paraffin-embedded lymphoma lymph node samples from CHL patients were analyzed by nano-liquid chromatography-tandem mass spectrometry. Patients were grouped according to skeletal involvement, which was defined as the presence of one or more FDG-avid lesions on a diagnostic FDG-PET/CT scan. Protein profiles identified patients with skeletal disease at diagnosis and showed disrupted cellular pathways, including immune system processes, cell adhesion, and cell growth/survival. Immunohistochemical evaluation also demonstrated differential expressions of angiotensin-converting enzyme (ACE), intercellular adhesion molecule 3 (ICAM3), integrin alpha-X (ITGAX), and calreticulin (CALR). In conclusion, proteomics identified altered protein expression profiles in lymph nodes among CHL cases presenting with disease disseminated to the skeletal system, which implies altered disease pathogenesis for these patients.
Collapse
Affiliation(s)
- Maja Dam Andersen
- Department of HaematologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Katharina Wolter
- Department of HaematologyAarhus University HospitalAarhusDenmark
| | - Marie Beck Hairing Enemark
- Department of HaematologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Mette Abildgaard Pedersen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine & PET CentreAarhus University HospitalAarhusDenmark
| | | | | | - Jørn Starklint
- Department of MedicineRegional Hospital GoedstrupHerningDenmark
| | | | - Francesco d'Amore
- Department of HaematologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Maja Ludvigsen
- Department of HaematologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Bent Honoré
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Peter Kamper
- Department of HaematologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
26
|
Wang B, Cao X, Garcia-Mansfield K, Zhou J, Manousopoulou A, Pirrotte P, Wang Y, Wang LD, Feng M. Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells. Cancers (Basel) 2024; 16:4238. [PMID: 39766137 PMCID: PMC11674635 DOI: 10.3390/cancers16244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Macrophage-mediated cancer cell phagocytosis has demonstrated considerable therapeutic potential. While the initiation of phagocytosis, facilitated by interactions between cancer cell surface signals and macrophage receptors, has been characterized, the mechanisms underlying its sustentation and attenuation post-initiation remain poorly understood. Methods: Through comprehensive phosphoproteomic profiling, we interrogated the temporal evolution of the phosphorylation profiles within macrophages during cancer cell phagocytosis. Results: Our findings reveal that activation of the mTOR pathway occurs following the initiation of phagocytosis and is crucial in sustaining phagocytosis of cancer cells. mTOR inhibition impaired the phagocytic capacity, but not affinity, of the macrophages toward the cancer cells by delaying phagosome maturation and impeding the transition between non-phagocytic and phagocytic states of macrophages. Conclusions: Our findings delineate the intricate landscape of macrophage phagocytosis and highlight the pivotal role of the mTOR pathway in mediating this process, offering valuable mechanistic insights for therapeutic interventions.
Collapse
Affiliation(s)
- Bixin Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jingkai Zhou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick Pirrotte
- Cancer and Cell Biology Division, Translational Genomics Institute, Phoenix, AZ 85004, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Leo D. Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Malighetti F, Villa M, Mauri M, Piane S, Crippa V, Crespiatico I, Cocito F, Bossi E, Steidl C, Civettini I, Scollo C, Ramazzotti D, Gambacorti-Passerini C, Piazza R, Mologni L, Aroldi A. Anaplastic Lymphoma Kinase (ALK) Inhibitors Enhance Phagocytosis Induced by CD47 Blockade in Sensitive and Resistant ALK-Driven Malignancies. Biomedicines 2024; 12:2819. [PMID: 39767726 PMCID: PMC11673128 DOI: 10.3390/biomedicines12122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) plays a role in the development of lymphoma, lung cancer and neuroblastoma. While tyrosine kinase inhibitors (TKIs) have improved treatment outcomes, relapse remains a challenge due to on-target mutations and off-target resistance mechanisms. ALK-positive (ALK+) tumors can evade the immune system, partly through tumor-associated macrophages (TAMs) that facilitate immune escape. Cancer cells use "don't eat me" signals (DEMs), such as CD47, to resist TAMs-mediated phagocytosis. TKIs may upregulate pro-phagocytic stimuli (i.e., calreticulin, CALR), suggesting a potential therapeutic benefit in combining TKIs with an anti-CD47 monoclonal antibody (mAb). However, the impact of this combination on both TKIs-sensitive and resistant ALK+ tumors requires further investigation. METHODS A panel of TKIs-sensitive and resistant ALK+ cancer subtypes was assessed for CALR and CD47 expression over time using flow cytometry. Flow cytometry co-culture and fluorescent microscopy assays were employed to evaluate phagocytosis under various treatment conditions. RESULTS ALK inhibitors increased CALR expression in both TKIs-sensitive and off-target resistant ALK+ cancer cells. Prolonged TKIs exposure also led to CD47 upregulation. The combination of ALK inhibitors and anti-CD47 mAb significantly enhanced phagocytosis compared to anti-CD47 alone, as confirmed by flow cytometry and fluorescent microscopy. CONCLUSIONS Anti-CD47 mAb can quench DEMs while exposing pro-phagocytic signals, promoting tumor cell phagocytosis. ALK inhibitors induced immunogenic cell damage by upregulating CALR in both sensitive and off-target resistant tumors. Continuous TKIs exposure in off-target resistant settings also resulted in the upregulation of CD47 over time. Combining TKIs with a CD47 blockade may offer therapeutic benefits in ALK+ cancers, especially in overcoming off-target resistance where TKIs alone are less effective.
Collapse
Affiliation(s)
- Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Simone Piane
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Federica Cocito
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.C.); (E.B.)
| | - Elisa Bossi
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.C.); (E.B.)
| | - Carolina Steidl
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Ivan Civettini
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Chiara Scollo
- Transfusion Medicine Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.C.); (E.B.)
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.C.); (E.B.)
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (M.M.); (V.C.); (I.C.); (D.R.); (C.G.-P.); (R.P.); (L.M.)
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (F.C.); (E.B.)
| |
Collapse
|
28
|
Carturan A, Morè S, Poloni A, Rupoli S, Morsia E. Shaping the Future of Myeloproliferative Neoplasm Therapy: Immune-Based Strategies and Targeted Innovations. Cancers (Basel) 2024; 16:4113. [PMID: 39682299 DOI: 10.3390/cancers16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous cutting-edge immunotherapy approaches have been developed for hematological malignancies, such as immune-checkpoint inhibitors for lymphomas, chimeric antigen receptor (CAR)-T-cell treatments for B-cell cancers, and monoclonal antibody therapies for acute myeloid leukemia (AML). However, achieving similar breakthroughs in MPNs has proven challenging. The key obstacles include the absence of universally expressed and MPN-specific surface markers, significant cellular and molecular variability among both individual patients and across different MPN subtypes, and the failure of treatments to stimulate an anti-tumor immune response due to the immune system disruptions caused by the myeloid neoplasm. Currently, there are several innovative therapies in clinical trials for MPNs. These include new JAK inhibitors with greater specificity for JAK2, as well as "add-on" medications designed to enhance the effectiveness of ruxolitinib, in both patients who are new to the drug and in those who have shown suboptimal responses. Additionally, there is ongoing exploration of novel therapeutic targets. In this review, we will explore the immunotherapy approaches that are currently used in clinical practice for MPNs, as well as emerging strategies that are likely to change the treatment of these diseases in the coming years.
Collapse
Affiliation(s)
- Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Morè
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Erika Morsia
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
29
|
Brüßeler MT, Zam A, Moreno-Zafra VM, Rouatbi N, Hassuneh OWM, Marrocu A, Liam-Or R, Abdel-Bar HM, Walters AA, Al-Jamal KT. Polyinosinic/Polycytidylic Lipid Nanoparticles Enhance Immune Cell Infiltration and Improve Survival in the Glioblastoma Mouse Model. Mol Pharm 2024; 21:6339-6352. [PMID: 39556101 PMCID: PMC11615939 DOI: 10.1021/acs.molpharmaceut.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Glioblastoma (GBM) immunotherapy is particularly challenging due to the pro-tumorigenic microenvironment, marked by low levels and inactive immune cells. Toll-like receptor (TLR) agonists have emerged as potent immune adjuvants but failed to show improved outcomes in clinical trials when administered as a monotherapy. We hypothesize that a combined nanoparticulate formulation of TLR agonist and immunogenic cell death-inducing drug (doxorubicin) will synergize to induce improved GBM immunotherapy. Lipid nanoparticle (LNP) formulations of the TLR agonists CpG and polyinosinic/polycytidylic (pIpC), with and without Dox, were first prepared, achieving an encapsulation efficiency >75% and a size <140 nm. In vitro studies identified that LNP pIpC was superior to CpG at activating bone marrow-derived immune cell populations (dendritic cells and macrophages) with minimal toxicity. It was also observed that the pIpC formulation can skew macrophage polarization toward the antitumorigenic M1 phenotype and increase macrophage phagocytosis of cancer cells. Upon intratumoral administration, pIpC Dox LNPs led to significant immune cell infiltration and activation. In survival models, the inclusion of Dox into pIpC LNP improved mice survival compared to control. However, addition of Dox did not show significant improvement in mice's survival compared to singly formulated pIpC LNP. This study has illustrated the potential of pIpC LNP formulations in prospective GBM immunotherapeutic regimes. Future studies will focus on optimizing dosage regimen and/or combination with other modalities, including the standard of care (temozolomide), immune checkpoint blockade, or cancer vaccines.
Collapse
Affiliation(s)
- Melanie
M. T. Brüßeler
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Ludwig
Maximilians University, Bayern, Munich, München 80539, Germany
| | - Alaa Zam
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Víctor M. Moreno-Zafra
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Nadia Rouatbi
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Osama W. M. Hassuneh
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Alessia Marrocu
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Revadee Liam-Or
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 999077, China
| | - Hend Mohamed Abdel-Bar
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32958, El Sadat, Egypt
| | - Adam Alexander Walters
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 999077, China
| |
Collapse
|
30
|
Pelaez-Prestel HF, Gonzalez-Martin F, Ras-Carmona A, Rocha A, Cabañas C, Lafuente EM, Reche PA. Oral squamous cell carcinomas drive monocytes into immunosuppressive CD25 +CD163 +CD206 + macrophages. Oral Oncol 2024; 159:107078. [PMID: 39437531 DOI: 10.1016/j.oraloncology.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Tumor-associated macrophages (TAMs) are major cellular components in the tumor microenvironment of oral squamous cell carcinomas (OSCCs). Most of these TAMs derive from circulating monocytes that differentiate in situ. In this work, we show that cell culture media (CM) derived from two OSCC cell lines, H413 and TR146, promote monocyte differentiation into M2 macrophages, characterized by a high expression of CD163, CD206 and a low expression of CD11c, CD86 and HLA-DR. Monocyte-derived macrophages (moMΦ) differentiated by CM from H413 cells (H413-CM) were also unable to activate allogeneic T cells, and inhibited T cell activation and proliferation induced by CD3/CD28 stimulation. By culturing monocytes with fractionated H413-CM, we found that soluble proteins mediated CD163+CD206+ moMΦ differentiation, discarding a role for small metabolites and extracellular vesicles. Differential proteomic analyses on H413-CM fractions revealed the presence of several proteins, including the complement factor H or plasminogen activator inhibitor 1, as potential candidates to induce CD163+CD206+ moMΦ differentiation. Finally, RNAseq transcriptomic analyses of H413-CM conditioned moMΦ, identified a expression profile signature involving cytokines and cytokine receptors, which surprisingly included IL2RA (encoding CD25). CD25 enhanced expression was confirmed on H143-CM moMΦ. Collectively, these data indicate that the CM from OSCC cell lines promotes the differentiation of functionally immunosuppressive macrophages resembling TAMs, and contributes to the understanding of how OSCCs create an immunosuppressive cellular environment that favors tumor growth.
Collapse
Affiliation(s)
- Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Fernando Gonzalez-Martin
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Alvaro Ras-Carmona
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Almudena Rocha
- Center for Molecular Biology Severo Ochoa (CSIC-UAM), St Nicolás Cabrera, 1, Fuencarral-El Pardo, 28049 Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain; Center for Molecular Biology Severo Ochoa (CSIC-UAM), St Nicolás Cabrera, 1, Fuencarral-El Pardo, 28049 Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Pedro A Reche
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain.
| |
Collapse
|
31
|
Liu SY, Hulsman M, Leyendecker P, Chang E, Donovan KA, Strobel F, Dougan J, Fischer ES, Dougan M, Dougan SK, Qiang L. SMAC mimetics induce human macrophages to phagocytose live cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625306. [PMID: 39651304 PMCID: PMC11623637 DOI: 10.1101/2024.11.25.625306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Macrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents. We demonstrate robust phagocytosis of live pancreatic and breast cancer cells by primary human macrophages across a range of healthy donors. Unlike mouse macrophages where combination of SMAC mimetics with lymphotoxin enhanced phagocytosis, human macrophages were more efficiently polarized to phagocytose live cells by the combination of SMAC mimetics and IFNψ. We profiled phagocytic macrophages by transcriptional and proteomic methodologies, uncovering a positive feedback loop of autocrine TNFα production.
Collapse
|
32
|
Shahzad M, Amin MK, Daver NG, Shah MV, Hiwase D, Arber DA, Kharfan-Dabaja MA, Badar T. What have we learned about TP53-mutated acute myeloid leukemia? Blood Cancer J 2024; 14:202. [PMID: 39562552 PMCID: PMC11576745 DOI: 10.1038/s41408-024-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
TP53 is a tumor suppressor gene frequently mutated in human cancers and is generally associated with poor outcomes. TP53 mutations are found in approximately 5% to 10% of patients with de novo acute myeloid leukemia (AML), more frequently observed in elderly patients and those with therapy-related AML. Despite recent advances in molecular profiling and the emergence of targeted therapies, TP53-mutated AML remains a challenge to treat. Current treatment strategies, including conventional chemotherapy, hypomethylating agents, and venetoclax-based therapies, have shown limited efficacy in TP53-mutated AML, with low response rates and poor overall survival. Allogeneic hematopoietic stem cell transplantation is a potentially curative option; however, its efficacy in TP53-mutated AML depends on comorbid conditions and disease status at transplantation. Novel therapeutic modalities, including immune-based therapies, did show promise in early-phase studies but did not translate into effective therapies in randomized controlled trials. This review provides a comprehensive overview of TP53 mutations in AML, outcomes based on allelic burden, clinical implications, and therapeutic challenges.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Division of Hematology and Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Muhammad Kashif Amin
- Division of Hematologic Malignancies & Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Devendra Hiwase
- Department of Hematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Talha Badar
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
33
|
Ma Y, Sun Y, Guo H, Yang R. Tumor-associated macrophages in bladder cancer: roles and targeted therapeutic strategies. Front Immunol 2024; 15:1418131. [PMID: 39606239 PMCID: PMC11599180 DOI: 10.3389/fimmu.2024.1418131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Bladder cancer (BC) is the ninth most common and "expensive" cancer in the world. Despite the availability of various treatment modalities such as chemotherapy, immunotherapy and surgery, the overall survival rate of patients with advanced bladder cancer remains low. As one of the most abundant infiltrating immune cells in bladder cancer, tumor-associated macrophages (TAMs) play an important role in the development of BC and in the standard regimen of intravesical BCG therapy. Targeting TAMs have achieved excellent results in clinical trials for a variety of other cancers, but few studies have been conducted for bladder cancer. Further exploration is still needed to develop TAM-related therapeutic strategies for BC treatment, which are expected to improve the therapeutic efficacy and life quality of patients. This review summarizes the relationship between TAMs in bladder cancer and disease staging, evolution, patient prognosis, and treatment outcome. Several potential TAM targets in BC are also pointed, which may help to inhibit tumor-promoting TAMs and provide new therapeutic approaches for advanced BC.
Collapse
Affiliation(s)
- Yuanchun Ma
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ying Sun
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University Advanced Institute of Life Sciences (NAILS), Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Arai H, Gandhi N, Battaglin F, Wang J, Algaze S, Jayachandran P, Soni S, Zhang W, Yang Y, Millstein J, Lo JH, Sohal D, Goldberg R, Hall MJ, Scott AJ, Hwang JJ, Lou E, Weinberg BA, Marshall J, Goel S, Xiu J, Korn WM, Lenz HJ. Role of CD47 gene expression in colorectal cancer: a comprehensive molecular profiling study. J Immunother Cancer 2024; 12:e010326. [PMID: 39500526 PMCID: PMC11733795 DOI: 10.1136/jitc-2024-010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND In patients with colorectal cancer (CRC), the therapeutic effects of conventional immune checkpoint inhibitors targeting the adaptive immune system are largely limited to those with microsatellite instability-high tumors. Meanwhile, new immunotherapies targeting the innate immune system are attracting increasing attention. CD47 is a representative innate immune checkpoint involved in the evasion of tumor cell phagocytosis by macrophages. This large-scale study comprehensively examined the molecular significance of CD47 gene expression in CRC. METHODS We analyzed the next-generation sequencing data of DNA and RNA from 14,287 CRC cases included in the data set of a commercial Clinical Laboratory Improvement Amendments-certified laboratory (Caris Life Sciences). The cases were divided into two groups based on the median value of CD47 gene expression levels. The molecular and immune profiles between the groups were compared, and the relationship between CD47 expression and survival outcomes was further examined. RESULTS In CD47-high tumors, the proportion of consensus molecular subtypes 1 and 4 was significantly higher than in CD47-low tumors. The expression levels of damage-associated molecular pattern-related genes showed a positive correlation with CD47 expression levels. Major oncogenic pathways, such as mitogen-activated protein kinase, phosphoinositide 3-kinase, angiogenesis, and transforming growth factor beta, were significantly activated in CD47-high tumors. Additionally, the expression levels of a panel of adaptive immune checkpoint genes and estimates of immune cells constituting the tumor microenvironment (TME) were significantly higher in CD47-high tumors. CONCLUSIONS CD47 expression in CRC was associated with the activation of several oncogenic pathways and an immune-engaged TME. Our findings may provide valuable information for considering new therapeutic strategies targeting innate immune checkpoints in CRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Nishant Gandhi
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Caris Life Sciences, Phoenix, Arizona, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yan Yang
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Davendra Sohal
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard Goldberg
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Aaron James Scott
- Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Jimmy J Hwang
- Department of Solid Tumor Oncology, GI Medical Oncology Levine Cancer Institute, Charlotte, North Carolina, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - John Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Sanjay Goel
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Joanne Xiu
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Caris Life Sciences, Phoenix, Arizona, USA
| | - W Michael Korn
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Caris Life Sciences, Phoenix, Arizona, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
36
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
37
|
Laddha K, Sobhia ME. Breaking the 'don't eat me' signal: in silico design of CD47-directed peptides for cancer immunotherapy. Mol Divers 2024; 28:3067-3083. [PMID: 37759140 DOI: 10.1007/s11030-023-10732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The leading cause of death worldwide is cancer. Although there are various therapies available to treat cancer, finding a successful one can be like searching for a needle in a haystack. Immunotherapy appears to be one of those needles in the haystack of cancer treatment. Immunotherapeutic agents enhance the immune response of the patient's body to tumor cells. One of the immunotherapeutic targets, Cluster of Differentiation 47 (CD47), releases the "don't eat me" signal when it binds to its receptor, Signal Regulatory Protein (SIRPα). Tumor cells use this signal to circumvent the immune system, rendering it ineffective. To stop tumor cells from releasing the "don't eat me" signal, the CD47-SIRPα interaction is specifically targeted in this study. To do so, in silico peptides were designed based on the structural analysis of the interaction between two proteins using point mutations on the interacting residues with the other amino acids. The peptide library was designed and docked on SIRPα using computational tools. Later on, after analyzing the docked complex, the best of them was selected for MD simulation studies of 100 ns. Further analysis after MD studies was carried out to determine the possible potential anti-SIRPα peptides.
Collapse
Affiliation(s)
- Kapil Laddha
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
38
|
Wang J, Tian L, Barr T, Jin L, Chen Y, Li Z, Wang G, Liu JC, Wang LS, Zhang J, Hsu D, Feng M, Caligiuri MA, Yu J. Enhanced treatment of breast cancer brain metastases with oncolytic virus expressing anti-CD47 antibody and temozolomide. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200824. [PMID: 39035202 PMCID: PMC11260018 DOI: 10.1016/j.omton.2024.200824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Lewei Jin
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yuqing Chen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhiyao Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Ge Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jian-Chang Liu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Li-Shu Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| |
Collapse
|
39
|
Parladé E, García-Leon A, Voltà-Durán E, Unzueta U, Mangues R, Casanova I, Villaverde A, Vázquez E. Paradoxical cell targeting of calreticulin-empowered, protein-only nanoparticles. Eur J Pharm Biopharm 2024; 202:114410. [PMID: 39004320 DOI: 10.1016/j.ejpb.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Surface-exposed calreticulin (CRT) serves as a crucial cell damage-associated molecular pattern for immunogenic apoptosis, by generating an "eat me" signal to macrophages. Aiming at precision immunotherapies we intended to artificially label tumoral cells in vivo with a recombinant CRT, in a targeted way. For that, we have constructed a CRT fusion protein intended to surface attach CXCR4+ cancer cells, to stimulate their immunological destruction. As a targeting ligand of the CRT construct and to drive its specific cell adhesion, we used the peptide V1, a derivative of the vMIP-II cytokine and an antagonist of CXCR4. The modular protein tends to self-assemble as regular 16 nm nanoparticles, assisted by ionic Zn. Through both in vivo and in vitro experiments, we have determined that CRT itself confers cell targeting capabilities to the construct overcoming those of V1, that are only moderate. In particular, CRT binds HeLa cells in absence of further internalization, by a route fully independent of CXCR4. Furthermore, by cytometry in THP-1 cells, we observed that the binding of the protein is preferential for dead cells over live cells, a fact that cannot be associated to a mere artefactual adsorption. These data are discussed in the context of the oligomerizing properties of CRT and the potential clinical applicability of proteins and protein materials functionalized with this novel cell surface ligand.
Collapse
Affiliation(s)
- Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Annabel García-Leon
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Badalona, 08916, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
40
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
42
|
Rafiei A, Gualandi M, Yang CL, Woods R, Kumar A, Brunner K, Sigrist J, Ebersbach H, Coats S, Renner C, Marroquin Belaunzaran O. IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity. Cancers (Basel) 2024; 16:2902. [PMID: 39199672 PMCID: PMC11352577 DOI: 10.3390/cancers16162902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Richard Woods
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | | | - John Sigrist
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | - Steve Coats
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | - Christoph Renner
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
43
|
Huang F, Zhou L, Sun J, Ma X, Pei Y, Zhang Q, Yu Y, He G, Zhu L, Li H, Wang X, Long F, Huang H, Zhang J, Sun X. Prognostic analysis of anoikis-related genes in bladder cancer: An observational study. Medicine (Baltimore) 2024; 103:e38999. [PMID: 39029056 PMCID: PMC11398808 DOI: 10.1097/md.0000000000038999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
Anoikis is proved to play a crucial role in the development of cancers. However, the impact of anoikis on the prognosis of bladder cancer (BLCA) is currently unknown. Thus, this study aimed to find potential effect of anoikis in BLCA. The Cancer Genome Atlas (TCGA)-BLCA and GSE13507 cohorts were downloaded from TCGA and the Gene Expression Omnibus (GEO) databases, respectively. Differentially expressed genes (DEGs) were screened between BLCA and normal groups, which intersected with anoikis-related genes to yield anoikis-related DEGs (AR DEGs). Univariate COX, rbsurv, and multivariate COX analyses were adopted in order to build a prognostic risk model. The differences of risk score in the different clinical subgroups and the relevance between survival rate and clinical characteristics were explored as well. Finally, chemotherapy drug sensitivity in different risk groups was analyzed. In total, 78 AR DEGs were acquired and a prognostic signature was build based on the 6 characteristic genes (CALR, FASN, CSPG4, HGF, INHBB, SATB1), where the patients of low-risk group had longer survival time. The survival rate of BLCA patients was significantly differential in different groups of age, stage, smoking history, pathologic-T, and pathologic-N. The IC50 of 56 drugs showed significant differences between 2 risk groups, such as imatinib, docetaxel, and dasatinib. At last, the results of real time quantitative-polymerase chain reaction (RT-qPCR) demonstrated that the expression trend of CALR, HGF, and INHBB was consistent with the result obtained previously based on public databases. Taken together, this study identified 6 anoikis-related characteristic genes (CALR, FASN, CSPG4, HGF, INHBB, SATB1) for the prognosis of BLCA patients, providing a scientific reference for further research on BLCA.
Collapse
Affiliation(s)
- Fu Huang
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Liquan Zhou
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Junjie Sun
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Xihua Ma
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Yongfeng Pei
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Qiuwen Zhang
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Yanqing Yu
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Guining He
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Lirong Zhu
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Haibin Li
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Xiaoming Wang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Fuzhi Long
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Haipeng Huang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiange Zhang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xuyong Sun
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| |
Collapse
|
44
|
Luo W, Hoang H, Miller KE, Zhu H, Xu S, Mo X, Garfinkle EAR, Costello H, Wijeratne S, Chemnitz W, Gandhi R, Liao Y, Ayello J, Gardenswartz A, Rosenblum JM, Cassady KA, Mardis ER, Lee DA, Cripe TP, Cairo MS. Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning "Two Keys" simultaneously. J Exp Clin Cancer Res 2024; 43:193. [PMID: 38992659 PMCID: PMC11238356 DOI: 10.1186/s13046-024-03093-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Katherine E Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Serena Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Heather Costello
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Wiebke Chemnitz
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | - Yanling Liao
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Kevin A Cassady
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Dean A Lee
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Timothy P Cripe
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Medicine, New York Medical College, Valhalla, NY, USA.
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
45
|
Zhang W, Zeng Y, Xiao Q, Wu Y, Liu J, Wang H, Luo Y, Zhan J, Liao N, Cai Y. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat Commun 2024; 15:5670. [PMID: 38971872 PMCID: PMC11227529 DOI: 10.1038/s41467-024-49825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.
Collapse
Affiliation(s)
- Weiqi Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghua Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuqun Xiao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Wu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Wang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Luo
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ning Liao
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Yamada-Hunter SA, Theruvath J, McIntosh BJ, Freitas KA, Lin F, Radosevich MT, Leruste A, Dhingra S, Martinez-Velez N, Xu P, Huang J, Delaidelli A, Desai MH, Good Z, Polak R, May A, Labanieh L, Bjelajac J, Murty T, Ehlinger Z, Mount CW, Chen Y, Heitzeneder S, Marjon KD, Banuelos A, Khan O, Wasserman SL, Spiegel JY, Fernandez-Pol S, Kuo CJ, Sorensen PH, Monje M, Majzner RG, Weissman IL, Sahaf B, Sotillo E, Cochran JR, Mackall CL. Engineered CD47 protects T cells for enhanced antitumour immunity. Nature 2024; 630:457-465. [PMID: 38750365 PMCID: PMC11168929 DOI: 10.1038/s41586-024-07443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- CD47 Antigen/genetics
- CD47 Antigen/immunology
- CD47 Antigen/metabolism
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Macrophages/cytology
- Macrophages/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment/immunology
- Antibodies/immunology
- Antibodies/therapeutic use
- Macrophage Activation
Collapse
Affiliation(s)
- Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Johanna Theruvath
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna J McIntosh
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Freitas
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Lin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Masters in Translational Research and Applied Medicine Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Molly T Radosevich
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amaury Leruste
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaurya Dhingra
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Naiara Martinez-Velez
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Huang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Moksha H Desai
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zinaida Good
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Polak
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Audre May
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Louai Labanieh
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jeremy Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Zach Ehlinger
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Mount
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Yiyun Chen
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Omair Khan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Savannah L Wasserman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jay Y Spiegel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Poul H Sorensen
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Michelle Monje
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer R Cochran
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
47
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
48
|
Elzoghby AO, Samir O, Emam HE, Soliman A, Abdelgalil RM, Elmorshedy YM, Elkhodairy KA, Nasr ML. Engineering nanomedicines for immunogenic eradication of cancer cells: Recent trends and synergistic approaches. Acta Pharm Sin B 2024; 14:2475-2504. [PMID: 38828160 PMCID: PMC11143780 DOI: 10.1016/j.apsb.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 06/05/2024] Open
Abstract
Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment (TME) leading to failure of immune response. Numerous therapeutic strategies including chemotherapy, radiotherapy, photodynamic, photothermal, magnetic, chemodynamic, sonodynamic and oncolytic therapy, have been developed to induce immunogenic cell death (ICD) of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response. However, many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response. Here, we outline the current state of using nanomedicines for boosting ICD of cancer cells. Moreover, synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints, phagocytosis, macrophage polarization, tumor hypoxia, autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed. We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses. Endoplasmic reticulum localized ICD, focused ultrasound hyperthermia, cell membrane camouflaged nanomedicines, amplified reactive oxygen species (ROS) generation, metallo-immunotherapy, ion modulators and engineered bacteria are among the most innovative approaches. Various challenges, merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Ahmed O. Elzoghby
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Omar Samir
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Ahmed Soliman
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Riham M. Abdelgalil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yomna M. Elmorshedy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| |
Collapse
|
49
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG. eLife 2024; 12:RP88054. [PMID: 38805560 PMCID: PMC11132682 DOI: 10.7554/elife.88054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal 'M1-like' phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.
Collapse
Affiliation(s)
- Brandon H Hayes
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Mai Wang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Hui Zhu
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Steven H Phan
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Lawrence J Dooling
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Jason C Andrechak
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander H Chang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael P Tobin
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas M Ontko
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Tristan Marchena
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|