1
|
Marchet S, Catania A, Ardissone A, Montano V, Einvag K, Iermito MP, Sala D, Spagnolo M, Mauro E, Lamantea E, Cecchi G, Lopriore P, Mancuso M, Lamperti C. PHEMI-Phenylbutyrate in Patients With Lactic Acidosis: A Pilot, Single Arm, Phase I/II, Open-Label Trial. Clin Ther 2025; 47:390-395. [PMID: 40087083 DOI: 10.1016/j.clinthera.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE The 6 months pilot, single arm, phase I/II, open-label clinical trial PHEMI investigated the safety and efficacy of daily administration of phenylbutyrate in reducing lactic acidosis by at least 20% in 3 children (ages 7-10 yrs) with pyruvate dehydrogenase deficiency and 6 adults with mitochondrial myopathy encephalopathy lactic acidosis and stroke-like episodes. As a side study, we investigated the response to phenylbutyrate treatment in skin fibroblasts and cybrids derived from PHEMI patients with the aim of unraveling a possible in vivo-in vitro correlation. METHODS Safety was assessed through the collection of vital signs, clinical evaluations, blood samples, and reported adverse events. Efficacy was evaluated on biochemical and clinical endpoints. In vitro analysis explored the effects of phenylbutyrate in patients' fibroblasts and cybrids. FINDINGS At the starting dosage regimen of 10 g/m2/day, phenylbutyrate was effective in reducing lactic acidosis (by a mean of 13%), but lead to the development of adverse events in all adults. The reduced dose of 5 g/m²/day was well tolerated but did not meet the study's primary outcome. In parallel, the in vitro analyses confirmed that phenylbutyrate led to a reduction in lactate measured in culture medium, an increase in cellular respiration, and a slight increase in the activity of the Respiratory Chain Complexes. IMPLICATIONS Our study fosters further research on phenylbutyrate in individuals with primary mitochondrial disease suffering from lactic acidosis. Future investigation should focus on a highly bioavailable, easier-to-administer drug formulation that allows the administration of a lower dosage regimen.
Collapse
Affiliation(s)
- Silvia Marchet
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Alessia Catania
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Anna Ardissone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Child Neurology Unit, Pediatric Neurosciences, Milan, Italy
| | - Vincenzo Montano
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Krisztina Einvag
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Maria Pia Iermito
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Daniele Sala
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Manuela Spagnolo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Elena Mauro
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Child Neurology Unit, Pediatric Neurosciences, Milan, Italy
| | - Eleonora Lamantea
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy
| | - Giulia Cecchi
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Costanza Lamperti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Medical Genetics and Neurogenetics Unit, Milan, Italy.
| |
Collapse
|
2
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Oh CJ, Choi W, Lee HY, Lee IK, Kim MJ, Jeon JH. Sodium Phenylbutyrate Attenuates Cisplatin-Induced Acute Kidney Injury Through Inhibition of Pyruvate Dehydrogenase Kinase 4. Biomedicines 2024; 12:2815. [PMID: 39767721 PMCID: PMC11672979 DOI: 10.3390/biomedicines12122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge. This study evaluated tubular injury, serum blood urea nitrogen (BUN) and creatinine levels, and inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1). Additionally, apoptosis, mitochondrial membrane potential, oxygen consumption ratio, and reactive oxygen species (ROS) were assessed in renal tubular cells. The expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were also analyzed. Results: 4-PBA prevented tubular injury and normalized serum BUN and creatinine levels. Inflammatory markers TNF-α and ICAM-1 were suppressed. In renal tubular cells, 4-PBA reduced apoptosis, restored mitochondrial membrane potential and oxygen consumption ratio, and reduced ROS production. Mechanistically, 4-PBA suppressed the expression of Pdk4, which is known to be induced during cisplatin-induced renal injury. The protective effect of 4-PBA was abolished in Pdk4-overexpressing renal tubular cells, indicating that the efficacy of 4-PBA partially depends on the suppression of Pdk4 expression. In cancer cells, 4-PBA did not interfere with the anti-cancer efficacy of cisplatin. Conclusions: These findings suggest that 4-PBA effectively prevents cisplatin-induced acute kidney injury by suppressing Pdk4.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Wooyoung Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ha Young Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|
4
|
Cenigaonandia‐Campillo A, Garcia‐Bautista A, Rio‐Vilariño A, Cebrian A, del Puerto L, Pellicer JA, Gabaldón JA, Pérez‐Sánchez H, Carmena‐Bargueño M, Meroño C, Traba J, Fernandez‐Aceñero MJ, Baños‐Herraiz N, Mozas‐Vivar L, Núñez‐Delicado E, Garcia‐Foncillas J, Aguilera Ó. Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest. Mol Oncol 2024; 18:2212-2233. [PMID: 38425123 PMCID: PMC11467799 DOI: 10.1002/1878-0261.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.
Collapse
Affiliation(s)
| | - Ana Garcia‐Bautista
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Anxo Rio‐Vilariño
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Laura del Puerto
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Horacio Pérez‐Sánchez
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Miguel Carmena‐Bargueño
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Carolina Meroño
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | - Javier Traba
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | | | | | - Lorena Mozas‐Vivar
- Preclinical programe START Madrid‐FJD Hospital fundación Jiménez DíazSpain
| | - Estrella Núñez‐Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Jesús Garcia‐Foncillas
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
- Universidad Católica de Murcia (UCAM)Spain
| |
Collapse
|
5
|
Li Y, Xie Z, Lei X, Yang X, Huang S, Yuan W, Deng X, Wang Z, Tang G. Recent advances in pyruvate dehydrogenase kinase inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2024; 144:107160. [PMID: 38301426 DOI: 10.1016/j.bioorg.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Weixi Yuan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Verma A, Lehman AN, Gokcan H, Cropcho L, Black D, Dobrowolski SF, Vockley J, Bedoyan JK. Amino acid ratio combinations as biomarkers for discriminating patients with pyruvate dehydrogenase complex deficiency from other inborn errors of metabolism. Mol Genet Genomic Med 2024; 12:e2283. [PMID: 37688338 PMCID: PMC10767461 DOI: 10.1002/mgg3.2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial neurometabolic disorder of energy deficit, with incidence of about 1 in 42,000 live births annually in the USA. The median and mean ages of diagnosis of PDCD are about 12 and 31 months, respectively. PDCD is a major cause of primary lactic acidosis with concomitant elevation in blood alanine (Ala) and proline (Pro) concentrations depending on phenotypic severity. Alanine/Leucine (Ala/Leu) ≥4.0 and Proline/Leucine (Pro/Leu) ≥3.0 combination cutoff from dried blood spot specimens was used as a biomarker for early identification of neonates/infants with PDCD. Further investigations were needed to evaluate the sensitivity (SN), specificity (SP), and clinical utility of such amino acid (AA) ratio combination cutoffs in discriminating PDCD from other inborn errors of metabolism (IEM) for early identification of such patients. METHODS We reviewed medical records of patients seen at UPMC in the past 11 years with molecularly or enzymatically confirmed diagnosis. We collected plasma AA analysis data from samples prior to initiation of therapeutic interventions such as total parenteral nutrition and/or ketogenic diet. Conditions evaluated included organic acidemias, primary mitochondrial disorders (MtDs), fatty acid oxidation disorders (FAOD), other IEMs on current newborn screening panels, congenital cardiac great vessel anomalies, renal tubular acidosis, and non-IEMs. The utility of specific AA ratio combinations as biomarkers were evaluated using receiver operating characteristic curves, correlation analysis, principal component analysis, and cutoff SN, SP, and positive predictive value determined from 201 subjects with broad age range. RESULTS Alanine/Lysine (Ala/Lys) and Ala/Leu as well as (Ala + Pro)/(Leu + Lys) and Ala/Leu ratio combinations effectively discriminated subjects with PDCD from those with other MtDs and IEMs on current newborn screening panels. Specific AA ratio combinations were significantly more sensitive in identifying PDCD than Ala alone or combinations of Ala and/or Pro in the evaluated cohort of subjects. Ala/Lys ≥3.0 and Ala/Leu ≥5.0 as well as (Ala + Pro)/(Leu + Lys) ≥2.5 and Ala/Leu ≥5.0 combination cutoffs identified patients with PDCD with 100% SN and ~85% SP. CONCLUSIONS With the best predictor of survival and positive cognitive outcome in PDCD being age of diagnosis, PDCD patients would benefit from use of such highly SN and SP AA ratio combination cutoffs as biomarkers for early identification of at-risk newborns, infants, and children, for early intervention(s) with known and/or novel therapeutics for this disorder.
Collapse
Affiliation(s)
- Anisha Verma
- West Virginia School of Osteopathic MedicineLewisburgWest VirginiaUSA
| | - April N. Lehman
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Hatice Gokcan
- Department of ChemistryCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Lorna Cropcho
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Danielle Black
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Steven F. Dobrowolski
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jerry Vockley
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jirair K. Bedoyan
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Guo Z, Zhang Y, Huang A, Ni Q, Zeng C. Phenylbutyrate and Dichloroacetate Enhance the Liquid-Stored Boar Sperm Quality via PDK1 and PDK3. Int J Mol Sci 2023; 24:17091. [PMID: 38069413 PMCID: PMC10707026 DOI: 10.3390/ijms242317091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors, Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to determine their regulatory roles in liquid-stored boar sperm at 17 °C. The results indicated that PDK1 and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of 2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize liquid-stored boar semen after their addition in the extender.
Collapse
Affiliation(s)
- Zhihua Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Z.G.); (Y.Z.); (Q.N.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
| | - Yan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Z.G.); (Y.Z.); (Q.N.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Qingyong Ni
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Z.G.); (Y.Z.); (Q.N.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
| | - Changjun Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Z.G.); (Y.Z.); (Q.N.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China
| |
Collapse
|
8
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Ripamonti M, Santambrogio P, Racchetti G, Cozzi A, Di Meo I, Tiranti V, Levi S. PKAN hiPS-Derived Astrocytes Show Impairment of Endosomal Trafficking: A Potential Mechanism Underlying Iron Accumulation. Front Cell Neurosci 2022; 16:878103. [PMID: 35783094 PMCID: PMC9243464 DOI: 10.3389/fncel.2022.878103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
PKAN disease is caused by mutations in the PANK2 gene, encoding the mitochondrial enzyme pantothenate kinase 2, catalyzing the first and key reaction in Coenzyme A (CoA) biosynthetic process. This disorder is characterized by progressive neurodegeneration and excessive iron deposition in the brain. The pathogenic mechanisms of PKAN are still unclear, and the available therapies are only symptomatic. Although iron accumulation is a hallmark of PKAN, its relationship with CoA dysfunction is not clear. We have previously developed hiPS-derived astrocytes from PKAN patients showing iron overload, thus recapitulating the human phenotype. In this work, we demonstrated that PKAN astrocytes presented an increase in transferrin uptake, a key route for cellular iron intake via transferrin receptor-mediated endocytosis of transferrin-bound iron. Investigation of constitutive exo-endocytosis and vesicular dynamics, exploiting the activity-enriching biosensor SynaptoZip, led to the finding of a general impairment in the constitutive endosomal trafficking in PKAN astrocytes. CoA and 4-phenylbutyric acid treatments were found to be effective in partially rescuing the aberrant vesicular behavior and iron intake. Our results demonstrate that the impairment of CoA biosynthesis could interfere with pivotal intracellular mechanisms involved in membrane fusions and vesicular trafficking, leading to an aberrant transferrin receptor-mediated iron uptake.
Collapse
Affiliation(s)
- Maddalena Ripamonti
- Vita-Salute San Raffaele University, Milan, Italy
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Santambrogio
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Racchetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Cozzi
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sonia Levi
- Vita-Salute San Raffaele University, Milan, Italy
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Sonia Levi,
| |
Collapse
|
10
|
Clinical Experience of Neurological Mitochondrial Diseases in Children and Adults: A Single-Center Study. Balkan J Med Genet 2022; 24:5-14. [PMID: 36249517 PMCID: PMC9524181 DOI: 10.2478/bjmg-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of the study was to retrospectively evaluate a cohort of children and adults with mitochondrial diseases (MDs) in a single-center experience. Neurological clinical examination, brain magnetic resonance imaging (MRI) and spectroscopy, muscle biopsy, metabolic and molecular-genetic analysis were evaluated in 26 children and 36 adult patients with MD in Slovenia from 2004 to 2018. Nijmegen MD criteria (MDC) were applied to all patients and the need for a muscle biopsy was estimated. Exome-sequencing was used in half of the patients. Twenty children (77.0%) and 12 adults (35.0%) scored a total of ≥8 on MDC, a result that is compatible with the diagnosis of definite MD. Yield of exome-sequencing was 7/22 (31.0%), but the method was not applied systematically in all patients from the beginning of diagnostics. Brain MRI morphological changes, which can be an imaging clue for the diagnosis of MD, were found in 17/24 children (71.0%). In 7/26 (29.0%) children, and in 20/30 (67.0%) adults, abnormal mitochondria were found on electron microscopy (EM) and ragged-red fibers were found in 16/30 (53.0%) adults. Respiratory chain enzymes (RCEs) and/or pyruvate dehydrogenase complex (PDHc) activities were abnormal in all the children and six adult cases. First, our data revealed that MDC was useful in the clinical diagnosis of MD, and second, until the use of NGS methods, extensive, laborious and invasive diagnostic procedures were performed to reach a final diagnosis. In patients with suspected MD, there is a need to prioritize molecular diagnosis with the more modern next-generation sequencing (NGS) method.
Collapse
|
11
|
Karissa P, Simpson T, Dawson SP, Low TY, Tay SH, Nordin FDA, Zain SM, Lee PY, Pung YF. Comparison Between Dichloroacetate and Phenylbutyrate Treatment for Pyruvate Dehydrogenase Deficiency. Br J Biomed Sci 2022; 79:10382. [PMID: 35996497 PMCID: PMC9302545 DOI: 10.3389/bjbs.2022.10382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.
Collapse
Affiliation(s)
- Patricia Karissa
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Timothy Simpson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon P Dawson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sook Hui Tay
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
12
|
Pavlu-Pereira H, Lousa D, Tomé CS, Florindo C, Silva MJ, de Almeida IT, Leandro P, Rivera I, Vicente JB. Structural and functional impact of clinically relevant E1α variants causing pyruvate dehydrogenase complex deficiency. Biochimie 2021; 183:78-88. [PMID: 33588022 DOI: 10.1016/j.biochi.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ββ') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.
Collapse
Affiliation(s)
- Hana Pavlu-Pereira
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina S Tomé
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Florindo
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Tavares de Almeida
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
13
|
Maková B, Mik V, Lišková B, Gonzalez G, Vítek D, Medvedíková M, Monfort B, Ručilová V, Kadlecová A, Khirsariya P, Gándara Barreiro Z, Havlíček L, Zatloukal M, Soural M, Paruch K, D'Autréaux B, Hajdúch M, Strnad M, Voller J. Cytoprotective activities of kinetin purine isosteres. Bioorg Med Chem 2021; 33:115993. [PMID: 33497938 DOI: 10.1016/j.bmc.2021.115993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/23/2023]
Abstract
Kinetin (N6-furfuryladenine), a plant growth substance of the cytokinin family, has been shown to modulate aging and various age-related conditions in animal models. Here we report the synthesis of kinetin isosteres with the purine ring replaced by other bicyclic heterocycles, and the biological evaluation of their activity in several in vitro models related to neurodegenerative diseases. Our findings indicate that kinetin isosteres protect Friedreich́s ataxia patient-derived fibroblasts against glutathione depletion, protect neuron-like SH-SY5Y cells from glutamate-induced oxidative damage, and correct aberrant splicing of the ELP1 gene in fibroblasts derived from a familial dysautonomia patient. Although the mechanism of action of kinetin derivatives remains unclear, our data suggest that the cytoprotective activity of some purine isosteres is mediated by their ability to reduce oxidative stress. Further, the studies of permeation across artificial membrane and model gut and blood-brain barriers indicate that the compounds are orally available and can reach central nervous system. Overall, our data demonstrate that isosteric replacement of the kinetin purine scaffold is a fruitful strategy for improving known biological activities of kinetin and discovering novel therapeutic opportunities.
Collapse
Affiliation(s)
- Barbara Maková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic; Department of Neurology, Palacký University Olomouc, Faculty of Medicine and Dentistry and University Hospital, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Beata Monfort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Veronika Ručilová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc CZ-783-71, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zoila Gándara Barreiro
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, The Czech Academy of Science, Institute of Experimental Botany, Vídeňská 1083, Praha 4 CZ-14220, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biolology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc CZ-783-71, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Miroslav Strnad
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Jiří Voller
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic; Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| |
Collapse
|
14
|
Nejabat M, Inaloo S, Sheshdeh AT, Bahramjahan S, Sarvestani FM, Katibeh P, Nemati H, Tabei SMB, Faghihi MA. Genetic Testing in Various Neurodevelopmental Disorders Which Manifest as Cerebral Palsy: A Case Study From Iran. Front Pediatr 2021; 9:734946. [PMID: 34540776 PMCID: PMC8446451 DOI: 10.3389/fped.2021.734946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose: Cerebral palsy (CP) is a heterogeneous permanent disorder impacting movement and posture. Investigations aimed at diagnosing this disorder are expensive and time-consuming and can eventually inconclusive. This study aimed to determine the diagnostic yield of next generation sequencing in patients with atypical CP (ACP). Methods: Patient eligibility criteria included impaired motor function with onset at birth or within the first year of life, and one or more of the following conditions: severe intellectual disability, positive family history, brain imaging findings not typical for cerebral palsy, abnormal neurometabolic profile, intractable seizure, normal neuroimaging despite severe psychomotor disability, after pediatric neurologist assessment including neuroimaging and biochemical-metabolic study offered for genetic study. Results: Exome sequencing was done for 66 patients which revealed pathogenic, likely pathogenic, and variants of unknown significance in 36.2, 9, and 43.9%, respectively. We also found 10 new mutations and were able to suggest specific and personalized treatments for nine patients. We also found three different mutations with different phenotypical spectrum in one gene that have not been reported for cerebral palsy. Conclusion: An accurate history and physical examination and determination of patients with atypical cerebral palsy for doing exome sequencing result in improved genetic counseling and personalized management.
Collapse
Affiliation(s)
- Marzieh Nejabat
- Pediatric Neurology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroor Inaloo
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shima Bahramjahan
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pegah Katibeh
- Pediatric Neurology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nemati
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Express Gene Molecular Diagnostics Laboratory, Palmetto Bay, FL, United States
| |
Collapse
|
15
|
Oh J, Koo C, Kim KW, Lee JS. Potential role of stress-induced gluconeogenesis in disease aggravation and mortality in pyruvate dehydrogenase deficiency: A case-based hypothesis. Med Hypotheses 2020; 146:110432. [PMID: 33303308 DOI: 10.1016/j.mehy.2020.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is an inherited metabolic disorder caused by a defect in any subunit of the pyruvate dehydrogenase complex (PDHC), which has an essential role in glucose metabolism. The causes of disease progression in PDH deficiency are not fully understood yet. Based on repeated observations of a patient with PDH deficiency at our center, we hypothesized that stress-induced gluconeogenesis contributes to rapid exacerbation of the disease. This link has not been established previously.
Collapse
Affiliation(s)
- Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chungmo Koo
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Lee
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Bedoyan JK, Hage R, Shin HK, Linard S, Ferren E, Ducich N, Wilson K, Lehman A, Schillaci L, Manickam K, Mori M, Bartholomew D, DeBrosse S, Cohen B, Parikh S, Kerr D. Utility of specific amino acid ratios in screening for pyruvate dehydrogenase complex deficiencies and other mitochondrial disorders associated with congenital lactic acidosis and newborn screening prospects. JIMD Rep 2020; 56:70-81. [PMID: 33204598 PMCID: PMC7653239 DOI: 10.1002/jmd2.12153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 01/24/2023] Open
Abstract
Pyruvate dehydrogenase complex deficiencies (PDCDs) and other mitochondrial disorders (MtDs) can (a) result in congenital lactic acidosis with elevations of blood alanine (Ala) and proline (Pro), (b) lead to decreased ATP production, and (c) result in high morbidity and mortality. With ~140,000 live births annually in Ohio and ~1 in 9,000 overall prevalence of MtDs, we estimate 2 to 3 newborns will have PDCD and 13 to 14 others likely will have another MtD annually. We compared the sensitivities of plasma amino acids (AA) Alanine (Ala), Alanine:Leucine (Ala:Leu), Alanine:Lysine and the combination of Ala:Leu and Proline:Leucine (Pro:Leu), in subjects with known primary-specific PDCD due to PDHA1 and PDHB mutations vs controls. Furthermore, in collaboration with the Ohio newborn screening (NBS) laboratory, we determined Ala and Pro concentrations in dried blood spot (DBS) specimens using existing NBS analytic approaches and evaluated Ala:Leu and Pro:Leu ratios from DBS specimens of 123,414 Ohio newborns in a 12-month period. We used the combined Ala:Leu ≥4.0 and Pro:Leu ≥3.0 ratio criterion from both DBS and plasma specimens as a screening tool in our retrospective review of newborn data. The screening tool applied on DBS and/or plasma (or serum) AA specimens successfully identified three unrelated females with novel de novo PDHA1 mutations, one male with a novel de novo X-linked HSD17B10 mutation, and a female with VARS2 mutations. This work lays the first step for piloting an NBS protocol in Ohio for identifying newborns at high risk for primary-specific PDCD and other MtDs who might benefit from neonatal diagnosis and early institution of known therapy and/or potential novel therapies for such disorders.
Collapse
Affiliation(s)
- Jirair K. Bedoyan
- Departments of Genetics and Genome SciencesCase Western Reserve University (CWRU)ClevelandOhioUSA
- PediatricsCWRUClevelandOhioUSA
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhioUSA
- Center for Inherited Disorders of Energy Metabolism (CIDEM)UHCMCClevelandOhioUSA
| | - Rosemary Hage
- Newborn Screening and Radiation ChemistryOhio Department of Health LaboratoryColumbusOhioUSA
| | | | - Sharon Linard
- Newborn Screening and Radiation ChemistryOhio Department of Health LaboratoryColumbusOhioUSA
| | - Edwin Ferren
- PediatricsCWRUClevelandOhioUSA
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhioUSA
| | | | | | - April Lehman
- Nationwide Children's Hospital (NCH) and The Ohio State University College of MedicineSection of Genetic and Genomic MedicineColumbusOhioUSA
| | - Lori‐Anne Schillaci
- Departments of Genetics and Genome SciencesCase Western Reserve University (CWRU)ClevelandOhioUSA
- PediatricsCWRUClevelandOhioUSA
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhioUSA
| | - Kandamurugu Manickam
- Nationwide Children's Hospital (NCH) and The Ohio State University College of MedicineSection of Genetic and Genomic MedicineColumbusOhioUSA
| | - Mari Mori
- Nationwide Children's Hospital (NCH) and The Ohio State University College of MedicineSection of Genetic and Genomic MedicineColumbusOhioUSA
| | - Dennis Bartholomew
- Nationwide Children's Hospital (NCH) and The Ohio State University College of MedicineSection of Genetic and Genomic MedicineColumbusOhioUSA
| | - Suzanne DeBrosse
- Departments of Genetics and Genome SciencesCase Western Reserve University (CWRU)ClevelandOhioUSA
- PediatricsCWRUClevelandOhioUSA
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhioUSA
| | - Bruce Cohen
- Department of PediatricsAkron Children's Hospital (ACH) Rebecca D. Considine Research InstituteAkronOhioUSA
- Northeast Ohio Medical UniversityRootstownOhioUSA
| | - Sumit Parikh
- The Cleveland Clinic Foundation (CCF), Neurosciences InstituteClevelandOhioUSA
| | - Douglas Kerr
- PediatricsCWRUClevelandOhioUSA
- Center for Inherited Disorders of Energy Metabolism (CIDEM)UHCMCClevelandOhioUSA
| |
Collapse
|
17
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
18
|
Khayat D, Kurtz TL, Stacpoole PW. The changing landscape of clinical trials for mitochondrial diseases: 2011 to present. Mitochondrion 2019; 50:51-57. [PMID: 31669619 DOI: 10.1016/j.mito.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022]
Abstract
We reviewed the status of interventional clinical trials for primary mitochondrial diseases. Using national and international search engines, we found 48 randomized controlled trials (RCTs) registered as of May 15, 2019. Consilience between lay and professional mitochondrial disease communities to engage in RCTs has increased, as has progress in developing new disease and treatment biomarkers and potential therapies. The continued advancement of general knowledge of mitochondrial biology has fostered appreciation for the fundamental role mitochondria play in the etiopathology of other rare and common illnesses, emphasizing the therapeutic potential of mitochondrially-targeted small molecules for an increasing spectrum of human diseases.
Collapse
Affiliation(s)
- Delia Khayat
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States
| | - Tracie L Kurtz
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States
| | - Peter W Stacpoole
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States; Biochemistry and Molecular Biology, College of Medicine, University of Florida, United States.
| |
Collapse
|
19
|
Mostoufi A, Baghgoli R, Fereidoonnezhad M. Synthesis, cytotoxicity, apoptosis and molecular docking studies of novel phenylbutyrate derivatives as potential anticancer agents. Comput Biol Chem 2019; 80:128-137. [DOI: 10.1016/j.compbiolchem.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
|
20
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
21
|
Dual‐Targeting Dual‐Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Babak MV, Zhi Y, Czarny B, Toh TB, Hooi L, Chow EKH, Ang WH, Gibson D, Pastorin G. Dual-Targeting Dual-Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angew Chem Int Ed Engl 2019; 58:8109-8114. [PMID: 30945417 DOI: 10.1002/anie.201903112] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/16/2023]
Abstract
A novel and highly efficient dual-targeting platform was designed to ensure targeted in vivo delivery of dual-action PtIV prodrugs. The dual targeting was established by liposomal encapsulation of PtIV complexes, thereby utilizing the enhanced permeability and retention (EPR) effect as the first stage of targeting to attain a high accumulation of the drug-loaded liposomes in the tumor. After the release of the PtIV prodrug inside cancer cells, a second stage of targeting directed a portion of the PtIV prodrugs to the mitochondria. Upon intracellular reduction, these PtIV prodrugs released two bioactive molecules, acting both on the mitochondrial and on the nuclear DNA. Our PtIV system showed excellent activity in vitro and in vivo, characterized by a cytotoxicity in a low micromolar range and complete tumor remission, respectively. Notably, marked in vivo activity was accompanied by reduced kidney toxicity, highlighting the unique therapeutic potential of our novel dual-targeting dual-action platform.
Collapse
Affiliation(s)
- Maria V Babak
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Yang Zhi
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials, Science and Engineering, and Lee Kong Chian School of Medicine (LKCmedicine), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore.,NUS Nanoscience & Nanotechnology Initiative (NUSNNI), National University of Singapore, 2 Engineering Drive 3, 117411, Singapore, Singapore
| |
Collapse
|
23
|
Drakulic S, Rai J, Petersen SV, Golas MM, Sander B. Folding and assembly defects of pyruvate dehydrogenase deficiency-related variants in the E1α subunit of the pyruvate dehydrogenase complex. Cell Mol Life Sci 2018; 75:3009-3026. [PMID: 29445841 PMCID: PMC11105750 DOI: 10.1007/s00018-018-2775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Jay Rai
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Monika M Golas
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany.
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
24
|
Ferriero R, Nusco E, De Cegli R, Carissimo A, Manco G, Brunetti-Pierri N. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure. J Hepatol 2018; 69:325-335. [PMID: 29580866 PMCID: PMC6057136 DOI: 10.1016/j.jhep.2018.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. METHODS Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. RESULTS Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. CONCLUSION PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. LAY SUMMARY Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival.
Collapse
Affiliation(s)
- Rosa Ferriero
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy,Institute for Applied Mathematics 'Mauro Picone', National Research Council, Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
25
|
Whitley MJ, Arjunan P, Nemeria NS, Korotchkina LG, Park YH, Patel MS, Jordan F, Furey W. Pyruvate dehydrogenase complex deficiency is linked to regulatory loop disorder in the αV138M variant of human pyruvate dehydrogenase. J Biol Chem 2018; 293:13204-13213. [PMID: 29970614 DOI: 10.1074/jbc.ra118.003996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
The pyruvate dehydrogenase multienzyme complex (PDHc) connects glycolysis to the tricarboxylic acid cycle by producing acetyl-CoA via the decarboxylation of pyruvate. Because of its pivotal role in glucose metabolism, this complex is closely regulated in mammals by reversible phosphorylation, the modulation of which is of interest in treating cancer, diabetes, and obesity. Mutations such as that leading to the αV138M variant in pyruvate dehydrogenase, the pyruvate-decarboxylating PDHc E1 component, can result in PDHc deficiency, an inborn error of metabolism that results in an array of symptoms such as lactic acidosis, progressive cognitive and neuromuscular deficits, and even death in infancy or childhood. Here we present an analysis of two X-ray crystal structures at 2.7-Å resolution, the first of the disease-associated human αV138M E1 variant and the second of human wildtype (WT) E1 with a bound adduct of its coenzyme thiamin diphosphate and the substrate analogue acetylphosphinate. The structures provide support for the role of regulatory loop disorder in E1 inactivation, and the αV138M variant structure also reveals that altered coenzyme binding can result in such disorder even in the absence of phosphorylation. Specifically, both E1 phosphorylation at αSer-264 and the αV138M substitution result in disordered loops that are not optimally oriented or available to efficiently bind the lipoyl domain of PDHc E2. Combined with an analysis of αV138M activity, these results underscore the general connection between regulatory loop disorder and loss of E1 catalytic efficiency.
Collapse
Affiliation(s)
- Matthew J Whitley
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Palaniappa Arjunan
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Natalia S Nemeria
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102
| | - Lioubov G Korotchkina
- the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14203, and
| | - Yun-Hee Park
- the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14203, and
| | - Mulchand S Patel
- the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14203, and
| | - Frank Jordan
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102
| | - William Furey
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, .,the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
26
|
Wang Y, Huang Y, Yang J, Zhou FQ, Zhao L, Zhou H. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res 2018; 5:13. [PMID: 29695298 PMCID: PMC5918562 DOI: 10.1186/s40779-018-0160-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Type A lactic acidosis resulted from hypoxic mitochondrial dysfunction is an independent predictor of mortality for critically ill patients. However, current therapeutic agents are still in shortage and can even be harmful. This paper reviewed data regarding lactic acidosis treatment and recommended that pyruvate might be a potential alkalizer to correct type A lactic acidosis in future clinical practice. Pyruvate is a key energy metabolic substrate and a pyruvate dehydrogenase (PDH) activator with several unique beneficial biological properties, including anti-oxidant and anti-inflammatory effects and the ability to activate the hypoxia-inducible factor-1 (HIF-1α) - erythropoietin (EPO) signal pathway. Pyruvate preserves glucose metabolism and cellular energetics better than bicarbonate, lactate, acetate and malate in the efficient correction of hypoxic lactic acidosis and shows few side effects. Therefore, application of pyruvate may be promising and safe as a novel therapeutic strategy in hypoxic lactic acidosis correction accompanied with multi-organ protection in critical care patients.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ya Huang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Transfusion, Hainan Branch of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Jing Yang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows Facility, Chicago, IL, 60008, USA
- Shanghai Sandai Pharmaceutical R&D Co, Shanghai, 201203, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
27
|
Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, Chang M, Thompson SM, Khoury N, Gonnella R, Trotz M, Moore DB, Harms E, Perry G, Clunes L, Ortiz A, Friedrich JO, Murray IV. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res 2018; 15:164-181. [PMID: 28933272 PMCID: PMC5769087 DOI: 10.2174/1567205014666170921122458] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic dysfunction are increasingly implicated in AD. OBJECTIVE Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. METHODS Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, without date restrictions, for the keywords "AD", "CSF", and "human" plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration's Review Manager software. RESULTS Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were included comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and metabolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01- 1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. CONCLUSION This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given observed unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of further in silico evaluation and generation of novel hypotheses in the AD field.
Collapse
Affiliation(s)
- Roni Manyevitch
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Protas
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Sean Scarpiello
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Marisa Deliso
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Brittany Bass
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Anthony Nanajian
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Chang
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Stefani M. Thompson
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Neil Khoury
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Rachel Gonnella
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Margit Trotz
- Department of Biochemistry, School of Medicine, St George’s University, Grenada, W.I., USA
| | - D. Blaine Moore
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - Emily Harms
- Department of Educational Services, St George’s University, Grenada, W.I., USA
| | - George Perry
- Department of Biology, University of Texas San Antonio, TX, USA
| | - Lucy Clunes
- Department of Pharmacology, School of Medicine, St George’s University, Grenada, W.I., USA
| | - Angélica Ortiz
- Department of Anatomy, School of Medicine, St George’s University, Grenada, W.I., USA
| | | | - Ian V.J. Murray
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
- Department of Biology, University of Texas San Antonio, TX, USA
| |
Collapse
|
28
|
Gámez A, Yuste-Checa P, Brasil S, Briso-Montiano Á, Desviat L, Ugarte M, Pérez-Cerdá C, Pérez B. Protein misfolding diseases: Prospects of pharmacological treatment. Clin Genet 2017; 93:450-458. [DOI: 10.1111/cge.13088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- A. Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - P. Yuste-Checa
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - S. Brasil
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - Á. Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - L.R. Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - M. Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - C. Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - B. Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| |
Collapse
|
29
|
Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect. Eur J Pharm Sci 2017; 110:93-100. [DOI: 10.1016/j.ejps.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 12/15/2022]
|
30
|
Peña-Quintana L, Llarena M, Reyes-Suárez D, Aldámiz-Echevarria L. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence 2017; 11:1489-1496. [PMID: 28919721 PMCID: PMC5593420 DOI: 10.2147/ppa.s136754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.
Collapse
Affiliation(s)
- Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Universitario Materno-Infantil Hospital de Canarias, University of Las Palmas de Gran Canaria
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
- CIBEROBN, Madrid
| | - Marta Llarena
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
| | - Desiderio Reyes-Suárez
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
| | - Luis Aldámiz-Echevarria
- Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfremedades Raras (CIBERER), Barakaldo, Spain
| |
Collapse
|
31
|
Palir N, Ruiter JPN, Wanders RJA, Houtkooper RH. Identification of enzymes involved in oxidation of phenylbutyrate. J Lipid Res 2017; 58:955-961. [PMID: 28283530 PMCID: PMC5408614 DOI: 10.1194/jlr.m075317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/08/2017] [Indexed: 02/03/2023] Open
Abstract
In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, however, has remained unclear. Therefore, we set out to identify the enzymes involved in the β-oxidation of PB. We used cells deficient in specific steps of fatty acid β-oxidation and ultra-HPLC to measure which enzymes were able to convert PB or its downstream products. We show that the first step in PB oxidation is catalyzed solely by the enzyme, medium-chain acyl-CoA dehydrogenase. The second (hydration) step can be catalyzed by all three mitochondrial enoyl-CoA hydratase enzymes, i.e., short-chain enoyl-CoA hydratase, long-chain enoyl-CoA hydratase, and 3-methylglutaconyl-CoA hydratase. Enzymes involved in the third step include both short- and long-chain 3-hydroxyacyl-CoA dehydrogenase. The oxidation of PB is completed by only one enzyme, i.e., long-chain 3-ketoacyl-CoA thiolase. Taken together, the enzymatic characteristics of the PB degradative pathway may lead to better dose finding and limiting the toxicity of this drug.
Collapse
Affiliation(s)
- Neža Palir
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jos P N Ruiter
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
32
|
Matalonga L, Gort L, Ribes A. Small molecules as therapeutic agents for inborn errors of metabolism. J Inherit Metab Dis 2017; 40:177-193. [PMID: 27966099 DOI: 10.1007/s10545-016-0005-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Most inborn errors of metabolism (IEM) remain without effective treatment mainly due to the incapacity of conventional therapeutic approaches to target the neurological symptomatology and to ameliorate the multisystemic involvement frequently observed in these patients. However, in recent years, the therapeutic use of small molecules has emerged as a promising approach for treating this heterogeneous group of disorders. In this review, we focus on the use of therapeutically active small molecules to treat IEM, including readthrough agents, pharmacological chaperones, proteostasis regulators, substrate inhibitors, and autophagy inducers. The small molecules reviewed herein act at different cellular levels, and this knowledge provides new tools to set up innovative treatment approaches for particular IEM. We review the molecular mechanism underlying therapeutic properties of small molecules, methodologies used to screen for these compounds, and their applicability in preclinical and clinical practice.
Collapse
Affiliation(s)
- Leslie Matalonga
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Laura Gort
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
33
|
Peng RH, Qiu J, Tian YS, Gao JJ, Han HJ, Fu XY, Zhu B, Xu J, Wang B, Li ZJ, Wang LJ, Yao QH. Disulfide isomerase-like protein AtPDIL1-2 is a good candidate for trichlorophenol phytodetoxification. Sci Rep 2017; 7:40130. [PMID: 28059139 PMCID: PMC5216352 DOI: 10.1038/srep40130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1-2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b' domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jin Qiu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Yong-Sheng Tian
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jian-jie Gao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Hong-juan Han
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Xiao-Yan Fu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Zhu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jing Xu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Zhen-jun Li
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Li-juan Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Quan-Hong Yao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| |
Collapse
|
34
|
E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A 2016; 113:10998-1003. [PMID: 27621446 DOI: 10.1073/pnas.1602754113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.
Collapse
|
35
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
36
|
Pliss L, Jatania U, Patel MS. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency. Mol Genet Metab Rep 2016; 7:78-86. [PMID: 27331005 PMCID: PMC4901178 DOI: 10.1016/j.ymgmr.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. Methods A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Results Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. Conclusion The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.
Collapse
Key Words
- Brain development
- E18, embryonic day 18
- Glucose metabolism
- HF, high fat
- High fat diet
- LC, laboratory chow
- Mouse model
- P15, postnatal day 15
- PDC, pyruvate dehydrogenase complex
- PDH, pyruvate dehydrogenase
- PDHA1, human gene that encodes α subunit of PDH
- Pdha1, murine orthologue of PDHA1
- Prenatal treatment
- Pyruvate dehydrogenase complex deficiency
- flox8, Pdha1 floxed allele
- wt, wild-type Pdha1 allele
- Δex8, Pdha1 null allele
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Urvi Jatania
- Department of Exercise and Nutrition, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Corresponding author at: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA.Department of BiochemistryJacobs School of Medicine and Biomedical SciencesUniversity at Buffalo140 Farber HallBuffaloNY14214USA
| |
Collapse
|
37
|
Lewis AJ, Neubauer S, Tyler DJ, Rider OJ. Pyruvate dehydrogenase as a therapeutic target for obesity cardiomyopathy. Expert Opin Ther Targets 2016; 20:755-66. [PMID: 26617082 DOI: 10.1517/14728222.2016.1126248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Obesity cardiomyopathy is a major public health problem with few specific therapeutic options. Abnormal cardiac substrate metabolism with reduced pyruvate dehydrogenase (PDH) activity is associated with energetic and functional cardiac impairment and may be a therapeutic target. AREAS COVERED This review summarizes the changes to cardiac substrate and high energy phosphorus metabolism that occur in obesity and describes the links between abnormal metabolism and impairment of cardiac function. The available evidence for the currently available pharmacological options for selective metabolic therapy in obesity cardiomyopathy is reviewed. EXPERT OPINION Pharmacological restoration of PDH activity is in general associated with favourable effects upon cardiac substrate metabolism and function in both animal models and small scale human studies, supporting a potential role as a therapeutic target.
Collapse
Affiliation(s)
- Andrew Jm Lewis
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| | - Stefan Neubauer
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK
| | - Damian J Tyler
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| | - Oliver J Rider
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| |
Collapse
|
38
|
Suratanee A, Plaimas K. DDA: A Novel Network-Based Scoring Method to Identify Disease-Disease Associations. Bioinform Biol Insights 2015; 9:175-86. [PMID: 26673408 PMCID: PMC4674013 DOI: 10.4137/bbi.s35237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Categorizing human diseases provides higher efficiency and accuracy for disease diagnosis, prognosis, and treatment. Disease–disease association (DDA) is a precious information that indicates the large-scale structure of complex relationships of diseases. However, the number of known and reliable associations is very small. Therefore, identification of DDAs is a challenging task in systems biology and medicine. Here, we developed a novel network-based scoring algorithm called DDA to identify the relationships between diseases in a large-scale study. Our method is developed based on a random walk prioritization in a protein–protein interaction network. This approach considers not only whether two diseases directly share associated genes but also the statistical relationships between two different diseases using known disease-related genes. Predicted associations were validated by known DDAs from a database and literature supports. The method yielded a good performance with an area under the curve of 71% and outperformed other standard association indices. Furthermore, novel DDAs and relationships among diseases from the clusters analysis were reported. This method is efficient to identify disease–disease relationships on an interaction network and can also be generalized to other association studies to further enhance knowledge in medical studies.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Integrative Bioinformatics and System Biology Group, Advanced Virtual and Intelligent Computing (AVIC) Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 2015; 14:956-66. [PMID: 26293567 DOI: 10.1016/s1474-4422(15)00148-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022]
Abstract
Seizures are often the key manifestation of neurological diseases caused by pathogenic mutations in 169 of the genes that have so far been identified to affect mitochondrial function. Mitochondria are the main producers of ATP needed for normal electrical activities of neurons and synaptic transmission. Additionally, they have a central role in neurotransmitter synthesis, calcium homoeostasis, redox signalling, production and modulation of reactive oxygen species, and neuronal death. Hypotheses link mitochondrial failure to seizure generation through changes in calcium homoeostasis, oxidation of ion channels and neurotransmitter transporters by reactive oxygen species, a decrease in neuronal plasma membrane potential, and reduced network inhibition due to interneuronal dysfunction. Seizures, irrespective of their origin, represent an excessive acute energy demand in the brain. Accordingly, secondary mitochondrial dysfunction has been described in various epileptic disorders, including disorders that are mainly of non-mitochondrial origin. An understanding of the reciprocal relation between mitochondrial dysfunction and epilepsy is crucial to select appropriate anticonvulsant treatment and has the potential to open up new therapeutic approaches in the subset of epileptic disorders caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gábor Zsurka
- Division of Neurochemistry, Department of Epileptology, and Life & Brain Center, University of Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Epileptology, and Life & Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
40
|
Zhang W, Zhang SL, Hu X, Tam KY. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target? Int J Biol Sci 2015; 11:1390-400. [PMID: 26681918 PMCID: PMC4671996 DOI: 10.7150/ijbs.13325] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
41
|
Ginocchio VM, Brunetti-Pierri N. Progress toward improved therapies for inborn errors of metabolism. Hum Mol Genet 2015; 25:R27-35. [PMID: 26443595 DOI: 10.1093/hmg/ddv418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
Because of their prevalence, severity and lack of effective treatments, inborn errors of metabolism need novel and more effective therapeutic approaches. The opportunity for an early treatment coming from expanded newborn screening has made this need even more urgent. To meet this demand, a growing number of novel treatments are entering in the phase of clinical development. Strategies to overcome the detrimental consequences of the enzyme deficiencies responsible for inborn errors of metabolism have been focused on multiple fronts at the levels of the gene, RNA, protein and whole cell. These strategies have been accomplished using a wide spectrum of approaches ranging from small molecules to enzyme replacement therapy, cell and gene therapy. The applications of new technologies in the field of inborn errors of metabolism, such as genome editing, RNA interference and cell reprogramming, along with progress in pre-existing strategies, such as gene therapy or cell transplantation, have tremendous potential for clinical translation.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli (NA) 80078, Italy and Department of Translational Medicine, Federico II University, Naples 80131, Italy
| |
Collapse
|
42
|
Ferriero R, Iannuzzi C, Manco G, Brunetti-Pierri N. Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate. J Inherit Metab Dis 2015; 38:895-904. [PMID: 25601413 PMCID: PMC4551558 DOI: 10.1007/s10545-014-9808-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/13/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases including cancer, diabetes, obesity, heart failure, and inherited PDHC deficiency. We investigated the inhibitory activity of phenylbutyrate toward PDKs and found that PDK isoforms 1-to-3 are inhibited whereas PDK4 is unaffected. Moreover, docking studies revealed putative binding sites of phenylbutyrate on PDK2 and 3 that are located on different sites compared to dichloroacetate (DCA), a previously known PDK inhibitor. Based on these findings, we showed both in cells and in mice that phenylbutyrate combined to DCA results in greater increase of PDHC activity compared to each drug alone. These results suggest that therapeutic efficacy can be enhanced by combination of drugs increasing PDHC enzyme activity.
Collapse
Affiliation(s)
- Rosa Ferriero
- Telethon Institute of Genetics and Medicine, Via Campi Felgrei, 34, 80078 Pozzuoli, Naples Italy
| | - Clara Iannuzzi
- Institute of Protein Biochemistry (IBP), Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | | | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Via Campi Felgrei, 34, 80078 Pozzuoli, Naples Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
43
|
Chriett S, Pirola L. Essential roles of four-carbon backbone chemicals in the control of metabolism. World J Biol Chem 2015; 6:223-230. [PMID: 26322177 PMCID: PMC4549763 DOI: 10.4331/wjbc.v6.i3.223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-β-hydroxybutyrate - synthesized by the liver - and the recently discovered myokine β-aminoisobutyric acid. Conversely, another butyrate-related molecule, α-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance.
Collapse
|
44
|
Le Page LM, Rider OJ, Lewis AJ, Ball V, Clarke K, Johansson E, Carr CA, Heather LC, Tyler DJ. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study. Diabetes 2015; 64:2735-43. [PMID: 25795215 PMCID: PMC4516266 DOI: 10.2337/db14-1560] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/16/2015] [Indexed: 01/02/2023]
Abstract
Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Oliver J Rider
- Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Andrew J Lewis
- Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Vicky Ball
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | | | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|
45
|
Abstract
Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu College of Medical Sciences, Gyeongsan, Korea
| |
Collapse
|
46
|
Swift JM, Smith JT, Kiang JG. Ciprofloxacin Therapy Results in Mitigation of ATP Loss after Irradiation Combined with Wound Trauma: Preservation of Pyruvate Dehydrogenase and Inhibition of Pyruvate Dehydrogenase Kinase 1. Radiat Res 2015; 183:684-92. [PMID: 26010714 DOI: 10.1667/rr13853.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure combined with wound injury increases animal mortalities than ionizing radiation exposure alone. Ciprofloxacin (CIP) is in the fluroquinolone family of synthetic antibiotic that are available from the strategic national stockpile for emergency use and is known to inhibit bacterial sepsis. The purpose of this study was to evaluate the efficacy of ciprofloxacin as a countermeasure to combined injury mortality and determine the signaling proteins involved in energy machinery. B6D2F1/J female mice were randomly assigned to receive either 9.75 Gy irradiation with Co-60 gamma rays followed by skin wounding (combined injury; CI) or sham procedure (sham). Either ciprofloxacin (90 mg/kg/day) or vehicle (VEH) (water) was administered orally to these mice 2 h after wounding and thereafter daily for 10 days. Determination of tissue adenosine triphosphate (ATP) was conducted, and immunoblotting for signaling proteins involved in ATP machinery was performed. Combined injury resulted in 60% survival after 10 days compared to 100% survival in the sham group. Furthermore, combined injury caused significant reductions of ATP concentrations in ileum, pancreas, brain, spleen, kidney and lung (-25% to -95%) compared to the sham group. Ciprofloxacin administration after combined injury resulted in 100% survival and inhibited reductions in ileum and kidney ATP production. Ileum protein levels of heat-shock protein 70 kDa (HSP-70, a chaperone protein involved in ATP synthesis) and pyruvate dehydrogenase (PDH, an enzyme complex crucial to conversion of pyruvate to acetyl CoA for entrance into TCA cycle) were significantly lower in the CI group (vs. sham group). Using immunoprecipitation and immunoblotting, HSP-70-PDH complex was found to be present in the ileum tissue of CI mice treated with ciprofloxacin. Furthermore, phosphorylation of serine residues of PDH resulting in inactivating PDH enzymatic activity, which occurred after combined injury, was inhibited with ciprofloxacin treatment, thus enabling PDH to increase ATP production. Increased ileum levels of pyruvate dehydrogenase kinase 1 protein (PDK1, an enzyme responsible for PDH phosphorylation) after combined injury were also prevented by ciprofloxacin treatment. Taken together, these data suggest that ciprofloxacin oral administration after combined injury had a role in sustained ileum ATP levels, and may have acted through preservation of PDH by HSP-70 and inhibition of PDK1. These molecular changes in the ileum are simply one of a host of mechanisms working in concert with one another by which ciprofloxacin treatment mitigates body weight loss and drastically enhances subsequent survival after combined injury. To this end, our findings indicate that oral treatment of ciprofloxacin is a valuable therapeutic treatment after irradiation with combined injury and warrants further analyses to elucidate the precise mechanisms involved.
Collapse
Affiliation(s)
- Joshua M Swift
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,b Departments of Military and Emergency Medicine;,c Radiation Biology and
| | - Joan T Smith
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,c Radiation Biology and.,d Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
47
|
Sperl W, Fleuren L, Freisinger P, Haack TB, Ribes A, Feichtinger RG, Rodenburg RJ, Zimmermann FA, Koch J, Rivera I, Prokisch H, Smeitink JA, Mayr JA. The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. J Inherit Metab Dis 2015; 38:391-403. [PMID: 25526709 DOI: 10.1007/s10545-014-9787-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Pyruvate oxidation defects (PODs) are among the most frequent causes of deficiencies in the mitochondrial energy metabolism and represent a substantial subset of classical mitochondrial diseases. PODs are not only caused by deficiency of subunits of the pyruvate dehydrogenase complex (PDHC) but also by various disorders recently described in the whole pyruvate oxidation route including cofactors, regulation of PDHC and the mitochondrial pyruvate carrier. Our own patients from 2000 to July 2014 and patients identified by a systematic survey of the literature from 1970 to July 2014 with a pyruvate oxidation disorder and a genetically proven defect were included in the study (n=628). Of these defects 74.2% (n=466) belong to PDHC subunits, 24.5% (n=154) to cofactors, 0.5% (n=3) to PDHC regulation and 0.8% (n=5) to mitochondrial pyruvate import. PODs are underestimated in the field of mitochondrial diseases because not all diagnostic centres include biochemical investigations of PDHC in their routine analysis. Cofactor and transport defects can be missed, if pyruvate oxidation is not measured in intact mitochondria routinely. Furthermore deficiency of the X-chromosomal PDHA1 can be biochemically missed depending on the X-inactivation pattern. This is reflected by an increasing number of patients diagnosed recently by genetic high throughput screening approaches. PDHC deficiency including regulation and import affect mainly the glucose dependent central and peripheral nervous system and skeletal muscle. PODs with combined enzyme defects affect also other organs like heart, lung and liver. The spectrum of clinical presentation of PODs is still expanding. PODs are a therapeutically interesting group of mitochondrial diseases since some can be bypassed by ketogenic diet or treated by cofactor supplementation. PDHC kinase inhibition, chaperone therapy and PGC1α stimulation is still a matter of further investigations.
Collapse
Affiliation(s)
- Wolfgang Sperl
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, Salzburg, 5020, Austria,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Danhauser K, Smeitink JAM, Freisinger P, Sperl W, Sabir H, Hadzik B, Mayatepek E, Morava E, Distelmaier F. Treatment options for lactic acidosis and metabolic crisis in children with mitochondrial disease. J Inherit Metab Dis 2015; 38:467-75. [PMID: 25687154 DOI: 10.1007/s10545-014-9796-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/30/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
Abstract
The mitochondrial pyruvate oxidation route is a tightly regulated process, which is essential for aerobic cellular energy production. Disruption of this pathway may lead to severe neurometabolic disorders with onset in early childhood. A frequent finding in these patients is acute and chronic lactic acidemia, which is caused by increased conversion of pyruvate via the enzyme lactate dehydrogenase. Under stable clinical conditions, this process may remain well compensated and does not require specific therapy. However, especially in situations with altered energy demands, such as febrile infections or longer periods of fasting, children with mitochondrial disorders have a high risk of metabolic decompensation with exacerbation of hyperlactatemia and severe metabolic acidosis. Unfortunately, no controlled studies regarding therapy of this critical condition are available and clinical outcome is often unfavorable. Therefore, the aim of this review was to formulate expert-based suggestions for treatment of these patients, including dietary recommendations, buffering strategies and specific drug therapy. However, it is important to keep in mind that a specific therapy for the underlying metabolic cause in children with mitochondrial diseases is usually not available and symptomatic therapy especially of severe lactic acidosis has its ethical limitations.
Collapse
Affiliation(s)
- Katharina Danhauser
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 2015; 138:809-17. [PMID: 25868605 DOI: 10.1002/ijc.29564] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells exhibit an altered metabolism which is characterized by a preference for aerobic glycolysis more than mitochondrial oxidation of pyruvate. This provides anabolic support and selective growth advantage for cancer cells. Recently, a new concept has arisen suggesting that these metabolic changes may be due, in part, to an attenuated mitochondrial function which results from the inhibition of the pyruvate dehydrogenase complex (PDC). This mitochondrial complex links glycolysis to the Krebs cycle and the current understanding of its regulation involves the cyclic phosphorylation and dephosphorylation by specific pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs).
Collapse
Affiliation(s)
- Elise Saunier
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Benelli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
50
|
Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 2015; 20:1112-9. [PMID: 25842042 DOI: 10.1016/j.drudis.2015.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Many cancer cells demonstrate a high rate of glucose consumption via glycolysis to provide intermediates for macromolecule biosynthesis. To accomplish this metabolic change, the expression of pyruvate dehydrogenase kinases (PDKs) is rapidly increased in cancer cells. Inhibition of PDKs could promote the function of mitochondria by increasing the oxidative metabolism of pyruvate, resulting in the death of cancer cells. In this review, we provide an overview of the structural information available for PDKs and their connections to known therapeutic effects. We then describe the development of small molecule PDK inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Finally, directions for further development of PDK inhibitors as potential anticancer agents are discussed.
Collapse
Affiliation(s)
- Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Huankai Yao
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|