1
|
Ball G, Stevenson J, Boroujeni FA, Jacobson B, Kuehne SA, Lucas M, Walmsley AD, Prentice P, Pikramenou Z. Non-porous silica nanoparticles as a cavitation sensitive vehicle for antibiotic delivery. ULTRASONICS SONOCHEMISTRY 2025; 116:107316. [PMID: 40120341 PMCID: PMC11981769 DOI: 10.1016/j.ultsonch.2025.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Ultrasound stimulated drug delivery is attractive for controlled dose and localised delivery to reduce excess loss of drug and side effects, which for antibiotics is pertinent to the fight against antimicrobial resistance. Low frequency ultrasound is commonly used in dental clinical practice for bacterial biofilm removal and is an attractive versatile stimulus for drug release. Here we introduce nonporous (amorphous) silica nanoparticles as a biocompatible, encapsulant for triggered drug release by low frequency ultrasound. A 20 kHz ultrasonic sonotrode is used in to evaluate the release of the antibiotic ciprofloxacin, CPX, from non-porous particles, CPX ⊂ SiO2. Laser doppler vibrometry (LDV) was employed to characterise the ultrasonic vibration displacement of the sonotrode. Drug release from CPX ⊂ SiO2 was monitored for increasing the tip displacement. Clinically relevant quantities of CPX release (5.7 mg/L) occurred at 40 μm tip displacement in our studies. A strong correlation was observed between cavitation features in the acoustic spectra and drug release from CPX ⊂ SiO2. Silica nanoparticles with and without encapsulated CPX, CPX ⊂ SiO2 and SiO2, respectively, were found to promote cavitation at lower amplitudes confirmed by high-speed imaging, in contrast to mesoporous particles with and without adsorbed CPX, CPX@m-SiO2 and m-SiO2. Spectra of the emissions collected via an acoustic cavitation detector supported these results. Our studies demonstrate a novel platform for drug delivery employing low frequency ultrasound for synergistic enhancement of cavitation effects and triggered drug release.
Collapse
Affiliation(s)
- Grace Ball
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jack Stevenson
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Faraz Amini Boroujeni
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ben Jacobson
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sarah A Kuehne
- School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Margaret Lucas
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anthony Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Paul Prentice
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
2
|
Naftaly S, Pery T, Mhajne R, Ashkar A, Davidovich-Pinhas M, Zinger A. Harnessing the Potential of Human Breast Milk to Boost Intestinal Permeability for Nanoparticles and Macromolecules. J Control Release 2025; 379:768-785. [PMID: 39842727 DOI: 10.1016/j.jconrel.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport. Mechanistically, human breast milk reduces Zonula occludens-1 levels, suggesting a regulatory role in intestinal barrier function. Through in vitro and ex vivo evaluations, we aim to understand better the mechanisms behind enhanced permeability and how human breast milk affects nanoparticle physicochemical properties, potentially modulating their behavior. Specifically, human breast milk improves the intestinal permeability of liposomes in a porcine intestinal model, with associated changes in the composition of milk proteins corona related to liposome charge. These findings underscore the unexploited potential of human breast milk in facilitating transport across the intestinal barrier, offering novel avenues for human nutritional delivery and therapeutic interventions.
Collapse
Affiliation(s)
- Si Naftaly
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Topaz Pery
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Mhajne
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Areen Ashkar
- Faculty of Biotechnology and Food Engineering, Technion, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 PMCID: PMC11875835 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
4
|
Chen Z, Ye K, Wu H, Peng L, Chen Z. Thumb-sized 3D-Printed cymbal microneedle array (CyMA) for enhanced transdermal drug delivery. Eur J Pharm Biopharm 2025; 207:114629. [PMID: 39824326 DOI: 10.1016/j.ejpb.2025.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Transdermal drug delivery presents a compelling alternative to both needle injection and oral ingestion of medication, as it enhances patient adherence and convenience through its non-invasive and painless administration method. The use of microneedles penetrates the barrier of the stratum corneum, facilitating the sustained delivery of drugs across the skin. However, their efficacy has been limited by the slow diffusion of molecules and often requires external triggers. Herein, a lightweight and minimized 3D-printed microneedle array is introduced, employing a cymbal-type ultrasound transducer, as the external engine for deeper and faster transdermal drug delivery. A theoretical finite element model was developed and the optimization design was conducted for structural parameters. The optimized assembled prototype was fabricated using high-precision 3D printing and weighs only 20 g. In vivo experiments using a diabetic mouse model demonstrate that local insulin delivery with CyMA achieves systemic effects comparable to intraperitoneal administration. Such compact and effective microneedle delivery technology offers considerable promise therapeutic applications on the skin and intraoral use.
Collapse
Affiliation(s)
- Ziyan Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kai Ye
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Huayi Wu
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
5
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
6
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
7
|
Yang K, Han TH, Liu YJ, Zhang JN, Zhou P, Yu XP. Application progress of ultrasound in the production and processing of traditional Chinese herbal medicines. ULTRASONICS SONOCHEMISTRY 2024; 111:107158. [PMID: 39556924 PMCID: PMC11615584 DOI: 10.1016/j.ultsonch.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The quality of Chinese herbal medicines is the key to the quality of traditional Chinese medicine. The processing of Chinese herbal medicines is an important part of the production and quality formation of medicinal materials. Traditional processing methods have low productivity and cannot guarantee the quality of Chinese herbal medicines. Among various non-thermal processing methods, ultrasonic technology has been proved to be a very valuable green processing technology. This paper will discuss the application of ultrasonic technology in the production and processing of Chinese herbal medicines in recent years, including the extraction, cleaning, drying and sterilization of effective components of Chinese herbal medicines. This review summarizes its principle, characteristics and application progress in recent years, and discusses its existing problems. The effects of ultrasound on the chemical structure and biological activity of bioactive compounds extracted from Chinese herbal medicines are mainly introduced. In addition, this paper discusses the effects of different ultrasonic conditions such as frequency, power, time and temperature on the chemical properties and processing of Chinese herbal medicines. In general, the use of ultrasound in the production and processing of Chinese herbal medicines has great application potential.
Collapse
Affiliation(s)
- Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Tao-Hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-Jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-Ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China.
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Liu JD, VanTreeck KE, Marston WA, Papadopoulou V, Rowe SE. Ultrasound-Mediated Antibiotic Delivery to In Vivo Biofilm Infections: A Review. Chembiochem 2024; 25:e202400181. [PMID: 38924307 PMCID: PMC11483220 DOI: 10.1002/cbic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Bacterial biofilms are a significant concern in various medical contexts due to their resilience to our immune system as well as antibiotic therapy. Biofilms often require surgical removal and frequently lead to recurrent or chronic infections. Therefore, there is an urgent need for improved strategies to treat biofilm infections. Ultrasound-mediated drug delivery is a technique that combines ultrasound application, often with the administration of acoustically-active agents, to enhance drug delivery to specific target tissues or cells within the body. This method involves using ultrasound waves to assist in the transportation or activation of medications, improving their penetration, distribution, and efficacy at the desired site. The advantages of ultrasound-mediated drug delivery include targeted and localized delivery, reduced systemic side effects, and improved efficacy of the drug at lower doses. This review scrutinizes recent advances in the application of ultrasound-mediated drug delivery for treating biofilm infections, focusing on in vivo studies. We examine the strengths and limitations of this technology in the context of wound infections, device-associated infections, lung infections and abscesses, and discuss current gaps in knowledge and clinical translation considerations.
Collapse
Affiliation(s)
- Jamie D. Liu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kelly E. VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William A. Marston
- Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Feng S, Zhang Y, Hou C, Liu Y, Gao Y, Song Y, Luo J. A temperature-responsive dual-hormone foam nanoengine improves rectal absorptivity of insulin-pramlintide for diabetes treatment. SCIENCE ADVANCES 2024; 10:eadn8695. [PMID: 39196940 PMCID: PMC11352908 DOI: 10.1126/sciadv.adn8695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Despite the therapeutic benefits of insulin-pramlintide dual-hormone therapy in diabetes, its application potential has been limited due to a lack of efficient delivery routes. Here, we developed a temperature-responsive dual-hormone foam nanoengine (HormFoam) and combined it with a customized spraying device to further construct an in situ foam-generating system for improving the rectal bioavailability of dual-hormone therapy. To support rapid clinical translation, a continuous microfluidic preparation for HormFoam was proposed, including the power unit of perfluorocarbon nanodroplets and the pharmaceutical components Pluronic F127-functionalized liposomal insulin and pramlintide. We found that HormFoam could consistently generate foams to drive drugs forward after rectal administration, which enhanced intestinal distribution and mucosa absorption, leading to systemic codelivery of insulin-pramlintide. HormFoam reproduced the physiology of endocrine pancreas for glycemic control and induced body weight loss while reversing metabolic disorders in diabetic mice with good biosafety. Therefore, HormFoam represents a state-of-the-art dual-hormone regimen with the potential to address unmet needs in diabetes management.
Collapse
Affiliation(s)
- Shujun Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunyuan Hou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
11
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
12
|
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303:122345. [PMID: 37918182 DOI: 10.1016/j.biomaterials.2023.122345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.
Collapse
Affiliation(s)
- Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morteza Sarmadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Binbin Ying
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
14
|
Borenstein JT, Cummins G, Dutta A, Hamad E, Hughes MP, Jiang X, Lee HH, Lei KF, Tang XS, Zheng Y, Chen J. Bionanotechnology and bioMEMS (BNM): state-of-the-art applications, opportunities, and challenges. LAB ON A CHIP 2023; 23:4928-4949. [PMID: 37916434 DOI: 10.1039/d3lc00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The development of micro- and nanotechnology for biomedical applications has defined the cutting edge of medical technology for over three decades, as advancements in fabrication technology developed originally in the semiconductor industry have been applied to solving ever-more complex problems in medicine and biology. These technologies are ideally suited to interfacing with life sciences, since they are on the scale lengths as cells (microns) and biomacromolecules (nanometers). In this paper, we review the state of the art in bionanotechnology and bioMEMS (collectively BNM), including developments and challenges in the areas of BNM, such as microfluidic organ-on-chip devices, oral drug delivery, emerging technologies for managing infectious diseases, 3D printed microfluidic devices, AC electrokinetics, flexible MEMS devices, implantable microdevices, paper-based microfluidic platforms for cellular analysis, and wearable sensors for point-of-care testing.
Collapse
Affiliation(s)
| | - Gerard Cummins
- School of Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Abhishek Dutta
- Department of Electrical & Computer Engineering, University of Connecticut, USA.
| | - Eyad Hamad
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan.
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| | - Hyowon Hugh Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, USA.
| | | | | | | | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
15
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Desai P, Dasgupta A, Sofias AM, Peña Q, Göstl R, Slabu I, Schwaneberg U, Stiehl T, Wagner W, Jockenhövel S, Stingl J, Kramann R, Trautwein C, Brümmendorf TH, Kiessling F, Herrmann A, Lammers T. Transformative Materials for Interfacial Drug Delivery. Adv Healthc Mater 2023; 12:e2301062. [PMID: 37282805 PMCID: PMC11468550 DOI: 10.1002/adhm.202301062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Drug delivery systems (DDS) are designed to temporally and spatially control drug availability and activity. They assist in improving the balance between on-target therapeutic efficacy and off-target toxic side effects. DDS aid in overcoming biological barriers encountered by drug molecules upon applying them via various routes of administration. They are furthermore increasingly explored for modulating the interface between implanted (bio)medical materials and host tissue. Herein, an overview of the biological barriers and host-material interfaces encountered by DDS upon oral, intravenous, and local administration is provided, and material engineering advances at different time and space scales to exemplify how current and future DDS can contribute to improved disease treatment are highlighted.
Collapse
Affiliation(s)
- Prachi Desai
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
| | - Quim Peña
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen University52074AachenGermany
| | | | - Thomas Stiehl
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Institute for Computational Biomedicine – Disease ModelingRWTH Aachen University52074AachenGermany
| | - Wolfgang Wagner
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
- Institute for Stem Cell BiologyUniversity Hospital of RWTH Aachen52074AachenGermany
| | - Stefan Jockenhövel
- Department of Biohybrid & Medical Textiles (BioTex)AME – Institute of Applied Medical EngineeringHelmholtz Institute AachenRWTH Aachen University52074AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH Aachen52074AachenGermany
| | - Rafael Kramann
- Division of Nephrology and Clinical ImmunologyRWTH Aachen University52074AachenGermany
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen University52074AachenGermany
| | - Christian Trautwein
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Department of Medicine III (GastroenterologyMetabolic diseases and Intensive Care)University Hospital RWTH Aachen52074AachenGermany
| | - Tim H. Brümmendorf
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Department of HematologyOncologyHemostaseology and Stem Cell TransplantationRWTH Aachen University Medical School52074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
| |
Collapse
|
18
|
Papadopoulou V, Sidders AE, Lu KY, Velez AZ, Durham PG, Bui DT, Angeles-Solano M, Dayton PA, Rowe SE. Overcoming biological barriers to improve treatment of a Staphylococcus aureus wound infection. Cell Chem Biol 2023; 30:513-526.e5. [PMID: 37148883 PMCID: PMC10198964 DOI: 10.1016/j.chembiol.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/19/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Chronic wounds frequently become infected with bacterial biofilms which respond poorly to antibiotic therapy. Aminoglycoside antibiotics are ineffective at treating deep-seated wound infections due to poor drug penetration, poor drug uptake into persister cells, and widespread antibiotic resistance. In this study, we combat the two major barriers to successful aminoglycoside treatment against a biofilm-infected wound: limited antibiotic uptake and limited biofilm penetration. To combat the limited antibiotic uptake, we employ palmitoleic acid, a host-produced monounsaturated fatty acid that perturbs the membrane of gram-positive pathogens and induces gentamicin uptake. This novel drug combination overcomes gentamicin tolerance and resistance in multiple gram-positive wound pathogens. To combat biofilm penetration, we examined the ability of sonobactericide, a non-invasive ultrasound-mediated-drug delivery technology to improve antibiotic efficacy using an in vivo biofilm model. This dual approach dramatically improved antibiotic efficacy against a methicillin-resistant Staphylococcus aureus (MRSA) wound infection in diabetic mice.
Collapse
Affiliation(s)
- Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA.
| | - Ashelyn E Sidders
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda Z Velez
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA; Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Duyen T Bui
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle Angeles-Solano
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA; Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
Zhu W, Chao Y, Jin Q, Chen L, Shen JJ, Zhu J, Chai Y, Lu P, Yang N, Chen M, Yang Y, Chen Q, Liu Z. Oral Delivery of Therapeutic Antibodies with a Transmucosal Polymeric Carrier. ACS NANO 2023; 17:4373-4386. [PMID: 36802527 DOI: 10.1021/acsnano.2c09266] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic proteins are playing increasingly important roles in treating numerous types of diseases. However, oral administration of proteins, especially large ones (e.g., antibodies), remains a great challenge due to their difficulties in penetrating intestinal barriers. Herein, fluorocarbon-modified chitosan (FCS) is developed for efficient oral delivery of different therapeutic proteins, in particular large ones such as immune checkpoint blockade antibodies. In our design, therapeutic proteins are mixed with FCS to form nanoparticles, lyophilized with appropriate excipients, and then filled into enteric capsules for oral administration. It has been found that FCS could promote transmucosal delivery of its cargo protein via inducing transitory rearrangement of tight junction associated proteins between intestinal epithelial cells and subsequently release free proteins into blood circulation. It is shown that at a 5-fold dose oral delivery of anti-programmed cell death protein-1 (αPD1) or its combination with anti-cytotoxic T-lymphocyte antigen 4 (αCTLA4) using this method could achieve comparable antitumor therapeutic responses to that achieved by intravenous injection of corresponding free antibodies in various types of tumor models and, more excitingly, result in significantly reduced immune-related adverse events. Our work successfully demonstrates the enhanced oral delivery of antibody drugs to achieve systemic therapeutic responses and may revolutionize the future clinical usage of protein therapeutics.
Collapse
Affiliation(s)
- Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- InnoBM Pharmaceuticals Co. Itd., Suzhou, Jiangsu 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jing-Jing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Chai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Panhao Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- InnoBM Pharmaceuticals Co. Itd., Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Yang T, Zhang Y, Wang T, Li M, Zhang Y, Zhao D, Xu L, Wang X. Low-frequency ultrasound irradiation increases paclitaxel-induced sarcoma cells apoptosis and facilitates the transmembrane delivery of drugs. Front Pharmacol 2022; 13:1065289. [PMID: 36582521 PMCID: PMC9792775 DOI: 10.3389/fphar.2022.1065289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Sarcoma is a malignant tumor derived from interstitial tissues and requires comprehensive treatment including chemotherapy. Paclitaxel (PTX) is an active agent against sarcoma, but its effect is not sufficiently acceptable and needs to be improved. Low-frequency ultrasound (LFU) has been documented to improve the efficacy of drugs by inducing reversible changes in membrane permeability; however, the effects of the combined use of LFU and PTX for sarcoma tumors remain unclear and warrant further investigation. We investigated the effects of 30 kHz LFU treatment combined with PTX on sarcoma cells A-204 and HT-1080 by analyzing in vitro apoptosis and cell growth inhibition rates, and determined their antitumor effects by examining tumor weights with or without LFU in the S180 sarcoma xenograft model. Drug concentrations in the subcutaneous tumors were measured using high performance liquid chromatography (HPLC). LFU combined with PTX significantly induced cell apoptosis, and blocked the cell cycle of sarcoma cells in G2/M phase, and furthermore, inhibited the activation of JAK2/STAT3 signaling pathway. Meanwhile, LFU combined with PTX inhibited the expression of PD-L1 in vitro, suggesting the potential of enhanced antitumor immunity by this treatment. LFU combined with PTX significantly inhibited the growth of S180 tumors transplanted subcutaneously in Institute of Cancer Research (ICR) mice, and its enhanced effect may be associated with increased local concentrations of PTX in tumor tissues in vivo, with no significant adverse subsequences on body weight observed. We conclude that the combination of LFU and PTX has synergistic antitumor effects and is a candidate for subcutaneous treatment of sarcoma by further increasing the intracellular concentration of PTX.
Collapse
Affiliation(s)
- Tana Yang
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yixuan Zhang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tan Wang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mo Li
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Zhao
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Dan Zhao, ; Libin Xu, ; Xiaobing Wang,
| | - Libin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Dan Zhao, ; Libin Xu, ; Xiaobing Wang,
| | - Xiaobing Wang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Dan Zhao, ; Libin Xu, ; Xiaobing Wang,
| |
Collapse
|
21
|
Qiao B, Song X, Zhang W, Xu M, Zhuang B, Li W, Guo H, Wu W, Huang G, Zhang M, Xie X, Zhang N, Luan Y, Zhang C. Intensity-adjustable pain management with prolonged duration based on phase-transitional nanoparticles-assisted ultrasound imaging-guided nerve blockade. J Nanobiotechnology 2022; 20:498. [PMID: 36424657 PMCID: PMC9694595 DOI: 10.1186/s12951-022-01707-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background The lack of a satisfactory strategy for postoperative pain management significantly impairs the quality of life for many patients. However, existing nanoplatforms cannot provide a longer duration of nerve blockage with intensity-adjustable characteristics under imaging guidance for clinical applications. Results To overcome this challenge, we proposed a biocompatible nanoplatform that enables high-definition ultrasound imaging-guided, intensity-adjustable, and long-lasting analgesia in a postoperative pain management model in awake mice. The nanoplatform was constructed by incorporating perfluoropentane and levobupivacaine with red blood cell membranes decorated liposomes. The fabricated nanoplatform can achieve gas-producing and can finely escape from immune surveillance in vivo to maximize the anesthetic effect. The analgesia effect was assessed from both motor reactions and pain-related histological markers. The findings demonstrated that the duration of intensity-adjustable analgesia in our platform is more than 20 times longer than free levobupivacaine injection with pain relief for around 3 days straight. Moreover, the pain relief was strengthened by repeatable ultrasound irradiation to effectively manage postoperative pain in an intensity-adjustable manner. No apparent systemic and local tissue injury was detected under different treatments. Conclusion Our results suggest that nanoplatform can provide an effective strategy for ultrasound imaging-guided intensity-adjustable pain management with prolonged analgesia duration and show considerable transformation prospects. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01707-z.
Collapse
Affiliation(s)
- Bin Qiao
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Xinye Song
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Weiyi Zhang
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Ming Xu
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Bowen Zhuang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Wei Li
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Huanling Guo
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Wenxin Wu
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Guangliang Huang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Minru Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiaoyan Xie
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Nan Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Yong Luan
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Chunyang Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
22
|
Srinivasan SS, Alshareef A, Hwang AV, Kang Z, Kuosmanen J, Ishida K, Jenkins J, Liu S, Madani WAM, Lennerz J, Hayward A, Morimoto J, Fitzgerald N, Langer R, Traverso G. RoboCap: Robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci Robot 2022; 7:eabp9066. [PMID: 36170378 PMCID: PMC10034646 DOI: 10.1126/scirobotics.abp9066] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral drug delivery of proteins is limited by the degradative environment of the gastrointestinal tract and poor absorption, requiring parenteral administration of these drugs. Luminal mucus represents the initial steric and dynamic barrier to absorption. To overcome this barrier, we report the development of the RoboCap, an orally ingestible, robotic drug delivery capsule that locally clears the mucus layer, enhances luminal mixing, and topically deposits the drug payload in the small intestine to enhance drug absorption. RoboCap's mucus-clearing and churning movements are facilitated by an internal motor and by surface features that interact with small intestinal plicae circulares, villi, and mucus. Vancomycin (1.4 kilodaltons of glycopeptide) and insulin (5.8 kilodaltons of peptide) delivery mediated by RoboCap resulted in enhanced bioavailability 20- to 40-fold greater in ex vivo and in vivo swine models when compared with standard oral delivery (P < 0.05). Further, insulin delivery via the RoboCap resulted in therapeutic hypoglycemia, supporting its potential to facilitate oral delivery of drugs that are normally precluded by absorption limitations.
Collapse
Affiliation(s)
- Shriya S. Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amro Alshareef
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandria V. Hwang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes Kuosmanen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keiko Ishida
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Jenkins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sabrina Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wiam Abdalla Mohammed Madani
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jochen Lennerz
- Departnent of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison Hayward
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Morimoto
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nina Fitzgerald
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Ma Z, Bourquard C, Gao Q, Jiang S, De Iure-Grimmel T, Huo R, Li X, He Z, Yang Z, Yang G, Wang Y, Lam E, Gao ZH, Supponen O, Li J. Controlled tough bioadhesion mediated by ultrasound. Science 2022; 377:751-755. [PMID: 35951702 DOI: 10.1126/science.abn8699] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tough bioadhesion has important implications in engineering and medicine but remains challenging to form and control. We report an ultrasound (US)-mediated strategy to achieve tough bioadhesion with controllability and fatigue resistance. Without chemical reaction, the US can amplify the adhesion energy and interfacial fatigue threshold between hydrogels and porcine skin by up to 100 and 10 times. Combined experiments and theoretical modeling suggest that the key mechanism is US-induced cavitation, which propels and immobilizes anchoring primers into tissues with mitigated barrier effects. Our strategy achieves spatial patterning of tough bioadhesion, on-demand detachment, and transdermal drug delivery. This work expands the material repertoire for tough bioadhesion and enables bioadhesive technologies with high-level controllability.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Claire Bourquard
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Qiman Gao
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Quebec H3A 1G1, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | | | - Ran Huo
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Zixin He
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Zhen Yang
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Galen Yang
- Department of Chemistry, McGill University, Montréal, Quebec H3A 0B8, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-De-Bellevue, Quebec H9X 3V9, Canada
| | - Edmond Lam
- Department of Chemistry, McGill University, Montréal, Quebec H3A 0B8, Canada.,Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Montréal, Quebec H4P 2R2, Canada
| | - Zu-Hua Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada.,Department of Biomedical Engineering, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
24
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 PMCID: PMC12053541 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Lu S, Zhao P, Deng Y, Liu Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14030480. [PMID: 35335857 PMCID: PMC8954263 DOI: 10.3390/pharmaceutics14030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasound with low frequency (20–100 kHz) assisted drug delivery has been widely investigated as a non-invasive method to enhance the permeability and retention effect of drugs. The functional micro/nanobubble loaded with drugs could provide an unprecedented opportunity for targeted delivery. Then, ultrasound with higher intensity would locally burst bubbles and release agents, thus avoiding side effects associated with systemic administration. Furthermore, ultrasound-mediated destruction of micro/nanobubbles can effectively increase the permeability of vascular membranes and cell membranes, thereby not only increasing the distribution concentration of drugs in the interstitial space of target tissues but also promoting the penetration of drugs through cell membranes into the cytoplasm. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theragnostic tool. In this review, we first discuss the structure and generation of micro/nanobubbles. Second, ultrasound parameters and mechanisms of therapeutic delivery are discussed. Third, potential biomedical applications of micro/nanobubble-assisted ultrasound are summarized. Finally, we discuss the challenges and future directions of ultrasound combined with micro/nanobubbles.
Collapse
|
27
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
28
|
France MM, Rio TD, Travers H, Raftery E, Langer R, Traverso G, Schoellhammer CM. Platform for the Delivery of Unformulated RNA In Vivo. J Pharm Sci 2021; 111:1770-1775. [PMID: 34906584 DOI: 10.1016/j.xphs.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
The successful delivery of RNA therapeutics is the gating hurdle to greater clinical translation and utility of this novel class of therapeutics. Delivery strategies today are limited and predominantly rely on lipid nanoparticles or conjugates, which can facilitate hepatic delivery but are poor for achieving uptake outside the liver. The ability to deliver RNA to other organs outside the liver in a formulation-agnostic approach could serve to unlock the broader potential of these therapies and enable their use in a broader set of disease. Here we demonstrate this formulation-agnostic delivery of two model siRNAs using low-frequency ultrasound to the gastrointestinal (GI) tract. Unformulated siRNAs targeting β-catenin (Ctnnb 1) and Sjögren syndrome antigen B (SSB) genes were successfully delivered to colonic mucosa in mice, achieving robust knockdown of the target mRNA from whole-colon tissue samples. Indeed, the capacity to target and successfully suppress expression from genes underscores the power of this platform to rapidly deliver unformulated and unoptimized sequences against a range of targets in the GI tract.
Collapse
Affiliation(s)
- Marion M France
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA
| | - Tony Del Rio
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA
| | - Hannah Travers
- Suono Bio, Inc., 200 Foxborough Blvd., Suite 100, Foxborough, MA 02035, USA; Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Erin Raftery
- Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, 65 Landsdowne St., Suite 252, Cambridge, MA 02139, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | |
Collapse
|
29
|
Shahdadi Sardou H, Akhgari A, Mohammadpour AH, Beheshti Namdar A, Kamali H, Jafarian AH, Afrasiabi Garekani H, Sadeghi F. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur J Pharm Sci 2021; 168:106072. [PMID: 34774715 DOI: 10.1016/j.ejps.2021.106072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023]
Abstract
Formulation design for colon-specific delivery of 5-aminosalicylic acid (5-ASA) could bring some therapeutic benefits in the treatment of ulcerative colitis (UC). In the current study, a 32 full factorial design was used to predict optimum coating composed of two enteric (poly methacrylic acid, methyl methacrylates 1:2 and 1:1) and time-dependent (poly ethyl acrylate, methyl methacrylate, trimethylammonio ethyl methacrylate chloride 1:2:0.1) polymethacrylates for colon-specific delivery of 5-ASA pellets. A unique coating composition and coating level predicted by the model was applied onto either inulin-free 5-ASA pellets or inulin-bearing 5-ASA pellets and the coated pellets were examined by dissolution test in-vitro. The coated pellets were also tested in a rat model of UC and compared with the a commercially available colonic delivery system of 5-ASA. The ratio of the two enteric polymethacrylates and time-dependet polymethacrylate of 16:64:20 w/w at a coating level of 15% was discovered as the optimum coating for delivery of 5-ASA pellets to the colon. In general, the coated pellets offered a better therapeutic outcome compared to commercially available colonic delivery system of 5-ASA and uncoated pellets in terms of colitis activity index and the colon's tissue enzymes of MDA and GSH. It seems that the coating composed of enteric and pH-dependent polymethacrylates could tune up the rate of drug release from 5-ASA-coated pellets and trigger drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in diagnostics and medicines emphasize the spatial and temporal aspects of monitoring and treating diseases. However, conventional therapeutics, including oral administration and injection, have difficulties meeting these aspects due to physiological and technological limitations, such as long-term implantation and a narrow therapeutic window. As an innovative approach to overcome these limitations, electronic devices known as electronic drugs (e-drugs) have been developed to monitor real-time body signals and deliver specific treatments to targeted tissues or organs. For example, ingestible and patch-type e-drugs could detect changes in biomarkers at the target sites, including the gastrointestinal (GI) tract and the skin, and deliver therapeutics to enhance healing in a spatiotemporal manner. However, medical treatments often require invasive surgical procedures and implantation of medical equipment for either short or long-term use. Therefore, approaches that could minimize implantation-associated side effects, such as inflammation and scar tissue formation, while maintaining high functionality of e-drugs, are highly needed. Herein, the importance of the spatial and temporal aspects of medical treatment is thoroughly reviewed along with how e-drugs use cutting-edge technological innovations to deal with unresolved medical challenges. Furthermore, diverse uses of e-drugs in clinical applications and the future perspectives of e-drugs are discussed.
Collapse
Affiliation(s)
- Chihyeong Won
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaebeen Kwon
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kijun Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
31
|
Byrne J, Huang HW, McRae JC, Babaee S, Soltani A, Becker SL, Traverso G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev 2021; 177:113926. [PMID: 34403749 DOI: 10.1016/j.addr.2021.113926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of macromolecules via the gastrointestinal (GI) tract remains a significant challenge. A variety of technologies using physical modes of drug delivery have been developed and investigated to overcome the epithelial cell layer of the GI tract for local and systemic delivery. These technologies include direct injection, jetting, ultrasound, and iontophoresis, which have been largely adapted from transdermal drug delivery. Direct injection of agents using needles through endoscopy has been used clinically for over a century. Jetting, a needle-less method of drug delivery where a high-speed stream of fluid medication penetrates tissue, has been evaluated pre-clinically for delivery of agents into the buccal mucosa. Ultrasound has been shown to be beneficial in enhancing delivery of macromolecules, including nucleic acids, in pre-clinical animal models. The application of an electric field gradient to drive drugs into tissues through the technique of iontophoresis has been shown to deliver highly toxic chemotherapies into GI tissues. Here in, we provide an in-depth overview of these physical modes of drug delivery in the GI tract and their clinical and preclinical uses.
Collapse
Affiliation(s)
- James Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA
| | - Hen-Wei Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James C McRae
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amin Soltani
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev 2021; 177:113931. [PMID: 34416311 DOI: 10.1016/j.addr.2021.113931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Ingestible smart pills have the potential to be a powerful clinical tool in the diagnosis and treatment of gastrointestinal disease. Though examples of this technology, such as capsule endoscopy, have been successfully translated from the lab into clinically used products, there are still numerous challenges that need to be overcome. This review gives an overview of the research being done in the area of ingestible smart pills and reports on the technical challenges in this field.
Collapse
|
33
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
34
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
35
|
Zhu P, Peng H, Mao L, Tian J. Piezoelectric Single Crystal Ultrasonic Transducer for Endoscopic Drug Release in Gastric Mucosa. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:952-960. [PMID: 32970594 DOI: 10.1109/tuffc.2020.3026320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modern advanced minimally invasive surgery has been implemented for most of the significant gastrointestinal diseases. However, patients with coagulopathy or unresectable tumors cannot be cured by current treatment methods. Moreover, other existing medical devices for targeted drug release are too large to be applied in gastric endoscope because the diameter of the biopsy channel is smaller than 3 mm. To address it, in this work, we developed a piezoelectric single crystal ultrasonic transducer (the diameter was only 2.2 mm and the mass was 0.076 g) to produce acoustic waves, which could promote the drug release in the designed position of the digestive tract through an endoscope. It exhibited the electromechanical coupling coefficient of 0.36 and the center frequency of 6.9 MHz with the -6-dB bandwidth of 23%. In in vitro sonophoresis experiment, the gastric mucosa permeability to Bovine Serum Albumin increased about 5.6 times when the ultrasonic transducer was activated at 40 [Formula: see text] and 60% duty ratio, proving that employment of this transducer could facilitate drug penetration in the gastric mucosa. Meanwhile, the permeability could be adjusted by tuning the duty ratio of the ultrasonic transducer. The corresponding sonophoresis mechanism was related to the acoustic streaming and the thermal effect produced by the transducer. In addition, the measured maximum power density was 128 mW/cm2 and the mechanical index of the ultrasonic transducer was 0.02. The results held a great implication for applications of the transducer for targeted drug release in the gastrointestinal tract.
Collapse
|
36
|
Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation. Biomaterials 2021; 271:120710. [PMID: 33610047 DOI: 10.1016/j.biomaterials.2021.120710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022]
Abstract
Fenton reaction-mediated chemodynamic therapy (CDT), which destroys tumor cells by converting H2O2 into cytotoxic hydroxyl radical (OH) and singlet oxygen (1O2) species, is a promising field. However, Fenton-based CDT is severely impaired by the inappropriate tumor environment associated with undesirable intratumoral acidity and insufficient H2O2 supply in tumor microenvironment (TME). Therefore, a strategy that can address these concerns is highly desired and beneficial for boosting such treatment. Herein, a magnetic nanoreactor system (denoted as poly (lactic-co-glycolic acid) (PLGA)-superparamagnetic iron oxide (SPIO)&vitamin C (Vc) was constructed with Vc in the core, SPIO on the shell, and PLGA as the building carrier. Upon low-intensity focused ultrasound irradiation, on-demand Vc release can locally decompose into H2O2, which can generate a favorable condition for facilitating SPIO-based Fenton-like reaction and result in continuous O2 and OH/1O2 generation. The TME modulation-augmented CDT by this nanoreactor based on the reinforced Fenton reaction tremendously improved the antitumor outcomes, especially under increased accumulation contributed by magnetic targeting combined with enhanced permeability and retention effect. Moreover, the explosive production of oxygen can be monitored by real-time photoacoustic imaging, offering a noninvasive means to forecast the treatment efficacy. Therefore, this established microenvironment modulation strategy for augmenting Fenton reaction-based CDT paves a new avenue to realize highly efficient cancer theranostics.
Collapse
|
37
|
Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci Rep 2021; 11:2584. [PMID: 33510366 PMCID: PMC7844260 DOI: 10.1038/s41598-021-82240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Biologic drugs, defined as therapeutic agents produced from or containing components of a living organism, are of growing importance to the pharmaceutical industry. Though oral delivery of medicine is convenient, biologics require invasive injections because of their poor bioavailability via oral routes. Delivery of biologics to the small intestine using electronic delivery with devices that are similar to capsule endoscopes is a promising means of overcoming this limitation and does not require reformulation of the therapeutic agent. The efficacy of such capsule devices for drug delivery could be further improved by increasing the permeability of the intestinal tract lining with an integrated ultrasound transducer to increase uptake. This paper describes a novel proof of concept capsule device capable of electronic application of focused ultrasound and delivery of therapeutic agents. Fluorescent markers, which were chosen as a model drug, were used to demonstrate in vivo delivery in the porcine small intestine with this capsule. We show that the fluorescent markers can penetrate the mucus layer of the small intestine at low acoustic powers when combining microbubbles with focused ultrasound during in vivo experiments using porcine models. This study illustrates how such a device could be potentially used for gastrointestinal drug delivery and the challenges to be overcome before focused ultrasound and microbubbles could be used with this device for the oral delivery of biologic therapeutics.
Collapse
|
38
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
39
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
40
|
Zhou Y, Gu N, Yang F. In situ microbubble-assisted, ultrasound-controlled release of superparamagnetic iron oxide nanoparticles from gastro-retentive tablets. Int J Pharm 2020; 586:119615. [PMID: 32650114 DOI: 10.1016/j.ijpharm.2020.119615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 11/27/2022]
Abstract
Organic and inorganic nanomaterials have shown great potential in drug delivery applications due to their unique physical and chemical properties. Orally administered nanoparticles have attracted great attention because it is acceptable, convenient, and safe. However, nanoparticles need to overcome numerous hurdles such as acidic gastric environment, the continuous secretion of mucus, and fast gastric emptying after being delivered via an oral route. Here, we used a stimuli-responsive and triggered release strategy for superparamagnetic iron oxide nanoparticles (SPIONPs)-loaded gastro-retentive tablets for in situ bubbles generation. These materials realize SPIOs controlled release and delivery specific to the stomach. The tablet formulation contains a foaming agent (sodium bicarbonate, NaHCO3), adhesive component (HPMC/carbomer 934 P (1:1)), filler (lactose/mannitol (10:1)) and SPIONPs. The in vitro bubble generation and SPIONPs released from the tablets were characterized. The ex vivo gastric adhesive ability, acoustic stimuli performance, and tissue penetration were further evaluated. The results show that when the fabricated tablets interacted with the acidic microenvironment, the carbon dioxide (CO2) could be generated and be captured by ultrasound (US) imaging. Simultaneous with bubble production, SPIONPs are released from the tablets to further control ultrasound-mediated force and deliver SPIONPs entering through the mucus layer. The SPIONPs were loaded in the tablets and could be released in a controllable way; thus, the magnetic resonance imaging (MRI) could also be used to monitor the tablet status and SPIONP delivery process. Therefore, SPIONPs-loaded gastro-retentive effervescent tablets offer effective release and absorption of nanoparticles in the gastric area and be imaged by MRI and US.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
41
|
Wang X, Yan J, Wang L, Pan D, Xu Y, Wang F, Sheng J, Li X, Yang M. Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy. Am J Cancer Res 2020; 10:10808-10822. [PMID: 32929381 PMCID: PMC7482796 DOI: 10.7150/thno.47601] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Anti-tumor necrosis factor (TNF) therapy is a very effective way to treat inflammatory bowel disease. However, systemic exposure to anti-TNF-α antibodies through current clinical systemic administration can cause serious adverse effects in many patients. Here, we report a facile prepared self-assembled supramolecular nanoparticle based on natural polyphenol tannic acid and poly(ethylene glycol) containing polymer for oral antibody delivery. Method: This supramolecular nanoparticle was fabricated within minutes in aqueous solution and easily scaled up to gram level due to their pH-dependent reversible assembly. DSS-induced colitis model was prepared to evaluate the ability of inflammatory colon targeting ability and therapeutic efficacy of this antibody-loaded nanoparticles. Results: This polyphenol-based nanoparticle can be aqueous assembly without organic solvent and thus scaled up easily. The oral administration of antibody loaded nanoparticle achieved high accumulation in the inflamed colon and low systemic exposure. The novel formulation of anti-TNF-α antibodies administrated orally achieved high efficacy in the treatment of colitis mice compared with free antibodies administered orally. The average weight, colon length, and inflammatory factors in colon and serum of colitis mice after the treatment of novel formulation of anti-TNF-α antibodies even reached the similar level to healthy controls. Conclusion: This polyphenol-based supramolecular nanoparticle is a promising platform for oral delivery of antibodies for the treatment of inflammatory bowel diseases, which may have promising clinical translation prospects.
Collapse
|
42
|
Zhang S, Cho WJ, Jin AT, Kok LY, Shi Y, Heller DE, Lee YAL, Zhou Y, Xie X, Korzenik JR, Lennerz JK, Traverso G. Heparin-Coated Albumin Nanoparticles for Drug Combination in Targeting Inflamed Intestine. Adv Healthc Mater 2020; 9:e2000536. [PMID: 32597571 PMCID: PMC7482138 DOI: 10.1002/adhm.202000536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Targeting areas of inflammation offers potential therapeutic and diagnostic benefits by maximizing drug and imaging marker on-target effects while minimizing systemic exposure that can be associated with adverse side effects. This strategy is particularly beneficial in the management of inflammatory bowel disease (IBD). Here an inflammation-targeting (IT) approach based on heparin-coated human serum albumin nanoparticles (HEP-HSA NPs) that utilize the increased intestinal permeability and changes in electrostatic interaction at the site of intestinal inflammation is described. Using small-molecule and biologic drugs as a model for drug combination, the HEP-HSA NPs demonstrate the capacity to load both drugs simultaneously; the dual-drug loaded HEP-HSA NPs exhibit a higher anti-inflammatory effect than both of the single-drug loaded NPs in vitro and selectively bind to inflamed intestine after enema administration in vivo in a murine model of colitis. Importantly, analyses of the physicochemical characteristics and targeting capacities of these NPs indicate that HEP coating modulates NP binding to the inflamed intestine, providing a foundation for future IT-NP formulation development.
Collapse
Affiliation(s)
- Sufeng Zhang
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Won Joon Cho
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy T. Jin
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lie Yun Kok
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yunhua Shi
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David E. Heller
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Ah Lucy Lee
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixuan Zhou
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xi Xie
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua R. Korzenik
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jochen K. Lennerz
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release 2020; 326:75-90. [PMID: 32554041 DOI: 10.1016/j.jconrel.2020.06.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Beyond the emerging field of oncological ultrasound molecular imaging, the recent significant advancements in ultrasound and contrast agent technology have paved the way for therapeutic ultrasound mediated microbubble oscillation and has shown that this approach is capable of increasing the permeability of microvessel walls while also initiating enhanced extravasation and drug delivery into target tissues. In addition, a large number of preclinical studies have demonstrated that ultrasound alone or combined with microbubbles can efficiently increase cell membrane permeability resulting in enhanced tissue distribution and intracellular drug delivery of molecules, nanoparticles, and other therapeutic agents. The mechanism behind the enhanced permeability is the temporary creation of pores in cell membranes through a phenomenon called sonoporation by high-intensity ultrasound and microbubbles or cavitation agents. At low ultrasound intensities (0.3-3 W/cm2), sonoporation may be caused by microbubbles oscillating in a stable motion, also known as stable cavitation. In contrast, at higher ultrasound intensities (greater than 3 W/cm2), sonoporation usually occurs through inertial cavitation that accompanies explosive growth and collapse of the microbubbles. Sonoporation has been shown to be a highly effective method to improve drug uptake through microbubble potentiated enhancement of microvascular permeability. In this review, the therapeutic strategy of using ultrasound for improved drug delivery are summarized with the special focus on cancer therapy. Additionally, we discuss the progress, challenges, and future of ultrasound-mediated drug delivery towards clinical translation.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Taehwa Lee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Dahl
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
44
|
von Erlach T, Saxton S, Shi Y, Minahan D, Reker D, Javid F, Lee YAL, Schoellhammer C, Esfandiary T, Cleveland C, Booth L, Lin J, Levy H, Blackburn S, Hayward A, Langer R, Traverso G. Robotically handled whole-tissue culture system for the screening of oral drug formulations. Nat Biomed Eng 2020; 4:544-559. [PMID: 32341538 DOI: 10.1038/s41551-020-0545-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/05/2020] [Indexed: 01/21/2023]
Abstract
Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically handled system that uses large porcine GI tissue explants that are functionally maintained for an extended period in culture for the high-throughput interrogation (several thousand samples per day) of whole segments of the GI tract. The automated culture system provided higher predictability of drug absorption in the human GI tract than a Caco-2 Transwell system (Spearman's correlation coefficients of 0.906 and 0.302, respectively). By using the culture system to analyse the intestinal absorption of 2,930 formulations of the peptide drug oxytocin, we discovered an absorption enhancer that resulted in a 11.3-fold increase in the oral bioavailability of oxytocin in pigs in the absence of cellular disruption of the intestinal tissue. The robotically handled whole-tissue culture system should help advance the development of oral drug formulations and might also be useful for drug screening applications.
Collapse
Affiliation(s)
- Thomas von Erlach
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Saxton
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunhua Shi
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Minahan
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Reker
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farhad Javid
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Young-Ah Lucy Lee
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carl Schoellhammer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tina Esfandiary
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cody Cleveland
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas Booth
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiaqi Lin
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Levy
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie Blackburn
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison Hayward
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Giovanni Traverso
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Lamson NG, Berger A, Fein KC, Whitehead KA. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng 2020; 4:84-96. [PMID: 31686002 PMCID: PMC7461704 DOI: 10.1038/s41551-019-0465-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg-1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg-1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg-1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg-1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells.
Collapse
Affiliation(s)
- Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adrian Berger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Szablowski JO, Bar-Zion A, Shapiro MG. Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics. Acc Chem Res 2019; 52:2427-2434. [PMID: 31397992 PMCID: PMC7462121 DOI: 10.1021/acs.accounts.9b00277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise targeting of cells in deep tissues is one of the primary goals of nanomedicine. However, targeting a specific cellular population within an entire organism is challenging due to off-target effects and the need for deep tissue delivery. Focused ultrasound can reduce off-targeted effects by spatially restricting the delivery or action of molecular constructs to specific anatomical sites. Ultrasound can also increase the efficiency of nanotherapeutic delivery into deep tissues by enhancing the permeability of tissue boundaries, promoting convection, or depositing energy to actuate cellular activity. In this review we focus on the interface between biomolecular engineering and focused ultrasound and describe the applications of this intersection in neuroscience, oncology, and synthetic biology. Ultrasound can be used to trigger the transport of therapeutic payloads into a range of tissues, including specific regions of the brain, where it can be targeted with millimeter precision through intact skull. Locally delivered molecular constructs can then control specific cells and molecular pathways within the targeted region. When combined with viral vectors and engineered neural receptors, this technique enables noninvasive control of specific circuits and behaviors. The penetrant energy of ultrasound can also be used to more directly actuate micro- and nanotherapeutic constructs, including microbubbles, vaporizable nanodroplets, and polymeric nanocups, which nucleate cavitation upon ultrasound exposure, leading to local mechanical effects. In addition, it was recently discovered that a unique class of acoustic biomolecules-genetically encodable nanoscale protein structures called gas vesicles-can be acoustically "detonated" as sources of inertial cavitation. This enables the targeted disruption of selected cells within the area of insonation by gas vesicles that are engineered to bind cell surface receptors. It also facilitates ultrasound-triggered release of molecular payloads from engineered therapeutic cells heterologously expressing intracellular gas vesicles. Finally, focused ultrasound energy can be used to locally elevate tissue temperature and activate temperature-sensitive proteins and pathways. The elevation of temperature allows noninvasive control of gene expression in vivo in cells engineered to express thermal bioswitches. Overall, the intersection of biomolecular engineering, nanomaterials and focused ultrasound can provide unparalleled specificity in controlling, modulating, and treating physiological processes in deep tissues.
Collapse
Affiliation(s)
- Jerzy O. Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
47
|
Abramson A, Halperin F, Kim J, Traverso G. Quantifying the Value of Orally Delivered Biologic Therapies: A Cost-Effectiveness Analysis of Oral Semaglutide. J Pharm Sci 2019; 108:3138-3145. [PMID: 31034907 PMCID: PMC6708477 DOI: 10.1016/j.xphs.2019.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 01/13/2023]
Abstract
Oral semaglutide, which has undergone multiple phase 3 clinical trials, represents the first oral biologic medication for type 2 diabetes in the form of a daily capsule. It provides similar efficacy compared with its weekly injection counterpart, but it demands a dose on the order of 100 times as high and requires more frequent administration. We perform a cost effectiveness analysis using a first and second order Monte Carlo simulation to estimate quality-adjusted life expectancies associated with an oral daily capsule, oral weekly capsule, daily injection, and weekly injection of semaglutide. We conclude that the additional costs incurred to produce extra semaglutide for the oral formulation are cost effective, given the greater quality of life experienced when taking a capsule over a weekly injection. We also demonstrate that the potency of semaglutide allows the formulation to be cost effective, and less potent drugs will require increased oral bioavailability to make a cost effective oral formulation.
Collapse
Affiliation(s)
- Alex Abramson
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Florencia Halperin
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jane Kim
- Harvard TH Chan School of Public Health, Department of Health Policy and Management, Center for Health Decision Science, Boston, Massachusetts 02115
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
48
|
Fix SM, Koppolu BP, Novell A, Hopkins J, Kierski TM, Zaharoff DA, Dayton PA, Papadopoulou V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1762-1776. [PMID: 31003709 PMCID: PMC6701470 DOI: 10.1016/j.ultrasmedbio.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 05/23/2023]
Abstract
The gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers. Among all tested rarefactional pressures (300-600 kPa), dextran delivery efficiency was consistently greatest at 300 kPa. To explore this unexpected finding, we quantified stable and inertial cavitation energy generated by various ultrasound exposure conditions. In general, lower pressures resulted in more persistent cavitation activity during the 30-s ultrasound exposures, which may explain the enhanced dextran delivery efficiency. Thus, a unique advantage of using low boiling point PCCAs for this application is that the same low-pressure pulses can be used to induce vaporization and provide maximal delivery.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bhanu P Koppolu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Anthony Novell
- IR4M, Université Paris-Saclay, CNRS UMR 8081, 91401 Orsay, France
| | - Jared Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
France MM, del Rio T, Travers H, Raftery E, Xu K, Langer R, Traverso G, Lennerz JK, Schoellhammer CM. Ultra-rapid drug delivery in the oral cavity using ultrasound. J Control Release 2019; 304:1-6. [DOI: 10.1016/j.jconrel.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023]
|
50
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|