1
|
Ali S, Suris A, Huang Y, Zhou Y. Modulating ion channels with nanobodies. Synth Syst Biotechnol 2025; 10:593-599. [PMID: 40103710 PMCID: PMC11916719 DOI: 10.1016/j.synbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Ion channels play instrumental roles in regulating membrane potential and cross-membrane signal transduction, thus making them attractive targets for understanding various physiological processes and associated diseases. Gaining a deeper understanding of their structural and functional properties has significant implications for developing therapeutic interventions. In recent years, nanobodies, single-domain antibody fragments derived from camelids, have emerged as powerful tools in ion channel and synthetic biology research. Their small size, high specificity, and ability to recognize difficult-to-reach epitopes offer advantages over conventional antibodies and biologics. Furthermore, their resemblance to the variable region of human IgG family III reduces immunogenicity concerns. Nanobodies have introduced new opportunities for exploring ion channel structure-function relationships and offer a promising alternative to conventional drugs, which often face challenges such as off-target effects and toxicity. This review highlights recent progress in applying nanobodies to interrogate and modulate ion channel activity, with an emphasis on their potential to overcome current technical and therapeutic limitations.
Collapse
Affiliation(s)
- Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley Suris
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
2
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
3
|
Bell RMB, Denby L. Resident T Cells and Intrarenal Inflammation. J Am Soc Nephrol 2025; 36:536-538. [PMID: 40067400 PMCID: PMC11975260 DOI: 10.1681/asn.0000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Affiliation(s)
- Rachel M B Bell
- Edinburgh Kidney, Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
4
|
Nguyen KT, Jaguan D, Goldfarb N. Future Directions and Pipeline Therapies for Hidradenitis Suppurativa. Dermatol Clin 2025; 43:359-371. [PMID: 40023632 DOI: 10.1016/j.det.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hidradenitis suppurativa (HS) is a painful, autoinflammatory condition with dramaticimpact on quality of life. As of January 1, 2024, there are 25 phase I-III clinical trials for topical and systematic medications in the management of HS. Only three medications, adalimumab, secukinumab and bemikizumab, are currently approved by the United States Food and Drug Administration for the treatment of moderate to severe HS. In addition, 15 nonmedication-based studies are ongoing, including those for various surgical techniques, botulinum toxin, laser and light-based therapies, differing wound care methods, and a variety of complementary and alternative medicine practices for HS.
Collapse
Affiliation(s)
- Kim T Nguyen
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniella Jaguan
- Georgetown University School of Medicine, Washington, DC, USA
| | - Noah Goldfarb
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Departments of Medicine and Dermatology, Minneapolis Veteran Affairs Health Care System, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Wang L, Yu C, You T, Zhang X, Su H, Cao B, Anwaier S, Xiang H, Dai C, Long X, Han L, Zhang D, Wang J, Zhu P, Yan X, Liang J, Chen Z, Huang H, Zhu S, Sun T, Chen J, Zhu P. Injection of ROS-Responsive Hydrogel Loaded with IL-1β-targeted nanobody for ameliorating myocardial infarction. Bioact Mater 2025; 46:273-284. [PMID: 39811465 PMCID: PMC11732248 DOI: 10.1016/j.bioactmat.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.
Collapse
Affiliation(s)
- Lu Wang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ting You
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, China
| | - Xinkui Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Haotao Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Sainiwaer Anwaier
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Hongmo Xiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Chengming Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiang Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Linjiang Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Junwei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinjian Yan
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jialiang Liang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Zerui Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Huanlei Huang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| | - Shuoji Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jimei Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ping Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| |
Collapse
|
6
|
Junge M, Liaukouskaya N, Schwarz N, Pinto-Espinoza C, Schaffrath AZ, Rissiek B, Krebs CF, Rattay G, Mittrücker HW, Tomas NM, Nicke A, Haag F, Huber TB, Meyer-Schwesinger C, Koch-Nolte F, Wanner N. ATP-Gated P2X7-Ion Channel on Kidney-Resident Natural Killer T Cells and Memory T Cells in Intrarenal Inflammation. J Am Soc Nephrol 2025; 36:602-613. [PMID: 39675762 PMCID: PMC11975244 DOI: 10.1681/asn.0000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Key Points Parenchymal T cells in the kidney expressed much higher levels of P2X7 than vascular T cells. P2X7-blocking nanobodies uncover a large fraction of kidney-resident natural killer T and tissue-resident memory T cells. These cells were lost during cell preparation because of activation of P2X7 by NAD+ released from damaged cells, unless blocked by nanobodies. Background The P2X7 ion channel, a key sensor of sterile inflammation, has been implicated as a therapeutic target in GN, and P2X7-antagonistic nanobodies can attenuate experimental GN. However, little is known about the expression of P2X7 on renal immune cells. Methods We used conventional immunofluorescence of kidney sections and intraperitoneal injection of nanobodies in mice followed by flow cytometry analysis of parenchymal T cells and RNA sequencing to elucidate the expression and function of P2X7 on parenchymal and vascular immune cells in the mouse kidney. Results Our study showed that parenchymal T cells, including a large subset of natural killer T cells and CD69+ tissue-resident memory T cells, display much higher cell surface levels of P2X7 than vascular T cells. After a single intraperitoneal injection of P2X7-blocking nanobodies, P2X7 on parenchymal T cells was fully occupied by the injected nanobodies within 30 minutes. This resulted in an effective protection of these cells from nicotinamide adenine dinucleotide–induced cell death during cell preparation. Conversely, systemic injection of nicotinamide adenine dinucleotide that mimics sterile inflammation results in the selective depletion of P2X7hiCD69hi T cells from the kidney parenchyma. Conclusions Our study uncovered a novel purinergic regulatory mechanism affecting kidney-resident T-cell populations.
Collapse
Affiliation(s)
- Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nastassia Liaukouskaya
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z. Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Rattay
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
9
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
10
|
Abstract
Nanobodies are the products of an intriguing invention in the evolution of immunoglobulins. This invention can be traced back approximately 45 million years to the common ancestor of extant dromedaries, camels, llamas, and alpacas. Next to conventional heterotetrameric H2L2 antibodies, these camelids produce homodimeric nanobody-based heavy chain antibodies, composed of shortened heavy chains that a lack the CH1 domain. Nanobodies against human target antigens are derived from immunized animals and/or synthetic nanobody libraries. As a robust, highly soluble, single immunoglobulin domain, a nanobody can easily be fused to another protein, for example to another nanobody and/or the hinge and constant domains of other immunoglobulins. Nanobody-derived heavy chain antibodies hold promise as a new form of immunotherapeutics.
Collapse
Affiliation(s)
- Friedrich Koch‐Nolte
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
11
|
Thakku Sivakumar D, Jain K, Alfehaid N, Wang Y, Teng X, Fischer W, Engel T. The Purinergic P2X7 Receptor as a Target for Adjunctive Treatment for Drug-Refractory Epilepsy. Int J Mol Sci 2024; 25:6894. [PMID: 39000004 PMCID: PMC11241490 DOI: 10.3390/ijms25136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.
Collapse
Affiliation(s)
- Divyeshz Thakku Sivakumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Krishi Jain
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Noura Alfehaid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Yitao Wang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | | | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
12
|
Eden T, Schaffrath AZ, Wesolowski J, Stähler T, Tode N, Richter N, Schäfer W, Hambach J, Hermans-Borgmeyer I, Woens J, Le Gall CM, Wendler S, Linke-Winnebeck C, Stobbe M, Budnicki I, Wanney A, Heitz Y, Schimmelpfennig L, Schweitzer L, Zimmer D, Stahl E, Seyfried F, Gebhardt AJ, Dieckow L, Riecken K, Fehse B, Bannas P, Magnus T, Verdoes M, Figdor CG, Hartlepp KF, Schleer H, Füner J, Tomas NM, Haag F, Rissiek B, Mann AM, Menzel S, Koch-Nolte F. Generation of nanobodies from transgenic 'LamaMice' lacking an endogenous immunoglobulin repertoire. Nat Commun 2024; 15:4728. [PMID: 38830864 PMCID: PMC11148044 DOI: 10.1038/s41467-024-48735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.
Collapse
Affiliation(s)
- Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janusz Wesolowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Richter
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jannis Woens
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabrina Wendler
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | - Martina Stobbe
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | | | | | | | | | | | - Fabienne Seyfried
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna J Gebhardt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lynn Dieckow
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus F Hartlepp
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Menzel S, Duan Y, Hambach J, Albrecht B, Wendt-Cousin D, Winzer R, Tolosa E, Rissiek A, Guse AH, Haag F, Magnus T, Koch-Nolte F, Rissiek B. Generation and characterization of antagonistic anti-human CD39 nanobodies. Front Immunol 2024; 15:1328306. [PMID: 38590528 PMCID: PMC11000232 DOI: 10.3389/fimmu.2024.1328306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.
Collapse
Affiliation(s)
- Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorte Wendt-Cousin
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Cytometry und Cell Sorting Core Unit, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Wang Z, Xie X, He Z, Sun Z, Zhang Y, Mao F, Pei H, Zhang S, Hammock BD, Liu X. Development of Shark Single Domain Antibodies Specific for Human α-Fetoprotein and the Multimerization Strategy in Serum Detection. Anal Chem 2024; 96:4242-4250. [PMID: 38408370 DOI: 10.1021/acs.analchem.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.
Collapse
Affiliation(s)
- Zheming Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Abad C, Demeules M, Guillou C, Gondé H, Zoubairi R, Tan YV, Pinto-Espinoza C, Schäfer W, Mann AM, Vouret-Craviari V, Koch-Nolte F, Adriouch S. Administration of an AAV vector coding for a P2X7-blocking nanobody-based biologic ameliorates colitis in mice. J Nanobiotechnology 2024; 22:27. [PMID: 38212782 PMCID: PMC10785547 DOI: 10.1186/s12951-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Mélanie Demeules
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Charlotte Guillou
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Henri Gondé
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Yossan-Var Tan
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | | | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France.
- Faculty of Medicine and Pharmacy, INSERM U1234 - PANTHER Lab, 22 Boulevard Gambetta, CS 76183, University of Rouen, 76000, Rouen, France.
| |
Collapse
|
16
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Shinde SH, Sandeep, Pande AH. Polyvalency: an emerging trend in the development of clinical antibodies. Drug Discov Today 2024; 29:103846. [PMID: 38029835 DOI: 10.1016/j.drudis.2023.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Medicine has benefited greatly from the development of monoclonal antibody (mAb) technology. First-generation mAbs have seen significant success in the treatment of major diseases, such as autoimmune, inflammation, cancer, infectious, and cardiovascular diseases. Developing next-generation antibodies with improved potency, safety, and non-natural characteristics is a booming field of mAb research. In this review, we discuss the significance of polyvalency and polyvalent antibodies, as well as important findings from preclinical studies and clinical trials involving polyvalent antibodies. We then review the role of tumor necrosis factor-alpha (TNF-α) in inflammatory diseases and the need for polyvalent anti-TNF-α antibodies.
Collapse
Affiliation(s)
- Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
18
|
Mafra JCM, Boechat N, Teixeira GP, Faria RX. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases. Eur J Pharmacol 2023; 957:175999. [PMID: 37619787 DOI: 10.1016/j.ejphar.2023.175999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.
Collapse
Affiliation(s)
- João Carlos Martins Mafra
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil.
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil.
| | - Guilherme Pegas Teixeira
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| |
Collapse
|
19
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
20
|
Elhage A, Cuthbertson P, Sligar C, Watson D, Sluyter R. A Species-Specific Anti-Human P2X7 Monoclonal Antibody Reduces Graft-versus-Host Disease in Humanised Mice. Pharmaceutics 2023; 15:2263. [PMID: 37765233 PMCID: PMC10536354 DOI: 10.3390/pharmaceutics15092263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a T cell-mediated inflammatory disorder that arises from allogeneic haematopoietic stem cell transplantation and is often fatal. The P2X7 receptor is an extracellular adenosine 5'-triphosphate-gated cation channel expressed on immune cells. Blockade of this receptor with small molecule inhibitors impairs GVHD in a humanised mouse model. A species-specific blocking monoclonal antibody (mAb) (clone L4) for human P2X7 is available, affording the opportunity to determine whether donor (human) P2X7 contributes to the development of GVHD in humanised mice. Using flow cytometric assays of human RPMI 8266 and murine J774 cells, this study confirmed that this mAb bound and impaired human P2X7. Furthermore, this mAb prevented the loss of human regulatory T cells (hTregs) and natural killer (hNK) T cells in vitro. NOD-scid IL2Rγnull mice were injected with 10 × 106 human peripheral blood mononuclear cells (Day 0) and an anti-hP2X7 or control mAb (100 μg i.p. per mouse, Days 0, 2, 4, 6, and 8). The anti-hP2X7 mAb increased hTregs and hNK cells at Day 21. Moreover, anti-hP2X7 mAb-treatment reduced clinical and histological GVHD in the liver and lung compared to the control treatment at disease endpoint. hTregs, hNK, and hNK T cell proportions were increased, and human T helper 17 cell proportions were decreased at endpoint. These studies indicate that blockade of human (donor) P2X7 reduces GVHD development in humanised mice, providing the first direct evidence of a role for donor P2X7 in GVHD.
Collapse
Affiliation(s)
- Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
21
|
Esparza TJ, Su S, Francescutti CM, Rodionova E, Kim JH, Brody DL. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody. Fluids Barriers CNS 2023; 20:64. [PMID: 37620930 PMCID: PMC10463325 DOI: 10.1186/s12987-023-00462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. METHODS A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. RESULTS The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30-60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. CONCLUSION The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.
Collapse
Affiliation(s)
- Thomas J Esparza
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Shiran Su
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Elvira Rodionova
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joong Hee Kim
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David L Brody
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA.
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
22
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
24
|
Ghaderpour A, Jeong JY, Kim YH, Zou Y, Park KS, Hong EJ, Koh YJ, Seong SY. Taurodeoxycholate, a GPCR19 agonist, ameliorates atopic dermatitis in Balb/c mice. Eur J Immunol 2023; 53:e2250048. [PMID: 36815313 DOI: 10.1002/eji.202250048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Keratinocytes are pivotal cells in the pathogenesis of atopic dermatitis (AD) as much as Th2 cells. In this sense, regulation of pro-inflammatory features of keratinocytes might be useful for AD patients. P2X7R-mediated activation of NLRP3 inflammasome (N3I) in keratinocytes and myeloid cells plays crucial roles in AD. Nonetheless, inhibition of P2X7R has not been feasible because of polymorphisms and ubiquitous expression of P2X7R. Here, we report that GPCR19 colocalizes with P2X7R, and a GPCR19 agonist (taurodeoxycholate [TDCA]) inhibits the activation of P2X7R. Noncistronically, TDCA inhibits NF-kB activation via the adenylate cyclase-PKA pathway and BzATP-mediated Ca++ mobilization. Cistronically, TDCA suppresses the expression of P2X7R and N3I components in keratinocytes. NLRP3 oligomerization and the production of mature IL-1β and IL-18 was suppressed by TDCA treatment in keratinocytes. Topical TDCA treatment ameliorates proinflammatory features of AD in mice induced by DNCB, MC903, or oxazolone. Taken together, a GPCR19 agonist such as TDCA might inhibit P2X7R-mediated N3I activation of keratinocytes, which is crucial for the pathogenesis of AD.
Collapse
Affiliation(s)
- Aziz Ghaderpour
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | | | - Youn-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunyun Zou
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | - Kyung-Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
| | | | | | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Esparza TJ, Su S, Francescutti CM, Rodionova E, Kim JH, Brody DL. Enhanced in Vivo Blood Brain Barrier Transcytosis of Macromolecular Cargo Using an Engineered pH-sensitive Mouse Transferrin Receptor Binding Nanobody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538462. [PMID: 37333358 PMCID: PMC10274906 DOI: 10.1101/2023.04.26.538462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. Methods A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1 R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. Results The most effective histidine mutant, M1 R56H, P96H, Y102H -neurotensin, caused >8°C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1 56,96,102His -13A7-13A7 in capillary depleted brain lysates peaked at 1 hour and were 60% retained at 8 hours. A control construct with no brain targets was only 15% retained at 8 hours. Addition of the albumin-binding Nb80 nanobody to make M1 R56H, P96H, Y102H -13A7-13A7-Nb80 extended blood half-life from 21 minutes to 2.6 hours. At 30-60 minutes, biotinylated M1 R56H, P96H, Y102H -13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 hours it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1 R56H, P96H, Y102H -13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. Conclusion The pH-sensitive mouse transferrin receptor binding nanobody M1 R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.
Collapse
Affiliation(s)
- Thomas J. Esparza
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States of America
| | - Shiran Su
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | | | - Elvira Rodionova
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Joong Hee Kim
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States of America
| | - David L. Brody
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States of America
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
26
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
27
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
28
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
29
|
Schäfer W, Stähler T, Pinto Espinoza C, Danquah W, Knop JH, Rissiek B, Haag F, Koch-Nolte F. Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel. Front Pharmacol 2022; 13:1033135. [DOI: 10.3389/fphar.2022.1033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022] Open
Abstract
P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular “head”-domain of P2X7 (155 Y/H), its “lower body” (270 R/H), and its “tail” in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y—R—T (at 155–270–348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as “wildtype,” differs from the ancestral allele at all three positions, i.e. H—H—A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%–59% for Y155, 59%–77% for R270, and 13%–47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H—R—T for a 50.000 year old Neanderthal, H—R—A for a 24.000 year old Siberian, and Y—R—A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.
Collapse
|
30
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
31
|
Pape LJ, Hambach J, Gebhardt AJ, Rissiek B, Stähler T, Tode N, Khan C, Weisel K, Adam G, Koch-Nolte F, Bannas P. CD38-specific nanobodies allow in vivo imaging of multiple myeloma under daratumumab therapy. Front Immunol 2022; 13:1010270. [PMID: 36389758 PMCID: PMC9647632 DOI: 10.3389/fimmu.2022.1010270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 08/30/2023] Open
Abstract
RATIONALE Recent studies have demonstrated the feasibility of CD38-specific antibody constructs for in vivo imaging of multiple myeloma. However, detecting multiple myeloma in daratumumab-pretreated patients remains difficult due to overlapping binding epitopes of the CD38-specific imaging antibody constructs and daratumumab. Therefore, the development of an alternative antibody construct targeting an epitope of CD38 distinct from that of daratumumab is needed. We report the generation of a fluorochrome-conjugated nanobody recognizing such an epitope of CD38 to detect myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo. METHODS We conjugated the CD38-specific nanobody JK36 to the near-infrared fluorescent dye Alexa Fluor 680. The capacity of JK36AF680 to bind and detect CD38-expressing cells pretreated with daratumumab was evaluated on CD38-expressing tumor cell lines in vitro, on primary myeloma cells from human bone marrow biopsies ex vivo, and in a mouse tumor model in vivo. RESULTS Fluorochrome-labeled nanobody JK36AF680 showed specific binding to CD38-expressing myeloma cells pretreated with daratumumab in vitro and ex vivo and allowed for specific imaging of CD38-expressing xenografts in daratumumab-pretreated mice in vivo. CONCLUSIONS Our study demonstrates that a nanobody recognizing a distinct, non-overlapping epitope of CD38 allows the specific detection of myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo.
Collapse
Affiliation(s)
- Luca Julius Pape
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cerusch Khan
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Zhang Y, Yin HY, Rubini P, Tang Y, Illes P. A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders. Curr Neuropharmacol 2022; 20:2142-2155. [PMID: 35236262 PMCID: PMC9886837 DOI: 10.2174/1570159x20666220302152400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109 Leipzig, Germany,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| |
Collapse
|
33
|
Demeules M, Scarpitta A, Hardet R, Gondé H, Abad C, Blandin M, Menzel S, Duan Y, Rissiek B, Magnus T, Mann AM, Koch-Nolte F, Adriouch S. Evaluation of nanobody-based biologics targeting purinergic checkpoints in tumor models in vivo. Front Immunol 2022; 13:1012534. [PMID: 36341324 PMCID: PMC9626963 DOI: 10.3389/fimmu.2022.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Mélanie Demeules
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Allan Scarpitta
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Romain Hardet
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Henri Gondé
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Catalina Abad
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Marine Blandin
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
- *Correspondence: Sahil Adriouch,
| |
Collapse
|
34
|
Blocking P2X7 by intracerebroventricular injection of P2X7-specific nanobodies reduces stroke lesions. J Neuroinflammation 2022; 19:256. [PMID: 36224611 PMCID: PMC9559872 DOI: 10.1186/s12974-022-02601-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/25/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. METHODS Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1β release after incubation with the P2X7-specific nbs. RESULTS Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1β release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. CONCLUSION Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.
Collapse
|
35
|
Pinto-Espinoza C, Guillou C, Rissiek B, Wilmes M, Javidi E, Schwarz N, Junge M, Haag F, Liaukouskaya N, Wanner N, Nicke A, Stortelers C, Tan YV, Adriouch S, Magnus T, Koch-Nolte F. Effective targeting of microglial P2X7 following intracerebroventricular delivery of nanobodies and nanobody-encoding AAVs. Front Pharmacol 2022; 13:1029236. [PMID: 36299894 PMCID: PMC9589454 DOI: 10.3389/fphar.2022.1029236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
The P2X7 ion channel is a key sensor for extracellular ATP and a key trigger of sterile inflammation. Intravenous injection of nanobodies that block P2X7 has shown to be beneficial in mouse models of systemic inflammation. P2X7 has also emerged as an attractive therapeutic target for inflammatory brain diseases. However, little is known about the ability of nanobodies to cross the BBB. Here we evaluated the ability of P2X7-specific nanobodies to reach and to block P2X7 on microglia following intravenous or intracerebral administration. For this study, we reformatted and sequence-optimized P2X7 nanobodies for higher stability and elevated isoelectric point. Following injection of nanobodies or nanobody-encoding adeno-associated viral vectors (AAV), we monitored the occupancy and blockade of microglial P2X7 in vivo using ex vivo flow cytometry. Our results show that P2X7 on microglia was within minutes completely occupied and blocked by intracerebroventricularly injected nanobodies, even at low doses. In contrast, very high doses were required to achieve similar effects when injected intravenously. The endogenous production of P2X7-antagonistic nanobodies following intracerebral or intramuscular injection of nanobody-encoding AAVs resulted in a long-term occupancy and blockade of P2X7 on microglia. Our results provide new insights into the conditions for the delivery of nanobodies to microglial P2X7 and point to AAV-mediated delivery of P2X7 nanobodies as a promising strategy for the treatment of sterile brain inflammation.
Collapse
Affiliation(s)
- Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Guillou
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Wilmes
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ehsan Javidi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- MSH- Medical School Hamburg- Dep. Anatomy, Hamburg, Germany
| | - Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicola Wanner
- Department of Nephrology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Yossan-Var Tan
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Sahil Adriouch
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Friedrich Koch-Nolte,
| |
Collapse
|
36
|
Hambach J, Fumey W, Stähler T, Gebhardt AJ, Adam G, Weisel K, Koch-Nolte F, Bannas P. Half-Life Extended Nanobody-Based CD38-Specific Bispecific Killercell Engagers Induce Killing of Multiple Myeloma Cells. Front Immunol 2022; 13:838406. [PMID: 35651607 PMCID: PMC9150782 DOI: 10.3389/fimmu.2022.838406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
CD38 is a target for immunotherapy of multiple myeloma. Llama-derived CD38-specific nanobodies allow easy reformatting into mono-, bi- and multispecific proteins. To evaluate the utility of nanobodies for constructing CD38-specific nanobody-based killer cell engagers (nano-BiKEs), we generated half-life extended nano-BiKEs (HLE-nano-BiKEs) by fusing a CD38-specific nanobody to a CD16-specific nanobody for binding to the Fc-receptor on NK cells and further to an albumin-specific nanobody to extend the half-life in vivo. HLE-nano-BiKEs targeting three different epitopes (E1, E2, E3) of CD38 were expressed in transiently transfected HEK-6E cells. We verified specific and simultaneous binding to CD38 on myeloma cells, CD16 on NK cells, and to albumin. We tested the capacity of these HLE-nano-BiKEs to mediate cytotoxicity against CD38-expressing multiple myeloma cell lines and primary myeloma cells from human bone marrow biopsies in bioluminescence and flowcytometry assays with NK92 cells as effector cells. The results revealed specific time- and dose-dependent cytolysis of CD38+ myeloma cell lines and effective depletion of CD38-expressing multiple myeloma cells from primary human bone marrow samples. Our results demonstrate the efficacy of CD38-specific HLE-nano-BiKEs in vitro and ex vivo, warranting further preclinical evaluation in vivo of their therapeutic potential for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William Fumey
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Peter Bannas,
| |
Collapse
|
37
|
Tozaki-Saitoh H, Takeda H, Inoue K. The Role of Microglial Purinergic Receptors in Pain Signaling. Molecules 2022; 27:molecules27061919. [PMID: 35335282 PMCID: PMC8949888 DOI: 10.3390/molecules27061919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Pain is an essential modality of sensation in the body. Purinergic signaling plays an important role in nociceptive pain transmission, under both physiological and pathophysiological conditions, and is important for communication between both neuronal and non-neuronal cells. Microglia and astrocytes express a variety of purinergic effectors, and a variety of receptors play critical roles in the pathogenesis of neuropathic pain. In this review, we discuss our current knowledge of purinergic signaling and of the compounds that modulate purinergic transmission, with the aim of highlighting the importance of purinergic pathways as targets for the treatment of persistent pain.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa 831-8501, Japan;
- Correspondence: ; Tel.: +81-944-32-6137
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa 831-8501, Japan;
| | - Kazuhide Inoue
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
38
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
39
|
Development of High affinity Nanobodies Specific for Na V1.4 and Na V1.5 Voltage-Gated Sodium Channel Isoforms. J Biol Chem 2022; 298:101763. [PMID: 35202650 PMCID: PMC8935509 DOI: 10.1016/j.jbc.2022.101763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated sodium channels, NaVs, are responsible for the rapid rise of action potentials in excitable tissues. NaV channel mutations have been implicated in several human genetic diseases, such as hypokalemic periodic paralysis, myotonia, and long-QT and Brugada syndromes. Here, we generated high-affinity anti-NaV nanobodies (Nbs), Nb17 and Nb82, that recognize the NaV1.4 (skeletal muscle) and NaV1.5 (cardiac muscle) channel isoforms. These Nbs were raised in llama (Lama glama) and selected from a phage display library for high affinity to the C-terminal (CT) region of NaV1.4. The Nbs were expressed in Escherichia coli, purified, and biophysically characterized. Development of high-affinity Nbs specifically targeting a given human NaV isoform has been challenging because they usually show undesired crossreactivity for different NaV isoforms. Our results show, however, that Nb17 and Nb82 recognize the CTNaV1.4 or CTNaV1.5 over other CTNav isoforms. Kinetic experiments by biolayer interferometry determined that Nb17 and Nb82 bind to the CTNaV1.4 and CTNaV1.5 with high affinity (KD ∼ 40–60 nM). In addition, as proof of concept, we show that Nb82 could detect NaV1.4 and NaV1.5 channels in mammalian cells and tissues by Western blot. Furthermore, human embryonic kidney cells expressing holo NaV1.5 channels demonstrated a robust FRET-binding efficiency for Nb17 and Nb82. Our work lays the foundation for developing Nbs as anti-NaV reagents to capture NaVs from cell lysates and as molecular visualization agents for NaVs.
Collapse
|
40
|
Brock VJ, Wolf IMA, Er-Lukowiak M, Lory N, Stähler T, Woelk LM, Mittrücker HW, Müller CE, Koch-Nolte F, Rissiek B, Werner R, Guse AH, Diercks BP. P2X4 and P2X7 are essential players in basal T cell activity and Ca 2+ signaling milliseconds after T cell activation. SCIENCE ADVANCES 2022; 8:eabl9770. [PMID: 35119925 PMCID: PMC8816335 DOI: 10.1126/sciadv.abl9770] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Initial T cell activation is triggered by the formation of highly dynamic, spatiotemporally restricted Ca2+ microdomains. Purinergic signaling is known to be involved in Ca2+ influx in T cells at later stages compared to the initial microdomain formation. Using a high-resolution Ca2+ live-cell imaging system, we show that the two purinergic cation channels P2X4 and P2X7 not only are involved in the global Ca2+ signals but also promote initial Ca2+ microdomains tens of milliseconds after T cell stimulation. These Ca2+ microdomains were significantly decreased in T cells from P2rx4-/- and P2rx7-/- mice or by pharmacological inhibition or blocking. Furthermore, we show a pannexin-1-dependent activation of P2X4 in the absence of T cell receptor/CD3 stimulation. Subsequently, upon T cell receptor/CD3 stimulation, ATP release is increased and autocrine activation of both P2X4 and P2X7 then amplifies initial Ca2+ microdomains already in the first second of T cell activation.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Insa M. A. Wolf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Niels Lory
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
41
|
Bianca Maria Platania C, Drago F, Bucolo C. The P2X7 receptor as a new pharmacological target for retinal diseases. Biochem Pharmacol 2022; 198:114942. [PMID: 35134386 DOI: 10.1016/j.bcp.2022.114942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/02/2022]
|
42
|
Liu X, Sui J, Li C, Peng X, Wang Q, Jiang N, Xu Q, Wang L, Lin J, Zhao G. Preparation of a Nanobody Specific to Dectin 1 and Its Anti-inflammatory Effects on Fungal Keratitis. Int J Nanomedicine 2022; 17:537-551. [PMID: 35140463 PMCID: PMC8818967 DOI: 10.2147/ijn.s338974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To prepare a nanobody specific to dectin 1 and verify its specificity and anti-inflammatory effects on Aspergillus fumigatus keratitis. Methods The nanobody was selected from a high-quality shark-antibody library constructed with phage-display technology. The nanobody was developed in the expression systems of Escherichia coli. Indirect ELISA was used to determine the specificity of the nanobody to recombinant dectin 1 protein. The potential of the nanobody to be recognized and expressed on the surfaces of cells and corneas was detected by immunofluorescence, and its anti-inflammatory effect on A. fumigatus keratitis was further verified. After infection with A. fumigatus, eyes of C57B L/6 mice were treated with nanobodies. Human corneal epithelial cells (HCECs) were pretreated with nanobodies and then incubated with A. fumigatus. Clinical scores and slit-lamp photography were used to assess disease response in mouse corneas. RT-PCR and ELISA were used to evaluate mRNA and protein expression of IL1β and IL6 in both mouse corneas and HCECs. Results The nanobody was successfully expressed through microbial system and showed specific high-affinity binding to recombinant dectin 1. Furthermore, it exhibited specific binding to dectin 1 expressed on the surfaces of cells and recognized dectin 1 in mouse corneas. Importantly, it reduced clinical scores of A. fumigatus keratitis in mice compared with a PBS-treatment group. In addition, it decreased mRNA and protein expression of IL1β and IL6 in infected corneas and HCECs stimulated with A. fumigatus. Conclusion These results suggest that this nanobody can bring about anti-inflammatory effects. This highlights the potential of these nanobodies as innovative therapeutic agents in A. fumigatus.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xudong Peng
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Nan Jiang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qiang Xu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Luokai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Jing Lin; Guiqiu Zhao, Department of Ophthalmology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao266003, Shandong, People’s Republic of China, Email ;
| | - Guiqiu Zhao
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
43
|
Deng Y, Zhou M, Zhao X, Xue X, Liao L, Wang J, Li Y. Immune response studies based on P2X7 receptors: A Mini-Review. Curr Pharm Des 2022; 28:993-999. [PMID: 35100953 DOI: 10.2174/1381612828666220131091325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Inflammation, as a complex immunopathological process, is the organism's natural defense response to the organism against harmful, foreign, and destructive immune or non-immune factors. It is the main pathological form of various diseases, such as tumors, neurodegenerative diseases, periodontitis, alcoholic steatohepatitis, asthma, and other diseases. The P2X7 receptor (P2X7R) is widely distributed in vivo and up--regulated in various inflammatory pathological states. Studies have shown that milder chronic inflammation is related to a deficiency or inhibition of P2X7R, which is an indispensable part of the pro-inflammatory mechanism in vivo. P2X7R, a unique subtype of seven purinergic P2X receptors, is an ATP-gated nonselective cationic channel. P2X7R will promote the influx of Ca2+ and the outflow of K+ after being stimulated. The influx of Ca2+ is essential for activating the body's innate immune response and inducing the production of inflammatory factors. This paper reviews the regulation of P2X7R on inflammation from the perspectives of innate immunity and adaptive immunity.
Collapse
Affiliation(s)
- Ying Deng
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Mengting Zhou
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xingtao Zhao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xinyan Xue
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Li Liao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137,
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Jing Wang
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yunxia Li
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| |
Collapse
|
44
|
Fu Z, Lin Q, Xu Z, Zhao Y, Cheng Y, Shi D, Fu W, Yang T, Shi H, Cheng D. P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur J Nucl Med Mol Imaging 2022; 49:2595-2604. [PMID: 35048153 DOI: 10.1007/s00259-022-05689-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE P2X7 receptors have been considered as a promising biomarker for vulnerable atherosclerotic plaques, which are highly expressed by that instability-associated factors such as macrophages. Thus, we aim to investigate the feasibility of using specific P2X7-targeted 18F-labeled tracer 18F-FTTM ((2-chloro-3-[18F]fluorophenyl)[1,4,6,7-tetrahydro-1-(2-pyrimidinyl)-5H-1,2,3-triazolo[4,5-c]pyridin-5-yl]methanone) for PET study of vulnerable atherosclerotic plaques identification. METHOD The radioligand 18F-FTTM was achieved based on the copper-mediated radiofluorination of arylstannane. In vitro and in vivo experiments were performed to verify the biochemical properties. Dynamic 18F-FTTM Micro-PET/CT imaging was performed for 1 h on ApoE-/- mice (10, 20, 30 weeks on high-fat diet) and wild-type C57BL/6 J mice on normal diet. Ex vivo PET imaging was conducted to verify the specificity of the radioligand. Serum inflammatory cytokines, lipids, and lipoproteins profiles were detected by ELISA. The lipid distribution and morphology of plaques were evaluated by Oil Red O, HE, Masson, and immunofluorescence stainings. RESULTS 18F-FTTM was afforded with decay-corrected radiochemical yields of 5-10%, specific activity of 269-320 MBq/nmol (n = 8, EOS), and radiochemical purity of above 99%. 18F-FTTM showed excellent stability in vitro, rapid blood clearance in mice, good affinity to RAW264.7 cells. We observed an increase in both in vivo and ex vivo imagings as disease progressed, and the imaging signatures correlated with histopathological features. Furthermore, compared with 18F-FDG imaging, the SUVmax values of 18F-FTTM at the aortic arch of ApoE-/- mice of high-fat feeding for 20 and 30 weeks were 43% and 53% higher than those of the control group, respectively. CONCLUSION We innovatively apply a new type P2X7-targeted PET probe (18F-FTTM) to identify vulnerable atherosclerotic plaques, to detect the inflammatory response of atherosclerosis, and to provide a powerful non-invasive method for the diagnosis of atherosclerotic lesions and new drug screening for accurate treatment.
Collapse
Affiliation(s)
- Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Tingting Yang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
45
|
Zebardast A, Hosseini P, Hasanzadeh A, latifi T. The role of single-domain antibodies (or nanobodies) in SARS-CoV-2 neutralization. Mol Biol Rep 2022; 49:647-656. [PMID: 34648139 PMCID: PMC8514607 DOI: 10.1007/s11033-021-06819-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibodies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutralization of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies in COVID-19 treatment.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Tayebeh latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Stähler T, Danquah W, Demeules M, Gondé H, Hardet R, Haag F, Adriouch S, Koch-Nolte F, Menzel S. Development of Antibody and Nanobody Tools for P2X7. Methods Mol Biol 2022; 2510:99-127. [PMID: 35776322 DOI: 10.1007/978-1-0716-2384-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibodies that recognize the ATP-gated P2X7 ion channel are etablished research tools. Nanobodies correspond to the antigen-binding variable immunoglobulin domain (VHH) of heavy chain antibodies that naturally occur in camelids. Nanobodies display better solubility than the variable domains (VH) of conventional antibodies. Therefore, it is much easier to construct bivalent and multivalent fusion proteins with nanobodies than with VH domains or with paired VH-VL domains. Moreover, nanobodies can bind functional crevices that are poorly accessbile to conventional VH-VL domains. This makes nanobodies particulary well suited as functional modulators. Here we provide protocols to raise antibodies and nanobodies against mouse and human P2X7 using cDNA-immunization. This approach evokes antibodies and nanobodies that recognize the P2X7 ion channel in native confirmation, some of which inhibit or potentiate gating of P2X7 by extracellular ATP. Furthermore, we developed protocols for producing P2X7-specific nanobodies and antibodies in vivo using rAAV vectors (AAVnano). This approach can be used either to durably inhibit or potentiate P2X7 function in vivo, or to deplete P2X7-expressing cells.
Collapse
Affiliation(s)
- Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Welbeck Danquah
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Demeules
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Henri Gondé
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Romain Hardet
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Mann AM, Schäfer W, Adriouch S, Börner K, Grimm D, Braren I, Koch-Nolte F. Enhanced Transduction of P2X7-Expressing Cells with Recombinant rAAV Vectors. Methods Mol Biol 2022; 2510:129-144. [PMID: 35776323 DOI: 10.1007/978-1-0716-2384-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.
Collapse
Affiliation(s)
- Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies (PANTHER), Normandie University, Rouen, France
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University and German Center for Infection Research (DZIF), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Ingke Braren
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
48
|
Beamer E, Morgan J, Alves M, Méndez AM, Morris G, Zimmer B, Conte G, de Diego-Garcia L, Alarcón-Vila C, Ng NKY, Madden S, Calzaferri F, de Los Rios C, Garcia AG, Hamacher M, Dinkel K, Pelegrin P, Henshall DC, Nicke A, Engel T. Increased expression of the ATP-gated P2X7 receptor reduces responsiveness to anti-convulsants during status epilepticus in mice. Br J Pharmacol 2021; 179:2986-3006. [PMID: 34962289 DOI: 10.1111/bph.15785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Refractory status epilepticus is a clinical emergency associated with high mortality and morbidity. Increasing evidence suggests neuroinflammation contributes to the development of drug-refractoriness during status epilepticus. The aim of the present study was to determine the contribution of the ATP-gated P2X7 receptor (P2X7R), previously linked to both inflammation and increased hyperexcitability, to drug-refractory status epilepticus and its therapeutic potential. EXPERIMENTAL APPROACH Status epilepticus was induced via a unilateral microinjection of kainic acid into the amygdala in adult mice. Severity of status epilepticus was compared in animals with overexpressing or knock-out of the P2X7R, after inflammatory priming by the pre-injection of bacterial lipopolysaccharide (LPS) and in mice treated with P2X7R-targeting and anti-inflammatory drugs. KEY RESULTS P2X7R overexpressing mice were unresponsive to several anticonvulsants (lorazepam, midazolam, phenytoin and carbamazepine) during status epilepticus. P2X7R expression was increased in microglia during status epilepticus, at a time-point when responses to anticonvulsant are reduced. P2X7R overexpression led to a pro-inflammatory phenotype in microglia during status epilepticus and the anti-inflammatory drug minocycline restored normal responsiveness to anticonvulsants in P2X7R overexpressing mice. Pre-treatment of wildtype mice with LPS increased P2X7R levels in the brain and reduced responsiveness to anticonvulsants during status epilepticus, which was overcome by either a genetic deletion of the P2X7R or the administration of the P2X7R antagonists AFC-5128 or ITH15004. CONCLUSION AND IMPLICATIONS Our results demonstrate that P2X7R-induced pro-inflammatory effects contribute to resistance to pharmacotherapy during status epilepticus and suggest therapies targeting the P2X7R as novel adjunctive treatments for drug-refractory status epilepticus.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Gareth Morris
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Cristina Alarcón-Vila
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista s/n. 30120 El Palmar, Murcia, Spain
| | - Nico Ka Yiu Ng
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Francesco Calzaferri
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain
| | - Cristobal de Los Rios
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital Universitario de La Princesa, C/Diego de Leon, 62, 1a Planta, Madrid, Spain
| | - Antonio G Garcia
- Instituto-Fundación Teofilo Hernando and Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital Universitario de La Princesa, C/Diego de Leon, 62, 1a Planta, Madrid, Spain
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, Dortmund, Germany
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, Dortmund, Germany
| | - Pablo Pelegrin
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista s/n. 30120 El Palmar, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
49
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
50
|
To'a Salazar G, Huang Z, Zhang N, Zhang XG, An Z. Antibody Therapies Targeting Complex Membrane Proteins. ENGINEERING 2021; 7:1541-1551. [DOI: 10.1016/j.eng.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|