1
|
Tsintzas K, Betts JA. Calorie counting vs. minute counting; does nutrient timing matter for weight-loss? Curr Opin Clin Nutr Metab Care 2025:00075197-990000000-00220. [PMID: 40401907 DOI: 10.1097/mco.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
PURPOSE OF REVIEW To critically evaluate the latest evidence on the weight-loss effects of chrono-nutrition, culminating in identification of remaining gaps in the literature and future recommendations. RECENT FINDINGS There appear to be six articles on this topic published over the past 2 years that have ostensibly examined the weight-loss effects of chrono-nutrition strategies relative to comparator conditions involving standard eating patterns in which meal timing is not manipulated. Some of those studies have concluded that TRE may be superior to standard energy restriction for weight-loss but the data presented do not consistently support that inference. SUMMARY Chrono-nutrition strategies remain a popular dietary approach to weight-loss and yet there is a paucity of primary data showing that these strategies are more effective than any other means of eliciting a negative energy balance but without altering daily eating patterns.
Collapse
Affiliation(s)
- Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham
| | - James A Betts
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, UK
| |
Collapse
|
2
|
El-Sabawi B, Tanriverdi K, Gajjar P, Nayor M, Landman JM, Below JE, Haff M, Long M, Ezpeleta M, Freedman JE, Varady K, Shah R, Perry AS. Circulating Proteomics Identifies a Dynamic Profile of Hepatic Steatosis During Metabolic Intervention. J Am Heart Assoc 2025; 14:e037100. [PMID: 40371575 DOI: 10.1161/jaha.124.037100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Weight reduction through lifestyle, activity, and dietary interventions are the mainstay of initial therapy for metabolic dysfunction associated steatotic liver disease. Data on the relative effectiveness and metabolic pathways linking weight loss and decreased hepatic steatosis are lacking. We sought to identify coordinated changes between the circulating proteome and hepatic steatosis within a randomized clinical trial of alternate day fasting and exercise and prioritize proteins relevant to hepatic steatosis within a broader context using a community cohort. METHODS AND RESULTS We quantified a broad cardiometabolic proteome (>300 proteins) in 67 individuals randomized in a 2×2 factorial design to alternate day fasting and exercise before and after the 3-month intervention to identify proteomic signatures of hepatic steatosis (measured by magnetic resonance imaging proton density fat fraction). Then, we analyzed the cross-sectional relationship of overlapping proteins (≈170) with hepatic attenuation (a computed tomographic technique linked to steatosis) in 707 participants from a community cohort. Principal component analysis demonstrated a proteomic signature associated with intrahepatic triglyceride content (Spearman rho=0.55, P<0.001) and insulin resistance (homeostatic model assessment for insulin resistance, Spearman rho=0.39, P=0.001). Changes in this proteomic signature were associated with changes in intrahepatic triglyceride content over the intervention period (beta=0.12, P<0.001). Moreover, cross-sectional analysis of overlapping proteins with hepatic attenuation in the community cohort showed generally, directionally consistent associations with hepatic steatosis. CONCLUSIONS These findings highlight the potential for broad proteomic profiling in small nutritional interventional studies with serial phenotyping alongside confirmatory large cohort epidemiology to prioritize targets of hepatic steatosis and cardiometabolic risk for mechanistic study.
Collapse
Affiliation(s)
- Bassim El-Sabawi
- Vanderbilt Translational and Clinical Cardiovascular Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine Boston University School of Medicine Boston MA USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine Boston University School of Medicine Boston MA USA
| | - Joshua M Landman
- Vanderbilt Genetics Institute Vanderbilt University Medical Center Nashville TN USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute Vanderbilt University Medical Center Nashville TN USA
| | - Madeleine Haff
- Sections of Gastroenterology and Preventive Medicine and Epidemiology, Department of Medicine Boston University School of Medicine Boston MA USA
| | - Michelle Long
- Sections of Gastroenterology and Preventive Medicine and Epidemiology, Department of Medicine Boston University School of Medicine Boston MA USA
| | | | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center Vanderbilt University School of Medicine Nashville TN USA
| | | | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center Vanderbilt University School of Medicine Nashville TN USA
| |
Collapse
|
3
|
Esposito T, Pentimalli F, Giordano A, Cortellino S. Vitamins and dietary supplements in cancer treatment: is there a need for increased usage? Expert Rev Anticancer Ther 2025:1-24. [PMID: 40322898 DOI: 10.1080/14737140.2025.2501077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Vitamins are essential for homeostasis and proper functioning of organisms. These micronutrients prevent tumor onset by functioning as antioxidants and enzymatic cofactors involved in anti-stress and immune responses, modulating epigenetic regulators, and shaping the microbiota composition. Unbalanced diets and sedentary lifestyles contribute to obesity, associated with increasing cancer risk. Cancer patients often exhibit vitamin deficiencies due to chronic inflammation, anticancer therapies, and tumor-induced metabolic changes, leading to malnutrition and cachexia. AREAS COVERED This review critically analyzes preclinical and clinical studies, sourced from PubMed and ClinicalTrials.gov databases, that investigate the potential benefits of vitamin supplementation and dietary interventions, such as intermittent fasting and ketogenic diets, in mouse tumor models and cancer patients. This analysis elucidates the limitations of such interventions and suggests optimal dietary strategies to prevent cancer and enhance patients' quality of life and prognosis. EXPERT OPINION To date, clinical studies have found no substantial benefit of over-the-counter vitamin supplements and dietary interventions on cancer patients' health and prognosis. To prevent the spread of useless and potentially harmful products by the nutraceutical industry, establishing a regulatory authority is necessary to monitor and ensure product quality and validity before commercialization.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Clinical Dietetics and Metabolic Diseases, Cavalier Raffaele Apicella Hospital, ASL Napoli 3 Sud, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Cortellino
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, Italy
- S.H.R.O. Italia Foundation ETS, Turin, Italy
| |
Collapse
|
4
|
Xu J, Xie L, Fan R, Shi X, Xu W, Dong K, Ma D, Yan Y, Zhang S, Sun N, Huang G, Gao M, Yu X, Wang M, Wang F, Chen J, Tao J, Yang Y. The role of dietary inflammatory index in metabolic diseases: the associations, mechanisms, and treatments. Eur J Clin Nutr 2025; 79:397-412. [PMID: 39433856 DOI: 10.1038/s41430-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
In recent years, the prevalence of metabolic diseases has increased significantly, posing a serious threat to global health. Chronic low-grade inflammation is implicated in the development of most metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, and cardiovascular disease, serving as a link between diet and these conditions. Increasing attention has been directly toward dietary inflammatory patterns that may prevent or ameliorate metabolic diseases. The Dietary Inflammatory Index (DII) was developed to assess the inflammatory potential of dietary intake. Consequently, a growing body of research has examined the associations between the DII and the risk of several metabolic diseases. In this review, we explore the current scientific literature on the relationships between the DII, T2DM, obesity, and dyslipidemia. It summarizes recent findings and explore potential underlying mechanisms from two aspects: the interaction between diet and inflammation, and the link between inflammation and metabolic diseases. Furthermore, this review discusses the therapeutic strategies, including dietary modifications, prebiotics, and probiotics, and discusses the application of the DII in metabolic diseases, as well as future research directions.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Nan Sun
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guomin Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Mei Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Fen Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China.
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China.
| |
Collapse
|
5
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Alfahl SO. Evaluation of the effectiveness of intermittent fasting versus caloric restriction in weight loss and improving cardiometabolic health: A systematic review and meta-analysis. J Taibah Univ Med Sci 2025; 20:159-168. [PMID: 40130017 PMCID: PMC11930668 DOI: 10.1016/j.jtumed.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Background Dietary interventions, particularly intermittent fasting (IF) and energy restriction (ER), have emerged as effective strategies for managing weight. Objective We aimed to conduct a systematic review and meta-analysis exploring the effects of IF and ER on body weight and cardiometabolic factors. Methods PRISMA compliant methods were used, and PubMed and the Cochrane CENTRAL Library were systematically searched for relevant randomized controlled trials (RCTs) from database inception to September 27, 2023. A bibliographic and gray literature search was also performed to identify unpublished literature. Effect sizes were pooled with random effects models in the R package "meta" and are reported as mean differences with 95 % confidence intervals. The quality of the included studies was assessed with The Cochrane Risk of Bias assessment tool. Results A total of 2931 records were identified through a database search. The study included 17 publications: 16 RCTs identified after two stages of screening and an additional publication identified from a bibliographic search. All trials were published between 2011 and 2022, and included a total of 1258 participants (24-209 per study). Pooled analysis revealed that IF led to a more significant decrease in BMI than ER (-0.44 [-0.88 to -0.01]; p < 0.01). Additionally, IF resulted in a slightly greater, but statistically nonsignificant, decrease in weight, triglyceride levels, fasting plasma glucose, and diastolic blood pressure than ER. However, similar decreases in SBP, LDL, and HDL levels were observed between IF and ER, which showed no major differences. The ER group experienced a higher frequency of headaches than the IF group, whereas the IF group reported a greater occurrence of dizziness than the ER group. Conclusion IF appears to be slightly advantageous over ER in terms of body weight, cardiometabolic factors, and plasma glucose levels.
Collapse
Affiliation(s)
- Samah O. Alfahl
- Department of Family and Community Medicine and Medical Education, Medical College, Taibah University, Saudi Arabia
| |
Collapse
|
7
|
Beli E, Yan Y, Moldovan L, Lydic TA, Krishman P, Tersey SA, Duan Y, Salazar TE, Dominguez JM, Nguyen DV, Cox A, Li Calzi S, Beam C, Mirmira RG, Evans-Molina C, Busik JV, Grant MB. Reshaping lipid metabolism with long-term alternate day feeding in type 2 diabetes mice. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:3. [PMID: 39911696 PMCID: PMC11790504 DOI: 10.1038/s44324-024-00039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025]
Abstract
Strategies to improve metabolic health include calorie restriction, time restricted eating and fasting several days per week or month. These approaches have demonstrated benefits for individuals experiencing obesity, metabolic syndrome, and prediabetes. However, their impact on established diabetes remains incompletely studied. The chronicity of type 2 diabetes (T2D) requires that interventions must be undertaken for extended periods of time, typically the entire lifetime of the individual. In this study, we examined the impact of intermittent fasting (IF), with an every-other-day protocol for a duration of 6 months in a murine model of T2D, the db/db (D) mouse on metabolism and liver steatosis. We compared D-IF mice with diabetic ad-libitum (AL; D-AL), control-IF (C-IF) and control-AL (C-AL) cohorts. We demonstrated using lipidomic, microbiome, metabolomic and liver transcriptomic studies that chronic IF improved carbohydrate utilization and glucose homeostasis without weight loss and reduced white adipose tissue inflammation and significantly impacted lipid metabolism in the liver. Microbiome studies and predicted functional analysis of gut microbiota showed that IF increased beneficial bacteria involved in sphingolipid (SL) metabolism. The metabolomic studies showed that oxidation of lipid species and ceramide levels were reduced in D-IF compared to D-AL. The liver lipidomic analysis and liver microarray confirmed a reduction in overall lipid content in D-IF mice compared to D-AL mice, especially in the feeding state as well as an overall reduction in oxidized lipids and ceramides. These studies support that long-term IF can improve glucose homeostasis and dramatically altered lipid metabolism in the absence of weight loss.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast, UK
| | - Yuanqing Yan
- Department of Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leni Moldovan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Preethi Krishman
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sarah A. Tersey
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tatiana E. Salazar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - James M. Dominguez
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Dung V. Nguyen
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary
Medicine, Purdue University, Lafayette, IN USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| | - Craig Beam
- Department of Biomedical Sciences, Homer Stryker MD School of
Medicine, Western Michigan University, Kalamazoo, MI USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI USA
- Present Address: Department of Biochemistry and Physiology, The university of Oklahoma Health Sciences, Oklahoma City, OK USA
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| |
Collapse
|
8
|
Hua Z, Yang S, Li J, Sun Y, Liao Y, Song S, Cheng S, Li Z, Li Z, Li D, Guo H, Yang H, Zheng Y, Li X. Intermittent fasting for weight management and metabolic health: An updated comprehensive umbrella review of health outcomes. Diabetes Obes Metab 2025; 27:920-932. [PMID: 39618023 DOI: 10.1111/dom.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025]
Abstract
AIMS To provide an updated comprehensive evaluation of the quality and evidence association of existing studies on health outcomes related to intermittent fasting (IF). MATERIALS AND METHODS We conducted a systematic search of PubMed, Web of Science, Cochrane Library, and Embase databases, covering literature up to June 2024. Meta-analyses and systematic reviews that include adult populations and quantitatively analyse health outcomes related to IF interventional studies are included. For evidence with complete data, we reanalyzed health evidence effect sizes and 95% confidence intervals using random-effects models. Article quality and the certainty of the evidence were graded using A Measurement Tool to Assess Systematic Reviews (AMSTAR-2), Grading of Recommendations Assessment, Development and Evaluation (GRADE) system, and a standardized credibility grading system. RESULTS Twelve meta-analysis studies and 122 health outcome associations with IF were identified. High-quality evidence indicated significant associations between time-restricted eating (TRE) and weight loss, fat mass reduction, decreased fasting insulin and glycosylated haemoglobin levels in overweight or obese adults, as well as between the 5:2 diet and reduced low-density lipoprotein cholesterol levels. Moderate-to-low-quality evidence suggested associations between modified alternate-day fasting and improvements in body weight, lipid profile and blood pressure. Additionally, high-to-low-quality evidence showed that IF regimens effectively improved liver health in non-alcoholic fatty liver disease. CONCLUSIONS This umbrella review highlights IF, especially TRE, as a promising intervention for weight and metabolic health, particularly beneficial for overweight or obese adults. We also highlight the need for further extensive research to understand the long-term effects, individualized IF plans and potential adverse effects of IF in different populations.
Collapse
Affiliation(s)
- Zixin Hua
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Yang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiqian Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiqi Sun
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yin Liao
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyang Song
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Cheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhe Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ze Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heng Guo
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongge Yang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingming Zheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Optimised Skeletal Muscle Mass as a Key Strategy for Obesity Management. Metabolites 2025; 15:85. [PMID: 39997710 PMCID: PMC11857510 DOI: 10.3390/metabo15020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
The 'Body Mass Index' (BMI) is an anachronistic and outdated ratio that is used as an internationally accepted diagnostic criterion for obesity, and to prioritise, stratify, and outcome-assess its management options. On an individual level, the BMI has the potential to mislead, including inaccuracies in cardiovascular risk assessment. Furthermore, the BMI places excessive emphasis on a reduction in overall body weight (rather than optimised body composition) and contributes towards a misunderstanding of the quiddity of obesity and a dispassionate societal perspective and response to the global obesity problem. The overall objective of this review is to provide an overview of obesity that transitions away from the BMI and towards a novel vista: viewing obesity from the perspective of the skeletal muscle (SM). We resurrect the SM as a tissue hidden in plain sight and provide an overview of the key role that the SM plays in influencing metabolic health and efficiency. We discuss the complex interlinks between the SM and the adipose tissue (AT) through key myokines and adipokines, and argue that rather than two separate tissues, the SM and AT should be considered as a single entity: the 'Adipo-Muscle Axis'. We discuss the vicious circle of sarcopenic obesity, in which aging- and obesity-related decline in SM mass contributes to a worsened metabolic status and insulin resistance, which in turn further compounds SM mass and function. We provide an overview of the approaches that can mitigate against the decline in SM mass in the context of negative energy balance, including the optimisation of dietary protein intake and resistance physical exercises, and of novel molecules in development that target the SM, which will play an important role in the future management of obesity. Finally, we argue that the Adipo-Muscle Ratio (AMR) would provide a more clinically meaningful descriptor and definition of obesity than the BMI and would help to shift our focus regarding its effective management away from merely inducing weight loss and towards optimising the AMR with proper attention to the maintenance and augmentation of SM mass and function.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
10
|
Eliopoulos AG, Gkouskou KK, Tsioufis K, Sanoudou D. A perspective on intermittent fasting and cardiovascular risk in the era of obesity pharmacotherapy. Front Nutr 2025; 12:1524125. [PMID: 39895836 PMCID: PMC11782017 DOI: 10.3389/fnut.2025.1524125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Intermittent fasting has been linked to metabolic health by improving lipid profiles, reducing body weight, and increasing insulin sensitivity. However, several randomized clinical trials have shown that intermittent fasting is not more effective than standard daily caloric restriction for short-term weight loss or cardiometabolic improvements in patients with obesity. Observational studies also suggest cardiovascular benefits from extended rather than reduced eating windows, and indicate that long-term intermittent fasting regimens may increase the risk of cardiovascular disease mortality. In this perspective, we discuss evidence that may support potential adverse effects of intermittent fasting on cardiovascular health through the loss of lean mass, circadian misalignment and poor dietary choices associated with reward-based eating. Given the ongoing revolution in obesity pharmacotherapy, we argue that future research should integrate anti-obesity medications with dietary strategies that confer robust benefits to cardiometabolic health, combine exercise regimens, and consider genetic factors to personalize obesity treatment. Comprehensive approaches combining diet, pharmacotherapy, and lifestyle modifications will become crucial for managing obesity and minimizing long-term cardiovascular risk.
Collapse
Affiliation(s)
- Aristides G. Eliopoulos
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Genosophy S.A., National and Kapodistrian University of Athens Spin-off Company, Athens, Greece
| | - Kalliopi K. Gkouskou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Genosophy S.A., National and Kapodistrian University of Athens Spin-off Company, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
11
|
Perez-Kast RC, Camacho-Morales A. Fasting the brain for mental health. J Psychiatr Res 2025; 181:215-224. [PMID: 39616869 DOI: 10.1016/j.jpsychires.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Unfavorable socioeconomic and geopolitical conditions such as poverty, violence and inequality increase vulnerability to mental disorders. Also, exposure to a poor nutrition such as high-energy dense (HED) diets has been linked to alterations in brain function, leading to anxiety, addiction, and depression. HED diets rich in saturated fatty acids or obesity can activate the innate immune system in the brain, especially microglia, increasing proinflammatory cytokines such as interleukin 1 beta (IL1-β) and interleukin 6 (IL-6), in part, by the stimulation of toll-like receptor 4 (TLR4) and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Intermittent fasting (IF), an eating protocol characterized by alternating periods of fasting with periods of eating, has gained recognition as a weight-management strategy to reduce obesity. Accordingly, during IF inflammation and brain function can be modulated by production of ketone bodies and modulation of the intestinal microbiota, which also promote the induction of brain-derived neurotrophic factor (BDNF), which is involved in neurogenesis and neuronal plasticity. Although IF has contributed to reduce body weight and improve metabolic profiles, its influence on mental health remains an evolving field of research. Here, we provide experimental evidence supporting the role of IF reducing neuroinflammation as a valuable approach to improve mental health.
Collapse
Affiliation(s)
- Roberto Carlos Perez-Kast
- Universidad Autónoma de Nuevo León, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Wu F, Guo Y, Wang Y, Sui X, Wang H, Zhang H, Xin B, Yang C, Zhang C, Jiang S, Qu L, Feng Q, Dai Z, Shi C, Li Y. Effects of Long-Term Fasting on Gut Microbiota, Serum Metabolome, and Their Association in Male Adults. Nutrients 2024; 17:35. [PMID: 39796469 PMCID: PMC11722564 DOI: 10.3390/nu17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Long-term fasting demonstrates greater therapeutic potential and broader application prospects in extreme environments than intermittent fasting. METHOD This pilot study of 10-day complete fasting (CF), with a small sample size of 13 volunteers, aimed to investigate the time-series impacts on gut microbiome, serum metabolome, and their interrelationships with biochemical indices. RESULTS The results show CF significantly affected gut microbiota diversity, composition, and interspecies interactions, characterized by an expansion of the Proteobacteria phylum (about six-fold) and a decrease in Bacteroidetes (about 50%) and Firmicutes (about 34%) populations. Notably, certain bacteria taxa exhibited complex interactions and strong correlations with serum metabolites implicated in energy and amino acid metabolism, with a particular focus on fatty acylcarnitines and tryptophan derivatives. A key focus of our study was the effect of Ruthenibacterium lactatiformans, which was highly increased during CF and exhibited a strong correlation with fat metabolic indicators. This bacterium was found to mitigate high-fat diet-induced obesity, glucose intolerance, dyslipidemia, and intestinal barrier dysfunction in animal experiments. These effects suggest its potential as a probiotic candidate for the amelioration of dyslipidemia and for mediating the benefits of fasting on fat metabolism. CONCLUSIONS Our pilot study suggests that alterations in gut microbiota during CF contribute to the shift of energy metabolic substrate and the establishment of a novel homeostatic state during prolonged fasting.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Cheng Zhang
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
13
|
Podestá D I, Blannin AK, Wallis GA. Effects of overnight-fasted versus fed-state exercise on the components of energy balance and interstitial glucose across four days in healthy adults. Appetite 2024; 203:107716. [PMID: 39426734 DOI: 10.1016/j.appet.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Exercise is an essential component of body mass management interventions. Overnight-fasted exercise (FASTex) acutely enhances fat oxidation compared with fed exercise (FEDex). However, consistent FASTex training does not typically further enhance body mass loss, suggesting the induction of energy compensation responses. The present study aimed to test the effects of FASTex or FEDex on the components of energy balance (i.e., energy intake (EI), energy expenditure (EE), and appetite) and interstitial glucose metrics across four days. METHODS Twelve (10 men, 2 women) healthy, physically active participants (age 22.6 + 1.2 years (mean ± SD); BMI 22.5 ± 2.8 kg ⋅ m-2) were studied twice, across four days, after a 75-min run either FASTex or FEDex. Daily EI was obtained after subtracting leftovers from the provided food. Daily fasting appetite was measured by visual analogue scales. Activity- and total- EE (AEE & TEE, respectively) were estimated by combining heart rate and accelerometry. Continuous glucose monitoring was used to capture daily interstitial glucose metrics and Likert scales were utilised to quantify fatigue, stress, sleep quality, and muscle soreness levels. RESULTS No differences between conditions were observed for EI (FASTex = 15.0 ± 0.1 vs FEDex = 15.0 ± 0.4 MJ⋅day-1; p = 0.865), AEE (FASTex = 7.6 ± 1.1 vs FEDex 7.8 ± 1.3 MJ⋅day-1; p = 0.223) and TEE (FASTex = 15.9 ± 3.4 vs 14.9 ± 4.5 MJ⋅day-1; p = 0.136). Additionally, no condition effects for appetite (p > 0.05) and interstitial glucose (p = 0.074) were observed. CONCLUSION FASTex did not differ from FEDex in the response of components of energy balance or interstitial glucose across four days, suggesting that both exercise approaches could be used interchangeably.
Collapse
Affiliation(s)
- I Podestá D
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - A K Blannin
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - G A Wallis
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK.
| |
Collapse
|
14
|
Jacob E, Moura A, Avery A. A systematic review of physical activity and nutritional interventions for the management of normal weight and overweight obesity. Nutr Metab Cardiovasc Dis 2024; 34:2642-2658. [PMID: 39278737 DOI: 10.1016/j.numecd.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
AIMS Normal Weight Obesity (NWO) and Overweight Obesity (OWO) are prevalent conditions, yet knowledge of management is limited. This review aims to assess the effectiveness of physical activity and nutritional interventions in the management of NWO and OWO (together defined as BMI <30 kg/m2 with raised body fat). DATA SYNTHESIS Clinical trials including any physical activity or nutritional interventions, published between 2012 and 2022, evaluating body fat change were selected. Seven trials met inclusion criteria, including one single arm intervention, and six RCTs. A high intensity interval training intervention (high risk of bias) had the largest effect on reducing percentage body fat (MD: -6.8%, SE: 0.06). High protein intake interventions were also found to be effective (MD: -2.8%, SE: 0.27, MD: -2.0%, SE: 0.05). These three interventions led to greater increases in fat free mass. Two energy restricted interventions resulted in the highest mean weight loss (MD: -3.10 kg, SD: 0.87 (intervention only), MD: -2.90 kg, SE: 0.06), but also loss of fat free mass, resulting in low reductions in percentage body fat (MD: -1.10%, SD: 0.57 (intervention only), MD: -0.8%, SE 0.30). There was considerable heterogeneity between studies. CONCLUSIONS There are physical activity and nutritional interventions that could be efficacious for the management of NWO and OWO. However, there was considerable heterogeneity between studies. The most promising nutritional intervention is high protein intake and the least is energy restriction (without increased protein intake). More high-quality trials are needed to evaluate interventions, and to determine the best tools to measure adiposity.
Collapse
Affiliation(s)
- Elizabeth Jacob
- Faculty of Science, The University of Nottingham, Sutton Bonnington Campus, Sutton Bonnington, Leicestershire, LE12 5RD, UK.
| | - Andreia Moura
- Faculty of Science, The University of Nottingham, Sutton Bonnington Campus, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| | - Amanda Avery
- Faculty of Science, The University of Nottingham, Sutton Bonnington Campus, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| |
Collapse
|
15
|
Chen YE, Tsai HL, Tu YK, Chen LW. Effects of different types of intermittent fasting on metabolic outcomes: an umbrella review and network meta-analysis. BMC Med 2024; 22:529. [PMID: 39533312 PMCID: PMC11559166 DOI: 10.1186/s12916-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Intermittent fasting (IF) holds promise for enhancing metabolic health. However, the optimum IF forms and their superiority over continuous energy restriction (CER) remain unclear due to disconnected findings. METHODS We systematically searched PubMed, Embase, and the Cochrane databases for meta-analyses of randomized controlled trials (RCTs) investigating the association between IF and metabolic health outcomes. Subsequently, we performed an umbrella review and network meta-analysis (NMA) to evaluate the efficacy of different forms of IF (time-restricted eating (TRE), alternate-day fasting (ADF), and 5:2 diet (regular eating for 5 days and energy restriction for 2 days per week)) compared to CER and usual diets on metabolic health outcomes. To assess the certainty of both direct and indirect estimates, we employed the Confidence in Network Meta-Analysis (CINeMA) approach. Additionally, we calculated the surface under the cumulative ranking curve (SUCRA) for each dietary strategy to determine their ranking in terms of metabolic health benefits. RESULTS Ten of the best and non-redundant meta-analysis studies, involving 153 original studies and 9846 participants, were included. When considering direct evidence only, all IF forms significantly reduced body weight compared to usual diets. In NMA incorporating indirect evidence, all IF regimens also significantly reduced body weight compared to usual diets. In the SUCRA of NMA, IF ranked higher than usual diets or CER in 85.4% and 56.1% of the outcomes, respectively. ADF had the highest overall ranking for improving metabolic health (ranked first: 64.3%, ranked second: 14.3%). CONCLUSIONS Overall, all IF forms demonstrate potentials to improve metabolic health, with ADF appearing to produce better outcomes across investigated outcomes. Further high-quality trials are warranted to confirm the (relative) efficacy of IF on metabolic health. TRIAL REGISTRATION PROSPERO (record no: CRD42022302690).
Collapse
Affiliation(s)
- Yu-En Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan
| | - Hui-Li Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan
- Health Data Research Center, National Taiwan University, No.33 Linsen South Road, Taipei, 100, Taiwan
| | - Ling-Wei Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan.
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Kouw IWK, Parr EB, Wheeler MJ, Radford BE, Hall RC, Senden JM, Goessens JPB, van Loon LJC, Hawley JA. Short-term intermittent fasting and energy restriction do not impair rates of muscle protein synthesis: A randomised, controlled dietary intervention. Clin Nutr 2024; 43:174-184. [PMID: 39418832 DOI: 10.1016/j.clnu.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Intermittent fasting (IF) is an effective energy restricted dietary strategy to reduce body and fat mass and improve metabolic health in individuals with either an overweight or obese status. However, dietary energy restriction may impair muscle protein synthesis (MPS) resulting in a concomitant decline in lean body mass. Due to periods of prolonged fasting combined with irregular meal intake, we hypothesised that IF would reduce rates of MPS compared to an energy balanced diet with regular meal patterns. AIMS We assessed the impact of a short-term, ten days, alternate day fasting or a continuous energy restricted diet to a control diet on integrated rates of skeletal MPS in middle-aged males with overweight or obesity. METHODS Twenty-seven middle-aged males with overweight or obesity (age: 44.6 ± 5.4 y; BMI: 30.3 ± 2.6 kg/m2) consumed a three-day lead-in diet, followed by a ten-day controlled dietary intervention matched for protein intake, as alternate day fasting (ADF: 62.5 energy (En)%, days of 25 En% alternated with days of 100 En% food ingestion), continuous energy restriction (CER: 62.5 En%), or an energy balanced, control diet (CON: 100 En%). Deuterated water (D2O) methodology with saliva, blood, and skeletal muscle sampling were used to assess integrated rates of MPS over the ten-day intervention period. Secondary measures included fasting plasma glucose, insulin, and gastrointestinal hormone concentrations, continuous glucose monitoring, and assessment of body composition. RESULTS There were no differences in daily rates of MPS between groups (ADF: 1.18 ± 0.13, CER: 1.13 ± 0.16, and CON: 1.18 ± 0.18 %/day, P > 0.05). The reductions in body mass were greater in ADF and CER compared to CON (P < 0.001). Lean and fat mass were decreased by a similar magnitude across groups (main time effect, P < 0.001; main group effect, P > 0.05). Fasting plasma leptin concentrations decreased in ADF and CER (P < 0.001), with no differences in fasting plasma glucose or insulin concentrations between groups. CONCLUSION Short-term alternate day fasting does not lower rates of MPS compared to continuous energy restriction or an energy balanced, control diet with matched protein intake. The prolonged effects of IF and periods of irregular energy and protein intake patterns on muscle mass maintenance remain to be investigated. This trial was registered under Australian New Zealand Clinical Trial Registry (https://www.anzctr.org.au), identifier no. ACTRN12619000757112.
Collapse
Affiliation(s)
- Imre W K Kouw
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael J Wheeler
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Bridget E Radford
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Rebecca C Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom
| |
Collapse
|
17
|
Quaytman JA, David NL, Venugopal S, Amorim T, Beatrice B, Toledo FGS, Miller RG, Steinhauser ML, Fazeli PK. Intermittent fasting for systemic triglyceride metabolic reprogramming (IFAST): Design and methods of a prospective, randomized, controlled trial. Contemp Clin Trials 2024; 146:107698. [PMID: 39299543 PMCID: PMC11625453 DOI: 10.1016/j.cct.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Caloric restriction prolongs lifespan in model organisms and improves metrics of aging-related diseases in humans, but daily compliance is challenging. Intermittent fasting improves metrics of lipid and glucose metabolism in the setting of weight loss but whether these metrics are improved independent of weight loss is not known. METHODS We seek to address this gap with IFAST, a single-center, three-arm, prospective, randomized, controlled clinical trial. Eligible study participants are adults with no chronic medical conditions beyond prediabetes or overweight but who are at high risk for type 2 diabetes mellitus (T2D), defined as having a history of gestational diabetes or a first-degree relative with T2D. Participants will be randomized in a 1:2:2 schema to either a control group, a fasting group, or a fasting/weight maintenance group. The fasting groups will complete a 24-h fast one day per week for 12 weeks. The key mechanistic endpoint is change in triglyceride composition (defined by carbon content and degree of saturation) as measured by longitudinal metabolomics. The key safety endpoint is percent change from baseline in bone volume fraction (BV/TV; high-resolution peripheral quantitative CT) at the radius in the fasting group. Secondary endpoints include measures of insulin sensitivity (hyperinsulinemic-euglycemic clamp), clinical lipid profiling, systemic inflammation markers, hunger assessment, bone density, and bone microarchitecture with high-resolution peripheral quantitative CT. CONCLUSION IFAST will investigate intrinsic metabolic benefits of intermittent fasting beyond weight loss. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05722873.
Collapse
Affiliation(s)
- Jacob A Quaytman
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Natalie L David
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sharini Venugopal
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tânia Amorim
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Britney Beatrice
- Department of Sports Medicine and Nutrition, University of Pittsburgh School of Health and Rehabilitation Sciences, Pittsburgh, PA 15260, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rachel G Miller
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew L Steinhauser
- Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Division of Cardiovascular Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Pouneh K Fazeli
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Huang J, Li Y, Chen M, Cai Z, Cai Z, Jiang Z. Comparing caloric restriction regimens for effective weight management in adults: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 2024; 21:108. [PMID: 39327619 PMCID: PMC11425986 DOI: 10.1186/s12966-024-01657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Randomized controlled trials have confirmed the effectiveness of four prevalent caloric restriction regimens in reducing obesity-related health risks. However, there is no consensus on the optimal regimen for weight management in adults. METHODS We systematically searched PubMed, Embase, Web of Science, and Cochrane CENTRAL up to January 15, 2024, for randomized controlled trials (RCT) involving adults, evaluating the weight-loss effects of alternate day fasting (ADF), short-term fasting (STF), time-restricted eating (TRE), and continuous energy restriction (CER). The primary outcome was body weight, with secondary outcomes including BMI, fat mass, lean mass, waist circumference, fasting glucose, HOMA-IR, and adverse events. Bayesian network meta-analysis was conducted, ranking regimens using the surface under the cumulative ranking curve and the probability of being the best. Study quality was assessed using the Confidence in Network Meta-Analysis tool. RESULTS Data from 47 RCTs (representing 3363 participants) were included. ADF showed the most significant body weight loss (Mean difference (MD): -3.42; 95% Confidence interval (CI): -4.28 to -2.55), followed by TRE (MD: -2.25; 95% CI: -2.92 to -1.59). STF (MD: -1.87; 95% CI: -3.32 to -0.56) and CER (MD: -1.59; 95% CI: -2.42 to -0.79) rank third and fourth, respectively. STF lead to decline in lean mass (MD: -1.26; 95% CI: -2.16, -0.47). TRE showed benefits on fasting glucose (MD: -2.98; 95% CI: -4.7, -1.26). Subgroup analysis revealed all four caloric restriction regimens likely lead to modest weight loss after 1-3 months, with ADF ranked highest, but by 4-6 months, varying degrees of weight regain occur, particularly with CER, while interventions lasting 7-12 months may result in effective weight loss, with TRE potentially ranking first during both the 4-6 months and 7-12 months periods. ADF showing fewer and shorter-lasting physical symptoms. CONCLUSION All four included regiments were effective in reducing body weight, with ADF likely having the most significant impact. Each regimen likely leads to modest weight loss after 1-3 months, followed by weight regain by 4-6 months. However, interventions lasting 7-12 months achieve greater weight loss overall. TRIAL REGISTRATION PROSPERO: CRD42022382478.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Maohua Chen
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhaolun Cai
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Ataran A, Pompian A, Hajirezaei H, Lodhi R, Javaheri A. Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure? Nutrients 2024; 16:3157. [PMID: 39339757 PMCID: PMC11434961 DOI: 10.3390/nu16183157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Heart failure (HF) is a global health concern with rising incidence and poor prognosis. While the essential role of nutritional and dietary strategies in HF patients is acknowledged in the existing scientific guidelines and clinical practice, there are no comprehensive nutritional recommendations for optimal dietary management of HF. METHODS In this review, we discuss results from recent studies on the obesity paradox and the effects of calorie restriction and weight loss, intermittent fasting, the Western diet, the Mediterranean diet, the ketogenic diet, and the DASH diet on HF progression. RESULTS Many of these strategies remain under clinical and basic investigation for their safety and efficacy, and there is considerable heterogeneity in the observed response, presumably because of heterogeneity in the pathogenesis of different types of HF. In addition, while specific aspects of cardiac metabolism, such as changes in ketone body utilization, might underlie the effects of certain dietary strategies on the heart, there is a critical divide between supplement strategies (i.e., with ketones) and dietary strategies that impact ketogenesis. CONCLUSION This review aims to highlight this gap by exploring emerging evidence supporting the importance of personalized dietary strategies in preventing progression and improving outcomes in the context of HF.
Collapse
Affiliation(s)
- Anahita Ataran
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.A.); (A.P.); (H.H.); (R.L.)
| | - Alexander Pompian
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.A.); (A.P.); (H.H.); (R.L.)
| | - Hamidreza Hajirezaei
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.A.); (A.P.); (H.H.); (R.L.)
| | - Rehman Lodhi
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.A.); (A.P.); (H.H.); (R.L.)
| | - Ali Javaheri
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.A.); (A.P.); (H.H.); (R.L.)
- John Cochran VA Hospital, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Marko DM, Conn MO, Schertzer JD. Intermittent fasting influences immunity and metabolism. Trends Endocrinol Metab 2024; 35:821-833. [PMID: 38719726 DOI: 10.1016/j.tem.2024.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 09/12/2024]
Abstract
Intermittent fasting (IF) modifies cell- and tissue-specific immunometabolic responses that dictate metabolic flexibility and inflammation during obesity and type 2 diabetes (T2D). Fasting forces periods of metabolic flexibility and necessitates increased use of different substrates. IF can lower metabolic inflammation and improve glucose metabolism without lowering obesity and can influence time-dependent, compartmentalized changes in immunity. Liver, adipose tissue, skeletal muscle, and immune cells communicate to relay metabolic and immune signals during fasting. Here we review the connections between metabolic and immune cells to explain the divergent effects of IF compared with classic caloric restriction (CR) strategies. We also explore how the immunometabolism of metabolic diseases dictates certain IF outcomes, where the gut microbiota triggers changes in immunity and metabolism during fasting.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Meghan O Conn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, Guo Y, Wang L, Li Y, Dai Z. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne) 2024; 15:1443051. [PMID: 39253586 PMCID: PMC11381305 DOI: 10.3389/fendo.2024.1443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.
Collapse
Affiliation(s)
- Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
22
|
Hengist A, Davies RG, Walhin JP, Buniam J, Merrell LH, Rogers L, Bradshaw L, Moreno-Cabañas A, Rogers PJ, Brunstrom JM, Hodson L, van Loon LJC, Barton W, O'Donovan C, Crispie F, O'Sullivan O, Cotter PD, Proctor K, Betts JA, Koumanov F, Thompson D, Gonzalez JT. Ketogenic diet but not free-sugar restriction alters glucose tolerance, lipid metabolism, peripheral tissue phenotype, and gut microbiome: RCT. Cell Rep Med 2024; 5:101667. [PMID: 39106867 PMCID: PMC11384946 DOI: 10.1016/j.xcrm.2024.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Restricted sugar and ketogenic diets can alter energy balance/metabolism, but decreased energy intake may be compensated by reduced expenditure. In healthy adults, randomization to restricting free sugars or overall carbohydrates (ketogenic diet) for 12 weeks reduces fat mass without changing energy expenditure versus control. Free-sugar restriction minimally affects metabolism or gut microbiome but decreases low-density lipoprotein cholesterol (LDL-C). In contrast, a ketogenic diet decreases glucose tolerance, increases skeletal muscle PDK4, and reduces AMPK and GLUT4 levels. By week 4, the ketogenic diet reduces fasting glucose and increases apolipoprotein B, C-reactive protein, and postprandial glycerol concentrations. However, despite sustained ketosis, these effects are no longer apparent by week 12, when gut microbial beta diversity is altered, possibly reflective of longer-term adjustments to the ketogenic diet and/or energy balance. These data demonstrate that restricting free sugars or overall carbohydrates reduces energy intake without altering physical activity, but with divergent effects on glucose tolerance, lipoprotein profiles, and gut microbiome.
Collapse
Affiliation(s)
| | | | | | - Jariya Buniam
- University of Bath, Bath, UK; Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | | | | | | | | | - Leanne Hodson
- University of Oxford and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | | | - Wiley Barton
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | - Ciara O'Donovan
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
24
|
Zheng D, Hong X, He X, Lin J, Fan S, Wu J, Liang Z, Chen S, Yan L, Ren M, Wang W. Intermittent Fasting-Improved Glucose Homeostasis Is Not Entirely Dependent on Caloric Restriction in db/db Male Mice. Diabetes 2024; 73:864-878. [PMID: 38502858 PMCID: PMC11109801 DOI: 10.2337/db23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Intermittent fasting (IF), which involves prolonged fasting intervals accompanied by caloric restriction (CR), is an effective dietary treatment for obesity and diabetes. Although IF offers many benefits, it is difficult to determine whether these benefits are the consequences of CR. Every-other-day feeding (EODF) is a commonly used IF research model. This study was designed to identify factors, in addition to CR, responsible for the effects of EODF and the possible underlying mechanisms. Diabetic db/db mice were divided into three groups: ad libitum (AL), meal feeding (MF), and EODF. The MF model was used to attain a level of CR comparable to that of EODF, with food distribution evenly divided between 10:00 a.m. and 6:00 p.m., thereby minimizing the fasting interval. EODF yielded greater improvements in glucose homeostasis than MF in db/db mice by reducing fasting glucose levels and enhancing glucose tolerance. However, these effects on glucose metabolism were less pronounced in lean mice. Furthermore, ubiquitination of the liver-specific glucocorticoid (GC) receptor (GR) facilitated its degradation and downregulation of Kruppel-like factor 9 (KLF9), which ultimately suppressed liver gluconeogenesis in diabetic EODF mice. Although GR and KLF9 might mediate the metabolic benefits of EODF, the potential benefits of EODF might be limited by elevated serum GC levels in diabetic EODF mice. Overall, this study suggests that the metabolic benefits of EODF in improving glucose homeostasis are independent of CR, possibly because of the downstream effects of liver-specific GR degradation. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaodan He
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Shujin Fan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Jinli Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
- Department of Endocrinology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Benkhadra M, Fituri N, Aboukhalaf S, Ghasoub R, Mattar M, Alfarsi K, Alshemmari S, Yassin MA. The Safety of Novel Therapies in Chronic Lymphocytic Leukemia in the Era of Intermittent Fasting: A Pharmacology-Based Review. Cancers (Basel) 2024; 16:2079. [PMID: 38893198 PMCID: PMC11171109 DOI: 10.3390/cancers16112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 06/21/2024] Open
Abstract
Intermittent fasting (IF) has recently gained popularity due to its emerging benefits in reducing weight and improving metabolic health. Concurrently, novel agents (NAs) like venetoclax and Bruton tyrosine kinase inhibitors (BTKIs) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). Unfortunately, it is unclear whether the associated risks of tumor lysis syndrome (TLS) and gastrointestinal bleeding (GIB) are increased in IF practitioners receiving NAs. This review explored the literature available on the permissibility of IF in CLL patients undergoing treatment with first-line NAs (FLNAs). Literature was scoped to identify IF patterns and the available data on TLS and GIB risks associated with food and fluid intake in CLL patients receiving FLNAs. Although current evidence is insufficient to recommend IF in this population, it may be possible for patients on venetoclax to conservatively practice fluid-liberal IF, provided that adequate hydration and the consistent administration of food are achieved. In contrast, considering the significant risk of TLS and the pharmacokinetics of venetoclax, patients should be discouraged from practicing fluid-restricted IF, especially during the ramp-up phase. Moreover, patients on BTKIs ought to refrain from IF due to the possible risk of GIB until further data are available. Further research is needed to provide conclusive recommendations.
Collapse
Affiliation(s)
- Maria Benkhadra
- Department of Pharmacy, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Nuha Fituri
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.F.); (S.A.)
| | - Soha Aboukhalaf
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.F.); (S.A.)
| | - Rola Ghasoub
- Department of Pharmacy, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Mervat Mattar
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo 12111, Egypt;
| | - Khalil Alfarsi
- Department of Hematology, Sultan Qaboos University Hospital Muscat, Seeb P.O. Box 35, Oman;
| | - Salem Alshemmari
- Department of Medicine, Faculty of Medicine and Department of Hematology, Kuwait Cancer Control Centre, Shuwaikh P.O. Box 42262, Kuwait;
| | - Mohamed A. Yassin
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.F.); (S.A.)
- Department of BMT/Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| |
Collapse
|
26
|
Pietzner M, Uluvar B, Kolnes KJ, Jeppesen PB, Frivold SV, Skattebo Ø, Johansen EI, Skålhegg BS, Wojtaszewski JFP, Kolnes AJ, Yeo GSH, O'Rahilly S, Jensen J, Langenberg C. Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nat Metab 2024; 6:764-777. [PMID: 38429390 PMCID: PMC7617311 DOI: 10.1038/s42255-024-01008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Burulça Uluvar
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristoffer J Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - S Victoria Frivold
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Giles S H Yeo
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Ezzati A, McLaren C, Bohlman C, Tamargo JA, Lin Y, Anton SD. Does time-restricted eating add benefits to calorie restriction? A systematic review. Obesity (Silver Spring) 2024; 32:640-654. [PMID: 38383703 DOI: 10.1002/oby.23984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE A growing body of evidence has supported the health benefits of extended daily fasting, known as time-restricted eating (TRE); however, whether the addition of TRE enhances the known benefits of calorie restriction (CR) remains unclear. METHODS PubMed, Scopus, the Cochrane Library, and Google Scholar were searched through April 2023. This systematic review includes randomized controlled trials (RCTs) that compared CR + TRE with CR alone in energy-matched conditions of at least 8 weeks in duration that assessed changes in body weight and cardiometabolic disease risk factors in adults with overweight and/or obesity. RESULTS Seven studies were identified (n = 579). Two studies reported greater weight loss and reductions in diastolic blood pressure with CR + TRE compared with CR alone after 8 to 14 weeks, whereas one study reported greater improvements in triglycerides and glucose tolerance with CR + TRE (3 days/week) compared with CR alone following 26 weeks. One study reported significant increases in homeostatic model assessment of insulin resistance (HOMA-IR) levels with CR + TRE versus CR alone after 8 weeks. There were no statistically significant differences in any other outcome variable between the two interventions. CONCLUSIONS The addition of TRE to CR regimens resulted in greater weight loss and improvements in cardiometabolic risk factors in some studies; however, the majority of studies did not find additional benefits.
Collapse
Affiliation(s)
- Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Christian McLaren
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Carly Bohlman
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stephen D Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Nussbaumer H, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Dietary Recommendations for Persons with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2024; 132:182-215. [PMID: 38286422 DOI: 10.1055/a-2166-6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Winfried Keuthage
- Specialist Practice for Diabetes and Nutritional Medicine, Münster, Germany
| | - Peter Kronsbein
- Faculty of Nutrition and Food Sciences, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Mönchengladbach, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | | | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Astrid Tombek
- Diabetes Centre Bad Mergentheim, Bad Mergentheim, Germany
| | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany
- Vivantes Humboldt Hospital, Berlin, Germany
| |
Collapse
|
29
|
Storoschuk KL, Lesiuk D, Nuttall J, LeBouedec M, Khansari A, Islam H, Gurd BJ. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: A systematic review. Metabolism 2024; 152:155768. [PMID: 38154612 DOI: 10.1016/j.metabol.2023.155768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Based primarily on evidence from rodent models fasting is currently believed to improve metabolic health via activation of the AMPK-PGC-1α axis in skeletal muscle. However, it is unclear whether the skeletal muscle AMPK-PGC-1α axis is activated by fasting in humans. The current systematic review examined the fasting response in skeletal muscle from 34 selected studies (7 human, 21 mouse, and 6 rat). From these studies, we gathered 38 unique data points related to AMPK and 47 related to PGC-1α. In human studies, fasting mediated activation of the AMPK-PGC-1α axis is largely absent. Although evidence does support fasting-induced activation of the AMPK-PGC-1α axis in rodent skeletal muscle, the evidence is less robust than anticipated. Our findings question the ability of fasting to activate the AMPK-PGC-1α axis in human skeletal muscle and suggest that the metabolic benefits of fasting in humans are associated with caloric restriction rather than the induction of mitochondrial biogenesis. Registration: https://doi.org/10.17605/OSF.IO/KWNQY.
Collapse
Affiliation(s)
- K L Storoschuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - D Lesiuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - J Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - M LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - A Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - H Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - B J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
30
|
Vega C, Barnafi E, Sánchez C, Acevedo F, Walbaum B, Parada A, Rivas N, Merino T. Calorie Restriction and Time-Restricted Feeding: Effective Interventions in Overweight or Obese Patients Undergoing Radiotherapy Treatment with Curative Intent for Cancer. Nutrients 2024; 16:477. [PMID: 38398802 PMCID: PMC10892811 DOI: 10.3390/nu16040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
This study assesses the feasibility of calorie restriction (CR) and time-restricted feeding (TRF) in overweight and obese cancer patients who realized little to no physical activity undergoing curative radiotherapy, structured as a prospective, interventional, non-randomized open-label clinical trial. Of the 27 participants initially enrolled, 21 patients with breast cancer were selected for analysis. The participants self-selected into two dietary interventions: TRF, comprising a sugar and saturated fat-free diet calibrated to individual energy needs consumed within an 8 h eating window followed by a 16 h fast, or CR, involving a 25% reduction in total caloric intake from energy expenditure distributed across 4 meals and 1 snack with 55% carbohydrates, 15% protein, and 30% fats, excluding sugars and saturated fats. The primary goal was to evaluate the feasibility of these diets in the specific patient group. The results indicate that both interventions are effective and statistically significant for weight loss and reducing one's waist circumference, with TRF showing a potentially stronger impact and better adherence. Changes in the LDL, HDL, total cholesterol, triglycerides, glucose and insulin were not statistically significant.
Collapse
Affiliation(s)
- Carmen Vega
- Cancer Center UC, Red de Salud Christus-UC, Santiago 8330032, Chile;
| | - Esteban Barnafi
- Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (E.B.); (N.R.)
| | - César Sánchez
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Francisco Acevedo
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Benjamin Walbaum
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Alejandra Parada
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Nicolás Rivas
- Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (E.B.); (N.R.)
| | - Tomás Merino
- Cancer Center UC, Red de Salud Christus-UC, Santiago 8330032, Chile;
| |
Collapse
|
31
|
Billingsley HE. The effect of time of eating on cardiometabolic risk in primary and secondary prevention of cardiovascular disease. Diabetes Metab Res Rev 2024; 40:e3633. [PMID: 36914410 DOI: 10.1002/dmrr.3633] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Continuous energy restriction is currently considered the first-line dietary therapy for weight loss in individuals with obesity. Recently, interventions which alter the eating window and time of eating occasions have been explored as means to achieve weight loss and other cardiometabolic improvements such as a reduction in blood pressure, glycaemia, lipids and inflammation. It is unknown, however, whether these changes result from unintentional energy restriction or from other mechanisms such as the alignment of nutrient intake with the internal circadian clock. Even less is known regarding the safety and efficacy of these interventions in individuals with established chronic noncommunicable disease states, such as cardiovascular disease. This review examines the effects of interventions which alter both eating window and time of eating occasions on weight and other cardiometabolic risk factors in both healthy participants and those with established cardiovascular disease. We then summarise the state of existing knowledge and explore future directions of study.
Collapse
Affiliation(s)
- Hayley E Billingsley
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Billingsley HE, St-Onge MP, Alonso WW, Kirkman DL, Kim Y, Carbone S. Time of eating and mortality in U.S. adults with heart failure: Analyses of the National Health and Nutrition Examination Survey 2003-2018. Nutr Metab Cardiovasc Dis 2024; 34:445-454. [PMID: 38155047 PMCID: PMC10966516 DOI: 10.1016/j.numecd.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Promising associations have been demonstrated between delayed last eating occasion and cardiorespiratory fitness in adults with heart failure (HF), however, it is unknown if time of eating is associated with clinical endpoints such as mortality. This study aimed to examine associations between time of eating variables and all-cause and cardiovascular mortality in the National Health and Nutrition Examination Survey (NHANES). METHODS AND RESULTS Participants self-disclosed HF diagnosis. Two dietary recalls were obtained and categorical variables were created based on mean time of first eating occasion (8:31 AM), last eating occasion (7:33 PM) and eating window (11.02 h). Mortality was obtained through linkage to the National Death Index. Covariate-adjusted Cox proportional hazard regression models were created examining the association between time of eating and mortality. Participants (n = 991) were 68 (95 % CI 67-69) years of age, 52.6 (95 % CI 49.0-56.3)% men and had a body mass index of 32.5 (95 % CI 31.8-33.2) kg/m2 with follow up time of 68.9 (95 % CI 64.8-72.9) person-months. When models were adjusted for time of eating variables and all other covariates, extending the eating window beyond 11.02 h was associated with decreased risk of cardiovascular (HR 0.36 [95 % CI 0.16-0.81]), but not all-cause mortality. Time of first and last eating occasions were not associated with mortality. CONCLUSIONS In adults with HF, an extended eating window is associated with reduced risk for cardiovascular mortality. Randomized controlled trials should examine if extending the eating window can improve prognostic indicators such as cardiorespiratory fitness in this population.
Collapse
Affiliation(s)
- Hayley E Billingsley
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie-Pierre St-Onge
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Windy W Alonso
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Danielle L Kirkman
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Youngdeok Kim
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA.
| | - Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Schroor MM, Joris PJ, Plat J, Mensink RP. Effects of Intermittent Energy Restriction Compared with Those of Continuous Energy Restriction on Body Composition and Cardiometabolic Risk Markers - A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Adults. Adv Nutr 2024; 15:100130. [PMID: 37827491 PMCID: PMC10831889 DOI: 10.1016/j.advnut.2023.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
The interest in intermittent energy restriction (IER) diets as a weight-loss approach is increasing. Different IER protocols exist, including time-restricted eating (TRE), alternate-day fasting (ADF), and the 5:2 diet. This meta-analysis compared the effects of these IER diets with continuous energy restriction (CER) on anthropometrics and cardiometabolic risk markers in healthy adults. Twenty-eight trials were identified that studied TRE (k = 7), ADF (k = 10), or the 5:2 diet (k = 11) for 2-52 wk. Energy intakes between intervention groups within a study were comparable (17 trials), lower in IER (5 trials), or not reported (6 trials). Weighted mean differences (WMDs) were calculated using fixed- or random-effects models. Changes in body weight [WMD: -0.42 kg; 95% confidence interval (CI): -0.96 to 0.13; P = 0.132] and fat mass (FM) (WMD: -0.31 kg; 95% CI: -0.98 to 0.36; P = 0.362) were comparable when results of the 3 IER diets were combined and compared with those of CER. All IER diets combined reduced fat-free mass (WMD: -0.20 kg; 95% CI: -0.39 to -0.01; P = 0.044) and waist circumference (WMD: -0.91 cm; 95% CI: -1.76 to -0.06; P = 0.036) more than CER. Effects on body mass index [BMI (kg/m2)], glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), serum lipid and lipoprotein concentrations, and blood pressure did not differ. Further, TRE reduced body weight, FM, and fat-free mass more than CER, whereas ADF improved HOMA-IR more. BMI was reduced less in the 5:2 diet compared with CER. In conclusion, the 3 IER diets combined did not lead to superior improvements in anthropometrics and cardiometabolic risk markers compared with CER diets. Slightly greater reductions were, however, observed in fat-free mass and waist circumference. To what extent differences in energy intakes between groups within studies may have influenced these outcomes should be addressed in future studies.
Collapse
Affiliation(s)
- Maite M Schroor
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
34
|
Chen W, Zhang S, Hu X, Chen F, Li D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023; 15:4898. [PMID: 38068756 PMCID: PMC10708231 DOI: 10.3390/nu15234898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular disease (CVD) remains the first cause of mortality globally. Diet plays a fundamental role in cardiovascular health and is closely linked to the development of CVD. Numerous human studies have provided evidence on the relationship between diet and CVD. By discussing the available findings on the dietary components that potentially influence CVD progression and prevention, this review attempted to provide the current state of evidence on healthy dietary choices for CVD. We focus on the effects of individual macronutrients, whole food products, and dietary patterns on the risks of CVD, and the data from population-based trials, observational studies, and meta-analyses are summarized. Unhealthy dietary habits, such as high intake of saturated fatty acids, sugar-sweetened beverages, red meat, and processed meat as well as high salt intake are associated with the increased risk of CVD. Conversely, increased consumption of plant-based components such as dietary fiber, nuts, fruits, and vegetables is shown to be effective in reducing CVD risk factors. The Mediterranean diet appears to be one of the most evidence-based dietary patterns beneficial for CVD prevention. However, there is still great debate regarding whether the supplementation of vitamins and minerals confers cardioprotective benefits. This review provides new insights into the role of dietary factors that are harmful or protective in CVD, which can be adopted for improved cardiovascular health.
Collapse
Affiliation(s)
| | | | | | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (W.C.); (S.Z.); (X.H.)
| | - Daotong Li
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (W.C.); (S.Z.); (X.H.)
| |
Collapse
|
35
|
Eroglu MN, Rodríguez-Longobardo C, Ramírez-Adrados A, Colina-Coca C, Burgos-Postigo S, López-Torres O, Fernández-Elías VE. The Effects of 24-h Fasting on Exercise Performance and Metabolic Parameters in a Pilot Study of Female CrossFit Athletes. Nutrients 2023; 15:4841. [PMID: 38004236 PMCID: PMC10674902 DOI: 10.3390/nu15224841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Many studies have tested intermittent fasting (IF) in athletes, but its effects on female CrossFit athletes remain relatively unexplored in the existing literature. The aim of this study was to evaluate and compare the effects of 24-h IF on the physical performance of female CrossFit practitioners. Eleven female CrossFit athletes (age: 30.91 ± 3.42, weight: 65.26 ± 7.55 kg, height: 1.66 ± 0.05 m) participated in the study. The study used a crossover design with fasting and eating conditions. Participants completed an exercise test, standing long jump, and handgrip strength assessment. Hydration status, heart rate, blood lactate, blood glucose, rates of perceived exertion, and hunger were measured. Results showed significant differences in blood lactate concentration (F = 5.435, p = 0.042, η2p = 0.352). Resting blood lactate concentration was significantly lower in the fasting trial than in the eating trial (p < 0.001), but post-exercise blood lactate concentrations were higher in the fasting trial than in the eating trial (p < 0.001). No differences were found in performance times (p > 0.05). In conclusion, this pilot study of females suggests that 24-h fasting does not impair exercise performance or negatively affect physiological parameters in CrossFit athletes.
Collapse
Affiliation(s)
- Melike Nur Eroglu
- Coaching Education Department, Sports Science Faculty, Sakarya University of Applied Sciences, Serdivan 54050, Turkey;
| | - Celia Rodríguez-Longobardo
- Social Sciences of Physical Activity, Sport and Leisure Department, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Ramírez-Adrados
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Clara Colina-Coca
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Silvia Burgos-Postigo
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Olga López-Torres
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Valentín E. Fernández-Elías
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| |
Collapse
|
36
|
Clayton DJ, Varley I, Papageorgiou M. Intermittent fasting and bone health: a bone of contention? Br J Nutr 2023; 130:1487-1499. [PMID: 36876592 PMCID: PMC10551474 DOI: 10.1017/s0007114523000545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Intermittent fasting (IF) is a promising strategy for weight loss and improving metabolic health, but its effects on bone health are less clear. This review aims to summarise and critically evaluate the preclinical and clinical evidence on IF regimens (the 5:2 diet, alternate-day fasting (ADF) and time-restricted eating (TRE)/time-restricted feeding and bone health outcomes. Animal studies have utilised IF alongside other dietary practices known to elicit detrimental effects on bone health and/or in models mimicking specific conditions; thus, findings from these studies are difficult to apply to humans. While limited in scope, observational studies suggest a link between some IF practices (e.g. breakfast omission) and compromised bone health, although lack of control for confounding factors makes these data difficult to interpret. Interventional studies suggest that TRE regimens practised up to 6 months do not adversely affect bone outcomes and may even slightly protect against bone loss during modest weight loss (< 5 % of baseline body weight). Most studies on ADF have shown no adverse effects on bone outcomes, while no studies on the ‘5–2’ diet have reported bone outcomes. Available interventional studies are limited by their short duration, small and diverse population samples, assessment of total body bone mass exclusively (by dual-energy X-ray absorptiometry) and inadequate control of factors that may affect bone outcomes, making the interpretation of existing data challenging. Further research is required to better characterise bone responses to various IF approaches using well-controlled protocols of sufficient duration, adequately powered to assess changes in bone outcomes and designed to include clinically relevant bone assessments.
Collapse
Affiliation(s)
- David J. Clayton
- Musculoskeletal Research Group, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Research Group, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Maria Papageorgiou
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Podestá D I, Blannin AK, Wallis GA. Post-exercise dietary macronutrient composition modulates components of energy balance in young, physically active adults. Physiol Behav 2023; 270:114320. [PMID: 37558044 DOI: 10.1016/j.physbeh.2023.114320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The effectiveness of exercise to reduce body mass is typically modest, partially due to energy compensation responses which may be linked to energy substrate availability around exercise. The present study aimed to investigate the effect of manipulating post-exercise energy substrate availability (high carbohydrate/low fat [HCLF] or low carbohydrate/high fat [LCHF] energy replacement) on energy balance components in the short-term (i.e., appetite, energy intake (EI) and energy expenditure (EE)). METHODS Appetite, EI, activity- and total- EE were measured in twelve healthy, young (21.0 ± 2.3 years) physically active participants (10 men, 2 women) on two occasions across 4 days after a 75-min run and an isocaloric energy replacement drink (HCLF and LCHF). Appetite was measured daily by visual analogue scales, EI was calculated by subtracting the energy content of food leftovers from a provided food package, activity- and total- EE determined by heart-rate accelerometery. RESULTS Composite appetite ratings between days were lower in HCLF (62.4 ± 12) compared to LCHF (68.3 ± 8.9 mm; p = 0.048). No differences between conditions were detected for EI. Cumulative activity-EE (HCLF= 20.9 ± 3.7, LCHF= 16.9 ± 3.1 MJ; p = 0.037), but not total-EE (HCLF= 44.6 ± 7.7, LCHF= 39.9 ± 4.7 MJ; p = 0.060), was higher for the HCLF condition than the LCHF across the measurement period. CONCLUSION Compared with low carbohydrate/high fat, immediate post-exercise energy replacement with a high carbohydrate/low fat drink resulted in higher short-term activity energy expenditure and lower appetite ratings.
Collapse
Affiliation(s)
- I Podestá D
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK
| | - A K Blannin
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK
| | - G A Wallis
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK.
| |
Collapse
|
38
|
Hamer O, Abouzaid A, Hill J. Intermittent fasting for the prevention of cardiovascular disease: implications for clinical practice. BRITISH JOURNAL OF CARDIAC NURSING 2023; 18:2023.0058. [PMID: 38807936 PMCID: PMC7616019 DOI: 10.12968/bjca.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cardiovascular disease remains one of the most prevalent and preventable chronic conditions worldwide. Nutrition plays an important role in reducing several risk factors associated with cardiovascular disease. Intermittent fasting has been rapidly gaining interest among patients with cardiometabolic disease as a nutritional strategy for improving cardiovascular outcomes. However, research had yet to determine whether intermittent fasting provides greater cardiometabolic benefits compared to continuous daily caloric restriction. A recent Cochrane review has synthesised the benefits of intermittent fasting for the prevention of cardiovascular disease but is limited by its interpretation of the findings for clinical practice. This commentary aims to critically appraise the methods used within the review by Allaf et al, 2021 and expand upon the findings to determine its implications for clinical practice.
Collapse
Affiliation(s)
- O Hamer
- University of Central Lancashire
| | - A Abouzaid
- NHS Blackpool Teaching Hospitals NHS Foundation Trust
| | - J Hill
- University of Central Lancashire
| |
Collapse
|
39
|
Lin X, Wang S, Huang J. A Bibliometric Analysis of Alternate-Day Fasting from 2000 to 2023. Nutrients 2023; 15:3724. [PMID: 37686756 PMCID: PMC10490218 DOI: 10.3390/nu15173724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Alternate-day fasting (ADF) is becoming more popular since it may be a promising diet intervention for human health. Our study aimed to conduct a comprehensive bibliometric analysis to investigate current publication trends and hotspots in the field of ADF. Publications regarding ADF were identified from the Web of Science Core Collection (WOSCC) database. VOSviewer 1.6.16 and Online Analysis Platform were used to analyze current publication trends and hotspots. In total, there were 184 publications from 362 institutions and 39 countries/regions, which were published in 104 journals. The most productive countries/regions, institutions, authors, and journals were the USA, University of Illinois Chicago, Krista A. Varady, and Nutrients, respectively. The first high-cited publication was published in PNAS and authored by R. Michael Anson, and it was also the first article about ADF. The top five keywords with the highest frequency were as follows: calorie restriction, weight loss, intermittent fasting, obesity, and body weight. In conclusion, this is the first comprehensive bibliometric analysis related to ADF. The main research hotspots and frontiers are ADF for obesity and cardiometabolic risk, and ADF for several different population groups including healthy adults and patients with diabetes, nonalcoholic fatty liver disease (NAFLD), and cancer. The number of studies about ADF is relatively small, and more studies are needed to extend our knowledge about ADF, to improve human health.
Collapse
Affiliation(s)
| | - Shuai Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China;
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China;
| |
Collapse
|
40
|
Song T, Qin W, Lai Z, Li H, Li D, Wang B, Deng W, Wang T, Wang L, Huang R. Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell Res 2023; 33:434-447. [PMID: 37055592 PMCID: PMC10235132 DOI: 10.1038/s41422-023-00800-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
Obesity imposes a global health threat and calls for safe and effective therapeutic options. Here, we found that protein-rich diet significantly reduced body fat storage in fruit flies, which was largely attributed to dietary cysteine intake. Mechanistically, dietary cysteine increased the production of a neuropeptide FMRFamide (FMRFa). Enhanced FMRFa activity simultaneously promoted energy expenditure and suppressed food intake through its cognate receptor (FMRFaR), both contributing to the fat loss effect. In the fat body, FMRFa signaling promoted lipolysis by increasing PKA and lipase activity. In sweet-sensing gustatory neurons, FMRFa signaling suppressed appetitive perception and hence food intake. We also demonstrated that dietary cysteine worked in a similar way in mice via neuropeptide FF (NPFF) signaling, a mammalian RFamide peptide. In addition, dietary cysteine or FMRFa/NPFF administration provided protective effect against metabolic stress in flies and mice without behavioral abnormalities. Therefore, our study reveals a novel target for the development of safe and effective therapies against obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Wusa Qin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zeliang Lai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Haoyu Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Daihan Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Baojia Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Wuquan Deng
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Tingzhang Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
41
|
Elsworth RL, Monge A, Perry R, Hinton EC, Flynn AN, Whitmarsh A, Hamilton-Shield JP, Lawrence NS, Brunstrom JM. The Effect of Intermittent Fasting on Appetite: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15112604. [PMID: 37299567 DOI: 10.3390/nu15112604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Previously, narrative reviews have considered the effects of intermittent fasting on appetite. One suggestion is that intermittent fasting attenuates an increase in appetite that typically accompanies weight loss. Here, we conducted the first systematic review and meta-analysis to quantify the effects of intermittent fasting on appetite, when compared to a continuous energy restriction intervention. Five electronic databases and trial registers were searched in February 2021 and February 2022. Abstracts (N = 2800) were screened and 17 randomized controlled trials (RCTs), consisting of a variety of intermittent fasting regimes, met our inclusion criteria. The total number of participants allocated to interventions was 1111 and all RCTs were judged as having either some concerns or a high risk of bias (Cochrane RoB 2.0 tool). Random effects meta-analyses were conducted on change-from-baseline appetite ratings. There was no clear evidence that intermittent fasting affected hunger (WMD = -3.03; 95% CI [-8.13, 2.08]; p = 0.25; N = 13), fullness (WMD = 3.11; 95% CI [-1.46, 7.69]; p = 0.18; N = 10), desire to eat (WMD = -3.89; 95% CI [-12.62, 4.83]; p = 0.38; N = 6), or prospective food consumption (WMD = -2.82; 95% CI [-3.87, 9.03]; p = 0.43; N = 5), differently to continuous energy restriction interventions. Our results suggest that intermittent fasting does not mitigate an increase in our drive to eat that is often associated with continuous energy restriction.
Collapse
Affiliation(s)
- Rebecca L Elsworth
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Angelica Monge
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Rachel Perry
- Bristol Heart Institute and Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol BS8 1NU, UK
| | - Elanor C Hinton
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol BS8 2BN, UK
| | - Annika N Flynn
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Alex Whitmarsh
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Julian P Hamilton-Shield
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol BS8 2BN, UK
| | | | - Jeffrey M Brunstrom
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
42
|
Feyzioglu BS, Güven CM, Avul Z. Eight-Hour Time-Restricted Feeding: A Strong Candidate Diet Protocol for First-Line Therapy in Polycystic Ovary Syndrome. Nutrients 2023; 15:nu15102260. [PMID: 37242145 DOI: 10.3390/nu15102260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
We aimed to investigate the effects of a 6-week program of 8 h time-restricted feeding (TRF) diet in polycystic ovary syndrome (PCOS), as determined by anthropometric, hormonal, metabolic profiles, and fecal calprotectin level. Thirty women diagnosed with PCOS underwent a 6-week 8 h TRF diet intervention. Age, anthropometric features (body mass index (BMI), waist-to-hip ratio (WHR)) and biochemical results were recorded. Free androgen index (FAI, defining hyperandrogenism) and the homeostatic model assessment-insulin resistance (HOMA-IR) were calculated. Baseline (pre-diet) and 6-week post-diet findings were compared. Mean age was 25.57 ± 2.67 years. BMI (p < 0.001) and WHR (p = 0.001) were found to have significantly decreased after the diet, as well as the percentage of patients defined to have hyperandrogenism (p = 0.016). Reproductive hormone levels, FAI (p < 0.001) and HOMA-IR (p < 0.001) were improved significantly. Metabolic parameters associated with glucose and lipid profiles were also significantly improved after the diet. Additionally, fecal calprotectin levels demonstrated a significant decrease from pre-diet to post-diet (p < 0.001). In conclusion, a 6-week diet intervention with 8 h TRF may be a suitable and effective intermittent fasting protocol that can be used as a first-line option in PCOS.
Collapse
Affiliation(s)
- Bihter Senem Feyzioglu
- Department of Obstetrics and Gynecology, Private Erciyes-Kartal Hospital, 38020 Kayseri, Turkey
| | - Cenk Mustafa Güven
- Department of Obstetrics and Gynecology, Izmir Private Can Hospital, 35630 Izmir, Turkey
| | - Zerrin Avul
- Department of Obstetrics and Gynecology, Private Erciyes-Kartal Hospital, 38020 Kayseri, Turkey
| |
Collapse
|
43
|
Teong XT, Liu K, Vincent AD, Bensalem J, Liu B, Hattersley KJ, Zhao L, Feinle-Bisset C, Sargeant TJ, Wittert GA, Hutchison AT, Heilbronn LK. Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med 2023; 29:963-972. [PMID: 37024596 DOI: 10.1038/s41591-023-02287-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023]
Abstract
Intermittent fasting appears an equivalent alternative to calorie restriction (CR) to improve health in humans. However, few trials have considered applying meal timing during the 'fasting' day, which may be a limitation. We developed a novel intermittent fasting plus early time-restricted eating (iTRE) approach. Adults (N = 209, 58 ± 10 years, 34.8 ± 4.7 kg m-2) at increased risk of developing type 2 diabetes were randomized to one of three groups (2:2:1): iTRE (30% energy requirements between 0800 and 1200 hours and followed by a 20-h fasting period on three nonconsecutive days per week, and ad libitum eating on other days); CR (70% of energy requirements daily, without time prescription); or standard care (weight loss booklet). This open-label, parallel group, three-arm randomized controlled trial provided nutritional support to participants in the iTRE and CR arms for 6 months, with an additional 12-month follow-up. The primary outcome was change in glucose area under the curve in response to a mixed-meal tolerance test at month 6 in iTRE versus CR. Glucose tolerance was improved to a greater extent in iTRE compared with CR (-10.10 (95% confidence interval -14.08, -6.11) versus -3.57 (95% confidence interval -7.72, 0.57) mg dl-1 min-1; P = 0.03) at month 6, but these differences were lost at month 18. Adverse events were transient and generally mild. Reports of fatigue were higher in iTRE versus CR and standard care, whereas reports of constipation and headache were higher in iTRE and CR versus standard care. In conclusion, incorporating advice for meal timing with prolonged fasting led to greater improvements in postprandial glucose metabolism in adults at increased risk of developing type 2 diabetes. ClinicalTrials.gov identifier NCT03689608 .
Collapse
Affiliation(s)
- Xiao Tong Teong
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kai Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Julien Bensalem
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Bo Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lijun Zhao
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Gary A Wittert
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
44
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
45
|
Hengist A, Davies RG, Rogers PJ, Brunstrom JM, van Loon LJC, Walhin JP, Thompson D, Koumanov F, Betts JA, Gonzalez JT. Restricting sugar or carbohydrate intake does not impact physical activity level or energy intake over 24 h despite changes in substrate use: a randomised crossover study in healthy men and women. Eur J Nutr 2023; 62:921-940. [PMID: 36326863 PMCID: PMC9941259 DOI: 10.1007/s00394-022-03048-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To determine the effects of dietary sugar or carbohydrate restriction on physical activity energy expenditure, energy intake, and physiological outcomes across 24 h. METHODS In a randomized, open-label crossover design, twenty-five healthy men (n = 10) and women (n = 15) consumed three diets over a 24-h period: moderate carbohydrate and sugar content (MODSUG = 50% carbohydrate [20% sugars], 15% protein, 35% fat); low sugar content (LOWSUG = 50% carbohydrate [< 5% sugars], 15% protein, 35% fat); and low carbohydrate content (LOWCHO = 8% carbohydrate [< 5% sugars], 15% protein, 77% fat). Postprandial metabolic responses to a prescribed breakfast (20% EI) were monitored under laboratory conditions before an ad libitum test lunch, with subsequent diet and physical activity monitoring under free-living conditions until blood sample collection the following morning. RESULTS The MODSUG, LOWSUG and LOWCHO diets resulted in similar mean [95%CI] rates of both physical activity energy expenditure (771 [624, 919] vs. 677 [565, 789] vs. 802 [614, 991] kcal·d-1; p = 0.29] and energy intake (2071 [1794, 2347] vs. 2195 [1918, 2473] vs. 2194 [1890, 2498] kcal·d-1; P = 0.34), respectively. The LOWCHO condition elicited the lowest glycaemic and insulinaemic responses to breakfast (P < 0.01) but the highest 24-h increase in LDL-cholesterol concentrations (P < 0.001), with no differences between the MODSUG and LOWSUG treatments. Leptin concentrations decreased over 24-h of consuming LOWCHO relative to LOWSUG (p < 0.01). CONCLUSION When energy density is controlled for, restricting either sugar or total dietary carbohydrate does not modulate physical activity level or energy intake over a 24-h period (~ 19-h free-living) despite substantial metabolic changes. CLINICAL TRIALS REGISTRATION ID NCT03509610, https://clinicaltrials.gov/show/NCT03509610.
Collapse
Affiliation(s)
- Aaron Hengist
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Russell G Davies
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Peter J Rogers
- School of Psychological Sciences, University of Bristol, Bristol, UK
| | - Jeff M Brunstrom
- School of Psychological Sciences, University of Bristol, Bristol, UK
| | - Luc J C van Loon
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Jean-Philippe Walhin
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Françoise Koumanov
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - James A Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
| |
Collapse
|
46
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
47
|
Papageorgiou M, Biver E, Mareschal J, Phillips NE, Hemmer A, Biolley E, Schwab N, Manoogian ENC, Gonzalez Rodriguez E, Aeberli D, Hans D, Pot C, Panda S, Rodondi N, Ferrari SL, Collet TH. The effects of time-restricted eating and weight loss on bone metabolism and health: a 6-month randomized controlled trial. Obesity (Silver Spring) 2023; 31 Suppl 1:85-95. [PMID: 36239695 PMCID: PMC10092311 DOI: 10.1002/oby.23577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE This study explored the impact of time-restricted eating (TRE) versus standard dietary advice (SDA) on bone health. METHODS Adults with ≥1 component of metabolic syndrome were randomized to TRE (ad libitum eating within 12 hours) or SDA (food pyramid brochure). Bone turnover markers and bone mineral content/density by dual energy x-ray absorptiometry were assessed at baseline and 6-month follow-up. Statistical analyses were performed in the total population and by weight loss response. RESULTS In the total population (n = 42, 76% women, median age 47 years [IQR: 31-52]), there were no between-group differences (TRE vs. SDA) in any bone parameter. Among weight loss responders (≥0.6 kg weight loss), the bone resorption marker β-carboxyterminal telopeptide of type I collagen tended to decrease after TRE but increase after SDA (between-group differences p = 0.041), whereas changes in the bone formation marker procollagen type I N-propeptide did not differ between groups. Total body bone mineral content decreased after SDA (p = 0.028) but remained unchanged after TRE (p = 0.31) in weight loss responders (between-group differences p = 0.028). Among nonresponders (<0.6 kg weight loss), there were no between-group differences in bone outcomes. CONCLUSIONS TRE had no detrimental impact on bone health, whereas, when weight loss occurred, it was associated with some bone-sparing effects compared with SDA.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julie Mareschal
- Nutrition Unit, Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nicholas Edward Phillips
- Nutrition Unit, Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandra Hemmer
- Nutrition Unit, Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Emma Biolley
- Nutrition Unit, Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Schwab
- Department of General Internal Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | | | - Elena Gonzalez Rodriguez
- Interdisciplinary Center for Bone Diseases, Service of Rheumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Aeberli
- Department of Rheumatology and Immunology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Didier Hans
- Interdisciplinary Center for Bone Diseases, Service of Rheumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Rodondi
- Department of General Internal Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Serge L Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tinh-Hai Collet
- Nutrition Unit, Service of Endocrinology, Diabetes, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Arciero PJ, Poe M, Mohr AE, Ives SJ, Arciero A, Sweazea KL, Gumpricht E, Arciero KM. Intermittent fasting and protein pacing are superior to caloric restriction for weight and visceral fat loss. Obesity (Silver Spring) 2023; 31 Suppl 1:139-149. [PMID: 36575144 PMCID: PMC10107279 DOI: 10.1002/oby.23660] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study compared intermittent fasting and protein pacing (IF-P) versus a heart-healthy caloric restriction (CR) diet, matched for energy intake and physical activity energy expenditure, on body weight, total and visceral fat mass, and cardiometabolic health outcomes in adults with obesity. METHODS IF-P (n = 21) and CR (n = 20) were assessed pre- (week 0), mid- (week 5), and post- (week 9) intervention. RESULTS Both groups reduced (p < 0.05) weight, total and visceral fat mass, blood pressure and lipids, and desire to eat food and increased proportion of fat-free mass. IF-P resulted in greater (p < 0.05) reductions in weight (-9% vs. -5%), total (-16% vs. -9%) and visceral (-33% vs. -14%) fat mass, and desire to eat (-17% vs. 1%) and increased fat-free mass percent (6% vs. 3%) compared with CR. These improvements were despite similar weekly total energy intake (IF-P, 9470 ± 550 vs. CR, 9095 ± 608 kcal/wk; p = 0.90) and physical activity energy expenditure (IF-P, 300 ± 150 vs. CR, 350 ± 200 kcal/d; p = 0.79). CONCLUSIONS IF-P and CR optimize weight loss, body composition, cardiometabolic health, and hunger management, with IF-P providing greater benefits.
Collapse
Affiliation(s)
- Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York, USA
| | - Michelle Poe
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York, USA
| | - Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Stephen J Ives
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York, USA
| | - Autumn Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York, USA
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | | | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
49
|
Elortegui Pascual P, Rolands MR, Eldridge AL, Kassis A, Mainardi F, Lê K, Karagounis LG, Gut P, Varady KA. A meta-analysis comparing the effectiveness of alternate day fasting, the 5:2 diet, and time-restricted eating for weight loss. Obesity (Silver Spring) 2023; 31 Suppl 1:9-21. [PMID: 36349432 PMCID: PMC10098946 DOI: 10.1002/oby.23568] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The objective of this meta-analysis was to compare the effectiveness of different intermittent fasting (IF) regimens on weight loss, in the general population, and compare these to traditional caloric energy restriction (CER). METHODS Three databases were searched from 2011 to June 2021 for randomized controlled trials (RCTs) that assessed weight loss and IF, including alternate day fasting (ADF), the 5:2 diet, and time-restricted eating (TRE). A random effect network analysis was used to compare the effectiveness between the three regimens. Meta-regression analysis was presented as weighted mean differences of body weight loss. RESULTS The exploratory random effects network analysis of 24 RCTs (n = 1768) ranked ADF as the most effective, followed by CER and TRE. The meta-analysis showed that IF regimens resulted in similar weight loss to CER (mean difference 0.26 kg, 95% CI: -0.31 to 0.84; p = 0.37). Compliance was generally high (>80%) in trials shorter than 3 months. CONCLUSIONS The present meta-analysis concludes that IF is comparable to CER and a promising alternative for weight loss. Among the three regimens, ADF showed the highest effectiveness for weight loss, followed by CER and TRE. Further well-powered RCTs with longer durations of intervention are required to draw solid conclusions.
Collapse
Affiliation(s)
| | | | | | - Amira Kassis
- Whiteboard Nutrition ScienceBeaconsfieldQuebecCanada
| | - Fabio Mainardi
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Kim‐Anne Lê
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Leonidas G. Karagounis
- Nestlé Health ScienceTranslation ResearchLausanneSwitzerland
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Krista A. Varady
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
50
|
Fast Today, Feast Tomorrow. JACC Basic Transl Sci 2023; 8:255-257. [PMID: 37034278 PMCID: PMC10077118 DOI: 10.1016/j.jacbts.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|