1
|
Liceras-Boillos P, Garcia-Navas R, Llorente-González C, Lorenzo-Martin LF, Luna-Ramírez L, Fuentes-Mateos R, Calzada N, Vega FM, Holt MR, Ridley AJ, Bustelo XR, Vicente-Manzanares M, Santos E, Baltanás FC. Sos1 ablation alters focal adhesion dynamics and increases Mmp2/9-dependent gelatinase activity in primary mouse embryonic fibroblasts. Cell Commun Signal 2025; 23:116. [PMID: 40033301 PMCID: PMC11874121 DOI: 10.1186/s12964-025-02122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Sos1 and Sos2 are guanine-nucleotide exchange factors for Ras and Rac small GTPases, which are involved in a wide range of cellular responses including proliferation and migration. We have previously shown that Sos1 and Sos2 have different effects on cell migration, but the underlying mechanisms are not clear. METHODS Using a 4-hydroxytamoxifen-inducible conditional Sos1KO mutation, here we evaluated the functional specificity or redundancy of Sos1 and Sos2 regarding the control of cell migration and dynamics of focal adhesions (FAs) in primary mouse embryonic fibroblasts (MEFs). RESULTS Functional analysis of the transcriptome of primary Sos1/2WT, Sos1KO, Sos2KO and Sos1/2DKO-MEFs revealed a specific, dominant role of Sos1 over Sos2 in transcriptional regulation. Sos1KO MEFs had an increased number and stability of focal adhesions (FAs) and curbed protrusion and spreading. Conversely, Sos2KO MEFs displayed unstable FAs with increased protrusion. Interestingly, Sos1, but not Sos2, ablation reduced the levels of GTP-bound Rac at the leading edge. In 3D, however, only Sos1/2KO MEFs showed increased invasion and matrix degradative capacity, which correlated with increased expression of the Mmp2 and Mmp9 gelatinases. Moreover, increased matrix degradation in Sos1/2KO MEFs was abrogated by treatment with Mmp2/9 inhibitors. CONCLUSIONS Our data demonstrate that Sos1 and Sos2 have different functions in FAs distribution and dynamics in 2D whereas in 3D they act together to regulate invasion and unveil a previously undescribed mechanistic connection between Sos1/2 and the regulation of Mmp2/9 expression in primary MEFs.
Collapse
Affiliation(s)
- Pilar Liceras-Boillos
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Rósula Garcia-Navas
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, 37007, Spain
| | | | - Luis Luna-Ramírez
- Departamento de Fisiología Medica y Biofísica, Facultad de Medicina, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) (Hospital Universitario Virgen del Rocío, CSIC/Universidad de Sevilla), Sevilla, 41013, Spain
| | - Rocío Fuentes-Mateos
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Nuria Calzada
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Francisco M Vega
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) (Hospital Universitario Virgen del Rocío, CSIC/Universidad de Sevilla), Sevilla, 41012, Spain
| | - Mark R Holt
- Randall Centre of Cell and Molecular Biophysics, King's College London, Guy's Campus, New Hunt's House, London, SE1 1UL, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Xose R Bustelo
- Lab 2, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, 37007, Spain
| | - Eugenio Santos
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain.
| | - Fernando C Baltanás
- Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain.
- Departamento de Fisiología Medica y Biofísica, Facultad de Medicina, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) (Hospital Universitario Virgen del Rocío, CSIC/Universidad de Sevilla), Sevilla, 41013, Spain.
| |
Collapse
|
2
|
Lokhandwala J, Smalley TB, Tran TH. Structural perspectives on recent breakthrough efforts toward direct drugging of RAS and acquired resistance. Front Oncol 2024; 14:1394702. [PMID: 38841166 PMCID: PMC11150659 DOI: 10.3389/fonc.2024.1394702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
The Kirsten rat sarcoma viral oncoprotein homolog (KRAS) is currently a primary focus of oncologists and translational scientists, driven by exciting results with KRAS-targeted therapies for non-small cell lung cancer (NSCLC) patients. While KRAS mutations continue to drive high cancer diagnosis and death, researchers have developed unique strategies to target KRAS variations. Having been investigated over the past 40 years and considered "undruggable" due to the lack of pharmacological binding pockets, recent breakthroughs and accelerated FDA approval of the first covalent inhibitors targeting KRASG12C, have largely sparked further drug development. Small molecule development has targeted the previously identified primary location alterations such as G12, G13, Q61, and expanded to address the emerging secondary mutations and acquired resistance. Of interest, the non-covalent KRASG12D targeting inhibitor MRTX-1133 has shown promising results in humanized pancreatic cancer mouse models and is seemingly making its way from bench to bedside. While this manuscript was under review a novel class of first covalent inhibitors specific for G12D was published, These so-called malolactones can crosslink both GDP and GTP bound forms of G12D. Inhibition of the latter state suppressed downstream signaling and cancer cell proliferation in vitro and in mouse xenografts. Moreover, a non-covalent pan-KRAS inhibitor, BI-2865, reduced tumor proliferation in cell lines and mouse models. Finally, the next generation of KRAS mutant-specific and pan-RAS tri-complex inhibitors have revolutionized RAS drug discovery. This review will give a structural biology perspective on the current generation of KRAS inhibitors through the lens of emerging secondary mutations and acquired resistance.
Collapse
Affiliation(s)
- Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tracess B. Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
3
|
Pang X, Cui D, Lv B, Wang CY. Discovery of Potent SOS1 PROTACs with Effective Antitumor Activities against NCI-H358 Tumor Cells In Vitro/In Vivo. J Med Chem 2024; 67:1563-1579. [PMID: 38206836 DOI: 10.1021/acs.jmedchem.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Directly targeted KRAS inhibitors are now facing resistance problems, which might be partially solved by the combination of SOS1 inhibitors with KRAS inhibitors. However, this combination may still have some resistance mitigation potential. Comparatively, SOS1 PROTAC may have promising applications in addressing the drug resistance problem by degrading the SOS1 protein. Herein, we report the discovery of novel SOS1 PROTACs and their antitumor activity both in vitro and in vivo. In vitro studies demonstrated that degrader 4 had strong inhibitory effects on the proliferation of NCI-H358 cells with IC50 of 5 nM, together with significant degradation of SOS1 protein with DC50 of 13 nM. In the NCI-H358 xenograft model, degrader 4 exhibited significant antitumor activities with TGITV values of 58.8% at 30 mg/kg bid. The PK and safety profiles also supported degrader 4 for further studies as an effective tool compound.
Collapse
Affiliation(s)
- Xudong Pang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Dawei Cui
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Binhua Lv
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
5
|
Smith CR, Chen D, Christensen JG, Coulombe R, Féthière J, Gunn RJ, Hollander J, Jones B, Ketcham JM, Khare S, Kuehler J, Lawson JD, Marx MA, Olson P, Pearson KE, Ren C, Tsagris D, Ulaganathan T, Van’t Veer I, Wang X, Ivetac A. Discovery of Five SOS2 Fragment Hits with Binding Modes Determined by SOS2 X-Ray Cocrystallography. J Med Chem 2024; 67:774-781. [PMID: 38156904 PMCID: PMC10788894 DOI: 10.1021/acs.jmedchem.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.
Collapse
Affiliation(s)
| | - Dan Chen
- ZoBio
BV, J.H. Oortweg 19, Leiden 2333 CH, Netherlands
| | | | - René Coulombe
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - James Féthière
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - Robin J. Gunn
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Benjamin Jones
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - John M. Ketcham
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Shilpi Khare
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Jon Kuehler
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - J. David Lawson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Matthew A. Marx
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Peter Olson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Cynthia Ren
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | | | | | - Xiaolun Wang
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Anthony Ivetac
- Mirati
Therapeutics, San Diego, California 92130, United States
| |
Collapse
|
6
|
Chen T, Tang X, Wang Z, Feng F, Xu C, Zhao Q, Wu Y, Sun H, Chen Y. Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising therapeutic treatment for KRAS-mutant cancers. Eur J Med Chem 2023; 261:115828. [PMID: 37778239 DOI: 10.1016/j.ejmech.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Kristen rat sarcoma (KRAS) is one of the most common oncogenes in human cancers. As a guanine nucleotide exchange factor, Son of Sevenless Homologue 1 (SOS1) represents a potential therapeutic concept for the treatment of KRAS-mutant cancers because of its activation on KRAS and downstream signaling pathways. In this review, we provide a comprehensive overview of the structure, biological function, and regulation of SOS1. We also focus on the recent advances in SOS1 inhibitors and emphasize their binding modes, structure-activity relationships and pharmacological activities. We hope that this publication can provide a comprehensive compendium on the rational design of SOS1 inhibitors.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
7
|
Hilal N, Chen Z, Chen MH, Choudhury S. RASopathies and cardiac manifestations. Front Cardiovasc Med 2023; 10:1176828. [PMID: 37529712 PMCID: PMC10387527 DOI: 10.3389/fcvm.2023.1176828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023] Open
Abstract
As binary switches, RAS proteins switch to an ON/OFF state during signaling and are on a leash under normal conditions. However, in RAS-related diseases such as cancer and RASopathies, mutations in the genes that regulate RAS signaling or the RAS itself permanently activate the RAS protein. The structural basis of this switch is well understood; however, the exact mechanisms by which RAS proteins are regulated are less clear. RAS/MAPK syndromes are multisystem developmental disorders caused by germline mutations in genes associated with the RAS/mitogen-activated protein kinase pathway, impacting 1 in 1,000-2,500 children. These include a variety of disorders such as Noonan syndrome (NS) and NS-related disorders (NSRD), such as cardio facio cutaneous (CFC) syndrome, Costello syndrome (CS), and NS with multiple lentigines (NSML, also known as LEOPARD syndrome). A frequent manifestation of cardiomyopathy (CM) and hypertrophic cardiomyopathy associated with RASopathies suggest that RASopathies could be a potential causative factor for CM. However, the current supporting evidence is sporadic and unclear. RASopathy-patients also display a broad spectrum of congenital heart disease (CHD). More than 15 genes encode components of the RAS/MAPK signaling pathway that are essential for the cell cycle and play regulatory roles in proliferation, differentiation, growth, and metabolism. These genes are linked to the molecular genetic pathogenesis of these syndromes. However, genetic heterogeneity for a given syndrome on the one hand and alleles for multiple syndromes on the other make classification difficult in diagnosing RAS/MAPK-related diseases. Although there is some genetic homogeneity in most RASopathies, several RASopathies are allelic diseases. This allelism points to the role of critical signaling nodes and sheds light on the overlap between these related syndromes. Even though considerable progress has been made in understanding the pathophysiology of RASopathy with the identification of causal mutations and the functional analysis of their pathophysiological consequences, there are still unidentified causal genes for many patients diagnosed with RASopathies.
Collapse
Affiliation(s)
- Nazia Hilal
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Zi Chen
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham, and Women’s Hospital, Boston, MA, United States
| | - Ming Hui Chen
- Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
8
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
10
|
Jiang Y, Shen Y, Ding L, Xia S, Jiang L. Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis. BMC Musculoskelet Disord 2021; 22:1008. [PMID: 34856957 PMCID: PMC8641180 DOI: 10.1186/s12891-021-04894-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
Backgrounds As osteoarthritis (OA) disease-modifying therapies are not available, novel therapeutic targets need to be discovered and prioritized. Here, we aim to identify miRNA signatures in patients to fully elucidate regulatory mechanism of OA pathogenesis and advance in basic understanding of the genetic etiology of OA. Methods Six participants (3 OA and 3 controls) were recruited and serum samples were assayed through RNA sequencing (RNA-seq). And, RNA-seq dataset was analysed to identify genes, pathways and regulatory networks dysregulated in OA. The overlapped differentially expressed microRNAs (DEMs) were further screened in combination with the microarray dataset GSE143514. The expression levels of candidate miRNAs were further validated by quantitative real-time PCR (qRT-PCR) based on the GEO dataset (GSE114007). Results Serum samples were sequenced interrogating 382 miRNAs. After screening of independent samples and GEO database, the two comparison datasets shared 19 overlapped candidate micRNAs. Of these, 9 up-regulated DEMs and 10 down-regulated DEMs were detected, respectively. There were 236 target genes for up-regulated DEMs and 400 target genes for those down-regulated DEMs. For up-regulated DEMs, the top 10 hub genes were KRAS, NRAS, CDC42, GDNF, SOS1, PIK3R3, GSK3B, IRS2, GNG12, and PRKCA; for down-regulated DEMs, the top 10 hub genes were NR3C1, PPARGC1A, SUMO1, MEF2C, FOXO3, PPP1CB, MAP2K1, RARA, RHOC, CDC23, and CREB3L2. Mir-584-5p-KRAS, mir-183-5p-NRAS, mir-4435-PIK3R3, and mir-4435-SOS1 were identified as four potential regulatory pathways by integrated analysis. Conclusions We have integrated differential expression data to reveal putative genes and detected four potential miRNA-target gene pathways through bioinformatics analysis that represent new mediators of abnormal gene expression and promising therapeutic targets in OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04894-2.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, P. R. China
| | - Yi Shen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, P. R. China
| | - Liyan Ding
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, P. R. China
| | - Shengli Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, P. R. China
| | - Liying Jiang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, P. R. China. .,Jiading District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China.
| |
Collapse
|
11
|
Strzelec K, Dziedzic A, Łazarz-Bartyzel K, Grabiec AM, Gutmajster E, Kaczmarzyk T, Plakwicz P, Gawron K. Clinics and genetic background of hereditary gingival fibromatosis. Orphanet J Rare Dis 2021; 16:492. [PMID: 34819125 PMCID: PMC8611899 DOI: 10.1186/s13023-021-02104-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hereditary gingival fibromatosis (HGF) is a rare condition characterized by slowly progressive overgrowth of the gingiva. The severity of overgrowth may differ from mild causing phonetic and masticatory issues, to severe resulting in diastemas or malposition of teeth. Both, autosomal-dominant and autosomal-recessive forms of HGF are described. The aim of this review is a clinical overview, as well as a summary and discussion of the involvement of candidate chromosomal regions, pathogenic variants of genes, and candidate genes in the pathogenesis of HGF. The loci related to non-syndromic HGF have been identified on chromosome 2 (GINGF, GINGF3), chromosome 5 (GINGF2), chromosome 11 (GINGF4), and 4 (GINGF5). Of these loci, pathogenic variants of the SOS-1 and REST genes inducing HGF have been identified in the GINGF and the GINGF5, respectively. Furthermore, among the top 10 clusters of genes ranked by enrichment score, ATP binding, and fibronectin encoding genes were proposed as related to HGF. CONCLUSION The analysis of clinical reports as well as translational genetic studies published since the late'90s indicate the clinical and genetic heterogeneity of non-syndromic HGF and point out the importance of genetic studies and bioinformatics of more numerous unrelated families to identify novel pathogenic variants potentially inducing HGF. This strategy will help to unravel the molecular mechanisms as well as uncover specific targets for novel and less invasive therapies of this rare, orphan condition.
Collapse
Affiliation(s)
- Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Medical College, Jagiellonian University, Kraków, Poland
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Gutmajster
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Tomasz Kaczmarzyk
- Department of Periodontology and Oral Medicine, Medical College, Jagiellonian University, Kraków, Poland.,Department of Oral Surgery, Medical College, Jagiellonian University, Kraków, Poland
| | - Paweł Plakwicz
- Department of Periodontology and Oral Diseases, Faculty of Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland.
| |
Collapse
|
12
|
The intramolecular allostery of GRB2 governing its interaction with SOS1 is modulated by phosphotyrosine ligands. Biochem J 2021; 478:2793-2809. [PMID: 34232285 DOI: 10.1042/bcj20210105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.
Collapse
|
13
|
Hoang HM, Umutesi HG, Heo J. Allosteric autoactivation of SOS and its kinetic mechanism. Small GTPases 2021; 12:44-59. [PMID: 30983499 PMCID: PMC7781538 DOI: 10.1080/21541248.2019.1601954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
Son of Sevenless (SOS), one of guanine nucleotide exchange factors (GEFs), activates Ras. We discovered that the allosteric domain of SOS yields SOS to proceed a previously unrecognized autoactivation kinetics. Its essential feature is a time-dependent acceleration of SOS feedback activation with a reaction initiator or with the priming of active Ras. Thus, this mechanistic autoactivation feature explains the notion, previously only conjectured, of accelerative SOS activation followed by the priming of active Ras, an action produced by another GEF Ras guanyl nucleotide-releasing protein (RasGRP). Intriguingly, the kinetic transition from gradual RasGRP activation to accelerative SOS activation has been interpreted as an analog to digital conversion; however, from the perspective of autoactivation kinetics, it is a process of straightforward RasGRP-mediated SOS autoactivation. From the viewpoint of allosteric protein cooperativity, SOS autoactivation is a unique time-dependent cooperative SOS activation because it enables an active SOS to accelerate activation of other SOS as a function of time. This time-dependent SOS cooperativity does not belong to the classic steady-state protein cooperativity, which depends on ligand concentration. Although its hysteretic or sigmoid-like saturation curvature is a classic hallmark of steady-state protein cooperativity, its hyperbolic saturation figure typically represents protein noncooperativity. We also discovered that SOS autoactivation perturbs the previously predicted hysteresis of SOS activation in a steady state to produce a hyperbolic saturation curve. We interpret this as showing that SOS allostery elicits, through SOS autoactivation, cooperativity uniquely time-dependent but not ligand concentration dependent.
Collapse
Affiliation(s)
- Hanh My Hoang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Hope Gloria Umutesi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
14
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
15
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
16
|
Yu X, Liang C, Zhang Y, Zhang W, Chen H. Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells. BMC Cancer 2019; 19:878. [PMID: 31488087 PMCID: PMC6727365 DOI: 10.1186/s12885-019-6087-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background We aimed to develop inhibitory short peptides that can prevent protein interactions of SOS1/EPS8/ABI1 tri-complex, a key component essential for ovarian cancer metastasis. Methods Plasmids containing various regions of HA-tagged ABI1 were co-transfected into ovarian cancer cells with Flag-tagged SOS1 or Myc-tagged EPS8. Co-immunoprecipitation and GST-pulldown assay were used to identify the regions of ABI1 responsible for SOS1 and EPS8 binding. Inhibitory short peptides of these binding regions were synthesized and modified with HIV-TAT sequence. The blocking effects of the peptides on ABI1-SOS1 or ABI1-EPS8 interactions in vitro and in vivo were determined by GST-pulldown assay. The capability of these short peptides in inhibiting invasion and metastasis of ovarian cancer cell was tested by Matrigel invasion assay and peritoneal metastatic colonization assay. Results The formation of endogenous SOS1/EPS8/ABI1 tri-complex was detected in the event of LPA-induced ovarian cancer cell invasion. In the tri-complex, ABI1 acted as a scaffold protein holding together SOS1 and EPS8. The SH3 and poly-proline+PxxDY regions of ABI1 were responsible for SOS1 and EPS8 binding, respectively. Inhibitory short peptides p + p-8 (ppppppppvdyedee) and SH3–3 (ekvvaiydytkdkddelsfmegaii) could block ABI1-SOS1 and ABI1-EPS8 interaction in vitro. TAT-p + p-8 peptide could disrupt ABI1-EPS8 interaction and suppress the invasion and metastasis of ovarian cancer cells in vivo. Conclusions TAT-p + p-8 peptide could efficiently disrupt the ABI1-EPS8 interaction, tri-complex formation, and block the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xuechen Yu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Chuan Liang
- Department of Cardiothoracic vascular surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
17
|
Wang YS, Wu L. Enhanced expression of son of sevenless homolog 1 is predictive of poor prognosis in uveal malignant melanoma patients. Ophthalmic Genet 2019; 40:22-28. [PMID: 30714452 DOI: 10.1080/13816810.2019.1573904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan-Shuang Wang
- Department of Ophthalmology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Lan Wu
- Department of Ophthalmology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| |
Collapse
|
18
|
Lin C, Gao B, Yan X, Lei Z, Chen K, Li Y, Zeng Q, Chen Z, Li H. MicroRNA 628 suppresses migration and invasion of breast cancer stem cells through targeting SOS1. Onco Targets Ther 2018; 11:5419-5428. [PMID: 30233203 PMCID: PMC6129021 DOI: 10.2147/ott.s164575] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose The purpose of this study is to evaluate the effects of miR-628 on migration and invasion of breast cancer stem cells (CSCs), which are essential for tumor recurrence and metastasis. Materials and methods Quantitative reverse transcription-polymerase chain reaction was used to determine the expression of microRNAs and mRNAs. A subpopulation of CD44+/CD24− breast CSCs were sorted by flow cytometry. Transwell assays were used to evaluate cell migration and invasion. Luciferase reporter assays were performed to verify whether miR-628 targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1). pcDNA3.1(+)-SOS1 was constructed for overexpressing SOS1 after transfection. Results Compared with primary breast cancer cells, bone metastatic breast cancer cells showed significant downregulation of miR-628. The CD44+/CD24− breast CSC subpopulations in MDA-MB-231 and MCF-7 cell lines were analyzed and sorted. Transfection with an miR-628 mimic significantly suppressed the migration and invasion of these breast CSCs by targeting SOS1, which plays an essential role in epithelial-to-mesenchymal transition. Overexpression of SOS1 rescued miR-628-mediated migration and invasion by upregulating Snail and vimentin, and downregulating E-cadherin. Conclusion miR-628 suppressed migration and invasion of breast CSCs of MDA-MB-231 and MCF-7 cells by directly targeting SOS1. Enhancement of miR-628 expression might be an effective strategy for managing breast cancer metastasis.
Collapse
Affiliation(s)
- Chenghui Lin
- Department of Medical oncology, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Bin Gao
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Xuemao Yan
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zixiong Lei
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Kebing Chen
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Yuquan Li
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Qing Zeng
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zeqin Chen
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| |
Collapse
|
19
|
Rajaram MVS, Arnett E, Azad AK, Guirado E, Ni B, Gerberick AD, He LZ, Keler T, Thomas LJ, Lafuse WP, Schlesinger LS. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. Cell Rep 2018; 21:126-140. [PMID: 28978467 DOI: 10.1016/j.celrep.2017.09.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection.
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| | - Eusondia Arnett
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Abul K Azad
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Evelyn Guirado
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Abigail D Gerberick
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Zhen He
- Celldex Therapeutics, Inc., Needham, MA 02723, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Needham, MA 02723, USA
| | | | - William P Lafuse
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Wu ZY, Li JR, Huang MH, Cheng JJ, Li H, Chen JH, Lv XQ, Peng ZG, Jiang JD. Internal driving factors leading to extrahepatic manifestation of the hepatitis C virus infection. Int J Mol Med 2017; 40:1792-1802. [PMID: 29039494 PMCID: PMC5716440 DOI: 10.3892/ijmm.2017.3175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) infection is associated with various extrahepatic manifestations, which are correlated with poor outcomes, and thus increase the morbidity and mortality of chronic hepatitis C (CHC). Therefore, understanding the internal linkages between systemic manifestations and HCV infection is helpful for treatment of CHC. Yet, the mechanism by which the virus evokes the systemic diseases remains to be elucidated. In the present study, using gene set enrichment analysis (GSEA) and signaling pathway impact analysis (SPIA), a comprehensive analysis of microarray data of mRNAs was conducted in HCV-infected and -uninfected Huh7.5 cells, and signaling pathways (which are significantly activated or inhibited) and certain molecules (which are commonly important in those signaling pathways) were selected. Forty signaling pathways were selected using GSEA, and eight signaling pathways were selected with SPIA. These pathways are associated with cancer, metabolism, environmental information processing and organismal systems, which provide important information for further clarifying the intrinsic associations between syndromes of HCV infection, of which seven pathways were not previously reported, including basal transcription factors, pathogenic Escherichia coli infection, shigellosis, gastric acid secretion, dorso-ventral axis formation, amoebiasis and cholinergic synapse. Ten genes, SOS1, RAF1, IFNA2, IFNG, MTHFR, IGF1, CALM3, UBE2B, TP53 and BMP7 whose expression may be the key internal driving molecules, were selected using the online tool Anni 2.1. Furthermore, the present study demonstrated the internal linkages between systemic manifestations and HCV infection, and presented the potential molecules that are key to those linkages.
Collapse
Affiliation(s)
- Zhou-Yi Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jian-Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Meng-Hao Huang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jun-Jun Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jin-Hua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiao-Qin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
21
|
Alles J, Ludwig N, Rheinheimer S, Leidinger P, Grässer FA, Keller A, Meese E. MiR-148a impairs Ras/ERK signaling in B lymphocytes by targeting SOS proteins. Oncotarget 2017; 8:56417-56427. [PMID: 28915601 PMCID: PMC5593572 DOI: 10.18632/oncotarget.17662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Although microRNAs have been recognized as central cellular regulators, there is an evident lack of knowledge about their targets. Here, we analyzed potential target genes for miR-148a functioning in Ras signaling in B cells, including SOS1 and SOS2. A dual-luciferase reporter assay showed significantly decreased luciferase activity upon ectopic overexpression of miR-148a in HEK-293T cells that were co-transfected with the 3′UTR of either SOS1 or SOS2. Each of the 3′UTRs of SOS1 and SOS2 contained two binding sites for miR-148a both of which were necessary for the decreased luciferase activity. MiR-148a overexpression in HEK-293T lead to significantly reduced levels of both endogenous SOS1 and SOS2 proteins. Likewise, reduced levels of SOS proteins were found in two B cell lines that were transfected with miR-148a. The level of ERK1/2 phosphorylation as one of the most relevant downstream members of the Ras/ERK signaling pathway was also reduced in cells with miR-148a overexpression. The data show that miR-148a impairs the Ras/ERK signaling pathway via SOS1 and SOS2 proteins in B cells.
Collapse
Affiliation(s)
- Julia Alles
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
22
|
Brock EJ, Ji K, Reiners JJ, Mattingly RR. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Mini Rev Med Chem 2016; 16:358-69. [PMID: 26423696 DOI: 10.2174/1389557515666151001154002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.
Collapse
Affiliation(s)
| | | | | | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave, Detroit MI, USA.
| |
Collapse
|
23
|
El Bouchikhi I, Belhassan K, Moufid FZ, Iraqui Houssaini M, Bouguenouch L, Samri I, Atmani S, Ouldim K. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate. Int J Pediatr Adolesc Med 2016; 3:133-142. [PMID: 30805484 PMCID: PMC6372459 DOI: 10.1016/j.ijpam.2016.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.
Collapse
Key Words
- CDC25, cell division cycle 25
- CHD, congenital heart defects
- CR, conserved region
- CRD, cysteine-rich domain
- GAP, GTPase activating protein
- GDP, guanosine-DiPhosphate
- GEF, guanine exchange factor
- GH, growth hormone
- GTP, guanosine-TriPhosphate
- HCM, hypertrophic cardiomyopathy
- IGF-1, insulin-like growth factor I
- MAP kinase signaling pathways
- Molecular etiology
- Mutation rate
- Noonan syndrome
- PTPN11
- RAS family
- RBD, RAS binding domain
- REM, RAS exchange motif
Collapse
Affiliation(s)
- Ihssane El Bouchikhi
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco.,Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Khadija Belhassan
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Fatima Zohra Moufid
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco.,Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Mohammed Iraqui Houssaini
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Laila Bouguenouch
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Imane Samri
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Samir Atmani
- Medico-Surgical Unit of Cardio-pediatrics, Department of Pediatrics, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| |
Collapse
|
24
|
Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs. Oncogene 2016; 35:6389-6402. [PMID: 27157612 DOI: 10.1038/onc.2016.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Using a 4-hydroxytamoxifen (4OHT)-inducible, conditional Sos1-null mutation, we analyzed wild-type (WT), single Sos1-KO, Sos2-KO and double Sos1/2 KO primary mouse embryonic fibroblasts (MEF) with an aim at evaluating the functional specificity or redundancy of the Sos1 and Sos2 alleles at the cellular level. The 4OHT-induced Sos1-KO and Sos1/2-DKO MEFs exhibited distinct flat morphology, enlarged cell perimeter and altered cytoskeletal organization that were not observed in the WT and Sos2-KO counterparts. The Sos1-KO and Sos1/2-DKO MEFs also displayed significant accumulation, in comparison with WT and Sos2-KO MEFs, of cytoplasmic vesicular bodies identified as autophagosomes containing degraded mitochondria by means of electron microscopy and specific markers. Cellular proliferation and migration were impaired in Sos1-KO and Sos1/2-DKO MEFs in comparison with WT and Sos2-KO MEFs, whereas cell adhesion was only impaired upon depletion of both Sos isoforms. RasGTP formation was practically absent in Sos1/2-DKO MEFs as compared with the other genotypes and extracellular signal-regulated kinase phosphorylation showed only significant reduction after combined Sos1/2 depletion. Consistent with a mitophagic phenotype, in vivo labeling with specific fluorophores uncovered increased levels of oxidative stress (elevated intracellular reactive oxygen species and mitochondrial superoxide and loss of mitochondrial membrane potential) in the Sos1-KO and the Sos1/2-DKO cells as compared with Sos2-KO and WT MEFs. Interestingly, treatment of the MEF cultures with antioxidants corrected the altered phenotypes of Sos1-KO and Sos1/2-DKO MEFs by restoring their altered perimeter size and proliferative rate to levels similar to those of WT and Sos2-KO MEFs. Our data uncover a direct mechanistic link between Sos1 and control of intracellular oxidative stress, and demonstrate functional prevalence of Sos1 over Sos2 with regards to cellular proliferation and viability.
Collapse
|
25
|
Joo JH, Oh H, Kim M, An EJ, Kim RK, Lee SY, Kang DH, Kang SW, Keun Park C, Kim H, Lee SJ, Lee D, Seol JH, Bae YS. NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of NoxO1 in Colon Cancer Cells. Cancer Res 2016; 76:855-65. [PMID: 26781991 DOI: 10.1158/0008-5472.can-15-1512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The generation of reactive oxygen species (ROS) is required for proper cell signaling, but must be tightly regulated to minimize deleterious oxidizing effects. Activation of the NADPH oxidases (Nox) triggers ROS production and, thus, regulatory mechanisms exist to properly control Nox activity. In this study, we report a novel mechanism in which Nox1 activity is regulated through the proteasomal degradation of Nox organizer 1 (NoxO1). We found that through the interaction between NoxO1 and growth receptor-bound protein 2 (Grb2), the Casitas B-lineage lymphoma (Cbl) E3 ligase was recruited, leading to decreased NoxO1 stability and a subsequent reduction in ROS generation upon epidermal growth factor (EGF) stimulation. Additionally, we show that EGF-mediated phosphorylation of NoxO1 induced its release from Grb2 and facilitated its association with Nox activator 1 (NoxA1) to stimulate ROS production. Consistently, overexpression of Grb2 resulted in decreased Nox1 activity, whereas knockdown of Grb2 led to increased Nox1 activity in response to EGF. CRISPR/Cas9-mediated NoxO1 knockout in human colon cancer cells abrogated anchorage-independent growth on soft agar and tumor-forming ability in athymic nude mice. Moreover, the expression and stability of NoxO1 were significantly increased in human colon cancer tissues compared with normal colon. Taken together, these results support a model whereby Nox1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteolysis of NoxO1 in response to EGF, providing new insight into the processes by which excessive ROS production may promote oncogenic signaling to drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jung Hee Joo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyunjin Oh
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
26
|
Cordeddu V, Yin JC, Gunnarsson C, Virtanen C, Drunat S, Lepri F, De Luca A, Rossi C, Ciolfi A, Pugh TJ, Bruselles A, Priest JR, Pennacchio LA, Lu Z, Danesh A, Quevedo R, Hamid A, Martinelli S, Pantaleoni F, Gnazzo M, Daniele P, Lissewski C, Bocchinfuso G, Stella L, Odent S, Philip N, Faivre L, Vlckova M, Seemanova E, Digilio C, Zenker M, Zampino G, Verloes A, Dallapiccola B, Roberts AE, Cavé H, Gelb BD, Neel BG, Tartaglia M. Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome. Hum Mutat 2015; 36:1080-7. [PMID: 26173643 DOI: 10.1002/humu.22834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.
Collapse
Affiliation(s)
- Viviana Cordeddu
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy.,Dipartimento di Scienze Psicologiche, della Salute e del Territorio, Università degli Studi "G. d'Annunzio", Chieti-Pescara, 66100, Italy
| | - Jiani C Yin
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Cecilia Gunnarsson
- Department of Clinical and Experimental Medicine, Division of Clinical Genetics, Faculty of Health Sciences, Linköping University, Linköping, 581 83, Sweden
| | - Carl Virtanen
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Séverine Drunat
- Département de Génétique, Hôpital Robert Debré, Paris, 75019, France
| | - Francesca Lepri
- Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, 00165, Italy
| | - Alessandro De Luca
- IRCCS-Casa Sollievo della Sofferenza Hospital, Mendel Institute, Rome, 00161, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-Malpighi, Bologna, 40138, Italy
| | - Andrea Ciolfi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Alessandro Bruselles
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - James R Priest
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, 94305.,Child Health Research Institute, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, 94305
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720.,US Department of Energy Joint Genome Institute, Walnut Creek, California, 94598
| | - Zhibin Lu
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Alaa Hamid
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada
| | - Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Francesca Pantaleoni
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Maria Gnazzo
- Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, 00165, Italy
| | - Paola Daniele
- IRCCS-Casa Sollievo della Sofferenza Hospital, Mendel Institute, Rome, 00161, Italy
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, 39106, Germany
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma 'Tor Vergata', Rome, 00133, Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma 'Tor Vergata', Rome, 00133, Italy
| | - Sylvie Odent
- Service de Génétique Clinique, Hôpital SUD, Rennes, 35200, France
| | - Nicole Philip
- Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille 13385, France
| | - Laurence Faivre
- Centre de Génétique, Hôpital d'Enfants, Dijon, 21000, France
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Eva Seemanova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Cristina Digilio
- Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, 00165, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, 39106, Germany
| | - Giuseppe Zampino
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, 75019, France
| | - Bruno Dallapiccola
- Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, 00165, Italy
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, Boston Children's Hospital, Boston, Massachusetts, 02115
| | - Hélène Cavé
- Département de Génétique, Hôpital Robert Debré, Paris, 75019, France.,INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, 75205, France
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON, M5S, Canada.,The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York, 10016
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, 00161, Italy.,Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, 00165, Italy
| |
Collapse
|
27
|
Brenton AA, Souvannaseng L, Cheung K, Anishchenko M, Brault AC, Luckhart S. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae. Parasit Vectors 2014; 7:287. [PMID: 24957684 PMCID: PMC4077580 DOI: 10.1186/1756-3305-7-287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/13/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Susceptibility to Plasmodium infection in Anopheles gambiae has been proposed to result from naturally occurring polymorphisms that alter the strength of endogenous innate defenses. Despite the fact that some of these mutations are known to introduce non-synonymous substitutions in coding sequences, these mutations have largely been used to rationalize knockdown of associated target proteins to query the effects on parasite development in the mosquito host. Here, we assay the effects of engineered mutations on an immune signaling protein target that is known to control parasite sporogonic development. By this proof-of-principle work, we have established that naturally occurring mutations can be queried for their effects on mosquito protein function and on parasite development and that this important signaling pathway can be genetically manipulated to enhance mosquito resistance. METHODS We introduced SNPs into the A. gambiae MAPK kinase MEK to alter key residues in the N-terminal docking site (D-site), thus interfering with its ability to interact with the downstream kinase target ERK. ERK phosphorylation levels in vitro and in vivo were evaluated to confirm the effects of MEK D-site mutations. In addition, overexpression of various MEK D-site alleles was used to assess P. berghei infection in A. gambiae. RESULTS The MEK D-site contains conserved lysine residues predicted to mediate protein-protein interaction with ERK. As anticipated, each of the D-site mutations (K3M, K6M) suppressed ERK phosphorylation and this inhibition was significant when both mutations were present. Tissue-targeted overexpression of alleles encoding MEK D-site polymorphisms resulted in reduced ERK phosphorylation in the midgut of A. gambiae. Furthermore, as expected, inhibition of MEK-ERK signaling due to D-site mutations resulted in reduction in P. berghei development relative to infection in the presence of overexpressed catalytically active MEK. CONCLUSION MEK-ERK signaling in A. gambiae, as in model organisms and humans, depends on the integrity of conserved key residues within the MEK D-site. Disruption of signal transmission via engineered SNPs provides a purposeful proof-of-principle model for the study of naturally occurring mutations that may be associated with mosquito resistance to parasite infection as well as an alternative genetic basis for manipulation of this important immune signaling pathway.
Collapse
Affiliation(s)
- Ashley A Brenton
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Michael Anishchenko
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
28
|
Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice. Cell Death Dis 2014; 5:e1241. [PMID: 24853419 PMCID: PMC4047882 DOI: 10.1038/cddis.2014.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.
Collapse
|
29
|
Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A. Molecular origin of the binding of WWOX tumor suppressor to ErbB4 receptor tyrosine kinase. Biochemistry 2013; 52:9223-36. [PMID: 24308844 DOI: 10.1021/bi400987k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of WWOX tumor suppressor to physically associate with the intracellular domain (ICD) of ErbB4 receptor tyrosine kinase is believed to play a central role in downregulating the transcriptional function of the latter. Herein, using various biophysical methods, we show that while the WW1 domain of WWOX binds to PPXY motifs located within the ICD of ErbB4 in a physiologically relevant manner, the WW2 domain does not. Importantly, while the WW1 domain absolutely requires the integrity of the PPXY consensus sequence, nonconsensus residues within and flanking this motif do not appear to be critical for binding. This strongly suggests that the WW1 domain of WWOX is rather promiscuous toward its cellular partners. We also provide evidence that the lack of binding of the WW2 domain of WWOX to PPXY motifs is due to the replacement of a signature tryptophan, lining the hydrophobic ligand binding groove, with tyrosine (Y85). Consistent with this notion, the Y85W substitution within the WW2 domain exquisitely restores its binding to PPXY motifs in a manner akin to the binding of the WW1 domain of WWOX. Of particular significance is the observation that the WW2 domain augments the binding of the WW1 domain to ErbB4, implying that the former serves as a chaperone within the context of the WW1-WW2 tandem module of WWOX in agreement with our findings reported previously. Altogether, our study sheds new light on the molecular basis of an important WW-ligand interaction involved in mediating a plethora of cellular processes.
Collapse
Affiliation(s)
- Brett J Schuchardt
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami , Miami, Florida 33136, United States
| | | | | | | | | | | |
Collapse
|
30
|
McDonald CB, El Hokayem J, Zafar N, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner. J Mol Recognit 2013; 26:92-103. [PMID: 23334917 DOI: 10.1002/jmr.2256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 01/10/2023]
Abstract
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med 2013; 19:1401-9. [DOI: 10.1038/nm.3392] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
|
32
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
33
|
Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS. Mol Cell Biol 2013; 33:2470-84. [DOI: 10.1128/mcb.01593-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.
Collapse
|
34
|
McDonald CB, Bhat V, Kurouski D, Mikles DC, Deegan BJ, Seldeen KL, Lednev IK, Farooq A. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor. Biophys Chem 2013; 175-176:54-62. [PMID: 23528987 DOI: 10.1016/j.bpc.2013.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jaiswal M, Dvorsky R, Ahmadian MR. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem 2012; 288:4486-500. [PMID: 23255595 DOI: 10.1074/jbc.m112.429746] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Institut für Biochemie and Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
36
|
Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, Poulikakos PI, Fagin JA, Rosen N. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012; 22:668-82. [PMID: 23153539 PMCID: PMC3713778 DOI: 10.1016/j.ccr.2012.10.009] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/31/2012] [Accepted: 10/19/2012] [Indexed: 01/07/2023]
Abstract
BRAF(V600E) drives tumors by dysregulating ERK signaling. In these tumors, we show that high levels of ERK-dependent negative feedback potently suppress ligand-dependent mitogenic signaling and Ras function. BRAF(V600E) activation is Ras independent and it signals as a RAF-inhibitor-sensitive monomer. RAF inhibitors potently inhibit RAF monomers and ERK signaling, causing relief of ERK-dependent feedback, reactivation of ligand-dependent signal transduction, increased Ras-GTP, and generation of RAF-inhibitor-resistant RAF dimers. This results in a rebound in ERK activity and culminates in a new steady state, wherein ERK signaling is elevated compared to its initial nadir after RAF inhibition. In this state, ERK signaling is RAF inhibitor resistant, and MEK inhibitor sensitive, and combined inhibition results in enhancement of ERK pathway inhibition and antitumor activity.
Collapse
Affiliation(s)
- Piro Lito
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christine A. Pratilas
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric W. Joseph
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Madhavi Tadi
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | | | - Alan Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Wai Lin Wong
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Margaret K. Callahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D. Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Poulikos I. Poulikakos
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James A. Fagin
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
37
|
McDonald CB, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Multivalent binding and facilitated diffusion account for the formation of the Grb2-Sos1 signaling complex in a cooperative manner. Biochemistry 2012; 51:2122-35. [PMID: 22360309 DOI: 10.1021/bi3000534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite its key role in driving cellular growth and proliferation through receptor tyrosine kinase (RTK) signaling, the Grb2-Sos1 macromolecular interaction remains poorly understood in mechanistic terms. Herein, using an array of biophysical methods, we provide evidence that although the Grb2 adaptor can potentially bind to all four PXψPXR motifs (designated herein S1-S4) located within the Sos1 guanine nucleotide exchange factor, the formation of the Grb2-Sos1 signaling complex occurs with a 2:1 stoichiometry. Strikingly, such bivalent binding appears to be driven by the association of the Grb2 homodimer to only two of four potential PXψPXR motifs within Sos1 at any one time. Of particular interest is the observation that of a possible six pairwise combinations in which S1-S4 motifs may act in concert for the docking of the Grb2 homodimer through bivalent binding, only S1 and S3, S1 and S4, S2 and S4, and S3 and S4 do so, while pairwise combinations of sites S1 and S2 and sites S2 and S3 appear to afford only monovalent binding. This salient observation implicates the role of local physical constraints in fine-tuning the conformational heterogeneity of the Grb2-Sos1 signaling complex. Importantly, the presence of multiple binding sites within Sos1 appears to provide a physical route for Grb2 to hop in a flip-flop manner from one site to the next through facilitated diffusion, and such rapid exchange forms the basis of positive cooperativity driving the bivalent binding of Grb2 to Sos1 with high affinity. Collectively, our study sheds new light on the assembly of a key macromolecular signaling complex central to cellular machinery in health and disease.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Ferrero GB, Picco G, Baldassarre G, Flex E, Isella C, Cantarella D, Corà D, Chiesa N, Crescenzio N, Timeus F, Merla G, Mazzanti L, Zampino G, Rossi C, Silengo M, Tartaglia M, Medico E. Transcriptional hallmarks of Noonan syndrome and Noonan-like syndrome with loose anagen hair. Hum Mutat 2012; 33:703-9. [PMID: 22253195 PMCID: PMC3332054 DOI: 10.1002/humu.22026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/04/2012] [Indexed: 11/29/2022]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is genetically heterogeneous, being caused by germline mutations affecting various genes implicated in the RAS signaling network. This network transduces extracellular signals into intracellular biochemical and transcriptional responses controlling cell proliferation, differentiation, metabolism, and senescence. To explore the transcriptional consequences of NS-causing mutations, we performed global mRNA expression profiling on peripheral blood mononuclear cells obtained from 23 NS patients carrying heterozygous mutations in PTPN11 or SOS1. Gene expression profiling was also resolved in five subjects with Noonan-like syndrome with loose anagen hair (NS/LAH), a condition clinically related to NS and caused by an invariant mutation in SHOC2. Robust transcriptional signatures were found to specifically discriminate each of the three mutation groups from 21 age- and sex-matched controls. Despite the only partial overlap in terms of gene composition, the three signatures showed a notable concordance in terms of biological processes and regulatory circuits affected. These data establish expression profiling of peripheral blood mononuclear cells as a powerful tool to appreciate differential perturbations driven by germline mutations of transducers involved in RAS signaling and to dissect molecular mechanisms underlying NS and other RASopathies. Hum Mutat 33:703–709, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
|
39
|
Hwang HS, Hwang SG, Cho JH, Chae JS, Yoon KW, Cho SG, Choi EJ. CIIA functions as a molecular switch for the Rac1-specific GEF activity of SOS1. ACTA ACUST UNITED AC 2012; 195:377-86. [PMID: 22042618 PMCID: PMC3206349 DOI: 10.1083/jcb.201106138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
CIIA mediates the TGF-β–induced activation of SOS1–Rac1 signaling and cell migration. Son of sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the guanosine triphosphatases Rac1 and Ras, which mediate signaling initiated by peptide growth factors. In this paper, we show that CIIA is a new binding partner of SOS1. CIIA promoted the SOS1–Rac1 interaction and inhibited the SOS1–Ras interaction. Furthermore, CIIA promoted the formation of an SOS1–EPS8 complex and SOS1-mediated Rac1 activation, whereas it inhibited SOS1-mediated activation of Ras. Transforming growth factor β (TGF-β) up-regulated the expression of CIIA and thereby promoted the association between CIIA and SOS1 in A549 human lung adenocarcinoma cells. Depletion of CIIA in these cells by ribonucleic acid interference inhibited the TGF-β–induced interaction between SOS1 and EPS8, activation of Rac1, and cell migration. Together, these results suggest that CIIA mediates the TGF-β–induced activation of SOS1–Rac1 signaling and cell migration in A549 cells. They further show that CIIA functions as a molecular switch for the GEF activity of SOS1, directing this activity toward Rac1.
Collapse
Affiliation(s)
- Hyun Sub Hwang
- Laboratory of Cell Death and Human Diseases, School of Life Sciences, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of guanine nucleotide exchange factors (GEFs). The main isoforms, p140-GRF1 and p135-GRF2, have 2 GEF domains that give them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. GRF1 and GRF2 proteins are found predominantly in adult neurons of the central nervous system, although they can also be detected in a limited number of other tissues. p140-GRF1 and p135-GRF2 contain calcium/calmodulin-binding IQ domains that allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. p140-GRF1 also mediates the action of dopamine receptors that signal through cAMP. Although p140-GRF1 and p135-GRF2 have similar functional domains, studies of GRF knockout mice show that they can play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. In addition, the function of GRF proteins may vary in different regions of the brain. Alternative splice variants yielding smaller GRF1 gene isoforms with fewer functional domains also exist; however, their distinct roles in neurons have not been revealed. Continuing studies of these proteins should yield important insights into the biochemical basis of brain function as well as novel concepts to explain how complex signal transduction proteins, like Ras-GRFs, integrate multiple upstream signals into specific downstream outputs to control brain function.
Collapse
Affiliation(s)
- Larry A Feig
- Departments of Biochemistry and Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32:760-72. [PMID: 21387466 PMCID: PMC3118925 DOI: 10.1002/humu.21492] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/23/2011] [Indexed: 01/03/2023]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype-phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies.
Collapse
Affiliation(s)
- Francesca Lepri
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
- Ospedale Pediatrico “Bambino Gesù,”IRCCS, Rome, Italy
| | - Alessandro De Luca
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata,”Rome, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-MalpighiBologna, Italy
| | | | - Francesca Pantaleoni
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | - Viviana Cordeddu
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | | | - Maria L Dentici
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
- Ospedale Pediatrico “Bambino Gesù,”IRCCS, Rome, Italy
| | - Viviana Caputo
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | - Serenella Venanzi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | | | - Ines Kavamura
- Medical Genetics, Federal University of Sao PauloSao Paulo, Brazil
| | - Maria F Faienza
- Department of Biomedicine of Developmental Age, University of BariBari, Italy
| | - Alba Pilotta
- AuxoendocrinologiaOspedale Pediatrico, Brescia, Italy
| | - Franco Stanzial
- Servizio aziendale di Consulenza GeneticaOspedale di Bolzano, Italy
| | | | - Orazio Gabrielli
- Istituto di Scienze Materno-Infantili, Università Politecnica delle MarcheAncona, Italy
| | - Bruno Marino
- Division of Pediatric Cardiology, Department of Pediatrics, “Sapienza” UniversityRome, Italy
| | - Giovanni Neri
- Istituto di Genetica Medica, Università Cattolica del Sacro CuoreRome, Italy
| | | | | | - Isabella Torrrente
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università Milano Bicocca A.O. S Gerardo Fondazione MBBMMonza, Italy
| | - Laura Mazzanti
- Dipartimento di Pediatria, Università degli Studi di BolognaBologna, Italy
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro CuoreRome, Italy
| | | | - Bruce D Gelb
- Child Health and Development Institute, Mount Sinai School of MedicineNew York, New York
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
42
|
Abstract
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | |
Collapse
|
43
|
Chen PC, Wakimoto H, Conner D, Araki T, Yuan T, Roberts A, Seidman CE, Bronson R, Neel BG, Seidman JG, Kucherlapati R. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation. J Clin Invest 2011; 120:4353-65. [PMID: 21041952 DOI: 10.1172/jci43910] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/15/2010] [Indexed: 02/06/2023] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%-15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated pheno-types, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS.
Collapse
Affiliation(s)
- Peng-Chieh Chen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci 2010; 1214:99-121. [PMID: 20958325 PMCID: PMC3010252 DOI: 10.1111/j.1749-6632.2010.05790.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|
45
|
Tartaglia M, Zampino G, Gelb B. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 2010; 1:2-26. [PMID: 20648242 PMCID: PMC2858523 DOI: 10.1159/000276766] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/30/2009] [Indexed: 01/20/2023] Open
Abstract
Noonan syndrome (NS) is a relatively common, clinically variable and genetically heterogeneous developmental disorder characterized by postnatally reduced growth, distinctive facial dysmorphism, cardiac defects and variable cognitive deficits. Other associated features include ectodermal and skeletal defects, cryptorchidism, lymphatic dysplasias, bleeding tendency, and, rarely, predisposition to hematologic malignancies during childhood. NS is caused by mutations in the PTPN11, SOS1, KRAS, RAF1, BRAF and MEK1 (MAP2K1) genes, accounting for approximately 70% of affected individuals. SHP2 (encoded by PTPN11), SOS1, BRAF, RAF1 and MEK1 positively contribute to RAS-MAPK signaling, and possess complex autoinhibitory mechanisms that are impaired by mutations. Similarly, reduced GTPase activity or increased guanine nucleotide release underlie the aberrant signal flow through the MAPK cascade promoted by most KRAS mutations. More recently, a single missense mutation in SHOC2, which encodes a cytoplasmic scaffold positively controlling RAF1 activation, has been discovered to cause a closely related phenotype previously termed Noonan-like syndrome with loose anagen hair. This mutation promotes aberrantly acquired N-myristoylation of the protein, resulting in its constitutive targeting to the plasma membrane and dysregulated function. PTPN11, BRAF and RAF1 mutations also account for approximately 95% of LEOPARD syndrome, a condition which resembles NS phenotypically but is characterized by multiple lentigines dispersed throughout the body, café-au-lait spots, and a higher prevalence of electrocardiographic conduction abnormalities, obstructive cardiomyopathy and sensorineural hearing deficits. These recent discoveries demonstrate that the substantial phenotypic variation characterizing NS and related conditions can be ascribed, in part, to the gene mutated and even the specific molecular lesion involved.
Collapse
Affiliation(s)
- M. Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - G. Zampino
- Servizio di Epidemiologia e Clinica dei Difetti Congeniti, Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - B.D. Gelb
- Center for Molecular Cardiology, Departments of Pediatrics and Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y., USA
| |
Collapse
|
46
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys 2009; 494:216-25. [PMID: 20005866 DOI: 10.1016/j.abb.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor--a key signaling molecule involved in the activation of Ras GTPase--to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
47
|
Antoku S, Mayer BJ. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 2009; 122:4228-38. [PMID: 19861495 DOI: 10.1242/jcs.054627] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Crk family adaptors, consisting of Src homology 2 (SH2) and SH3 protein-binding domains, mediate assembly of protein complexes in signaling. CrkI, an alternately spliced form of Crk, lacks the regulatory phosphorylation site and C-terminal SH3 domain present in CrkII and CrkL. We used gene silencing combined with mutational analysis to probe the role of Crk adaptors in platelet-derived growth-factor receptor beta (PDGFbetaR) signaling. We demonstrate that Crk adaptors are required for formation of focal adhesions, and for PDGF-stimulated remodeling of the actin cytoskeleton and cell migration. Crk-dependent signaling is crucial during the early stages of PDGFbetaR activation, whereas its termination by Abl family tyrosine kinases is important for turnover of focal adhesions and progression of dorsal-membrane ruffles. CrkII and CrkL preferentially activate the small GTPase Rac1, whereas variants lacking a functional C-terminal SH3 domain, including CrkI, preferentially activate Rap1. Thus, differences in the activity of Crk isoforms, including their effectors and their ability to be downregulated by phosphorylation, are important for coordinating dynamic changes in the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
48
|
McDonald CB, Seldeen KL, Deegan BJ, Farooq A. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. Biochemistry 2009; 48:4074-85. [PMID: 19323566 PMCID: PMC2710136 DOI: 10.1021/bi802291y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.
Collapse
Affiliation(s)
- Caleb B. McDonald
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kenneth L. Seldeen
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Brian J. Deegan
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
49
|
Fleming JM, Long EL, Ginsburg E, Gerscovich D, Meltzer PS, Vonderhaar BK. Interlobular and intralobular mammary stroma: genotype may not reflect phenotype. BMC Cell Biol 2008; 9:46. [PMID: 18710550 PMCID: PMC2529294 DOI: 10.1186/1471-2121-9-46] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022] Open
Abstract
Background The normal growth and function of mammary epithelial cells depend on interactions with the supportive stroma. Alterations in this communication can lead to the progression or expansion of malignant growth. The human mammary gland contains two distinctive types of fibroblasts within the stroma. The epithelial cells are surrounded by loosely connected intralobular fibroblasts, which are subsequently surrounded by the more compacted interlobular fibroblasts. The different proximity of these fibroblasts to the epithelial cells suggests distinctive functions for these two subtypes. In this report, we compared the gene expression profiles between the two stromal subtypes. Methods Fresh normal breast tissue was collected from reduction mammoplasty patients and immediately placed into embedding medium and frozen on dry ice. Tissue sections were subjected to laser capture microscopy to isolate the interlobular from the intralobular fibroblasts. RNA was prepared and subjected to microarray analysis using the Affymetrix Human Genome U133 GeneChip®. Data was analyzed using the Affy and Limma packages available from Bioconductor. Findings from the microarray analysis were validated by RT-PCR and immunohistochemistry. Results No statistically significant difference was detected between the gene expression profiles of the interlobular and intralobular fibroblasts by microarray analysis and RT-PCR. However, for some of the genes tested, the protein expression patterns between the two subtypes of fibroblasts were significantly different. Conclusion This study is the first to report the gene expression profiles of the two distinct fibroblast populations within the human mammary gland. While there was no significant difference in the gene expression profiles between the groups, there was an obvious difference in the expression pattern of several proteins tested. This report also highlights the importance of studying gene regulation at both the transcriptional and post-translational level.
Collapse
Affiliation(s)
- J M Fleming
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol Cell Biol 2007; 27:8583-99. [PMID: 17923698 DOI: 10.1128/mcb.01477-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The receptor NKG2D allows natural killer (NK) cells to detect virally infected, stressed, and tumor cells. In human cells, NKG2D signaling is mediated through the associated DAP10 adapter. Here we show that engagement of NKG2D by itself is sufficient to stimulate the formation of the NK immunological synapse (NKIS), with recruitment of NKG2D to the center synapse. Mutagenesis studies of DAP10 revealed that the phosphatidylinositol 3-kinase binding site, but not the Grb2 binding site, was required and sufficient for recruitment of DAP10 to the NKIS. Surprisingly, we found that in the absence of the Grb2 binding site, Grb2 was still recruited to the NKIS. Since the recruitment of Grb2 was dependent on phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), we explored the possibility that recruitment to the NKIS is mediated by a pleckstrin homology (PH) domain-containing binding partner for Grb2. We found that the PH domain of SOS1, but not that of Vav1, was able to be recruited by PIP3. These results provide new insights into the mechanism of immunological synapse formation and also demonstrate how multiple mechanisms can be used to recruit the same signaling proteins to the plasma membrane.
Collapse
|