1
|
Li J, Walkty A, Lagacé-Wiens P, Karlowsky J, Zhanel G. The State of Antimicrobial Resistance of Gram-Negative Bacilli in Canada. Trop Med Infect Dis 2025; 10:115. [PMID: 40278788 PMCID: PMC12031531 DOI: 10.3390/tropicalmed10040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
In the last two decades, there has been an increase in resistance among Gram-negative bacteria in Canada. From 2007 to 2016, the proportion of ESBL-producing isolates among Escherichia coli and Klebsiella pneumoniae isolates increased from 3.5% to 11.1%. There has also been an increase in carbapenem use over this time period, which may be contributing to the increasing prevalence of carbapenemase-producing Enterobacterales (CPE) in Canada. CPE, which were historically associated with travel, are now mostly acquired domestically. The prevalence of multi-drug resistant (MDR) Pseudomonas aeruginosa has decreased slightly, possibly due to decreasing use of fluoroquinolones and aminoglycosides. Many of the most effective antimicrobials for the treatment of infections with resistant Gram-negative organisms, including many of the novel β-lactam/β-lactamase inhibitors (βL/βLIs), are not marketed in Canada. A coordinated focus on antimicrobial stewardship and infection control is necessary to slow the spread of resistance and to preserve the efficacy of our current antimicrobials for future generations.
Collapse
Affiliation(s)
- Jeremy Li
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.W.); (P.L.-W.); (J.K.); (G.Z.)
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.W.); (P.L.-W.); (J.K.); (G.Z.)
- Shared Health, Winnipeg, MB R3A 1R9, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.W.); (P.L.-W.); (J.K.); (G.Z.)
- Shared Health, Winnipeg, MB R3A 1R9, Canada
| | - James Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.W.); (P.L.-W.); (J.K.); (G.Z.)
- Shared Health, Winnipeg, MB R3A 1R9, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.W.); (P.L.-W.); (J.K.); (G.Z.)
| |
Collapse
|
2
|
Wang M, Zhang Y, Pei F, Liu Y, Zheng Y. Loss of OprD function is sufficient for carbapenem-resistance-only but insufficient for multidrug resistance in Pseudomonas aeruginosa. BMC Microbiol 2025; 25:218. [PMID: 40240992 PMCID: PMC12001449 DOI: 10.1186/s12866-025-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) constitutes a serious source of global healthcare-associated infections, and the exploration of its resistance mechanism represents an important approach to address this issue. Because current research on antibiotic resistance predominantly focuses on multidrug-resistant P. aeruginosa which is widely isolated clinically and the resistance mechanism is complicated. CRPA generally has a higher tolerance to other antibiotics than carbapenem-sensitive P. aeruginosa, yet the specific mechanism of resistance remains poorly understood. RESULTS This study delves into the specific antibiotic resistance mechanisms of carbapenem-resistance-only P. aeruginosa (CROPA), a rare kind of pathogen that shows resistance exclusively to carbapenem antibiotics. We collected 11 clinical isolates of CROPA, performed genome sequencing. Our analysis revealed numerous amino acid mutations and premature termination of OprD expression in the CROPA strains. The insertion of IS256 element into OprD in P. aeruginosa was a novel finding. Validation via qPCR and SDS-PAGE affirmed diminished OprD expression levels. Interestingly, common carbapenemases were not detected in our study, and there was no observed upregulation of relevant efflux pumps. The expression of wild-type OprD in CROPA strains restored the sensitivity to carbapenem antibiotics. CONCLUSIONS Compared with previous studies on MDR-CRPA, the emergence of CROPA may be directly linked to changes in OprD, while other resistance mechanisms could contribute to broader antibiotic resistance profiles. By focusing on the antibiotic resistance mechanisms of CROPA, this study illuminates the relationship between specific antibiotic resistance mechanisms and antibiotic resistance, providing a theoretical foundation for guiding clinical treatment and developing novel anti-infective agents.
Collapse
Affiliation(s)
- Maofeng Wang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuxiao Zhang
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Liu
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Yin L, Bao Z, He L, Lu L, Lu G, Zhai X, Wang C. Virulence factors, molecular characteristics, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa isolated from pediatric patients in Shanghai, China. BMC Microbiol 2025; 25:130. [PMID: 40069638 PMCID: PMC11895140 DOI: 10.1186/s12866-025-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The investigation into virulence factors, clinical and molecular characteristics, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in pediatric populations is currently inadequate. PURPOSE This study aimed to investigate the virulence factors, clinical and molecular characteristics, and resistance mechanisms of 135 CRPA isolates in Shanghai, China. METHODS Analysis of virulence-associated genes and multilocus sequence typing (MLST) provided epidemiological and molecular insights into the isolates. Resistance mechanisms were identified via PCR, sequencing, and qRT-PCR. RESULTS The predominant resistance mechanism to carbapenems was the decreased production of outer membrane porin OprD (75.6%), accompanied by mutational inactivation of the oprD (87.4%). However, elevated production of AmpC (7.4%) and mexB overexpression (5.2%) were uncommon. Thirty-five sequence types (STs) were identified, with clonal complex 244 (CC244;59.3%) representing the majority of infections. Sixteen virulence factor genes were detected, with a significant portion of isolates (40.7%) concurrently possessing Toxin A (toxA), Elastase B (lasB), Exoenzyme S (exoS), staphylolysin (lasA), and Pilin (pilA). Almost all CC244 isolates carried toxA (100%), exoS (100%), pilA (100%), lasB (98.6%), and lasA (82.5%) while all ST2100, ST274, ST1129, ST446, and ST2069 isolates contained exoY. CC244 + isolates exhibited significantly increased antibiotic resistance, and the isolates from diseased or discharged patients showed comparatively higher resistance than others, except against gentamicin. Most patients (71.9%) received combination therapy, with 65.2% achieving clinical cure or improvement. CONCLUSION This study predominantly identified OprD-mediated carbapenem resistance in pediatric patients. The CRPA isolates were characterized by a variety of STs and a widespread distribution of virulence-associated genes. CC244 demonstrated significantly higher resistance, with potential outbreaks occurring in 2018 and 2019. These findings could aid in managing nosocomial CRPA infections and enhancing clinical practices.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Nosocomial Infection Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zihao Bao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Leiyan He
- Department of Clinical Laboratory Center, The Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lu Lu
- Department of Nosocomial Infection Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xiaowen Zhai
- Department of Hematology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Chuanqing Wang
- Department of Nosocomial Infection Control, The Clinical Laboratory, Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
4
|
Le Terrier C, Bouvier M, Kerbol A, Dell'Acqua C, Nordmann P, Poirel L. In-vitro activity of the novel β-lactam/β-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Pseudomonas spp. clinical isolates collected in Switzerland in 2022. Eur J Clin Microbiol Infect Dis 2025; 44:571-585. [PMID: 39704920 PMCID: PMC11880081 DOI: 10.1007/s10096-024-04994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
To evaluate the in-vitro activity of the novel commercially-available drugs, including meropenem-vaborbactam (MEV), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), imipenem-relebactam (IPR) as well as cefiderocol (FDC), against carbapenem-resistant Pseudomonas spp. (CRP) isolates. All CRP isolates collected at the Swiss National Reference Laboratory (NARA) over the year 2022 (n = 170) have been included. Most of these isolates (n = 121) were non-carbapenemase producers. Among the 49 carbapenemase producers, 47 isolates produced metallo-β-lactamases (MBL) including NDM-1 (n = 11), VIM-like (n = 28), IMP-like (n = 7), and both NDM-1 and VIM-2 (n = 1) and two isolates produced the class A carbapenemase GES-5. Susceptibility testing was determined by broth microdilution method (BMD), or disk diffusion test, and results interpreted following EUCAST guidelines. The susceptibility rates for MEV, CZA, C/T and IPR were found to be 41%, 45%, 59% and 58%, respectively, for the whole set of isolates tested. Among non-carbapenemase producers, susceptibility rates for these β-lactam/β-lactamase inhibitors (BL/BLI) combinations were higher, determined at 55%, 61%, 83%, and 82%, respectively. The overall susceptibility of carbapenemase-producing Pseudomonas spp. to novel BL/BLI was relatively low, while 80% of these isolates demonstrated susceptibility to FDC, with a similar proportion (79%) observed among MBL producers. A total of 10 MBL-producing isolates (6%), mainly NDM-1, were found to exhibit resistance to all drugs tested, with the exception of colistin. FDC exhibited an excellent in-vitro activity against this collection of CRP recovered from Switzerland in 2022, including MBL producers. The new BL/BLI combinations displayed significant activity against non-carbapenemase CRP, with IPR and C/T showing the highest susceptibility rates.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
- Emergency Department, Fribourg Hospitals, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Auriane Kerbol
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Chloé Dell'Acqua
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
5
|
Yang J, Baek JY, Ko JH, Huh K, Cho SY, Chung DR, Peck KR, Huh HJ, Ko KS, Kang CI. Clinical and microbiological analyses of colistin-resistant strains among carbapenem-resistant Enterobacter cloacae complex clinical isolates. Microbiol Spectr 2025; 13:e0160424. [PMID: 39745431 PMCID: PMC11792525 DOI: 10.1128/spectrum.01604-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/20/2024] [Indexed: 02/05/2025] Open
Abstract
Carbapenem-resistant Enterobacter cloacae complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022. Species identification was performed using hsp60 gene analysis, and antibiotic susceptibility tests were conducted by broth microdilution. The clinical characteristics of patients with CR-ECC isolates were retrospectively analyzed. Among the 108 CR-ECC isolates, 25 (23.2%) were non-susceptible to colistin, with colistin susceptibility being higher in Enterobacter hormaechei compared to non-E. hormaechei isolates (P < 0.0001). Of the 108 CR-ECC isolates, 9 (8.3%) produced carbapenemases, and only 6 of the 22 colistin-resistant CR-ECC isolates (27.3%) harbored the mcr gene. A total of 73 sequence types (STs), including 28 newly identified STs, were detected, demonstrating significant clonal diversity. The most common ST was ST74, known for its high prevalence and association with carbapenem resistance, with 77.8% identified as E. hormaechei subsp. hoffmannii. E. hormaechei was more common in the colistin-susceptible group than in the non-susceptible group (88.0% vs 37.5%, P < 0.0001), and E. hormaechei was the only protective factor for colistin resistance (HR 0.089, CI 0.030-0.261, P < 0.001). Although colistin resistance of CR-ECC is high, colistin could be administered safely to E. hormaechei. It is imperative to maintain ongoing surveillance and to further research on CR-ECC.IMPORTANCEAlthough new antibiotics are being developed, there are still limited options for treating carbapenem-resistant Enterobacter cloacae complex (CR-ECC) in regions where their use is restricted. The resistance level to one of these options, colistin, was investigated using bacteria isolated from clinical samples. In clinical practice, colistin is frequently administered empirically without susceptibility testing. However, this study suggests that colistin can be safely administered to certain species such as Enterobacter hormaechei within the CR-ECC.
Collapse
Affiliation(s)
- Jinyoung Yang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Yang Baek
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Höfken LM, Schauer J, Eisfeld J, Dziobaka J, Gatermann SG, Pfennigwerth N. Characterization of NWM-1, a novel subclass B3 metallo-β-lactamase found in a clinical isolate of Pseudomonas aeruginosa. J Antimicrob Chemother 2025; 80:445-451. [PMID: 39611581 DOI: 10.1093/jac/dkae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES To investigate the carbapenem resistance mechanism of a carbapenem-resistant clinical Pseudomonas aeruginosa isolate. METHODS A clinical isolate of P. aeruginosa was sent to the German National Reference Centre for multidrug-resistant Gram-negative bacteria for carbapenemase detection. Phenotypic tests for carbapenemase detection and an EDTA-combined disc test were positive, therefore PCR-screenings were done for the most prevalent metallo-β-lactamase (MBL) encoding genes. As no MBL gene could be found, whole-genome sequencing was performed. For characterization, heterologous expression in a E. coli strain with subsequent MIC testing and purification of the new MBL to determine enzyme kinetics with in vitro hydrolysis assays was performed. RESULTS WGS revealed the putative gene for a B3 MBL located on the chromosome between several disrupted IS elements with 67% identity to EVM-1, which was named NWM-1. MIC studies and enzyme kinetics confirmed MBL activity. No activity against ceftazidime was observed. CONCLUSIONS The identification of NWM-1 shows the importance of WGS to identify yet unknown carbapenemases and underlines the diversity of subclass B3 β-lactamases. It also shows that although several carbapenemase variants have already been identified and characterized, there are always new variants to be found in clinical isolates.
Collapse
Affiliation(s)
- Lisa-Marie Höfken
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jennifer Schauer
- Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektionsepidemiologie, Bochum, Germany
| | - Jessica Eisfeld
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jan Dziobaka
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Essen, Essen, Germany
| | - Sören G Gatermann
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
7
|
Mammeri H, Sereme Y, Toumi E, Faury H, Skurnik D. Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae. PLoS Pathog 2025; 21:e1012902. [PMID: 39919103 PMCID: PMC11805372 DOI: 10.1371/journal.ppat.1012902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
The increasing resistance of Gram-negative bacteria to last resort antibiotics, such as carbapenems, is particularly of concern as it is a significant cause of global health threat. In this context, there is an urgent need for better understanding underlying mechanisms leading to antimicrobial resistance in order to limit its diffusion and develop new therapeutic strategies. In this review, we focus on the specific role of porins in carbapenem-resistance in Enterobacteriaceae and Pseudomonas aeruginosa, which are major human pathogens. Porins are outer membrane proteins, which play a key role in the bacterial permeability to allow nutrients to enter and toxic waste to leave. However, these channels are also "Achilles' heel" of bacteria as antibiotics can also pass through them to reach their target and kill the bacteria. After describing normal structures and pathways regulating the expression of porins, we discuss strategies implemented by bacteria to limit the access of carbapenems to their cytoplasmic target. We further examine the real impact of changes in porins on carbapenems susceptibility. Finally, we decipher what is the effect of such changes on bacterial fitness and virulence. Our goal is to integrate all these findings to give a global overview of how bacteria modify their porins to face antibiotic selective pressure trying to not induce fitness cost.
Collapse
Affiliation(s)
- Hedi Mammeri
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, Paris, France
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Youssouf Sereme
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Eya Toumi
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Hélène Faury
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| | - David Skurnik
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
8
|
Mahmoudi S, Jafari E, Pourakbari B, Poormohammadi S, Sadeghi RH, Mamishi S. Molecular Epidemiology of Carbapenemase-Producing Pseudomonas aeruginosa: An Iranian Referral Hospital-Based Study. Foodborne Pathog Dis 2025; 22:51-57. [PMID: 39206521 DOI: 10.1089/fpd.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In recent years, there has been a significant increase in infections caused by carbapenemase-producing strains, with carbapenem-resistant Pseudomonas aeruginosa (CRPA) emerging as a priority pathogen according to the World Health Organization. This study aimed to evaluate the molecular epidemiology of CRPA isolated from patients referred to Children's Medical Center in Tehran, Iran. P. aeruginosa isolates collected from different children's wards were screened for common carbapenem-resistant genes by polymerase chain reaction (PCR). Genetic relatedness between isolates was assessed by pulsed-field gel electrophoresis (PFGE). The study included 133 participants, with 50% being male, and revealed a median age of 2 years (interquartile range: 6 months to 6 years). Carbapenem resistance was detected in 15% of cases (n = 20), with CRPA isolates predominantly found in the emergency ward (60%). The median age of patients with CRPA was significantly higher than those with carbapenem-susceptible P. aeruginosa (6 years vs. 1 year). PCR analysis revealed metallo-β-lactamase production in 45% of CRPA isolates (n = 9), with blaNDM being the most prevalent gene. PFGE analysis of the CRPA isolates identified three clusters (Cluster I, II, and III). Cluster I, comprising 65% of all isolates (n = 13), was predominantly found in the emergency ward. Notably, blaNDM-producing strains were prevalent in the emergency ward. Our study highlights the significant prevalence of CRPA in the emergency ward of our hospital and underscores the importance of targeted surveillance and infection control measures to curb its spread within health care settings.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Erfaneh Jafari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poormohammadi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Karthik M, Kacha S, Rajendran S, Bakthavatchalam YD, Lal B, Walia K, Veeraraghavan B. Genetic characteristics and diversity of PDC variants of Pseudomonas aeruginosa and its clinical relevance. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105701. [PMID: 39653106 DOI: 10.1016/j.meegid.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Pseudomonas aeruginosa exhibits significant antibiotic resistance facilitated by both intrinsic and acquired mechanisms, prominently through Pseudomonas-derived cephalosporinase (PDC), serine Ambler class C β-lactamases encoded by the AmpC. AmpC, involved in the peptidoglycan recycling pathway, is regulated by genes such as ampD, ampR, and ampG, leading to increased expression and resistance to various beta-lactams. PDCs are classified into three main types: classical class C β-lactamases, extended-spectrum class C β-lactamases (ESAC β-lactamases), and inhibitor-resistant class C β-lactamases. This study aimed to identify prevalent PDC variants and its genetic characteristics in Indian and global P. aeruginosa isolates, focusing on their role in β-lactam resistance. Analyzing PDC sequences from 111 P. aeruginosa isolates collected at Christian Medical College (CMC), Vellore, we found the ESAC allele PDC-447 to be the most widespread among Indian isolates, present in 18 % of carbapenem-resistant and 11 % of carbapenem-susceptible strains. Global and Indian isolates PDC variants were validated using the NCBI PathogenWatch database, and the sequenced PDC region compared to PDC-1. PDC-398 and PDC-397 followed in prevalence among carbapenem-resistant isolates, while PDC-5 (ESAC) and PDC-1 (classical class C) were common in carbapenem-susceptible strains. A global analysis of 19,478 genomes revealed significant prevalence of ESAC variants such as PDC-3 (17.28 %) and PDC-5 (12.91 %), alongside classical class C beta-lactamases like PDC-8 (10.65 %). Indian isolates exhibited distinct patterns with PDC-3 and PDC-5 prevailing at 19.84 % and 10 %, respectively. Mutations in the omega loop, H-helix, and R2 region of PDCs were linked to enhanced antibiotic resistance, particularly the T105A mutation in the H-helix region. These findings underscore the complexity of antimicrobial resistance mechanisms in P. aeruginosa and highlight the need for novel therapeutic strategies and continuous surveillance to manage infections by this versatile pathogen. Understanding the prevalence and genetic characteristics of PDC variants is crucial for effective treatment strategies against P. aeruginosa and combating antibiotic resistance.
Collapse
Affiliation(s)
- Maruthan Karthik
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Srujal Kacha
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | | | | | - Binesh Lal
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India.
| |
Collapse
|
10
|
Bouvier M, Bachtarzi M, Poirel L, Nordmann P. Rapid detection of imipenem/relebactam susceptibility/resistance in Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2024; 110:116474. [PMID: 39191152 DOI: 10.1016/j.diagmicrobio.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Imipenem-relebactam (IPR) has been reported to exhibit a good activity against non-metallo-ß-lactamase carbapenem-resistant Pseudomonas aeruginosa (CRPA), and the rapid detection of susceptibility/resistance to this new therapeutic alternative may be crucial. Therefore, the Rapid IPR Pseudomonas NP test was developed to quickly identify IPR susceptibility/resistance among multidrug-resistant P. aeruginosa. METHODS The principle of the Rapid IPR Pseudomonas NP test is based on visually detecting glucose metabolization by observing (or not) a color change from yellow to red or orange of the red phenol pH indicator in the presence of imipenem at 2 mg/L and relebactam at 4 mg/L A total of 80 clinical Pseudomonas aeruginosa isolates were analyzed, among which 42 isolates were IPR resistant according to EUCAST guidelines (MICs, susceptible ≤2 mg/L, resistant >2 mg/L). Results obtained with the Rapid IPR Pseudomonas NP test were compared with the reference broth microdilution (BMD). RESULTS The sensitivity, specificity and accuracy of the test were found to be 100 %, 89.5 % and 95 %, respectively, using the BMD reference method as a comparator. Moreover, five out of the IPR-susceptible isolates (n = 38) exhibiting an MIC of IPR close to the breakpoint (MIC = 1 mg/L, n = 2; MIC = 2 mg/L, n = 3) yielded to a major error result, namely a positive result with the rapid IPR Pseudomonas NP test (resistance). By contrast, all IPR-resistant isolates (n = 42) were all correctly categorized. CONCLUSIONS The Rapid IPR Pseudomonas NP test is sensitive, specific, and easy to perform and interpret. Therefore, it is suitable for implementation in routine clinical laboratories.
Collapse
Affiliation(s)
- Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Mohamed Bachtarzi
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Medical Microbiology laboratory, CHU Mustapha Bacha, Alger, Algeria
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland.
| |
Collapse
|
11
|
Pan Y, Zhao M, Liu W, Jia W, Li G. Study on molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa and related genes of quorum sensing signal system. Microb Pathog 2024; 196:106899. [PMID: 39218376 DOI: 10.1016/j.micpath.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study aims to investigate the drug resistance, regulation mechanism of quorum sensing system, expression of related virulence genes, and epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa (CRPA).In this study, Polymerase chain reaction amplification was performed to evaluate carbapenemase genes, OprD2 gene, quorum sensing system, and related virulence genes. Bacterial genotypes were analyzed using multilocus sequence typing and evolutionary analysis was conducted based on the goeBURST algorithm. The results demonstrated that a total of 47 CRPA strains were collected in this study, primarily from respiratory specimens in the ICU. Drug sensitivity results showed that the resistance rates of the 47 CRPA strains were highest for imipenem (97.87 %). The loss of OprD2 may be the main factor contributing to carbapenem resistance in our hospital's CRPA strains.All isolates tested positive for the quorum sensing system genes lasI and rhlI/R, and the virulence gene lasB was detected in all isolates, while the algD gene was detected in 19.15 % of the isolates. Among the 47 strains, 6 were untypeable, and the 41 strains with 28 different sequence types were clustered into three clonal complexes (BG1, BG2, and BG3).In conclusion, the CRPA isolates from our hospital exhibit high genetic diversity, with the deletion of the OprD2 gene possibly being the primary determinant of carbapenem resistance in Pseudomonas aeruginosa.Moreover, Las and RhI systems play a key role in quorum sensing signal system. Further research and development of drugs targeting quorum sensing signaling system may provide valuable guidance for the treatment of CRPA.
Collapse
Affiliation(s)
- Yafei Pan
- Medical Experimental Center, General Hospital of Ningia Medical University, Yinchuan, Ningxia, 750004, China
| | - Mei Zhao
- Medical Experimental Center, General Hospital of Ningia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenmiao Liu
- Medical Experimental Center, General Hospital of Ningia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wei Jia
- Medical Experimental Center, General Hospital of Ningia Medical University, Yinchuan, Ningxia, 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Gang Li
- Medical Experimental Center, General Hospital of Ningia Medical University, Yinchuan, Ningxia, 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
12
|
Hoffmann A, Hoffmann J, Ruegamer T, Jung N, Wong RMY, Alt V, Eysel P, Jantsch J. New diagnostic techniques for diagnosing facture-related infections. Injury 2024; 55 Suppl 6:111898. [PMID: 39482031 DOI: 10.1016/j.injury.2024.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024]
Abstract
The diagnosis of fracture-related infections (FRI) is challenging and requires interdisciplinary efforts. Many diagnostic approaches are based on the algorithms established for prosthetic joint infections (PJI). Data specific to FRI are limited. Microbiological diagnostics include tissue culture, sonication, and molecular methods. Novel metagenomic analyses are increasingly being used in clinical diagnostic practice. In addition to bacterial detection, the study of host tissue factors has the potential to transform the diagnostics of FRI by facilitating the assesment of clinical significance in clinical samples. The integration of host tissue analysis into microbiology reports has great potential to improve the diagnosis of FRI. This mini-review describes the potential improvement of diagnostic techniques by integrating new approaches into the diagnostic algorithm of fracture-related infections.
Collapse
Affiliation(s)
- Ada Hoffmann
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jörgen Hoffmann
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann Strasse 24, 50931 Cologne, Germany
| | - Tamara Ruegamer
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Norma Jung
- Department I of Internal Medicine, Infectious Diseases, Medical Faculty, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Peer Eysel
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann Strasse 24, 50931 Cologne, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Soltani B, Ahmadrajabi R, Kalantar-Neyestanaki D. Critical resistance to carbapenem and aminoglycosides in Pseudomonas aeruginosa: spread of bla NDM/16S methylase armA harboring isolates with intrinsic resistance mechanisms in Kerman, Iran. BMC Infect Dis 2024; 24:1188. [PMID: 39434025 PMCID: PMC11494745 DOI: 10.1186/s12879-024-10085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the main Gram-negative bacterium causes of infections in hospital settings, and the spread of them is a significant challenge to public health. METHODS A total of 30 non-duplicate isolates of CRPA were collected. Antibacterial susceptibility of isolates to antibiotic agents, AmpC β-lactamase production, and biofilm formation were determined. Minimum biofilm inhibitory concentrations (MBIC) of isolates to cefepime (FEP), imipenem (IPM), ceftazidime (CAZ), and meropenem (MEM) were evaluated with/without cloxacillin (CLX). The carbapenemase and 16 S rRNA methylase genes were identified by PCR, and the transcription levels of oprD, ampC, and mexA genes were determined by quantitative real-time PCR (qPCR). ERIC-PCR was used to detect genetic relationships among isolates. RESULTS All isolates were multidrug resistant (MDR) and strong biofilm producers. The resistance genes including blaNDM, blaIMP, blaVIM, blaSIM, blaGES, and armA were detected in 21 (70%), 6 (20%), 3 (10%), 2 (6.6%), 1 (3.3%), and 17 (56.6%) of the isolates, respectively. CLX at 500 and 1000 µg/mL significantly reduced the level of MIC to MEM, IPM, CAZ, and FEP, also at 2000 µg/mL significantly reduced the level of MBIC to MEM, IPM, CAZ, and FEP. In all isolates, the transcription levels of oprD were significantly downregulated as well as significantly increased for ampC and mexA. ERIC-PCR typing results divided 30 isolates into four clusters A to D. CONCLUSION In this study, we reported the spread of different clones of CRPA harboring co-existence of various carbapenemase genes with armA 16 S rRNA methylase for the first time in Kerman, Iran. Also, our isolates had several mechanisms of resistance to carbapenems as well as ability biofilm formation along with resistance to aminoglycosides, the further spread of which could cause serious challenges in our hospital settings. Therefore, serious monitoring is necessary to reduce their prevalence.
Collapse
Affiliation(s)
- Behnaz Soltani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Nasr J, Abdessamad H, Mina J, Haykal T, Jamil Y, Abboud E, Mahdi A, Asmar R, Abi Assaad R, Alameddine D, Bourji A, Mahdi M, Abdulaal R, Tomassian S, El Ahmadieh H, Azzam W, Mokhbat JE, Moghnieh R, Rodriguez-Morales AJ, Husni R. The epidemiology of gram-negative bacteremia in Lebanon: a study in four hospitals. Ann Clin Microbiol Antimicrob 2024; 23:90. [PMID: 39385237 PMCID: PMC11465513 DOI: 10.1186/s12941-024-00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Gram-negative bacteremia is a life-threatening infection with high morbidity and mortality. Its incidence is rising worldwide, and treatment has become more challenging due to emerging bacterial resistance. Little data is available on the burden and outcome of such infections in Lebanon. METHODS We conducted this retrospective study in four Lebanese hospitals. Data on medical conditions and demographics of 2400 patients diagnosed with a bloodstream infection based on a positive blood culture were collected between January 2014 and December 2020. RESULTS Most bacteremias were caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, with the more resistant organisms being hospital-acquired. Third-generation cephalosporin and quinolone resistance was steady throughout the study, but carbapenem resistance increased. Mortality with such infections is high, but carbapenem resistance or infection with Pseudomonas or Acinetobacter species were significant risk factors for poor outcomes. CONCLUSION This is the first multi-center study from Lebanon on gram-negative bacteremia, resistance patterns, and factors associated with a poor outcome. More surveillance is needed to provide data to guide empirical treatment for bacteremia in Lebanon.
Collapse
Affiliation(s)
- Janane Nasr
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Hilal Abdessamad
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Johnathan Mina
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Tony Haykal
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Yasser Jamil
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Emma Abboud
- Laboratory Director, Mount Lebanon Hospital University Medical Center, Beirut, 1102, Lebanon
| | - Ahmad Mahdi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rana Asmar
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rawad Abi Assaad
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Dana Alameddine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Alaa Bourji
- Department of Surgery, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Mahmoud Mahdi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Razan Abdulaal
- Department of Internal Medicine, University of Balamand, Balamand, Lebanon
| | - Serge Tomassian
- Department of Internal Medicine, University of Balamand, Balamand, Lebanon
| | - Hanane El Ahmadieh
- Infection Control Coordination, Mount Lebanon Hospital University Medical Center, Beirut, 1102, Lebanon
| | - Wael Azzam
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Jacques E Mokhbat
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rima Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Alfonso J Rodriguez-Morales
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, 15067, Peru
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon.
| |
Collapse
|
15
|
Cabal A, Hörtenhuber A, Salaheddin Y, Stöger A, Springer B, Bletz S, Mellmann A, Hyden P, Hartl R, Weinberger J, Conzemius R, Hell M, Daza-Prieto B, Lippert K, Steindl G, Köberl-Jelovcan S, Ruppitsch W. Three prolonged outbreaks of metallo-β-lactamase-producing Pseudomonas aeruginosa in an Upper Austrian hospital, 2017-2023. Microbiol Spectr 2024; 12:e0074024. [PMID: 39162508 PMCID: PMC11448029 DOI: 10.1128/spectrum.00740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
In spring 2022, an increase in metallo-β-lactamase-producing Pseudomonas aeruginosa (MBL-Pa) infections was detected in a hospital in Upper Austria. To identify the source of infection and to stop further transmissions, an epidemiological outbreak investigation including whole-genome sequencing (WGS)-based typing was conducted. The final case definition included cases admitted to the hospital between 2020 and 2023 with an MBL-Pa in one of the three genomic clusters identified. In addition, the investigation was extended to include historical cases from 2017. Core genome multilocus sequence typing was performed to assess the genetic relatedness between the isolates. Fifty-four clinical P. aeruginosa isolates and eight P. aeruginosa isolates from the hospital environment were obtained. All but nine isolates grouped into one of three genomic clusters (ST235/blaVIM-1, ST111/blaVIM-2, or ST621/blaIMP-13), which were considered to be distinct, prolonged outbreaks involving 47 out of 52 cases. The most likely source of infection for cluster 1 (ST111/blaVIM-2) and cluster 2 (ST235/blaVIM-1) was sinks in the intensive care unit (ICU) washroom. Cluster 3 clone (ST621/blaIMP-13) could have originated in the urology ward in 2020 and then spread to the ICU years later. However, the nosocomial origin of this clone could not be proven. In March 2023, following the implementation of control measures (gowning, patient isolation, screening, and daily disinfection), no further MLB-Pa was detected, and the outbreaks were considered to be over. As ICUs play an important role in the transmission of P. aeruginosa, emphasis should be placed on genomic surveillance, infection prevention, and control in such wards. IMPORTANCE The significance of our work lies in the successful resolution of three prolonged outbreaks of MBL-Pa infections in a hospital in Upper Austria. Through a comprehensive epidemiological investigation coupled with WGS-based typing of P. aeruginosa isolates, the study identified three distinct genomic clusters responsible for prolonged outbreaks involving 47 cases. The investigation pinpointed sinks in the ICU washroom as the likely source of infection for two of the clusters. The study demonstrates the effectiveness of control measures such as hand hygiene, gowning, patient isolation, screening, and disinfection in stopping further transmission and bringing the outbreaks to a close. This underscores the critical role of genomic surveillance and control measures, particularly in high-risk settings like ICUs, in reducing nosocomial transmission of MBL-Pa infections.
Collapse
Affiliation(s)
- Adriana Cabal
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Anna Hörtenhuber
- Institute of Pathology, Upper Austrian Health Holding GmbH, Pyhrn-Eisenwurzen Clinical Centre Kirchdorf Steyr, Steyr, Austria
| | - Yarub Salaheddin
- Institute of Pathology, Upper Austrian Health Holding GmbH, Pyhrn-Eisenwurzen Clinical Centre Kirchdorf Steyr, Steyr, Austria
| | - Anna Stöger
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Burkhard Springer
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Muenster and University of Muenster, Muenster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster and University of Muenster, Muenster, Germany
| | - Patrick Hyden
- Department of Statistics and Analytical Epidemiology, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| | | | | | - Markus Hell
- MEDILAB, Teaching Laboratory of the Paracelsus Medical University, Salzburg, Austria
| | - Beatriz Daza-Prieto
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Kathrin Lippert
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Georg Steindl
- Institute for Hospital Hygiene and Microbiology (IKM), Graz, Austria
| | - Sandra Köberl-Jelovcan
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Division for Public Health, Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
16
|
Kim N, Ko SY, Park SY, Kim SY, Lee DE, Kwon KT, Kim YK, Lee JC. Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals. Ann Lab Med 2024; 44:410-417. [PMID: 38433574 PMCID: PMC11169769 DOI: 10.3343/alm.2023.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carbapenem resistance in Pseudomonas aeruginosa is a serious global health problem. We investigated the clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible P. aeruginosa isolates from three Korean hospitals. Methods A total of 155 carbapenem-non-susceptible P. aeruginosa isolates collected between 2011 and 2019 were analyzed for sequence types (STs), antimicrobial susceptibility, and carbapenem resistance mechanisms, including carbapenemase production, the presence of resistance genes, OprD mutations, and the hyperproduction of AmpC β-lactamase. Results Sixty STs were identified in carbapenem-non-susceptible P. aeruginosa isolates. Two high-risk clones, ST235 (N=41) and ST111 (N=20), were predominant; however, sporadic STs were more prevalent than high-risk clones. The resistance rate to amikacin was the lowest (49.7%), whereas that to piperacillin was the highest (92.3%). Of the 155 carbapenem-non-susceptible isolates, 43 (27.7%) produced carbapenemases. Three metallo-β-lactamase (MBL) genes, blaIMP-6 (N=38), blaVIM-2 (N=3), and blaNDM-1 (N=2), were detected. blaIMP-6 was detected in clonal complex 235 isolates. Two ST773 isolates carried blaNDM-1 and rmtB. Frameshift mutations in oprD were identified in all isolates tested, regardless of the presence of MBL genes. Hyperproduction of AmpC was detected in MBL gene-negative isolates. Conclusions Frameshift mutations in oprD combined with MBL production or hyperproduction of AmpC are responsible for carbapenem resistance in P. aeruginosa. Further attention is required to curb the emergence and spread of new carbapenem-resistant P. aeruginosa clones.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seo Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| | - Ki Tae Kwon
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
17
|
McCarley A, Espejo ML, Harmon DE, Ruiz C. Freshwater and Marine Environments in California Are a Reservoir of Carbapenem-Resistant Bacteria. Microorganisms 2024; 12:802. [PMID: 38674746 PMCID: PMC11052360 DOI: 10.3390/microorganisms12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Carbapenems are last-resort antibiotics used to treat multidrug-resistant bacterial infections. Resistance to carbapenems has been designated as an urgent threat and is increasing in healthcare settings. However, little is still known about the distribution and characteristics of carbapenem-resistant bacteria (CRB) outside of healthcare settings. Here, we surveyed the distribution of CRB in ten diverse freshwater and seawater environments in California, U.S., ranging from San Luis Obispo County to San Bernardino County, combining both direct isolation and enrichment approaches to increase the diversity of isolated CRB. From the locations surveyed, we selected 30 CRB for further characterization. These isolates were identified as members of the genera Aeromonas, Enterobacter, Enterococcus, Paenibacillus, Pseudomonas, Sphingobacterium, and Stenotrophomonas. These isolates were resistant to carbapenems, other β-lactams, and often to other antibiotics (tetracycline, gentamicin, or ciprofloxacin). We also found that nine isolates belonging to the genera Aeromonas, Enterobacter (blaIMI-2), and Stenotrophomonas (blaL1) produced carbapenemases. Overall, our findings indicate that sampling different types of aquatic environments and combining different isolation approaches increase the diversity of the environmental CRB obtained. Moreover, our study supports the increasingly recognized role of natural water systems as an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including bacteria carrying carbapenemase genes.
Collapse
Affiliation(s)
| | | | | | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
18
|
Rojo-Bezares B, Casado C, Ceniceros T, López M, Chichón G, Lozano C, Ruiz-Roldán L, Sáenz Y. Pseudomonas aeruginosa from river water: antimicrobial resistance, virulence and molecular typing. FEMS Microbiol Ecol 2024; 100:fiae028. [PMID: 38444209 PMCID: PMC11004943 DOI: 10.1093/femsec/fiae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Pseudomonas aeruginosa isolates were recovered from surface river water samples in La Rioja region (Spain) to characterise their antibiotic resistance, molecular typing and virulence mechanisms. Fifty-two P. aeruginosa isolates were isolated from 15 different water samples (45.4%) and belonged to 23 different pulsed-field electrophoresis (PFGE) patterns. All isolates were susceptible to all antibiotics tested, except one carbapenem-resistant P. aeruginosa that showed a premature stop codon in OprD porin. Twenty-two sequence types (STs) (six new ones) were detected among 29 selected P. aeruginosa (one strain with a different PFGE pattern per sample), with ST274 (14%) being the most frequent one. O:6 and O:3 were the predominant serotypes (31%). Seven virulotypes were detected, being 59% exoS-exoY-exoT-exoA-lasA-lasB-lasI-lasR-rhlAB-rhlI-rhlR-aprA-positive P. aeruginosa. It is noteworthy that the exlA gene was identified in three strains (10.3%), and the exoU gene in seven (24.1%), exoS in 18 (62.1%), and both exoS and exoU genes in one strain. High motility ranges were found in these strains. Twenty-seven per cent of strains produced more biofilm biomass, 90% more pyorubin, 83% more pyocyanin and 65.5% more than twice the elastase activity compared with the PAO1 strain. These results highlight the importance of rivers as temporary reservoirs and sources of P. aeruginosa transmission, and show the importance of their epidemiological surveillance in the environment.
Collapse
Affiliation(s)
- Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Cristina Casado
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Tania Ceniceros
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Carmen Lozano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
19
|
Li Q, Zhou X, Yang R, Shen X, Li G, Zhang C, Li P, Li S, Xie J, Yang Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: resistance genes, therapeutics, and prevention - a comprehensive review. Front Public Health 2024; 12:1376513. [PMID: 38601497 PMCID: PMC11004409 DOI: 10.3389/fpubh.2024.1376513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Pengfei Li
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiran Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingxian Xie
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Farrington N, Dubey V, Johnson A, Horner I, Stevenson A, Unsworth J, Jimenez-Valverde A, Schwartz J, Das S, Hope W, Darlow CA. Molecular pharmacodynamics of meropenem for nosocomial pneumonia caused by Pseudomonas aeruginosa. mBio 2024; 15:e0316523. [PMID: 38236031 PMCID: PMC10865990 DOI: 10.1128/mbio.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is a leading cause of morbidity and mortality, commonly caused by Pseudomonas aeruginosa. Meropenem is a commonly used therapeutic agent, although emergent resistance occurs during treatment. We used a rabbit HAP infection model to assess the bacterial kill and resistance pharmacodynamics of meropenem. Meropenem 5 mg/kg administered subcutaneously (s.c.) q8h (±amikacin 3.33-5 mg/kg q8h administered intravenously[i.v.]) or meropenem 30 mg/kg s.c. q8h regimens were assessed in a rabbit lung infection model infected with P. aeruginosa, with bacterial quantification and phenotypic/genotypic characterization of emergent resistant isolates. The pharmacokinetic/pharmacodynamic output was fitted to a mathematical model, and human-like regimens were simulated to predict outcomes in a clinical context. Increasing meropenem monotherapy demonstrated a dose-response effect to bacterial kill and an inverted U relationship with emergent resistance. The addition of amikacin to meropenem suppressed the emergence of resistance. A network of porin loss, efflux upregulation, and increased expression of AmpC was identified as the mechanism of this emergent resistance. A bridging simulation using human pharmacokinetics identified meropenem 2 g i.v. q8h as the licensed clinical regimen most likely to suppress resistance. We demonstrate an innovative experimental platform to phenotypically and genotypically characterize bacterial emergent resistance pharmacodynamics in HAP. For meropenem, we have demonstrated the risk of resistance emergence during therapy and identified two mitigating strategies: (i) regimen intensification and (ii) use of combination therapy. This platform will allow pre-clinical assessment of emergent resistance risk during treatment of HAP for other antimicrobials, to allow construction of clinical regimens that mitigate this risk.IMPORTANCEThe emergence of antimicrobial resistance (AMR) during antimicrobial treatment for hospital-acquired pneumonia (HAP) is a well-documented problem (particularly in pneumonia caused by Pseudomonas aeruginosa) that contributes to the wider global antimicrobial resistance crisis. During drug development, regimens are typically determined by their sufficiency to achieve bactericidal effect. Prevention of the emergence of resistance pharmacodynamics is usually not characterized or used to determine the regimen. The innovative experimental platform described here allows characterization of the emergence of AMR during the treatment of HAP and the development of strategies to mitigate this. We have demonstrated this specifically for meropenem-a broad-spectrum antibiotic commonly used to treat HAP. We have characterized the antimicrobial resistance pharmacodynamics of meropenem when used to treat HAP, caused by initially meropenem-susceptible P. aeruginosa, phenotypically and genotypically. We have also shown that intensifying the regimen and using combination therapy are both strategies that can both treat HAP and suppress the emergence of resistance.
Collapse
Affiliation(s)
- Nicola Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Vineet Dubey
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Iona Horner
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Stevenson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | | | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Christopher A. Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| |
Collapse
|
21
|
Le Terrier C, Freire S, Nordmann P, Poirel L. Multidrug-resistant Gram-negative clinical isolates with reduced susceptibility/resistance to cefiderocol: which are the best present and future therapeutic alternatives? Eur J Clin Microbiol Infect Dis 2024; 43:339-354. [PMID: 38095831 PMCID: PMC10821827 DOI: 10.1007/s10096-023-04732-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/28/2024]
Abstract
PURPOSE To evaluate the different present and future therapeutic β-lactam/β-lactamase inhibitor (BL/BLI) alternatives, namely aztreonam-avibactam, imipenem-relebactam, meropenem-vaborbactam, cefepime-zidebactam, cefepime-taniborbactam, meropenem-nacubactam, and sulbactam-durlobactam against clinical isolates showing reduced susceptibility or resistance to cefiderocol in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa. METHODS MIC values of aztreonam, aztreonam-avibactam, cefepime, cefepime-taniborbactam, cefepime-zidebactam, imipenem, imipenem-relebactam, meropenem, meropenem-vaborbactam, meropenem-nacubactam, sulbactam-durlobactam, and cefiderocol combined with a BLI were determined for 67, 9, and 11 clinical Enterobacterales, P. aeruginosa or A. baumannii isolates, respectively, showing MIC values of cefiderocol being ≥1 mg/L. If unavailable, the respective β-lactam breakpoints according to EUCAST were used for BL/BLI combinations. RESULTS For Enterobacterales, the susceptibility rates for aztreonam, cefepime, imipenem, and meropenem were 7.5%, 0%, 10.4%, and 10.4%, respectively, while they were much higher for cefepime-zidebactam (91%), cefiderocol-zidebactam (91%), meropenem-nacubactam (71.6%), cefiderocol-nacubactam (74.6%), and cefiderocol-taniborbactam (76.1%), as expected. For P. aeruginosa isolates, the higher susceptibility rates were observed for imipenem-relebactam, cefiderocol-zidebactam, and meropenem-vaborbactam (56% for all combinations). For A. baumannii isolates, lower susceptibility rates were observed with commercially or under development BL/BLI combos; however, a high susceptibility rate (70%) was found for sulbactam-durlobactam and when cefiderocol was associated to some BLIs. CONCLUSIONS Zidebactam- and nacubactam-containing combinations showed a significant in vitro activity against multidrug-resistant Enterobacterales clinical isolates with reduced susceptibility to cefiderocol. On the other hand, imipenem-relebactam and meropenem-vaborbactam showed the highest susceptibility rates against P. aeruginosa isolates. Finally, sulbactam-durlobactam and cefiderocol combined with a BLI were the only effective options against A. baumannii tested isolates.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- Division of Intensive Care Unit, University hospitals of Geneva, Geneva, Switzerland
| | - Samanta Freire
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
22
|
Stoikov I, Ivanov IN, Donchev D, Teneva D, Dobreva E, Hristova R, Sabtcheva S. Genomic Characterization of IMP-Producing Pseudomonas aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023; 11:2270. [PMID: 37764114 PMCID: PMC10537328 DOI: 10.3390/microorganisms11092270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa infections represent a major public health concern and require comprehensive understanding of their genetic makeup. This study investigated the first occurrence of imipenemase (IMP)-carrying P. aeruginosa strains from Bulgaria. Whole genome sequencing identified a novel plasmid-mediated IMP-100 allele located in a a novel In4886 integron embedded in a putative Tn7700 transposon. Two other closely related chromosomal IMP variants, IMP-13 and IMP-84, were also detected. The IMP-producers were resistant to last-line drugs including cefiderocol (CFDC) (two out of three) and susceptible to colistin. The IMP-13/84 cassettes were situated in a In320 integron inserted in a Tn5051-like transposon as previously reported. Lastly, the p4782-IMP plasmid rendered the PA01 transformant resistant to CFDC, suggesting a transferable CFDC resistance. A variety of virulence factors associated with adhesion, antiphagocytosis, iron uptake, and quorum sensing, as well as secretion systems, toxins, and proteases, were confirmed, suggesting significant pathogenic potential consistent with the observed strong biofilm formation. The emergence of IMP-producing MDR P. aeruginosa is alarming as it remains unsusceptible even to last-generation drugs like CFDC. Newly detected IMP-100 was even located in a CFDC-resistant XDR strain.
Collapse
Affiliation(s)
- Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deana Teneva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Elina Dobreva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Rumyana Hristova
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| |
Collapse
|
23
|
Massik A, Hibaoui L, Benboubker M, Yahyaoui G, Oumokhtar B, Mahmoud M. Acinetobacter baumannii Carbapenemase Producers in Morocco: Genetic Diversity. Cureus 2023; 15:e43629. [PMID: 37600441 PMCID: PMC10433920 DOI: 10.7759/cureus.43629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION Carbapenem resistance in Acinetobacter baumannii (A. baumannii) is a public health problem worldwide. Although carbapenem resistance is emerging in Morocco, few studies have shown the epidemiological profile of carbapenemase genes in Moroccan healthcare facilities. The aim of this study was to characterize the molecular profile of the carbapenemase enzyme in Acinetobacter baumannii from clinical isolates. METHODS Clinical strains isolated in the laboratory from various samples were subjected to several phenotypic tests. Antibiotic susceptibility and identification were tested using Phoenix 100 (Becton Dickinson Co., Sparks, MD, USA) and Api 20 (bioMérieux, Marcy-l'Etoile, France). Simple phenotypic assays were used to detect carbapenemase oxacillinase (OXA) and metallo-β-lactamase (MBL) production, including the modified Hodge test (MHT) and ethylenediaminetetraacetic acid (EDTA) test. The detection of carbapenemase genes was performed by multiplex and simple polymerase chain reaction (PCR). RESULTS A total of 140 strains or 100% of isolates contained OXA-51 and ISbA1 sequences, 89% contained OXA-23 and OXA-58 sequences, and 1% contained OXA-24 sequence. The MBL genes were predominated by Verona integron-encoded metallo-β-lactamase (VIM) (56%), followed by Seoul imipenemase (SIM) (39%), German imipenemase (GIM) (37%), São Paulo metallo-β-lactamase (SPM) (13%), imipenemase (IMP) (11%), and New Delhi metallo-β-lactamase (NDM) (4%). Guyana extended-spectrum β-lactamase (GES) was not found in any isolation. CONCLUSION Our study shows a high frequency of carbapenem resistance in Acinetobacter baumannii, as it reports a high molecular diversity of carbapenemase-encoding genes, mainly dominated by the carbapenemase ISaba1/OXA-23, which represents an emerging threat in our hospital.
Collapse
Affiliation(s)
- Abdelhamid Massik
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Lahbib Hibaoui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Moussa Benboubker
- Human Pathology, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Ghita Yahyaoui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Bouchra Oumokhtar
- Microbiology and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Mustapha Mahmoud
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| |
Collapse
|
24
|
Belouad EM, Benaissa E, El Mrimar N, Bssaibis F, Maleb A, Elouennass M. Predominance of OXA-48 Carbapenemase-Producing Enterobacterales in a Moroccan Hospital. Int J Microbiol 2023; 2023:8581883. [PMID: 37250920 PMCID: PMC10219769 DOI: 10.1155/2023/8581883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/23/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Objective The emergence of carbapenemase-producing Enterobacterales (CPE) is a major concern that is increasingly reported worldwide. Our study aimed at investigating the resistance of CPE isolates in a Moroccan teaching hospital using phenotypic and genotypic methods. Methods Enterobacterales strains from March to June 2018 were collected from different clinical samples. The Enterobacterales isolates resistant to third-generation cephalosporins (3GC) and/or carbapenems were subjected to the Carba NP test and an immunochromatographic test for phenotypic detection. Detection of extended-spectrum β-lactamases (ESBL) was also performed following standards. Molecular screening of carbapenemases genes (OXA-48, NDM, blaKPC, blaIMP, blaVIM, and blaOXA-24, blaOXA-23, OXA-51, OXA-58) using conventional multiplex PCR assays was also performed on 143 isolates. Results Enterobacterales represented 52.7% with a proportion of 21.8% of bacteria resistant to 3GC and/or carbapenems. Within 143 isolates MDR to 3GC, K. pneumoniae, E. coli, and E. cloacae represent 53.1%, 40.6%, and 6.3%, respectively. These strains were isolated mainly from urinary samples (74.8%) in patients admitted to emergency and surgical units. 81.1% of strains are producing ESBL and 29% are carbapenemase producers as confirmed by the Carba NP test, immunochromatographic test, and molecular testing. OXA-48 carriers represent 83.3% of these strains, followed by NDM with 16.7%. blaKPC, blaIMP, blaVIM, and blaOXA-24, blaOXA-23, OXA-51, OXA-58 were not detected in any of these bacteria. Conclusions A high rate of CPE carrying OXA-48 among Enterobacterales resistant to 3GC and/or carbapenems isolates was found. Strict observance of hospital hygiene measures and more rational use of antibiotics are mandatory. Implantation of carbapenemases detection should be encouraged in our hospital settings to estimate the true burden of the CPE.
Collapse
Affiliation(s)
- El Mehdi Belouad
- Department of Clinical Bacteriology, Mohammed V Military Teaching Hospital, Rabat, Morocco
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Elmostafa Benaissa
- Department of Clinical Bacteriology, Mohammed V Military Teaching Hospital, Rabat, Morocco
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nadia El Mrimar
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatna Bssaibis
- Department of Clinical Bacteriology, Mohammed V Military Teaching Hospital, Rabat, Morocco
| | - Adil Maleb
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mostafa Elouennass
- Department of Clinical Bacteriology, Mohammed V Military Teaching Hospital, Rabat, Morocco
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
25
|
Shirai T, Akagawa M, Makino M, Ishii M, Arai A, Nagasawa N, Sada M, Kimura R, Okayama K, Ishioka T, Ishii H, Hirai S, Ryo A, Tomita H, Kimura H. Molecular Evolutionary Analyses of the Pseudomonas-Derived Cephalosporinase Gene. Microorganisms 2023; 11:635. [PMID: 36985209 PMCID: PMC10057138 DOI: 10.3390/microorganisms11030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the increasing evidence of the clinical impact of Pseudomonas-derived cephalosporinase (PDC) sequence polymorphisms, the molecular evolution of its encoding gene, blaPDC, remains elusive. To elucidate this, we performed a comprehensive evolutionary analysis of blaPDC. A Bayesian Markov Chain Monte Carlo phylogenetic tree revealed that a common ancestor of blaPDC diverged approximately 4660 years ago, leading to the formation of eight clonal variants (clusters A-H). The phylogenetic distances within clusters A to G were short, whereas those within cluster H were relatively long. Two positive selection sites and many negative selection sites were estimated. Two PDC active sites overlapped with negative selection sites. In docking simulation models based on samples selected from clusters A and H, piperacillin was bound to the serine and the threonine residues of the PDC active sites, with the same binding mode for both models. These results suggest that, in P. aeruginosa, blaPDC is highly conserved, and PDC exhibits similar antibiotic resistance functionality regardless of its genotype.
Collapse
Affiliation(s)
- Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa 377-0008, Gunma, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
| | - Mao Akagawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Miho Makino
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Manami Ishii
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Ayaka Arai
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Norika Nagasawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa 377-0008, Gunma, Japan
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8514, Gunma, Japan
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Taisei Ishioka
- Department of Agriculture, Takasaki University of Health Welfare, Takasaki 370-0033, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama 162-8640, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8514, Gunma, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| |
Collapse
|
26
|
Labid A, Benouagueni S, Mehainaoui A, Gacemi Kirane D, Touati A. Antimicrobial Resistance Among Gram-Negative Bacteria Isolated in the Newborn Intensive Care Unit at ABDERREZAK-BOUHARA Hospital of Skikda, Algeria. Microb Drug Resist 2023. [PMID: 36812465 DOI: 10.1089/mdr.2022.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Background: This study aimed to determine the epidemiology of gram-negative bacteria (GNB) isolated in the newborn intensive care unit (NICU) population, to assess their antibiotic susceptibility patterns and possible associated risk factors. Methods: All neonates admitted to the NICU of ABDERREZAK-BOUHARA hospital (Skikda, Algeria) with a clinical diagnosis of neonatal infections from March to May 2019 were included in the study. The extended-spectrum β-lactamase (ESBLs), plasmidic cephalosporinase (pAmpC), and carbapenemases genes were screened by polymerase chain reaction (PCR) and sequencing. PCR amplification of oprD among carbapenem-resistant Pseudomonas aeruginosa isolates was also performed. The clonal relatedness of the ESBLs isolates was studied using multilocus sequence typing (MLST). Results: Among 148 clinical specimens, 36 (24.3%) GNB strains were isolated from urine (n = 22), wound (n = 8), stool (n = 3), and blood (n = 3) samples. The bacterial species identified were Escherichia coli (n = 13), Klebsiella pneumoniae (n = 5), Enterobacter cloacae (n = 3), Serratia marcescens (n = 3), Salmonella spp. (n = 3), Proteus mirabilis (n = 1), P. aeruginosa (n = 5), and Acinetobacter baumannii (n = 3). PCR and sequencing showed that eleven Enterobacterales isolates harbored the blaCTX-M-15 gene, two E. coli isolates harbored the blaCMY-2 gene, and three A. baumannii isolates harbored both blaOXA-23 and blaOXA-51 genes. Also, five strains of P. aeruginosa were found to harbor mutations in the oprD gene. MLST showed that the K. pneumoniae strains belonged to ST13 and ST189, E. coli belonged to ST69, and E. cloacae belonged to ST214. Different risk factors that could predict positive GNB cultures were found, including female sex, Apgar score <8 at 5 min of life, enteral nutrition, antibiotic use, and extended length of hospitalization. Conclusion: Our study highlights the importance of determining the epidemiology of pathogens causing neonatal infections, their sequence types (ST), and their antibiotic susceptibility patterns to address rapidly a correct antibiotic treatment regimen.
Collapse
Affiliation(s)
- Asma Labid
- Research Laboratory of Interactions, Biodiversity, Ecosystems, and Biotechnology, Department of Nature and Life Sciences, University 20 August 1955, Skikda, Algeria
| | - Sarah Benouagueni
- Department of Biochemistry, Badji Mokhtar University, Annaba, Algeria
| | - Aida Mehainaoui
- Department of Biochemistry, Badji Mokhtar University, Annaba, Algeria
| | | | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
27
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
28
|
Ghotaslou R, Salahi B, Naderi G, Alizadeh N. High Frequency of blaOXA-48like
Producing Klebsiella pneumoniae Isolated from Nosocomial Infection in Azerbaijan, Iran. Infect Chemother 2023; 55:90-98. [PMID: 37021426 PMCID: PMC10079451 DOI: 10.3947/ic.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the significant agents of hospital-acquired infections. In recent years, carbapenem-resistant K. pneumoniae (CRKP) isolates have been found in numerous epidemics of nosocomial infections. This study aimed to determine carbapenem resistance mechanisms and molecular epidemiological of CRKP infections in Azerbaijan, Iran. MATERIALS AND METHODS A total of 50 non-duplicated CRKP from January 2020 to December 2020 were isolated form Sina and Imam Reza Hospitals in Tabriz, Iran. Antimicrobial susceptibility testing was performed by the disk-diffusion method. The carbapenem resistance mechanisms were determined by the phenotypic and PCR procedures. CRKP isolates were typed by the Random Amplified Polymorphic DNA PCR (RAPD-PCR) technique. RESULTS Amikacin was the most effective antibiotics against CRKP isolates. AmpC overproduction was observed in five CRKP isolates. Efflux pump activity was found in one isolate by the phenotypic method. Carba NP test could find carbapenemases genes in 96% of isolates. The most common carbapenemases gene in CRKP isolates were blaOXA-48-like (76%) followed by blaNDM (50%), blaIMP (22%), blaVIM (10%), and blaKPC (10%). The outer membrane protein genes (OmpK36 and OmpK35) were identified in 76% and 82% of CRKP isolates, respectively. RAPD-PCR analysis yielded 37 distinct RAPD-types. Most blaOXA-48-like positive CRKP isolates were obtained from patients hospitalized in intensive care unit (ICU) wards with urinary tract infections. CONCLUSION The blaOXA-48-like is the main carbapenemase among CRKP isolates in this area. Most blaOXA-48-like producer CRKP strains were collected from the ICU ward and urine samples. To control infections due to CRKP, a strict control program in hospital settings is required.
Collapse
Affiliation(s)
- Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Central Laboratory of the Province, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Salahi
- Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Alizadeh
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran .
| |
Collapse
|
29
|
Antibacterial efficacy of silver nanoparticles (AgNPs) against metallo-β-lactamase and extended spectrum β-lactamase producing clinically procured isolates of Pseudomonas aeruginosa. Sci Rep 2022; 12:20685. [PMID: 36450765 PMCID: PMC9712613 DOI: 10.1038/s41598-022-24531-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Resistance to carbapenems is a global threat, especially in developing countries with limited health resources. Prevalence, antibiogram, PCR detection of antibiotic resistance genes, and potency of Silver Nanoparticles (AgNPs) against multidrug-resistant (MDR) Pseudomonas aeruginosa were studied. Kirby-Bauer disc method and PCR were used to study antibiogram and drug resistance genes respectively in 255 isolates of Pseudomonas aeruginosa obtained from a tertiary care hospital. Silver nitrate (AgNO3) precursor salts were reacted with Aspergillus flavus culture filtrate to trigger the extracellular mycosynthesis of AgNPs. Mycosynthesis was first monitored regularly by visible ultraviolet spectroscopy that recorded AgNP peaks of approximately 400-470 nm. Confirmation by Transmission electron micrographs provided confirmation of AgNPs formed within a range of 5-30 nm. Individual and combined antibacterial activity of ten antibiotics and AgNPs was analyzed. Pearson correlation coefficients (r) were calculated for phenotypic and genotypic multidrug resistance. Data were evaluated using SPSS version 20. p-value < 0.05 was considered statistically significant. 61.5% were carbapenemase producers (p < 0.01). The recorded frequency of blaIMP-1, blaSHV, blaVIM, blaOXA, and blaTEM were 13%, 32%, 15%, 21%, and 43%, respectively. The reducing order of antimicrobial activity of antibiotics and AgNPs was piperacillin/tazobactam + AgNPs (31 mm), cefoxitin + AgNPs (30 mm) > amikacin + AgNPs (25 mm) > aztreonam + AgNPs (23 mm) > meropenem + AgNPs (22 mm) > imipenem + AgNPs (20 mm) > gentamycin + AgNPs (17 mm) > ciprofloxacin + AgNPs (16 mm) > cefoperazone/sulbactam + AgNPs (14 mm) ≥ ceftazidime + AgNPs (14 mm). The conjugated effect of AgNPs plus antibiotics showed a 0.15-3.51 (average of 2.09) fold-area augmentation of antimicrobial activity. AgNPs conjugated with antibiotics effectively inhibited MDR Pseudomonas aeruginosa. To the best of our understanding, this is an inaugural report from Punjab Pakistan enlisting co-expression of Metallo-β-lactamases, extended-spectrum β-lactamases, and AmpC-β-lactamase plus activity of antibiotic-AgNPs.
Collapse
|
30
|
Colque CA, albarracín Orio AG, Tomatis PE, Dotta G, Moreno DM, Hedemann LG, Hickman RA, Sommer LM, Feliziani S, Moyano AJ, Bonomo RA, K. Johansen H, Molin S, Vila AJ, Smania AM. Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. mBio 2022; 13:e0166322. [PMID: 36073814 PMCID: PMC9600753 DOI: 10.1128/mbio.01663-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Claudia A. Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G. albarracín Orio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pablo E. Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gina Dotta
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- IQUIR, Instituto de Química de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura G. Hedemann
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Rachel A. Hickman
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J. Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Robert A. Bonomo
- Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
31
|
Ramazani R, Izadi Amoli R, Taghizadeh Armaki M, Pournajaf A, Kaboosi H. A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Park SJ, Kwon S, Lee MS, Jang BH, Guzmán-Cedillo AE, Kang JH. Human Cell-Camouflaged Nanomagnetic Scavengers Restore Immune Homeostasis in a Rodent Model with Bacteremia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203746. [PMID: 36070419 DOI: 10.1002/smll.202203746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Bong Hwan Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Axel E Guzmán-Cedillo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
33
|
Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622. [PMID: 36066241 PMCID: PMC9487505 DOI: 10.1128/aac.00496-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase β-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase β-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.
Collapse
|
34
|
Canton R, Doi Y, Simner PJ. Treatment of carbapenem-resistant Pseudomonas aeruginosa infections: a case for cefiderocol. Expert Rev Anti Infect Ther 2022; 20:1077-1094. [PMID: 35502603 DOI: 10.1080/14787210.2022.2071701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carbapenem-resistant (CR) Pseudomonas aeruginosa infections constitute a serious clinical threat globally. Patients are often critically ill and/or immunocompromised. Antibiotic options are limited and are currently centered on beta-lactam-beta-lactamase inhibitor (BL-BLI) combinations and the siderophore cephalosporin cefiderocol. AREAS COVERED This article reviews the mechanisms of P. aeruginosa resistance and their potential impact on the activity of current treatment options, along with evidence for the clinical efficacy of BL-BLI combinations in P. aeruginosa infections, some of which specifically target infections due to CR organisms. The preclinical and clinical evidence supporting cefiderocol as a treatment option for P. aeruginosa involving infections is also reviewed. EXPERT OPINION Cefiderocol is active against most known P. aeruginosa mechanisms mediating carbapenem resistance. It is stable against different serine- and metallo-beta-lactamases, and, due to its iron channel-dependent uptake mechanism, is not impacted by porin channel loss. Furthermore, the periplasmic level of cefiderocol is not affected by upregulated efflux pumps. The potential for on-treatment resistance development currently appears to be low, although more clinical data are required. Information from surveillance programs, real-world compassionate use, and clinical studies demonstrate that cefiderocol is an important treatment option for CR P. aeruginosa infections.
Collapse
Affiliation(s)
- Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Bitar I, Salloum T, Merhi G, Hrabak J, Araj GF, Tokajian S. Genomic Characterization of Mutli-Drug Resistant Pseudomonas aeruginosa Clinical Isolates: Evaluation and Determination of Ceftolozane/Tazobactam Activity and Resistance Mechanisms. Front Cell Infect Microbiol 2022; 12:922976. [PMID: 35782142 PMCID: PMC9241553 DOI: 10.3389/fcimb.2022.922976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022] Open
Abstract
Resistance to ceftolozane/tazobactam (C/T) in Pseudomonas aeruginosa is a health concern. In this study, we conducted a whole-genome-based molecular characterization to correlate resistance patterns and β-lactamases with C/T resistance among multi-drug resistant P. aeruginosa clinical isolates. Resistance profiles for 25 P. aeruginosa clinical isolates were examined using disk diffusion assay. Minimal inhibitory concentrations (MIC) for C/T were determined by broth microdilution. Whole-genome sequencing was used to check for antimicrobial resistance determinants and reveal their genetic context. The clonal relatedness was evaluated using MLST, PFGE, and serotyping. All the isolates were resistant to C/T. At least two β-lactamases were detected in each with the blaOXA-4, blaOXA-10, blaOXA-50, and blaOXA-395 being the most common. blaIMP-15, blaNDM-1, or blaVIM-2, metallo-β-lactamases, were associated with C/T MIC >256 μg/mL. Eight AmpC variants were identified, and PDC-3 was the most common. We also determined the clonal relatedness of the isolates and showed that they grouped into 11 sequence types (STs) some corresponding to widespread clonal complexes (ST111, ST233, and ST357). C/T resistance was likely driven by the acquired OXA β-lactamases such as OXA-10, and OXA-50, ESBLs GES-1, GES-15, and VEB-1, and metallo- β-lactamases IMP-15, NDM-1, and VIM-2. Collectively, our results revealed C/T resistance determinants and patterns in multi-drug resistant P. aeruginosa clinical isolates. Surveillance programs should be implemented and maintained to better track and define resistance mechanisms and how they accumulate and interact.
Collapse
Affiliation(s)
- Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Georgi Merhi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon,*Correspondence: Sima Tokajian,
| |
Collapse
|
36
|
Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa isolated from four medical centres in Iran. Mol Biol Rep 2022; 49:8281-8289. [PMID: 35657451 DOI: 10.1007/s11033-022-07640-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Understanding the mechanisms of antibiotic resistance is important for designing new therapeutic options and controlling resistant strains. The goal of this study was to look at the molecular epidemiology and mechanisms of resistance in carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from Tabriz, Iran. METHODS One hundred and forty P. aeruginosa were isolated and antibiotic susceptibility patterns were determined. Overproduction of AmpC and efflux pumps were discovered using phenotypic techniques. Polymerase chain reaction (PCR) was used to determine the presence of carbapenemase-encoding genes. In addition, the expressions of OprD and efflux pumps were evaluated by the Real-Time PCR. Random amplified polymorphic DNA typing (RAPD) was performed for genotyping. RESULTS Among 140 P. aeruginosa isolates, 74 (52.8%) were screened as CRPA. Overexpression of efflux systems was observed in 81% of isolates, followed by decreased expression of OprD (62.2%), presence of carbapenemase genes (14.8%), and overproduction of AmpC (13.5%). In most isolates, carbapenem resistance was multifactorial (60.8%). According to our results, the prevalence of CRPA is at alarming levels. Overexpression of efflux systems was the most common mechanism of carbapenem resistance. CONCLUSION Most isolates may originate in patients themselves, but cross-infection is possible. Therefore, we suggest a pattern shift in the strategy of CRPA in our setting.
Collapse
|
37
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
38
|
Fang Y, Baloch Z, Zhang W, Hu Y, Zheng R, Song Y, Tai W, Xia X. Emergence of Carbapenem-Resistant ST244, ST292, and ST2446 Pseudomonas aeruginosa Clones in Burn Patients in Yunnan Province. Infect Drug Resist 2022; 15:1103-1114. [PMID: 35321081 PMCID: PMC8935738 DOI: 10.2147/idr.s353130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing persistently, particularly in burn ward isolates. Here, we investigate the prevalence of carbapenem-resistant Pseudomonas aeruginosa in a burn ward of a provincial-level hospital at Kunming, Yunnan province, China. METHODS A total of 118 P. aeruginosa strains were isolated from 57 hospitalized patients, and their MICs were measured. Carbapenem-resistant isolates were selected for multilocus sequence typing (MLST). Carbapenem-resistance mechanisms were identified by examining carbapenemase genes and OprD protein and Carba-NP testing. Representative isolates were further characterized by de novo sequencing for carbapenemase molecular background. RESULTS Among 118 P. aeruginosa isolates, 54 (54/118,45.8%) were carbapenem-resistant Pseudomonas aeruginosa, and 3 genotypes were found (ST292, ST244, and ST2446). Non-carbapenemase-producing ST292 was the most prevalent ST, followed by ST2446 and ST244. A novel 13-bp oprD deletion was found in the ST292 clone, which formed the truncated outer membrane protein and may cause carbapenem resistance. ST244 and ST2446 harbored blaIMP-45 and blaIMP-87, respectively. blaIMP-45 is located in a megaplasmid, together with aac(6')-Ib3, blaOXA-1, catB3, qnrVC6, armA, msr(E), mph(E), aph(3')-Ia, tetC/tetR, aac(6')-Ib3, floR, mexC-mexD-oprJ, fosA and lead to extensive drug resistance. ST2446 contains a carbapenem-resistant gene blaIMP-87 on the chromosome and is acquired by a novel gene cassette array (blaIMP-87-ant(2")-Ia-blaOXA-10-aac(6')-Ib3) of class 1 integron. DISCUSSION For the first time, ST244, ST292 and ST2446 are reported emerging in burn patients, with distinctive carbapenem-resistance mechanisms, respectively. The obtained results highlight the need to surveillance carbapenem-resistant isolates in burn patients.
Collapse
Affiliation(s)
- Yue Fang
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| | - Zulqarnain Baloch
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| | - Wei Zhang
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Ying Hu
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Rui Zheng
- The First Hospital of Yunnan Province & The Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan, 650034, People’s Republic of China
| | - Yuzhu Song
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| | - Wenlin Tai
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Xueshan Xia
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| |
Collapse
|
39
|
Jones F, Hu Y, Coates A. The Efficacy of Using Combination Therapy against Multi-Drug and Extensively Drug-Resistant Pseudomonas aeruginosa in Clinical Settings. Antibiotics (Basel) 2022; 11:323. [PMID: 35326786 PMCID: PMC8944682 DOI: 10.3390/antibiotics11030323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium which is capable of developing a high level of antibiotic resistance. It has been placed on the WHO's critical priority pathogen list and it is commonly found in ventilator-associated pneumonia infections, blood stream infections and other largely hospital-acquired illnesses. These infections are difficult to effectively treat due to their increasing antibiotic resistance and as such patients are often treated with antibiotic combination regimens. METHODS We conducted a systematic search with screening criteria using the Ovid search engine and the Embase, Ovid Medline, and APA PsycInfo databases. RESULTS It was found that in many cases the combination therapies were able to match or outperform the monotherapies and none performed noticeably worse than the monotherapies. However, the clinical studies were mostly small, only a few were prospective randomized clinical trials and statistical significance was lacking. CONCLUSIONS It was concluded that combination therapies have a place in the treatment of these highly resistant bacteria and, in some cases, there is some evidence to suggest that they provide a more effective treatment than monotherapies.
Collapse
Affiliation(s)
| | | | - Anthony Coates
- Institute for Infection and Immunity, St George’s University of London, London SW17 0RE, UK; (F.J.); (Y.H.)
| |
Collapse
|
40
|
Lasko MJ, Cuba GT, Kiffer CRV, Nicolau DP. Evaluation of high-concentration EDTA-modified carbapenemase inactivation method (eCIM) for SPM-producing Pseudomonas aeruginosa. Arch Microbiol 2021; 204:55. [DOI: 10.1007/s00203-021-02681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
|
41
|
Lebreton F, Snesrud E, Hall L, Mills E, Galac M, Stam J, Ong A, Maybank R, Kwak YI, Johnson S, Julius M, Ly M, Swierczewski B, Waterman PE, Hinkle M, Jones A, Lesho E, Bennett JW, McGann P. A panel of diverse Pseudomonas aeruginosa clinical isolates for research and development. JAC Antimicrob Resist 2021; 3:dlab179. [PMID: 34909689 DOI: 10.1093/jacamr/dlab179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Pseudomonas aeruginosa is a leading cause of community- and hospital-acquired infections. Successful treatment is hampered by its remarkable ability to rapidly develop resistance to antimicrobial agents, primarily through mutation. In response, WHO listed carbapenem-resistant P. aeruginosa as a Priority 1 (Critical) pathogen for research and development of new treatments. A key resource in developing effective countermeasures is access to diverse and clinically relevant strains for testing. Herein we describe a panel of 100 diverse P. aeruginosa strains to support this endeavour. Methods WGS was performed on 3785 P. aeruginosa isolates in our repository. Isolates were cultured from clinical samples collected from healthcare facilities around the world between 2003 and 2017. Core-genome MLST and high-resolution SNP-based phylogenetic analyses were used to select a panel of 100 strains that captured the genetic diversity of this collection. Antibiotic susceptibility testing was also performed using 14 clinically relevant antibiotics. Results This 100-strain diversity panel contained representative strains from 91 different STs, including genetically distinct strains from major epidemic clones ST-111, ST-235, ST-244 and ST-253. Seventy-one distinct antibiotic susceptibility profiles were identified ranging from pan-susceptible to pan-resistant. Known resistance alleles as well as the most prevalent mutations underlying the antibiotic susceptibilities were characterized for all isolates. Conclusions This panel provides a diverse and comprehensive set of P. aeruginosa strains for use in developing solutions to antibiotic resistance. The isolates and available metadata, including genome sequences, are available to industry, academia, federal and other laboratories at no additional cost.
Collapse
Affiliation(s)
- Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsey Hall
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Emma Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madeline Galac
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Stam
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ana Ong
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yoon I Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheila Johnson
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael Julius
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melissa Ly
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Brett Swierczewski
- Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Mary Hinkle
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Anthony Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Emil Lesho
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
42
|
Schultze TG, Ferstl PG, Villinger D, Hogardt M, Bechstein WO, Göttig S, Wichelhaus TA, Zeuzem S, Trebicka J, Waidmann O, Welker MW, Kempf VAJ. Molecular Surveillance of Carbapenem-Resistant Gram-Negative Bacteria in Liver Transplant Candidates. Front Microbiol 2021; 12:791574. [PMID: 34880850 PMCID: PMC8645865 DOI: 10.3389/fmicb.2021.791574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Carbapenem-resistant Gram-negative bacteria (CRGN) cause life-threatening infections due to limited antimicrobial treatment options. The occurrence of CRGN is often linked to hospitalization and antimicrobial treatment but remains incompletely understood. CRGN are common in patients with severe illness (e.g., liver transplantation patients). Using whole-genome sequencing (WGS), we aimed to elucidate the evolution of CRGN in this vulnerable cohort and to reconstruct potential transmission routes. Methods: From 351 patients evaluated for liver transplantation, 18 CRGN isolates (from 17 patients) were analyzed. Using WGS and bioinformatic analysis, genotypes and phylogenetic relationships were explored. Potential epidemiological links were assessed by analysis of patient charts. Results: Carbapenem-resistant (CR) Klebsiella pneumoniae (n=9) and CR Pseudomonas aeruginosa (n=7) were the predominating pathogens. In silico analysis revealed that 14/18 CRGN did not harbor carbapenemase-coding genes, whereas in 4/18 CRGN, carbapenemases (VIM-1, VIM-2, OXA-232, and OXA-72) were detected. Among all isolates, there was no evidence of plasmid transfer-mediated carbapenem resistance. A close phylogenetic relatedness was found for three K. pneumoniae isolates. Although no epidemiological context was comprehensible for the CRGN isolates, evidence was found that the isolates resulted of a transmission of a carbapenem-susceptible ancestor before individual radiation into CRGN. Conclusion: The integrative epidemiological study reveals a high diversity of CRGN in liver cirrhosis patients. Mutation of carbapenem-susceptible ancestors appears to be the dominant way of CR acquisition rather than in-hospital transmission of CRGN or carbapenemase-encoding genetic elements. This study underlines the need to avoid transmission of carbapenem-susceptible ancestors in vulnerable patient cohorts.
Collapse
Affiliation(s)
- Tilman G Schultze
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Philip G Ferstl
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,Division of Gastroenterology and Hepatology, Department for Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - David Villinger
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Wolf O Bechstein
- Department of General and Visceral Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Stefan Zeuzem
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,Division of Gastroenterology and Hepatology, Department for Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Jonel Trebicka
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,Division of Gastroenterology and Hepatology, Department for Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver Waidmann
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,Division of Gastroenterology and Hepatology, Department for Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Martin-Walter Welker
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,Division of Gastroenterology and Hepatology, Department for Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| |
Collapse
|
43
|
Souza GHDAD, Rossato L, Brito GT, Bet GMDS, Simionatto S. Carbapenem-resistant Pseudomonas aeruginosa strains: a worrying health problem in intensive care units. Rev Inst Med Trop Sao Paulo 2021; 63:e71. [PMID: 34586305 PMCID: PMC8494492 DOI: 10.1590/s1678-9946202163071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common bacterium with a broad spectrum of human-associated infections. It is intrinsically resistant to many antimicrobial drugs, making carbapenems crucial in clinical management. The emergence and dissemination of carbapenemases among P. aeruginosa clinical isolates is a serious public health concern as it limits the options for the treatment of bacterial infections. Here, we described the molecular and epidemiological characteristics of 28 carbapenem-resistant P. aeruginosa strains isolated from patients hospitalized in an intensive care unit (ICU). The antimicrobial susceptibility of carbapenem-resistant P. aeruginosa strains was determined by broth microdilution. The presence of resistance genes was evaluated by PCR and DNA sequencing. Additionally, alterations in genes encoding P. aeruginosa outer membrane proteins were analyzed by PCR as well as SDS-PAGE. Clinical characteristics of the patients and the economic impact of hospitalization on the public health system were evaluated. PCR amplification showed that the blaKPC-2 and blaTEM genes were identified in three isolates (11%) and blaSHV gene in two isolates (7%). Outer membrane profiles obtained by SDS-PAGE indicated that the OprD porin was either absent or was produced at very low levels. A PCR assay using oprD-specific primers failed to show the presence of mutations in this gene. P. aeruginosa strains were isolated from 28 patients, among whom 43% (12/28) had sepsis, 31% (9/28) had respiratory failure, and 31% (9/28) had systemic arterial hypertension. A high mortality rate (39%) was observed in these patients, with an average duration of hospitalization of 34.6 days and a median cost of 3.275 dollars per patient. The production of carbapenemase was not the main mechanism of resistance in these strains. All carbapenem-resistant P. aeruginosa were isolated from patients hospitalized in the ICU. Besides the high mortality rate, many patients remained hospitalized for several days, resulting in a high cost of hospitalization for the public health system. Therefore, the evolution of this resistance and its dissemination should be actively monitored among critically ill patients to improve their health conditions.
Collapse
Affiliation(s)
| | - Luana Rossato
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, Brazil
| | - Gabriel Teixeira Brito
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, Brazil
| | - Graciela Mendonça Dos Santos Bet
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, Brazil.,Universidade Federal da Grande Dourados, Hospital Universitário, Comissão de Controle das Infecções Hospitalares, Dourados, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
44
|
Memar MY, Adibkia K, Farajnia S, Samadi Kafil H, Khalili Y, Azargun R, Ghotaslou R. In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:286-296. [PMID: 34567162 PMCID: PMC8457740 DOI: 10.22037/ijpr.2020.111824.13380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate in-vitro antibacterial and antibiofilm effect of colistin, imipenem, gentamicin, and fosfomycin alone and the various combinations against carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa). Eight carbapenem-resistant and biofilm-forming P. aeruginosa isolates from burn patients were collected. The mechanisms of resistance to carbapenem were determined by the phenotypic, PCR, and Real-Time PCR assays. The minimum inhibitory concentration (MIC) of antimicrobial agents was determined by the broth micro dilution. To detect any inhibitory effect of antibiotics against the biofilm, the biofilm inhibitory concentration was determined. To detect synergetic effects of the combinations of antibiotics, the checkerboard assay and the fractional inhibitory concentration (FIC) were used. The highest synergic effect was observed in colistin/fosfomycin and gentamicin/fosfomycin (5 of 8 isolates), and the lowest synergic effect was found in gentamicin/imipenem and colistin/gentamicin (1 of 8 isolates). Colistin/fosfomycin, imipenem/fosfomycin, colistin/imipenem, gentamicin/fosfomycin, and gentamicin/imipenem were shown synergic effect for 3, 2, 2, 2 and 1 isolates, respectively. The combination of antibiotics had different effects on biofilm and planktonic forms of P. aeruginosa. Therefore, a separate determination of inhibitory effects of the antibiotic in the combination is necessary. Fosfomycin/colistin and fosfomycin/gentamicin were more effective against planktonic form and fosfomycin/colistin against biofilm forms.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Khalili
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
45
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
46
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
47
|
Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021; 37:139. [PMID: 34278535 PMCID: PMC8286942 DOI: 10.1007/s11274-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
Collapse
|
48
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
49
|
Karki D, Dhungel B, Bhandari S, Kunwar A, Joshi PR, Shrestha B, Rijal KR, Ghimire P, Banjara MR. Antibiotic resistance and detection of plasmid mediated colistin resistance mcr-1 gene among Escherichia coli and Klebsiella pneumoniae isolated from clinical samples. Gut Pathog 2021; 13:45. [PMID: 34225805 PMCID: PMC8256586 DOI: 10.1186/s13099-021-00441-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is alarmingly high. Reintroduction of colistin as last resort treatment in the infections caused by drug-resistant Gram-negative bacteria has led to the emergence and spread of colistin resistance. This study was designed to determine the prevalence of drug-resistance among beta-lactamase-producing strains of Escherichia coli and Klebsiella pneumoniae, isolated from the clinical specimens received at a tertiary care centre of Kathmandu, Nepal during the period of March to August, 2019. METHODS A total of 3216 different clinical samples were processed in the Microbiology laboratory of Kathmandu Model Hospital. Gram-negative isolates (E. coli and K. pneumoniae) were processed for antimicrobial susceptibility test (AST) by using modified Kirby-Bauer disc diffusion method. Drug-resistant isolates were further screened for extended-spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL), carbapenemase and K. pneumoniae carbapenemase (KPC) production tests. All the suspected enzyme producers were processed for phenotypic confirmatory tests. Colistin resistance was determined by minimum inhibitory concentration (MIC) using agar dilution method. Colistin resistant strains were further screened for plasmid-mediated mcr-1 gene using conventional polymerase chain reaction (PCR). RESULTS Among the total samples processed, 16.4% (529/3216) samples had bacterial growth. A total of 583 bacterial isolates were recovered from 529 clinical samples. Among the total isolates, 78.0% (455/583) isolates were Gram-negative bacteria. The most predominant isolate among Gram-negatives was E. coli (66.4%; 302/455) and K. pneumoniae isolates were 9% (41/455). In AST, colistin, polymyxin B and tigecycline were the most effective antibiotics. The overall prevalence of multidrug-resistance (MDR) among both of the isolates was 58.0% (199/343). In the ESBL testing, 41.1% (n = 141) isolates were confirmed as ESBL-producers. The prevalence of ESBL-producing E. coli was 43% (130/302) whereas that of K. pneumoniae was 26.8% (11/41). Similarly, 12.5% (43/343) of the total isolates, 10.9% (33/302) of E. coli and 24.3% of (10/41) K. pneumoniae were resistant to carbapenem. Among 43 carbapenem resistant isolates, 30.2% (13/43) and 60.5% (26/43) were KPC and MBL-producers respectively. KPC-producers isolates of E. coli and K. pneumoniae were 33.3% (11/33) and 20% (2/10) respectively. Similarly, 63.6% (21/33) of the E. coli and 50% (5/10) of the K. pneumoniae were MBL-producers. In MIC assay, 2.2% (4/179) of E. coli and 10% (2/20) of K. pneumoniae isolates were confirmed as colistin resistant (MIC ≥ 4 µg/ml). Overall, the prevalence of colistin resistance was 3.1% (6/199) and acquisition of mcr-1 was 16.6% (3/18) among the E. coli isolates. CONCLUSION High prevalence of drug-resistance in our study is indicative of a deteriorating situation of AMR. Moreover, significant prevalence of resistant enzymes in our study reinforces their roles in the emergence of drug resistance. Resistance to last resort drug (colistin) and the isolation of mcr-1 indicate further urgency in infection management. Therefore, extensive surveillance, formulation and implementation of effective policies, augmentation of diagnostic facilities and incorporation of antibiotic stewardship programs can be some remedies to cope with this global crisis.
Collapse
Affiliation(s)
- Deepa Karki
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Srijana Bhandari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anil Kunwar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Basudha Shrestha
- Department of Microbiology, Kathmandu Model Hospital, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
50
|
Prevalence and Characteristics of Metallo-beta-Lactamase-positive and High-risk Clone ST235 Pseudomonas aeruginosa at Ardabil Hospitals. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Carbapenems are the most commonly administered drugs for the treatment of multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa) infections. However, carbapenem-resistant P. aeruginosa is spreading rapidly and has led to a new threat to human health worldwide. Objectives: The current study aimed to determine the prevalence of imipenem-resistant P. aeruginosa, detect metallo-β-lactamase (MBL)-producer isolates, and evaluate their clonal relationships in strains isolated from patients referring to the hospitals of Ardabil city, Iran. Methods: The resistance rate to imipenem was evaluated using the disk diffusion method. Double-disk synergy test and PCR technique were used for phenotypic and genotypic screening of MBL-positive P. aeruginosa, respectively. Ultimately, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and multilocus sequence typing (MLST) methods were used for assessing clonal relatedness among the isolates. Results: The prevalence of imipenem-resistant P. aeruginosa strains was estimated at 57.1% (48 out of 84 isolates). In addition, 45 (93.7%) out of 48 imipenem-resistant P. aeruginosa isolates were phenotypically screened as MBL-positive, among which 16 (35.5%) and three (6.6%) isolates harbored blaIMP and blaVIM-1 genes, respectively. However, blaNDM, blaSIM-2, blaSPM, and blaGIM-1 genes were not detected in this study. MBL-producing P. aeruginosa strains were divided into 42 ERIC-PCR types. Based on the results of MLST, P. aeruginosa ST235 was the only identified sequence type. Conclusions: Our results revealed a high and alarming prevalence of imipenem-resistant and blaIMP-positive P. aeruginosa ST235 at Ardabil hospitals. Continuous monitoring is essential to control the further spread of this highly virulent and drug-resistant clone.
Collapse
|