1
|
Kozak S, Roiko A, Gutjahr-Holland K, Ahmed W, Veal C, Fisher P, Toze S, Weir M, Stratton H. The use of faecal indicator organisms to manage microbial health risks in recreational waterways not impacted by point sources of sewage: a systematic review of the epidemiological evidence. JOURNAL OF WATER AND HEALTH 2025; 23:563-586. [PMID: 40448461 DOI: 10.2166/wh.2025.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025]
Abstract
This PRISMA review investigated the extent to which epidemiological evidence supports the use of faecal indicator organisms (FIOs) to manage microbial health risks in recreational waters without point sources of sewage. The quality of papers meeting the inclusion criteria was appraised using the Office of Health Assessment and Translation (OHAT) Risk of Bias tool and low-bias studies were synthesised. Studies consistently reported elevated illness risks (particularly gastrointestinal) among bathers compared with non-bathers. However, no FIOs or pathogens were associated consistently with any health outcomes. While enterococci most frequently correlated with a variety of illnesses, the relatively even split of positive and negative associations suggests an overall lack of association. Consequently, applying FIO guidelines derived from epidemiological studies with point sources of sewage could result in type I and type II errors. Overall, results suggest that the sources and drivers of health risks are site-specific. Tools including sanitary surveys, microbial source tracking, epidemiology and quantitative microbial risk assessment provide avenues for characterising site-specific health risks, for those who can afford them. Meanwhile, characterising the site-specific sources/drivers of contamination seems pragmatic as the limited evidence so far suggests that FIO monitoring may not be sufficient to protect health in these waters.
Collapse
Affiliation(s)
- Sonya Kozak
- Cities Research Institute, Griffith University, Gold Coast Campus, Southport QLD 4215, Australia
| | - Anne Roiko
- Cities Research Institute, Griffith University, Gold Coast Campus, Southport QLD 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport QLD 4215, Australia E-mail:
| | - Katharina Gutjahr-Holland
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport QLD 4215, Australia
| | - Warish Ahmed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Ecosciences Precinct 41 Boggo Road, Brisbane, Qld 4102, Australia
| | - Cameron Veal
- Operational Transformation, Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia
| | - Paul Fisher
- Technology Innovation Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia
| | - Simon Toze
- Urban Water Futures, 93 Kays Road, The Gap, Brisbane, QLD 4061, Australia
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Hawken Drive, St Lucia, QLD 4072, Australia
| | - Mark Weir
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Chapman M, Barnes AN. A scoping review of waterborne and water-related disease in the Florida environment from 1999 to 2022. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:585-601. [PMID: 37148256 DOI: 10.1515/reveh-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Florida's environments are suitable reservoirs for many disease-causing agents. Pathogens and toxins in Florida waterways have the potential to infect mosquito vectors, animals, and human hosts. Through a scoping review of the scientific literature published between 1999 and 2022, we examined the presence of water-related pathogens, toxins, and toxin-producers in the Florida environment and the potential risk factors for human exposure. Nineteen databases were searched using keywords relating to the waterborne, water-based toxins, and water-related vector-borne diseases which are reportable to the Florida Department of Health. Of the 10,439 results, 84 titles were included in the final qualitative analysis. The resulting titles included environmental samples of water, mosquitoes, algae, sand, soil/sediment, air, food, biofilm, and other media. Many of the waterborne, water-related vector-borne, and water-based toxins and toxin-producers of public health and veterinary importance from our search were found to be present in Florida environments. Interactions with Florida waterways can expose humans and animals to disease and toxins due to nearby human and/or animal activity, proximal animal or human waste, failing or inadequate water and/or sanitation, weather patterns, environmental events, and seasonality, contaminated food items, preference of agent for environmental media, high-risk populations, urban development and population movement, and unregulated and unsafe environmental activities. A One Health approach will be imperative to maintaining healthy waterways and shared environments throughout the state to protect the health of humans, animals, and our ecosystems.
Collapse
Affiliation(s)
- McKinley Chapman
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Amber N Barnes
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
3
|
Hong SM, Morgan BJ, Stocker MD, Smith JE, Kim MS, Cho KH, Pachepsky YA. Using machine learning models to estimate Escherichia coli concentration in an irrigation pond from water quality and drone-based RGB imagery data. WATER RESEARCH 2024; 260:121861. [PMID: 38875854 DOI: 10.1016/j.watres.2024.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
The rapid and efficient quantification of Escherichia coli concentrations is crucial for monitoring water quality. Remote sensing techniques and machine learning algorithms have been used to detect E. coli in water and estimate its concentrations. The application of these approaches, however, is challenged by limited sample availability and unbalanced water quality datasets. In this study, we estimated the E. coli concentration in an irrigation pond in Maryland, USA, during the summer season using demosaiced natural color (red, green, and blue: RGB) imagery in the visible and infrared spectral ranges, and a set of 14 water quality parameters. We did this by deploying four machine learning models - Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), and K-nearest Neighbor (KNN) - under three data utilization scenarios: water quality parameters only, combined water quality and small unmanned aircraft system (sUAS)-based RGB data, and RGB data only. To select the training and test datasets, we applied two data-splitting methods: ordinary and quantile data splitting. These methods provided a constant splitting ratio in each decile of the E. coli concentration distribution. Quantile data splitting resulted in better model performance metrics and smaller differences between the metrics for both the training and testing datasets. When trained with quantile data splitting after hyperparameter optimization, models RF, GBM, and XGB had R2 values above 0.847 for the training dataset and above 0.689 for the test dataset. The combination of water quality and RGB imagery data resulted in a higher R2 value (>0.896) for the test dataset. Shapley additive explanations (SHAP) of the relative importance of variables revealed that the visible blue spectrum intensity and water temperature were the most influential parameters in the RF model. Demosaiced RGB imagery served as a useful predictor of E. coli concentration in the studied irrigation pond.
Collapse
Affiliation(s)
- Seok Min Hong
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA; Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, South Korea
| | - Billie J Morgan
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA
| | - Matthew D Stocker
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA
| | - Jaclyn E Smith
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA
| | - Moon S Kim
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea.
| | - Yakov A Pachepsky
- USDA-ARS Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Ave, Bldg. 173, Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Lewis JA, Frost VJ, Heard MJ. Examining the potential impacts of a coastal renourishment project on the presence and abundance of Escherichia coli. PLoS One 2024; 19:e0304061. [PMID: 38787843 PMCID: PMC11125542 DOI: 10.1371/journal.pone.0304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.
Collapse
Affiliation(s)
- Jordan A. Lewis
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Victoria J. Frost
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
| | - Matthew J. Heard
- Department of Biology, Belmont University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Ahmed W, Korajkic A, Gabrewold M, Payyappat S, Cassidy M, Harrison N, Besley C. Assessing the nucleic acid decay of human wastewater markers and enteric viruses in estuarine waters in Sydney, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171389. [PMID: 38432386 PMCID: PMC11070875 DOI: 10.1016/j.scitotenv.2024.171389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This research investigated the in-situ decay rates of four human wastewater-associated markers (Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembling phage (crAssphage), pepper mild mottle virus (PMMoV) and three enteric viruses (human adenovirus 40/41 (HAdV 40/41), enterovirus (EV) and human norovirus GII (HNoV GII) in two estuarine water environments (Davidson Park (DP) and Hen and Chicken Bay (HCB) in temperate Sydney, NSW, Australia, employing qPCR and RT-qPCR assays. The study also aimed to compare decay rates observed in mesocosms with previously published laboratory microcosms, providing insights into the persistence of markers and viruses in estuarine environments. Results indicated varying decay rates between DP and HCB mesocosms, with HF183 exhibiting relatively faster decay rates compared to other markers and enteric viruses in sunlight and dark mesocosms. In DP mesocosms, HF183 decayed the fastest, contrasting with PMMoV, which exhibited the slowest. Sunlight induced higher decay rates for all markers and viruses in DP mesocosms. In HCB sunlight mesocosms, HF183 nucleic acid decayed most rapidly compared to other markers and enteric viruses. In dark mesocosms, crAssphage showed the fastest decay, while PMMoV decayed at the slowest rate in both sunlight and dark mesocosms. Comparisons with laboratory microcosms revealed faster decay of markers and enteric viruses in laboratory microcosms than the mesocosms, except for crAssphage and HAdV 40/41 in dark, and PMMoV in sunlight mesocosms. The study concludes that decay rates of markers and enteric viruses vary between estuarine mesocosms, emphasizing the impact of sunlight exposure, which was potentially influenced by the elevated turbidity at HCB estuarine waters. The generated decay rates contribute valuable insights for establishing site-specific risk-based thresholds of human wastewater-associated markers.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Metasebia Gabrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
6
|
Steadmon M, Takakusagi M, Wiegner TN, Jones M, Economy LM, Panelo J, Morrison LA, Medeiros MCI, Frank KL. Detection and modeling of Staphylococcus aureus and fecal bacteria in Hawaiian coastal waters and sands. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11037. [PMID: 38726833 DOI: 10.1002/wer.11037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 01/04/2025]
Abstract
Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.
Collapse
Affiliation(s)
- Maria Steadmon
- Marine Science Department, University of Hawai'i at Hilo, Hilo, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Melia Takakusagi
- Marine Science Department, University of Hawai'i at Hilo, Hilo, HI, USA
- John A. Burns Medical School, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Tracy N Wiegner
- Marine Science Department, University of Hawai'i at Hilo, Hilo, HI, USA
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Mikayla Jones
- Marine Science Department, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Louise M Economy
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Jazmine Panelo
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Lynn A Morrison
- Anthropology Department, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Matt C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Kiana L Frank
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Robalo A, Brandão J, Shibata T, Solo-Gabriele H, Santos R, Monteiro S. Detection of enteric viruses and SARS-CoV-2 in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165836. [PMID: 37517729 DOI: 10.1016/j.scitotenv.2023.165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Beach sand harbors a diverse group of microbial organisms that may be of public health concern. Nonetheless, little is known about the presence and distribution of viruses in beach sand. In this study, the first objective was to evaluate the presence of seven viruses (Aichi virus, enterovirus, hepatitis A virus, human adenovirus, norovirus, rotavirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) in sands collected at public beaches. The second objective was to assess the spatial distribution of enteric viruses in beach sand. To that end, 27 beach sand samples from different beaches in Portugal were collected between November 2018 and August 2020 and analyzed for the presence of viruses. At seven beaches, samples were collected in the supratidal and intertidal zones. Results show that viruses were detected in 89 % (24/27) of the sand samples. Aichi virus was the most prevalent (74 %). Noroviruses were present in 19 % of the samples (norovirus GI - 15 %, norovirus GII - 4 %). Human adenovirus and enterovirus were detected in 48 % and 22 % of the samples, respectively. Hepatitis A virus and rotavirus were not detected. Similarly, SARS-CoV-2 in beach sand collected during the initial stages of the pandemic was also not detected. The detection of three or more viruses occurred in 15 % of the samples. Concentrations of viruses were as high as 7.2 log copies (cp)/g of sand. Enteric viruses were found in higher prevalence in sand collected from the supratidal zone compared to the intertidal zone. Human adenovirus was detected in 43 % of the supratidal and 14 % in the intertidal samples and Aichi virus in 57 % and 86 % of the intertidal and supratidal areas, respectively. Our findings suggest that beach sand can be a reservoir of enteric viruses, suggesting that it might be a vehicle for disease transmission, particularly for children, the elderly, and immunocompromised users.
Collapse
Affiliation(s)
- A Robalo
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal
| | - J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - T Shibata
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA; Center for Southeast Asian Studies, Northern Illinois University, DeKalb, IL, USA
| | - H Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - R Santos
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - S Monteiro
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal.
| |
Collapse
|
8
|
Steadmon M, Ngiraklang K, Nagata M, Masga K, Frank KL. Effects of water turbidity on the survival of Staphylococcus aureus in environmental fresh and brackish waters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10923. [PMID: 37635150 DOI: 10.1002/wer.10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users. S. aureus concentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk of S. aureus infections from environmental waters, S. aureus survival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measure S. aureus in turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhanced S. aureus survival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of O'ahu, Hawai'i. S. aureus was detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations of S. aureus were in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmental S. aureus concentrations. S. aureus persistence over the extent of the experiment was the greatest in high turbidity microcosms with T90 's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence of S. aureus communities that may increase the risk of exposure in environmental waters. PRACTITIONER POINTS: Staphylococcus aureus concentrations, survival, and persistence were assessed in environmental fresh and brackish waters. Experimental design preserved in situ conditions to measure S. aureus survival. Higher initial S. aureus concentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters. Water turbidity and salinity were both positively associated with S. aureus concentrations and persistence. Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk to S. aureus.
Collapse
Affiliation(s)
- Maria Steadmon
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | | | - Macy Nagata
- Environmental Sciences, Palau Community College, Koror, Palau
- Center for Pacific Islands Studies, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Keanu Masga
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam
| | - Kiana L Frank
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
9
|
Tselemponis A, Stefanis C, Giorgi E, Kalmpourtzi A, Olmpasalis I, Tselemponis A, Adam M, Kontogiorgis C, Dokas IM, Bezirtzoglou E, Constantinidis TC. Coastal Water Quality Modelling Using E. coli, Meteorological Parameters and Machine Learning Algorithms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6216. [PMID: 37444064 PMCID: PMC10341787 DOI: 10.3390/ijerph20136216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
In this study, machine learning models were implemented to predict the classification of coastal waters in the region of Eastern Macedonia and Thrace (EMT) concerning Escherichia coli (E. coli) concentration and weather variables in the framework of the Directive 2006/7/EC. Six sampling stations of EMT, located on beaches of the regional units of Kavala, Xanthi, Rhodopi, Evros, Thasos and Samothraki, were selected. All 1039 samples were collected from May to September within a 14-year follow-up period (2009-2021). The weather parameters were acquired from nearby meteorological stations. The samples were analysed according to the ISO 9308-1 for the detection and the enumeration of E. coli. The vast majority of the samples fall into category 1 (Excellent), which is a mark of the high quality of the coastal waters of EMT. The experimental results disclose, additionally, that two-class classifiers, namely Decision Forest, Decision Jungle and Boosted Decision Tree, achieved high Accuracy scores over 99%. In addition, comparing our performance metrics with those of other researchers, diversity is observed in using algorithms for water quality prediction, with algorithms such as Decision Tree, Artificial Neural Networks and Bayesian Belief Networks demonstrating satisfactory results. Machine learning approaches can provide critical information about the dynamic of E. coli contamination and, concurrently, consider the meteorological parameters for coastal waters classification.
Collapse
Affiliation(s)
- Athanasios Tselemponis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Elpida Giorgi
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Aikaterini Kalmpourtzi
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Ioannis Olmpasalis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Antonios Tselemponis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Maria Adam
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Ioannis M. Dokas
- Department of Civil Engineering, Democritus University of Thrace, 69100 Komotini, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| |
Collapse
|
10
|
Brandão J, Valério E, Weiskerger C, Veríssimo C, Sarioglou K, Novak Babič M, Solo-Gabriele HM, Sabino R, Rebelo MT. Strategies for Monitoring Microbial Life in Beach Sand for Protection of Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095710. [PMID: 37174228 PMCID: PMC10178049 DOI: 10.3390/ijerph20095710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The 2021 revised guidelines of the World Health Organization recommend monitoring the quality of sand in addition to water at recreational beaches. This review provides background information about the types of beaches, the characteristics of sand, and the microbiological parameters that should be measured. Analytical approaches are described for quantifying fungi and fecal indicator bacteria from beach sand. The review addresses strategies to assess beach sand quality, monitoring approaches, sand remediation, and the proposed way forward for beach sand monitoring programs. In the proposed way forward, recommendations are provided for acceptable levels of fungi given their distribution in the environment. Additional recommendations include evaluating FIB distributions at beaches globally to assess acceptable ranges of FIB levels, similar to those proposed for fungi.
Collapse
Affiliation(s)
- João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct. Room A127, East Lansing, MI 48824, USA
| | - Cristina Veríssimo
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Konstantina Sarioglou
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Raquel Sabino
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Maria Teresa Rebelo
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Gholipour S, Nikaeen M, Rabbani D, Mohammadi F, Manesh RM, Besharatipour N, Bina B. Occurrence of enteric and non-enteric microorganisms in coastal waters impacted by anthropogenic activities: A multi-route QMRA for swimmers. MARINE POLLUTION BULLETIN 2023; 188:114716. [PMID: 36860014 DOI: 10.1016/j.marpolbul.2023.114716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/28/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to evaluate the microbial characteristics of coastal waters which are impacted by anthropogenic pollution as well as estimate the health risks associated with exposure to enteric and non-enteric microorganisms during swimming. Fecal indicator bacteria were highly detected in samples. Moreover, pathogenic and opportunistic microorganisms were found, with the highest frequency for Pseudomonas aeruginosa followed by Adenovirus 40/41, Acanthamoeba spp., Salmonella enterica, and Cryptosporidium parvum. The median risk of gastrointestinal illness through ingestion of water was estimated to be above the benchmark value of 0.05 per event recommended by WHO. Cryptosporidium followed by Adenovirus, showed higher illness risks than Salmonella. The potential risks of Acanthamoeba and P. aeruginosa were estimated to be low for both dermal and ocular exposure routes. However, there are uncertainties about the infectious fraction of pathogens existing in coastal waters and the delivered dose of microorganisms from dermal/ocular exposure during recreational activities.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mohammadi Manesh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nayereh Besharatipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Fernandes LS, Galvão A, Santos R, Monteiro S. Impact of water reuse on agricultural practices and human health. ENVIRONMENTAL RESEARCH 2023; 216:114762. [PMID: 36356670 DOI: 10.1016/j.envres.2022.114762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change is altering the habits of the population. Extensive drought periods and overuse of potable water led to significant water shortages in many different places. Therefore, new water sources are necessary for usage in applications where the microbiological and chemical water quality demands are less stringent, as for agriculture. In this study, we planted, germinated, and grew vegetables/fruits (cherry tomato, lettuce, and carrot) using three types of potential waters for irrigation: secondary-treated wastewater, chlorine-treated wastewater, and green wall-treated greywater, to observe potential health risks of foodstuff consumption. In this study the waters and crops were analyzed for three taxonomic groups: bacteria, enteric viruses, and protozoa. Enteric viruses, human Norovirus I (hNoVGI) and Enterovirus (EntV), were detected in tomato and carrots irrigated with secondary-treated and chlorine-treated wastewater, in concentrations as high as 2.63 log genome units (GU)/g. On the other hand, Aichi viruses were detected in lettuce. Bacteria and protozoa remained undetected in all fresh produce although being detected in both types of wastewaters. Fresh produce irrigated with green wall-treated greywater were free from the chosen pathogens. This suggests that green wall-treated greywater may be a valuable option for crop irrigation, directly impacting the cities of the future vision, and the circular and green economy concepts. On the other hand, this work demonstrates that further advancement is still necessary to improve reclaimed water to the point where it no longer constitutes risk of foodborne diseases and to human health.
Collapse
Affiliation(s)
| | - Ana Galvão
- Department of Civil Engineering - SHRHA, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - Ricardo Santos
- Laboratorio Analises, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - Sílvia Monteiro
- Laboratorio Analises, Técnico Lisboa, Universidade de Lisboa, Portugal.
| |
Collapse
|
13
|
Abdool-Ghany AA, Sahwell PJ, Klaus J, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Fecal indicator bacteria levels at a marine beach before, during, and after the COVID-19 shutdown period and associations with decomposing seaweed and human presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158349. [PMID: 36041612 DOI: 10.1016/j.scitotenv.2022.158349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Studies are limited that evaluate seaweed as a source of bacteria to beach waters. The objective of the current study was to evaluate whether seaweed, along with humans and other animals, could be the cause of beach advisories due to elevated levels of enterococci. The monitoring period occurred a year prior to and through the COVID-19 beach shutdown period, which provided a unique opportunity to evaluate bacteria levels during prolonged periods without recreational activity. Samples of water, sediment, and seaweed were measured for enterococci by culture and qPCR, in addition to microbial source tracking by qPCR of fecal bacteria markers from humans, dogs, and birds. During periods of elevated enterococci levels in water, these analyses were supplemented by chemical source tracking of human-associated excretion markers (caffeine, sucralose, acetaminophen, ibuprofen, and naproxen). Results show that enterococci with elevated levels of human fecal markers persist in the seaweed and sediment and are the likely contributor to elevated levels of bacteria to the nearshore waters. During the shutdown period the elevated levels of enterococci in the sediment were isolated to the seaweed stranding areas. During periods when the beaches were open, enterococci were distributed more uniformly in sediment across the supratidal and intertidal zones. It is hypothesized from this study that human foot traffic may be responsible for the spread of enterococci throughout these areas. Overall, this study found high levels of enterococci in decomposing seaweed supporting the hypothesis that decomposing seaweed provides an additional substrate for enterococci to grow.
Collapse
Affiliation(s)
- Afeefa A Abdool-Ghany
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Peter J Sahwell
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - James Klaus
- Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, FL, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
14
|
Chahouri A, Radouane N, Yacoubi B, Moukrim A, Banaoui A. Microbiological assessment of marine and estuarine ecosystems using fecal indicator bacteria, Salmonella, Vibrio and antibiotic resistance pattern. MARINE POLLUTION BULLETIN 2022; 180:113824. [PMID: 35689939 DOI: 10.1016/j.marpolbul.2022.113824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Marine and estuarine environments are often affected by microbiological contamination that adversely affects their use and severely impacts human health. To examine the influence of anthropogenic activities, this study used two different ecosystems in Agadir Bay, to compare fecal indicator bacteria (FIB) and bacterial pathogen profiles over two years. Vibrio target pathogens were detected at a high frequency (49.3%), while a low percentage (5.5%) was noted for Salmonella. Apart from those mentioned above, several other pathogenic bacteria were detected such as Cronobacter sakzakii, Pseudomonas fluorescens, and Aeromonas hydrophila. We also investigated the antimicrobial resistance of the pathogenic bacteria isolated. Salmonella strains were sensitive to all the antibiotics used, except ampicillin, amoxicillin + Ac clavulanic and chloramphenicol. And Vibrio strains were resistant to ampicillin, cephalothin, amikacin, and ciprofloxacin. This study highlights the limitations of FIB in assessing the microbiological quality and the importance of environmental surveys in understanding the distribution of pathogens.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Nabil Radouane
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, PO Box 2202, Route d'Imouzzer, Fez, Morocco; Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, BP S 40, Meknès, Morocco
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
15
|
De Giglio O, Narracci M, Apollonio F, Triggiano F, Acquaviva MI, Caroppo C, Diella G, Di Leo A, Fasano F, Giandomenico S, Spada L, Cavallo RA, Montagna MT. Microbiological and chemical characteristics of beaches along the Taranto Gulf (Ionian Sea, Southern Italy). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:448. [PMID: 35604473 PMCID: PMC9165249 DOI: 10.1007/s10661-022-10103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/15/2022] [Indexed: 06/14/2023]
Abstract
Coastal habitats provide important ecosystem services, such as the maintenance of ecological sustainability, water quality regulation, nutrient recycling, and sandy beaches which are important areas for recreation and tourism. The quality of seawater is generally measured by determining the concentrations of Escherichia coli and intestinal Enterococci, which might be affected by the persistent populations of these bacteria in sand. Sand might thus be a significant source of pathogen exposure to beachgoers. The quality of coastal recreational waters can also be affected by eutrophication, water discoloration, and harmful algal blooms, which pose additional human health risks. Here, we conducted a monitoring of the beaches quality along the Taranto Gulf by determining the concentrations of fecal indicator organisms, as well as other parameters that are not traditionally measured (physicochemical parameters, Pseudomonas aeruginosa, and harmful microalgae), in shallow seawater and sand sampled from three beaches. The concentrations of bacteria were determined using both standard microbiological methods and the IDEXX system. Our results demonstrate the utility of measuring a greater number of parameters in addition to those conventionally measured, as well as the importance of assessing the health risks posed by the sand matrix. Additional work is needed to develop rapid analytical techniques that could be used to monitor the microbiological parameters of solid matrices.
Collapse
Affiliation(s)
- Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Marcella Narracci
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Francesca Apollonio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maria Immacolata Acquaviva
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Carmela Caroppo
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Antonella Di Leo
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Fabrizio Fasano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Santina Giandomenico
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Lucia Spada
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Rosa Anna Cavallo
- National Research Council (CNR), Water Research Institute (IRSA), S.S. of Taranto, via Roma 3, 74123 Taranto, Italy
| | - Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
16
|
Tousi EG, Duan JG, Gundy PM, Bright KR, Gerba CP. Evaluation of E. coli in sediment for assessing irrigation water quality using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149286. [PMID: 34388882 DOI: 10.1016/j.scitotenv.2021.149286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/03/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Fresh produce irrigated with contaminated water poses a substantial risk to human health. This study evaluated the impact of incorporating sediment information on improving the performance of machine learning models to quantify E. coli level in irrigation water. Field samples were collected from irrigation canals in the Southwest U.S., for which meteorological, chemical, and physical water quality variables as well as three additional flow and sediment properties: the concentration of E. coli in sediment, sediment median size, and bed shear stress. Water quality was classified based on E. coli concentration exceeding two standard levels: 1 E. coli and 126 E. coli colony forming units (CFU) per 100 ml of irrigation water. Two series of features, including (FIS) and excluding (FES) sediment features, were selected using multi-variant filter feature selection. The correlation analysis revealed the inclusion of sediment features improves the correlation with the target standards for E. coli compared to the models excluding these features. Support vector machine, logistic regression, and ridge classifier were tested in this study. The support vector machine model performed the best for both targeted standards. Besides, incorporating sediment features improved all models' performance. Therefore, the concentration of E. coli in sediment and bed shear stress are major factors influencing E. coli concentration in irrigation water.
Collapse
Affiliation(s)
- Erfan Ghasemi Tousi
- Department of Civil & Architectural Engineering and Mechanics, The University of Arizona, 1209 E. 2nd St., Tucson, AZ, USA
| | - Jennifer G Duan
- Department of Civil & Architectural Engineering and Mechanics, The University of Arizona, 1209 E. 2nd St., Tucson, AZ, USA.
| | - Patricia M Gundy
- Department of Environmental Science, The University of Arizona, Water & Energy Sustainable Technology (WEST) Center, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Kelly R Bright
- Department of Environmental Science, The University of Arizona, Water & Energy Sustainable Technology (WEST) Center, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Charles P Gerba
- Department of Environmental Science, The University of Arizona, Water & Energy Sustainable Technology (WEST) Center, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| |
Collapse
|
17
|
Influenza A and D Viruses in Non-Human Mammalian Hosts in Africa: A Systematic Review and Meta-Analysis. Viruses 2021; 13:v13122411. [PMID: 34960680 PMCID: PMC8706448 DOI: 10.3390/v13122411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
We conducted a systematic review and meta-analysis to investigate the prevalence and current knowledge of influenza A virus (IAV) and influenza D virus (IDV) in non-human mammalian hosts in Africa. PubMed, Google Scholar, Wiley Online Library and World Organisation for Animal Health (OIE-WAHIS) were searched for studies on IAV and IDV from 2000 to 2020. Pooled prevalence and seroprevalences were estimated using the quality effects meta-analysis model. The estimated pooled prevalence and seroprevalence of IAV in pigs in Africa was 1.6% (95% CI: 0-5%) and 14.9% (95% CI: 5-28%), respectively. The seroprevalence of IDV was 87.2% (95% CI: 24-100%) in camels, 9.3% (95% CI: 0-24%) in cattle, 2.2% (95% CI: 0-4%) in small ruminants and 0.0% (95% CI: 0-2%) in pigs. In pigs, H1N1 and H1N1pdm09 IAVs were commonly detected. Notably, the highly pathogenic H5N1 virus was also detected in pigs. Other subtypes detected serologically and/or virologically included H3N8 and H7N7 in equids, H1N1, and H3N8 and H5N1 in dogs and cats. Furthermore, various wildlife animals were exposed to different IAV subtypes. For prudent mitigation of influenza epizootics and possible human infections, influenza surveillance efforts in Africa should not neglect non-human mammalian hosts. The impact of IAV and IDV in non-human mammalian hosts in Africa deserves further investigation.
Collapse
|
18
|
Tomenchok LE, Abdool-Ghany AA, Elmir SM, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Trends in regional enterococci levels at marine beaches and correlations with environmental, global oceanic changes, community populations, and wastewater infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148641. [PMID: 34328980 DOI: 10.1016/j.scitotenv.2021.148641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
An increase in the number of advisories issued for recreational beaches across south Florida (due to the fecal indicator bacteria, enterococci) has been observed in recent years. To evaluate the possible reasons for this increase, we reviewed weekly monitoring data for 18 beaches in Miami-Dade County, Florida, for the years 2000-2019. Our objective was to evaluate this dataset for trends in enterococci levels and correlations with various factors that might have influenced enterococci levels at these beaches. For statistical analyses, we divided the 20-year period of record into 5-year increments (2000-2004, 2005-2009, 2010-2014, and 2015-2019). The Wilcoxon rank sum test was used to identify statistically significant differences between the geometric mean of different periods. When all 18 beaches were collectively considered, a significant increase (p = 0.03) in enterococci was observed during 2015-2019, compared to the prior 15-year period of record. To better understand the potential causes for this increase, correlations were evaluated with environmental parameters (rainfall, air temperature, and water temperature), global oceanic changes (sea level and Sargassum), community populations (county population estimates and beach visitation numbers), and wastewater infrastructure (sewage effluent flow rates to ocean outfalls and deep well injection). In relation to the enterococci geometric mean, the correlation with Sargassum was statistically significant at a 95% confidence interval (p = 0.035). Population (p = 0.078), air temperature (p = 0.092), and sea level (p = 0.098) were statistically significant at 90% confidence intervals. Rainfall, water temperature, beach visitation numbers, and sewage effluent flow rates via deep well injection had positive correlations but were not significant factors. Sewage effluent flow rates to ocean outfalls had a negative correlation.
Collapse
Affiliation(s)
- Lara E Tomenchok
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Afeefa A Abdool-Ghany
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Samir M Elmir
- Miami-Dade County Health Department, 1725 NW 167 Street, Miami, FL 33056, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL 33149, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
19
|
Boufafa M, Kadri S, Redder P, Bensouilah M. Occurrence and distribution of fecal indicators and pathogenic bacteria in seawater and Perna perna mussel in the Gulf of Annaba (Southern Mediterranean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46035-46052. [PMID: 33884549 DOI: 10.1007/s11356-021-13978-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The identification of fecal contamination in coastal marine ecosystems is one of the main requirements for evaluation of potential risks to human health. The objective of this study was to investigate the occurrence and distribution of fecal indicators and pathogenic bacteria in seawaters and mussels collected monthly during a period of 1 year from four different sites in Northeastern Algeria (sites S1 to S4), through biochemical and molecular analyses. Our research is the first to use molecular analysis to unambiguously identify the potentially pathogenic bacteria present in Algerian Perna perna mussels. The obtained results revealed that the levels of fecal indicator bacteria (FIB) from both P. perna and seawater samples largely exceeded the permissible limits at S2 and S3. This is mainly related to their location close to industrial and coastal activity zones, which contain a mixture of urban, agricultural, and industrial pollutants. Besides, P. perna collected from all sites were severalfold more contaminated by FIB than seawater samples, primarily during the warm season of the study period. Biochemical and molecular analyses showed that isolated bacteria from both seawater and mussels were mainly potentially pathogenic species such as E. coli, Salmonella spp., Staphylococcus spp., Klebsiella spp., Pseudomonas spp., and Proteus spp.
Collapse
Affiliation(s)
- Mouna Boufafa
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria.
| | - Skander Kadri
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Mourad Bensouilah
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria
| |
Collapse
|
20
|
Storto D, Nara LBC, Kozusny-Andreani DI, Vanzela LS, Mansano CFM, Bilal M, Iqbal HMN, Américo-Pinheiro JHP. Seasonal Dynamics of Microbial Contamination and Antibiotic Resistance in the Water at the Tietê Ecological Park, Brazil. WATER, AIR, & SOIL POLLUTION 2021; 232:257. [DOI: 10.1007/s11270-021-05207-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023]
|
21
|
Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T. Bathing Water Quality Monitoring Practices in Europe and the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5513. [PMID: 34063910 PMCID: PMC8196636 DOI: 10.3390/ijerph18115513] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Many countries including EU Member States (EUMS) and the United States (U.S.) regularly monitor the microbial quality of bathing water to protect public health. This study comprehensively evaluates the EU bathing water directive (BWD) and the U.S. recreational water quality criteria (RWQC) as regulatory frameworks for monitoring microbial quality of bathing water. The major differences between these two regulatory frameworks are the provision of bathing water profiles, classification of bathing sites based on the pollution level, variations in the sampling frequency, accepted probable illness risk, epidemiological studies conducted during the development of guideline values, and monitoring methods. There are also similarities between the two approaches given that both enumerate viable fecal indicator bacteria (FIB) as an index of the potential risk to human health in bathing water and accept such risk up to a certain level. However, enumeration of FIB using methods outlined within these current regulatory frameworks does not consider the source of contamination nor variation in inactivation rates of enteric microbes in different ecological contexts, which is dependent on factors such as temperature, solar radiation, and salinity in various climatic regions within their geographical areas. A comprehensive "tool-box approach", i.e., coupling of FIB and viral pathogen indicators with microbial source tracking for regulatory purposes, offers potential for delivering improved understanding to better protect the health of bathers.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
| | - David M. Oliver
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK;
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
22
|
Goshu G, Koelmans AA, de Klein JJM. Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in tropical water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116693. [PMID: 33631685 DOI: 10.1016/j.envpol.2021.116693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
Collapse
Affiliation(s)
- Goraw Goshu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands; College of Agriculture and Environmental Sciences and Blue Nile Water Institute, Bahir Dar University, P.O. Box 1701, Bahir Dar, Ethiopia.
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| | - J J M de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| |
Collapse
|
23
|
Li X, Kelty CA, Sivaganesan M, Shanks OC. Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. WATER RESEARCH 2021; 192:116845. [PMID: 33508720 PMCID: PMC8186395 DOI: 10.1016/j.watres.2021.116845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Kumar M, Thakur AK, Mazumder P, Kuroda K, Mohapatra S, Rinklebe J, Ramanathan A, Cetecioglu Z, Jain S, Tyagi VK, Gikas P, Chakraborty S, Tahmidul Islam M, Ahmad A, Shah AV, Patel AK, Watanabe T, Vithanage M, Bibby K, Kitajima M, Bhattacharya P. Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2020; 1:100001. [PMID: 34977840 PMCID: PMC7456799 DOI: 10.1016/j.hazl.2020.100001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 05/16/2023]
Abstract
Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks. Our analysis suggests that not only the surface water, but also groundwater, represent SARS-CoV-2 control points through possible leaching and infiltrations of effluents from health care facilities, sewage, and drainage water. Most fecally transmitted viruses are highly persistent in the aquatic environment, and therefore, the persistence of SARS-CoV-2 in water is essential to inform its fate in water, wastewater and groundwater and subsequent human exposure.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 9390398, Japan
| | - Sanjeeb Mohapatra
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal 42285, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, Republic of Korea
| | - Al Ramanathan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE100 44 Stockholm, Sweden
| | - Sharad Jain
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Petros Gikas
- School of Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Sudip Chakraborty
- Department of IngegneriaModellisticaElettronica&Sistemistica,University of Calabria, Via P. Bucci, Cubo 42/a, 87036 Rende (CS), Italy
| | - M Tahmidul Islam
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
- Department of Environmental Technology, Wageningen University and Research (WUR), The Netherlands
| | - Anil V Shah
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| |
Collapse
|
25
|
Marmen S, Blank L, Al-Ashhab A, Malik A, Ganzert L, Lalzar M, Grossart HP, Sher D. The Role of Land Use Types and Water Chemical Properties in Structuring the Microbiomes of a Connected Lake System. Front Microbiol 2020; 11:89. [PMID: 32117119 PMCID: PMC7029742 DOI: 10.3389/fmicb.2020.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 02/04/2023] Open
Abstract
Lakes and other freshwater bodies are intimately connected to the surrounding land, yet to what extent land-use affects the quality of freshwater and the microbial communities living in various freshwater environments is largely unknown. We address this question through an analysis of the land use surrounding 46 inter-connected lakes located within seven different drainage basins in northern Germany, and the microbiomes of these lakes during early summer. Lake microbiome structure was not correlated with the specific drainage basin or by basin size, and bacterial distribution did not seem to be limited by distance. Instead, land use within the drainage basin could predict, to some extent, NO2 + NO3 concentrations in the water, which (together with temperature, chlorophyll a and total phosphorus) correlated to some extent with the water microbiome structure. Land use directly surrounding the water bodies, however, had little observable effects on water quality or the microbiome. Several microbial lineages, including Cyanobacteria and Verrucomicrobia, were differentially partitioned between the lakes. Significantly more data, including time-series measurements of land use and water chemical properties, are needed to fully understand the interaction between the environment and the organization of microbial communities.
Collapse
Affiliation(s)
- Sophi Marmen
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon Lezion, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Lars Ganzert
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
26
|
Badgley BD, Steele MK, Cappellin C, Burger J, Jian J, Neher TP, Orentas M, Wagner R. Fecal indicator dynamics at the watershed scale: Variable relationships with land use, season, and water chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134113. [PMID: 32380608 DOI: 10.1016/j.scitotenv.2019.134113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Tracking fecal contamination in surface waters is critical to remediating water quality; however, general and source-specific fecal indicators often provide conflicting results. To understand the spatial and temporal dynamics of multiple fecal indicators and the sources they represent, we measured weekly concentrations of two general fecal indicator bacteria (FIB), a genetic indicator of human-associated Bacteroides (HF183), and surface water chemistry in nine mixed land-use watersheds in southwest Virginia, USA. At the watershed scale, general and source-specific indicators were decoupled, with distinct spatial, temporal, and chemical patterns. Random Forest analysis of individual sample variability identified temperature, watershed, nutrients, and cations as top predictors of indicator concentrations. However, these patterns - and the specific nutrients and cations identified - varied by indicator type. Among watersheds, FIB increased with developed land cover and during the summer months, while HF183 increased during the winter and only in urban watersheds. Nutrients generally related poorly to FIB and HF183, except E. coli, which correlated with total nitrogen. In contrast, all fecal indicators showed strong correlations with cations. FIB were more strongly related to calcium, magnesium, and potassium concentrations, while HF183 was related to sodium. These results suggest that, even at the watershed scale, 1) HF183 detects mainly human fecal contamination, while FIB detect broader ecosystem fecal inputs, and 2) poor correlation between specific and generalist fecal indicators is caused by unique spatial, temporal, and transport dynamics of different fecal sources in watersheds.
Collapse
Affiliation(s)
- Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Tech, United States of America.
| | - Meredith K Steele
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Catherine Cappellin
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Julie Burger
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Jinshi Jian
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Timothy P Neher
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Megan Orentas
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| | - Regan Wagner
- School of Plant and Environmental Sciences, Virginia Tech, United States of America
| |
Collapse
|
27
|
Viji R, Shrinithivihahshini ND, Santhanam P, Balakrishnan S, Yi Y, Rajivgandhi G. Biomonitoring of the environmental indicator and pathogenic microorganisms assortment in foremost pilgrimage beaches of the Bay of Bengal, Southeast coast, India. MARINE POLLUTION BULLETIN 2019; 149:110548. [PMID: 31550576 DOI: 10.1016/j.marpolbul.2019.110548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The present study is aimed to monitoring the ecological indicator and pathogenic microorganism diversity in pilgrimage places beach sand on the Bay of Bengal coast. The samples were collected from three locations and four different sites, and were analyzed by following standard methods. The results clearly indicates, ritual activities were highly contaminated in the beach sand qualities, and exceeded with the standard permissible limit of WHO, USEPA, EU, CPCB beach sand recreational and other contacts activities including pH (11%), TBC (100%), TCB (97%), FCB (88%), TEB (75%), E. coli (75%), disease-causing possible level of Klebsiella (84%), Shigella (75%), Salmonella (63%) and Vibrio (56%). The statistical tools were applied to find the strong evidence. The current study pointed out the major effects on the diffusion of potentially pathogenic microorganisms along the shoreline provided useful information for the setup of measures for public health protection in the Bay of Bengal coast.
Collapse
Affiliation(s)
- Rajendran Viji
- Environmental Microbiology and Toxicology Laboratory, Department of Environmental Science and Management, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Nirmaladevi D Shrinithivihahshini
- Environmental Microbiology and Toxicology Laboratory, Department of Environmental Science and Management, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Perumal Santhanam
- Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Srinivasan Balakrishnan
- Marine Aquarium & Regional Centre, Zoological Survey of India, Digha 721 428, West Bengal, India
| | - Yujun Yi
- State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Govindan Rajivgandhi
- State Key Laboratory of Biocontrol and Biosciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Weiskerger CJ, Brandão J, Ahmed W, Aslan A, Avolio L, Badgley BD, Boehm AB, Edge TA, Fleisher JM, Heaney CD, Jordao L, Kinzelman JL, Klaus JS, Kleinheinz GT, Meriläinen P, Nshimyimana JP, Phanikumar MS, Piggot AM, Pitkänen T, Robinson C, Sadowsky MJ, Staley C, Staley ZR, Symonds EM, Vogel LJ, Yamahara KM, Whitman RL, Solo-Gabriele HM, Harwood VJ. Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. WATER RESEARCH 2019; 162:456-470. [PMID: 31301475 DOI: 10.1016/j.watres.2019.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 05/16/2023]
Abstract
Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats. Models of FIB and pathogen fate and transport at beaches can help predict the risk of infectious disease from beach use, but knowledge gaps with respect to decay and growth rates of pathogens in beach habitats impede robust modeling. Climatic variability adds further complexity to predictive modeling because extreme weather events, warming water, and sea level change may increase human exposure to waterborne pathogens and alter relationships between FIB and pathogens. In addition, population growth and urbanization will exacerbate contamination events and increase the potential for human exposure. The cumulative effects of anthropogenic changes will alter microbial population dynamics in beach habitats and the assumptions and relationships used in quantitative microbial risk assessment (QMRA) and process-based models. Here, we review our current understanding of microbial populations and transport dynamics across the sand-water continuum at beaches, how these dynamics can be modeled, and how global change factors (e.g., climate and land use) should be integrated into more accurate beachscape-based models.
Collapse
Affiliation(s)
- Chelsea J Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisboa, Lisboa, Portugal.
| | - Warish Ahmed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Ecosciences Precinct, 41 Boogo Road, Dutton Park, Old, 4102, Australia
| | - Asli Aslan
- Department of Environmental Health Sciences, Georgia Southern University, Statesboro, GA, USA
| | - Lindsay Avolio
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario, Canada
| | - Jay M Fleisher
- College of Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luisa Jordao
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | | | - James S Klaus
- Department of Marine Geosciences, University of Miami, Miami, FL, USA
| | | | - Päivi Meriläinen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alan M Piggot
- Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Clare Robinson
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Michael J Sadowsky
- BioTechnology Institute and Departments of Soil, Water, & Climate, and Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | | | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Laura J Vogel
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Kevan M Yamahara
- Monterrey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Richard L Whitman
- Great Lakes Science Center, United States Geological Survey, Chesterton, IN, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
29
|
Nappier SP, Ichida A, Jaglo K, Haugland R, Jones KR. Advancements in mitigating interference in quantitative polymerase chain reaction (qPCR) for microbial water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:732-740. [PMID: 30939326 PMCID: PMC6555561 DOI: 10.1016/j.scitotenv.2019.03.242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 05/31/2023]
Abstract
The United States Environmental Protection Agency's (EPA)1 2012 Recreational Water Quality Criteria included an Enterococcus spp. quantitative polymerase chain reaction (qPCR) method as a supplemental indicator-method. In 2012, performance of qPCR for beach monitoring remained limited, specifically with addressing interference. A systematic literature search of peer-reviewed publications was conducted to identify where Enterococcus spp. and E. coli qPCR methods have been applied in ambient waters. In the present study, we evaluated interference rates, contributing factors resulting in increased interference in these methods, and method improvements that reduced interference. Information on qPCR methods of interest and interference controls were reported in 16 papers for Enterococcus spp. and 13 papers for E. coli. Of the Enterococcus spp. qPCR methods assessed in this effort, the lowest frequencies of interference were reported in samples using Method 1609. Low frequencies of sample interference were also reported EPA's modified E. coli qPCR method, which incorporates the same reagents and interference controls as Method 1609. The literature indicates that more work is needed to demonstrate the utility of E. coli qPCR for widespread beach monitoring purposes, whereas more broad use of Method 1609 for Enterococcus spp. is appropriate when the required and suggested controls are employed.
Collapse
Affiliation(s)
- Sharon P Nappier
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA.
| | | | | | - Rich Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, USA
| | | |
Collapse
|
30
|
Adeniji OO, Sibanda T, Okoh AI. Recreational water quality status of the Kidd's Beach as determined by its physicochemical and bacteriological quality parameters. Heliyon 2019; 5:e01893. [PMID: 31294097 PMCID: PMC6595171 DOI: 10.1016/j.heliyon.2019.e01893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Coastal water resources are habitually exposed to indiscriminate anthropogenic pollution. However, due to their negative consequences to the public health, recreational waters require continuous monitoring for disease-causing organisms as a way of preventing ailments associated with swimming. As a result, the present study assessed the physicochemical parameters and microbial loads of water samples collected from six different sampling points on Kidd's Beach using standard analytical procedures. Generated data were analysed with One-way ANOVA and spearman correlation (at 95%). The physicochemical qualities varied as follows: pH (7.21–8.23), temperature (18.46–27.63 °C), turbidity (0–25.67 NTU), electrical conductivity (22723–62067 μS/cm), total dissolved solids (7662–31037 mg/L), and salinity (8.95–41.84 PSU). All these measured parameters were significantly different (P < 0.05) with respect to the sampling sites. Presumptive Enterococcus counts ranged from 64 – 168 CFU/100 mL of water samples. Out of 409 presumptive Enterococcus isolates obtained from the culture-based method, 67 were confirmed to be Enterococcus by PCR-techniques. From the 67 confirmed isolates, 19(E. faecalis) and 40(E. feacium) while 8(other species that were non-targeted). Findings from this study shown that Kidd's Beach water samples contain some pathogenic bacteria that pose high risk to the public health and make it to be unfit for recreational use when compared to DWAF and US EPA guidelines. Therefore, effort should be made to strictly control all activities contributing to the level of pollution in the marine environment.
Collapse
Affiliation(s)
- Oluwaseun O Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Timothy Sibanda
- Department of Biological Sciences, University of Namibia, Private Bag 13301, 340 Mandume Ndemufayo Ave, Pioneers Park, Windhoek, Namibia
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
31
|
de Deus DR, Teixeira DM, Dos Santos Alves JC, Smith VC, da Silva Bandeira R, Siqueira JAM, de Sá Morais LLC, Resque HR, Gabbay YB. Occurrence of norovirus genogroups I and II in recreational water from four beaches in Belém city, Brazilian Amazon region. JOURNAL OF WATER AND HEALTH 2019; 17:442-454. [PMID: 31095519 DOI: 10.2166/wh.2019.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the presence of norovirus (NoV) in recreational waters of four estuarine beaches located in Mosqueiro Island, Belém city, Brazilian Amazon, during two years of monitoring (2012 and 2013). NoV particles were concentrated on filtering membrane by the adsorption-elution method and detected by semi-nested RT-PCR (reverse transcription polymerase chain reaction) and sequencing. NoV positivity was observed in 37.5% (39/104) of the surface water samples, with genogroup GI (69.2%) occurring at a higher frequency than GII (25.7%), with a cocirculation of both genogroups in two samples (5.1%). This virus was detected in all sampling points analyzed, showing the highest detection rate at the Paraíso Beach (46.2%). Statistically, there was a dependence relationship between tide levels and positive detection, with a higher frequency at high tide (46.7%) than at low tide (25%) periods. Months with the highest detection rates (April 2012 and April/May 2013) were preceded by periods of higher precipitation (March 2012 and February/March 2013). Phylogenetic analysis showed the circulation of the old pandemic variant (GII.4-US_95-96) and GI.8. The NoV detection demonstrated viral contamination on the beaches and evidenced the health risk to bathers, mainly through recreational activities such as bathing, and highlighted the importance of including enteric viruses research in the recreational water quality monitoring.
Collapse
Affiliation(s)
- Danielle Rodrigues de Deus
- Postgraduate Program in Parasitary Biology in the Amazon, State University of Pará, Tv. Perebebui, 2623, Marco, Belém, PA CEP 66087-662, Brazil
| | - Dielle Monteiro Teixeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jainara Cristina Dos Santos Alves
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Vanessa Cavaleiro Smith
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Renato da Silva Bandeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jones Anderson Monteiro Siqueira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Lena Líllian Canto de Sá Morais
- Environment Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Hugo Reis Resque
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| |
Collapse
|
32
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
O'Flaherty E, Solimini A, Pantanella F, Cummins E. The potential human exposure to antibiotic resistant-Escherichia coli through recreational water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:786-795. [PMID: 30308854 DOI: 10.1016/j.scitotenv.2018.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
It is important that bathing water sites are free as possible from antibiotic resistant bacteria (ARB) to prevent the spread of difficult to treat infections throughout the population. This study examines the possible human exposure to antibiotic resistant Escherichia coli (AR-E. coli) through recreational activities at two different bathing water sites located near wastewater treatment plants (WWTPs). A quantitative risk assessment model was created to model the pathway of the AR-E. coli from the WWTPs effluent water through to the bathing water sites. Both sampling data and data from scientific literature were used. The main steps considered for the model were: the dilution and decay of the AR-E. coli from the WWTPs effluent water into the river; the dilution of the river into the bathing water sites and the human exposure to AR-E. coli through recreational activities at the bathing water sites (as a result of water ingestion). The results show the mean predicted human exposure levels ranged between 0.45 and 345.09 cfu/100 ml. A back calculation method determined that in accordance with the European Bathing Water Directive (2006/7/EC) (BWD) to be considered "poor" water quality, the concentration of AR-E. coli in WWTP effluent water would need to exceed 2.45 log cfu/ml at site 1 and exceed 2.71 log cfu/ml at site 2. This study provides valuable information for regulatory bodies and policy makers on the possible human exposure levels to AR-E. coli and the maximum permissible concentrations in WWTP effluent water to ensure compliance with relevant bathing water legislation.
Collapse
Affiliation(s)
- E O'Flaherty
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - A Solimini
- Department of Public Health, Sapienza University of Rome, Italy
| | - F Pantanella
- Department of Public Health, Sapienza University of Rome, Italy
| | - E Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Development and application of a real-time polymerase chain reaction method for quantification of Escherichia coli in oysters (Crassostrea gigas). Food Microbiol 2019; 77:85-92. [DOI: 10.1016/j.fm.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/30/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022]
|
35
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
36
|
Nshimyimana JP, Martin SL, Flood M, Verhougstraete MP, Hyndman DW, Rose JB. Regional Variations of Bovine and Porcine Fecal Pollution as a Function of Landscape, Nutrient, and Hydrological Factors. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1024-1032. [PMID: 30272781 DOI: 10.2134/jeq2017.11.0438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of manure application in agriculture on surface water quality has become a local to global problem because of the adverse consequences on public health and food security. This study evaluated (i) the spatial distribution of bovine (cow) and porcine (pig) genetic fecal markers, (ii) how hydrologic factors influenced these genetic markers, and (iii) their variations as a function of land use, nutrients, and other physiochemical factors. We collected 189 samples from 63 watersheds in Michigan's Lower Peninsula during baseflow, spring melt, and summer rain conditions. For each sample, we quantified the concentrations of bovine and porcine genetic markers by digital droplet polymerase chain reaction and measured , dissolved oxygen, pH, temperature, total phosphorus, total nitrogen, nitrate-nitrite (NO), ammonia (NH), soluble reactive phosphorus, streamflow, and watershed specific precipitation. Bovine and porcine manure markers were ubiquitous in rivers that drain agricultural and natural fields across the study region. This study provides baseline conditions on the state of watershed impairment, which can be used to develop best management practices that could improve water quality. Similar studies should be performed with higher spatial sampling density to elucidate detailed factors that influence the transport of manure constituents.
Collapse
|
37
|
Dias J, Pinto RN, Vieira CB, de Abreu Corrêa A. Detection and quantification of human adenovirus (HAdV), JC polyomavirus (JCPyV) and hepatitis A virus (HAV) in recreational waters of Niterói, Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2018; 133:240-245. [PMID: 30041311 DOI: 10.1016/j.marpolbul.2018.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 05/09/2023]
Abstract
This study evaluated the impact of sewage discharge in recreational coastal marine environments of Niteroi, Rio de Janeiro, Brazil, over a six-month period by the detection of waterborne enteric viruses. Ten-liter water samples were collected in four beaches from January to July 2017. Viruses were concentrated by an organic flocculation and human adenoviruses (HAdV), polyomavirus (JCPyV), and Hepatitis A virus (HAV) detected by qPCR. Forty-eight water samples were collected, being 43% positive for HAdV and 23% for JCPyV; only one sample was positive for HAV. Viruses were detected in all sampling sites, including in areas suitable for bathing according to the current bacterial standards. The results herein provide an overview of the viral contamination of beaches used for recreational purposes. The viral presence in the sampled areas indicates the need for more rigid effluent discharge controls in these areas, as sewage represents a possible transmission risk for waterborne viral diseases.
Collapse
Affiliation(s)
- Juliana Dias
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Renan Novaes Pinto
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Carmen Baur Vieira
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Adriana de Abreu Corrêa
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Weiskerger CJ, Whitman RL. Monitoring E. coli in a changing beachscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1236-1246. [PMID: 29734602 DOI: 10.1016/j.scitotenv.2017.11.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Increased emphasis on protection of recreational water quality has led to extensive use of fecal indicator bacteria monitoring of coastal swimming waters in recent years, allowing for long-term, widespread retrospective studies. These studies are especially important for tracking environmental changes and perturbations in regional waters. We show that E. coli concentrations (EC) have decreased in Lake Michigan over the last 15years, coincident with the rapid invasion of Eurasian quagga mussels (Dreissenidae). While median water clarity in Lake Michigan increased by 32% from 2000 to 2014, median EC decreased by 34.9%. Of the 45 Lake Michigan beaches studied, 42 (93.3%) showed a relative decrease (76% significantly, p<0.05), in mean log E. coli between pre- and post-2007. As a result, Lake Michigan beach advisory frequency decreased by 40.0% (p<0.001) from 19.9% in 2000-2007 to 11.9% in 2008-2014. Finite Volume Coastal Ocean Model simulations at Ogden Dunes beach confirm that EC would decrease in response to the observed changes in water clarity (predicted=4.3%, actual=2.3%). In contrast, mean EC in western Lake Erie showed the opposite trend, with 17 of 19 (89.5%) beaches increasing in mean EC after 2007 (p<0.001). We explore plausible explanatory influences on lakewide EC and conclude that bacterial photoinactivation due to increased water clarity is an important contributing factor explaining the general decrease of E. coli densities in Lake Michigan. The trends and explanatory factors reported here may have important public health, management and ecological implications.
Collapse
Affiliation(s)
- Chelsea J Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States.
| | - Richard L Whitman
- United States Geological Survey (Retired), 1088 N. 350 E., Chesterton, IN 46304, United States
| |
Collapse
|
39
|
Waso M, Khan S, Khan W. Microbial source tracking markers associated with domestic rainwater harvesting systems: Correlation to indicator organisms. ENVIRONMENTAL RESEARCH 2018; 161:446-455. [PMID: 29216491 DOI: 10.1016/j.envres.2017.11.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 05/24/2023]
Abstract
Domestic rainwater harvesting (tank water) systems were screened for the presence of a panel of microbial source tracking (MST) markers and traditional indicator organisms. The indicator organisms were enumerated utilizing traditional culture-based methods, while the MST markers were quantified by quantitative PCR (qPCR). The indicators Escherichia coli (E. coli) and enterococci were also quantified using qPCR. Correlations and concurrence between these parameters were then investigated to determine which markers could be utilized to supplement traditional indicator analysis. Quantitative PCR analysis indicated that Bacteroides HF183, adenovirus, Lachnospiraceae and E. coli were detected and quantifiable in 100% of the tank water samples collected throughout the sampling period, while human mitochondrial DNA (mtDNA) was quantifiable in 90% of the tank water samples and Bifidobacterium adolescentis (B. adolescentis) and enterococci were quantifiable in 67% of the tank water samples, respectively. Significant positive correlations were recorded for Lachnospiraceae versus heterotrophic bacteria (p = 0.000), adenovirus versus E. coli (culturing) (p = 0.000) and heterotrophic bacteria (p = 0.024), the HF183 marker versus E. coli (qPCR) (p = 0.024) and B. adolescentis versus fecal coliforms (p = 0.037). In addition, 100% concurrence was observed for the HF183 marker, adenovirus and Lachnospiraceae versus E. coli (qPCR), enterococci (qPCR) and heterotrophic bacteria, amongst others. Based on the correlations and the concurrence analysis, the HF183 marker, Lachnospiraceae and adenovirus may be utilized to supplement indicator organism analysis for the monitoring of harvested rainwater quality.
Collapse
Affiliation(s)
- M Waso
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag ×1, Stellenbosch, 7602, South Africa
| | - S Khan
- Faculty of Health and Applied Sciences, Namibia University of Science and Technology, 13 Storch Street, Private Bag 13388, Windhoek, Namibia
| | - W Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag ×1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
40
|
Zhang M, Qiao G, Li Q, Xu DH, Qi Z, Wang A, Xu M, Huang J. Transcriptome analysis and discovery of genes involved in immune pathways from coelomocytes of Onchidium struma after bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 72:528-543. [PMID: 29155030 DOI: 10.1016/j.fsi.2017.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Onchidium struma widely distributes in subtidal and low-tidal zones, which is considered to be an economical species with rich nutrition, a valuable biomonitor for heavy metal pollution and a representative species for evolution from ocean to land. However, there is limited genetic information available for O. struma development. This study compared transcriptomic profiles of coelomocytes from normal and bacteria infected O. struma by Illumina-based paired-end sequencing to explore the molecular immune mechanism of O. struma against bacterial infection. After assembly, a total of 92,450 unigenes with an average length of 1019 bp were obtained. Approximately 34,964 (37.82%) unigenes were annotated in the Nr NCBI database and 40.1% of unigenes were similar with that of Aplysia californica. Among them, 7609 unigenes were classified into three Gene Ontology (GO) categories: biological process (3250 unigenes, 42.7%), cellular component (2,281, 30.0%) and molecular function (2078 unigenes, 27.3%). A total of 22,776 unigenes were aligned to the Clusters of Orthologous Groups (COG) of proteins and classified into 25 functional categories. Following bacterial infection, 10,623 differently expressed unigenes (DEGs) were identified, including 7644 up-regulated and 2979 down-regulated unigenes. Further KEGG analysis annotated 11,681 DEGs to 42 pathways, and 11 pathways were identified to be related with diseases and immune system. To our knowledge, it was first time to analyze transcriptome profiles of O. struma. Results of the present study will provide valuable theoretical resources for future genetic and genomic research on O. struma. The research results will be helpful for improving the efficiency and quality of artificial breeding, establishing genetic linkage map, and enhancing health management for this species.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China; School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Guo Qiao
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China.
| | - Qiang Li
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832, USA
| | - Zhitao Qi
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Aiming Wang
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Mengyao Xu
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China
| | - Jintian Huang
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, Province Jiangsu, China.
| |
Collapse
|
41
|
Fan L, Shuai J, Zeng R, Mo H, Wang S, Zhang X, He Y. Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1569-1577. [PMID: 28967572 DOI: 10.1016/j.envpol.2017.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China.
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Hongfei Mo
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| |
Collapse
|
42
|
Thapaliya D, Hellwig EJ, Kadariya J, Grenier D, Jefferson AJ, Dalman M, Kennedy K, DiPerna M, Orihill A, Taha M, Smith TC. Prevalence and Characterization of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus on Public Recreational Beaches in Northeast Ohio. GEOHEALTH 2017; 1:320-332. [PMID: 32158979 PMCID: PMC7007083 DOI: 10.1002/2017gh000106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 05/06/2023]
Abstract
Staphylococcus aureus can cause severe life-threatening illnesses such as sepsis and endocarditis. Although S. aureus has been isolated from marine water and intertidal beach sand, only a few studies have been conducted to assess prevalence of S. aureus at freshwater recreational beaches. As such, we aimed to determine prevalence and molecular characteristics of S. aureus in water and sand at 10 freshwater recreational beaches in Northeast Ohio, USA. Samples were analyzed using standard microbiology methods, and resulting isolates were typed by spa typing and multilocus sequence typing. The overall prevalence of S. aureus in sand and water samples was 22.8% (64/280). The prevalence of methicillin-resistant S. aureus (MRSA) was 8.2% (23/280). The highest prevalence was observed in summer (45.8%; 55/120) compared to fall (4.2%; 5/120) and spring (10.0%; 4/40). The overall prevalence of Panton-Valentine leukocidin genes among S. aureus isolates was 21.4% (15/70), and 27 different spa types were identified. The results of this study indicate that beach sand and freshwater of Northeast Ohio were contaminated with S. aureus, including MRSA. The high prevalence of S. aureus in summer months and presence of human-associated strains may indicate the possibility of role of human activity in S. aureus contamination of beach water and sand. While there are several possible routes for S. aureus contamination, S. aureus prevalence was higher in sites with wastewater treatment plants proximal to the beaches.
Collapse
Affiliation(s)
- Dipendra Thapaliya
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Emily J. Hellwig
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Jhalka Kadariya
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Dylan Grenier
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Anne J. Jefferson
- Department of Geology, College of Arts and SciencesKent State UniversityKentOHUSA
| | - Mark Dalman
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Kristen Kennedy
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Mackenzi DiPerna
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Adrienne Orihill
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Mohammed Taha
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| | - Tara C. Smith
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, College of Public HealthKent State UniversityKentOHUSA
| |
Collapse
|
43
|
Hassard F, Andrews A, Jones DL, Parsons L, Jones V, Cox BA, Daldorph P, Brett H, McDonald JE, Malham SK. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment. Front Microbiol 2017; 8:1996. [PMID: 29089931 PMCID: PMC5650961 DOI: 10.3389/fmicb.2017.01996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA). Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs) for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII) were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC). Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA) in winter. Here, we show the link between physicochemical variables and season which govern culturability of human enteric pathogens and FIOs. Therefore, knowledge of these factors is critical for accurate microbial risk assessment. Future water quality management strategies could be improved through monitoring sediment-associated bacteria and non-culturable bacteria. This could facilitate source apportionment of human enteric pathogens and FIOs and direct remedial action to improve water quality.
Collapse
Affiliation(s)
- Francis Hassard
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom.,Cranfield Water Science Institute, Cranfield University, Bedford, United Kingdom
| | | | - Davey L Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Louise Parsons
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | | | | | | | | | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
44
|
Kacar A, Omuzbuken B. Assessing the seawater quality of a coastal city using fecal indicators and environmental variables (eastern Aegean Sea). MARINE POLLUTION BULLETIN 2017; 123:400-403. [PMID: 28863975 DOI: 10.1016/j.marpolbul.2017.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The presence of fecal bacteria in seawater is one of the most important bio-indicator parameters of fecal pollution. In this study, the Bay of İzmir (in the eastern Aegean Sea), which is a critical area because of its relationship with marine transportation and industrial and commercial activities, was evaluated for its microbiological and physicochemical parameters through a monitoring program. The data were obtained from seasonally assembled surface seawater samples from 2015 to 2017 at 23 sampling stations. Bacteriological investigations were performed by membrane filtration technique. During the monitoring period, for stations at the inner and middle-outer part, it was found that the inner part is exposed to more number of fecal coliforms (8.8×102cfu/100mL) and fecal streptococci (1.1×103cfu/100mL). The monitoring analysis performed in this study showed that there was negative correlation between physicochemical parameters and the level of fecal bacteria, but no significance was recorded by the Pearson correlation test. Fecal contamination parameters should be routinely monitored for improving the environmental conditions of coastal cities.
Collapse
Affiliation(s)
- Asli Kacar
- Dokuz Eylul University, Institute of Marine Sciences and Technology, Inciralti-Izmir, Turkey.
| | - Burcu Omuzbuken
- Dokuz Eylul University, Institute of Marine Sciences and Technology, Inciralti-Izmir, Turkey
| |
Collapse
|
45
|
Palazón A, López I, Aragonés L, Villacampa Y, Navarro-González FJ. Modelling of Escherichia coli concentrations in bathing water at microtidal coasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:173-181. [PMID: 28346898 DOI: 10.1016/j.scitotenv.2017.03.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Monitoring of the quality of bathing water in line with the European Commission bathing water directive (Directive 2006/7/EC) is a significant economic expense for those countries with great lengths of coastline. In this study a numerical model based on finite elements is generated whose objective is partially substituting the microbiological analysis of the quality of coastal bathing waters. According to a study of the concentration of Escherichia coli in 299 Spanish Mediterranean beaches, it was established that the most important variables that influence the concentration are: monthly sunshine hours, mean monthly precipitation, number of goat cattle heads, population density, presence of Posidonia oceanica, UV, urbanization level, type of sediment, wastewater treatment ratio, salinity, distance to the nearest discharge, and wave height perpendicular to the coast. Using these variables, a model with an absolute error of 10.6±1.5CFU/100ml is achieved. With this model, if there are no significant changes in the beach environment and the variables remain more or less stable, the concentration of E. coli in bathing water can be determined, performing only specific microbiological analyses to verify the water quality.
Collapse
Affiliation(s)
- A Palazón
- Dept. of Civil Engineering, Catholic University of Murcia, Campus de los Jerónimos, N° 135 Guadalupe, 30107 Murcia, Spain
| | - I López
- Dept. of Civil Engineering, University of Alicante, Carretera San Vicent del Raspeig s/n, 03690 Alicante, Spain
| | - L Aragonés
- Dept. of Civil Engineering, University of Alicante, Carretera San Vicent del Raspeig s/n, 03690 Alicante, Spain.
| | - Y Villacampa
- Dept. of Applied Mathematics, University of Alicante, Carretera San Vicent del Raspeig s/n, 03690 Alicante, Spain
| | - F J Navarro-González
- Dept. of Applied Mathematics, University of Alicante, Carretera San Vicent del Raspeig s/n, 03690 Alicante, Spain
| |
Collapse
|
46
|
Akanbi OE, Njom HA, Fri J, Otigbu AC, Clarke AM. Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Recreational Waters and Beach Sand in Eastern Cape Province of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091001. [PMID: 28862669 PMCID: PMC5615538 DOI: 10.3390/ijerph14091001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Background: Resistance of Staphylococcus aureus to commonly used antibiotics is linked to their ability to acquire and disseminate antimicrobial-resistant determinants in nature, and the marine environment may serve as a reservoir for antibiotic-resistant bacteria. This study determined the antibiotic sensitivity profile of S.aureus isolated from selected beach water and intertidal beach sand in the Eastern Cape Province of South Africa. Methods: Two hundred and forty-nine beach sand and water samples were obtained from 10 beaches from April 2015 to April 2016. Staphylococcus aureus was isolated from the samples using standard microbiological methods and subjected to susceptibility testing to 15 antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) was detected by susceptibility to oxacillin and growth on Brilliance MRSA II agar. Antibiotic resistance genes including mecA, femA rpoB, blaZ, ermB, ermA, ermC, vanA, vanB, tetK and tetM were screened. Results: Thirty isolates (12.3%) were positive for S. aureus by PCR with over 50% showing phenotypic resistance to methicillin. Resistance of S. aureus to antibiotics varied considerably with the highest resistance recorded to ampicillin and penicillin (96.7%), rifampicin and clindamycin (80%), oxacillin (73.3%) and erythromycin (70%). S.aureus revealed varying susceptibility to imipenem (96.7%), levofloxacin (86.7%), chloramphenicol (83.3%), cefoxitin (76.7%), ciprofloxacin (66.7%), gentamycin (63.3%), tetracycline and sulfamethoxazole-trimethoprim (56.7%), and vancomycin and doxycycline (50%). All 30 (100%) S. aureus isolates showed multiple antibiotic-resistant patterns (resistant to three or more antibiotics). The mecA, femA, rpoB, blaZ, ermB and tetM genes were detected in 5 (22.7%), 16 (53.3%), 11 (45.8%), 16 (55.2%), 15 (71.4%), and 8 (72.7%) isolates respectively; Conclusions: Results from this study indicate that beach water and sand from the Eastern Cape Province of South Africa may be potential reservoirs of antibiotic-resistant S. aureus which could be transmitted to exposed humans and animals.
Collapse
Affiliation(s)
- Olufemi Emmanuel Akanbi
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Henry Akum Njom
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Justine Fri
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony C Otigbu
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anna M Clarke
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
47
|
Suciu MC, Tavares DC, Costa LL, Silva MCL, Zalmon IR. Evaluation of environmental quality of sandy beaches in southeastern Brazil. MARINE POLLUTION BULLETIN 2017; 119:133-142. [PMID: 28473210 DOI: 10.1016/j.marpolbul.2017.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 05/06/2023]
Abstract
The effect of urbanization on the environmental quality of two sandy beaches was evaluated using metrics such as pH, dissolved oxygen, coliforms and solid waste. Urbanization effects on physicochemical metrics (pH and dissolved oxygen) were not significant. The coliforms concentration was below the established limit for primary contact, but it was significantly higher on beaches with highest recreational potential. Similarly, the abundance of solid waste was significantly higher in urbanized areas (~4.5 items/m2), and it was higher than what was found for 106 beaches worldwide. Plastic represented 84% of the total number of items and recreational activities were the main sources of debris (80%). Therefore, a balance between recreation and conservation actions, based on short-term (e.g. fines) and long-term measures (e.g. educational policies) is recommended. We demonstrate that the use of multiple metrics provides more robust estimates of the environmental quality of sandy beaches than a single impact metric.
Collapse
Affiliation(s)
- Marjorie C Suciu
- University of North Rio de Janeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Davi C Tavares
- University of North Rio de Janeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Leonardo L Costa
- University of North Rio de Janeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Marianna C L Silva
- University of North Rio de Janeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Ilana R Zalmon
- University of North Rio de Janeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| |
Collapse
|
48
|
Romão D, Staley C, Ferreira F, Rodrigues R, Sabino R, Veríssimo C, Wang P, Sadowsky M, Brandão J. Next-generation sequencing and culture-based techniques offer complementary insights into fungi and prokaryotes in beach sands. MARINE POLLUTION BULLETIN 2017; 119:351-358. [PMID: 28442200 DOI: 10.1016/j.marpolbul.2017.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A next-generation sequencing (NGS) approach, in conjunction with culture-based methods, was used to examine fungal and prokaryotic communities for the presence of potential pathogens in beach sands throughout Portugal. Culture-based fungal enumeration revealed low and variable concentrations of the species targeted (yeasts and dermatophytes), which were underrepresented in the community characterized by NGS targeting the ITS1 region. Conversely, NGS indicated that the potentially pathogenic species Purpureocillium liliacinum comprised nearly the entire fungal community. Culturable fecal indicator bacterial concentrations were low throughout the study and unrelated to communities characterized by NGS. Notably, the prokaryotic communities characterized revealed a considerable abundance of archaea. Results highlight differences in communities between methods in beach sand monitoring but indicate the techniques offer complementary insights. Thus, there is a need to leverage culture-based methods with NGS methods, using a toolbox approach, to determine appropriate targets and metrics for beach sand monitoring to adequately protect public health.
Collapse
Affiliation(s)
- Daniela Romão
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States
| | - Filipa Ferreira
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Raquel Rodrigues
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections - Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections - Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States
| | - Michael Sadowsky
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, United States.
| | - João Brandão
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
49
|
Mika KB, Chavarria KA, Imamura G, Tang C, Torres R, Jay JA. Sources and persistence of fecal indicator bacteria and Bacteroidales in sand as measured by culture-based and culture-independent methods: A case study at Santa Monica Pier, California. WATER, AIR, AND SOIL POLLUTION 2017; 228:124. [PMID: 30853729 PMCID: PMC6404519 DOI: 10.1007/s11270-017-3291-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated causes of persistent fecal indicator bacteria (FIB) in beach sand under the pier in Santa Monica, CA. FIB levels were up to 1,000 times higher in sand underneath the pier than that collected from adjacent to the pier, with the highest concentrations under the pier in spring and fall. Escherichia coli (EC) and enterococci (ENT) under the pier were significantly positively correlated with moisture (ρ = 0.61, p < 0.001, n = 59; ρ = 0.43, p < 0.001, n = 59, respectively), and ENT levels measured by qPCR (qENT) were much higher than those measured by membrane filtration (cENT). Microcosm experiments tested the ability of EC, qENT, cENT, and general Bacteroidales (GenBac) to persist under in-situ moisture conditions (10% and 0.1%). Decay rates of qENT, cENT, and GenBac were not significantly different from zero at either moisture level, while decay rates for EC were relatively rapid during the microcosm at 10% moisture (k = 0.7 days-1). Gull/pelican marker was detected at eight of 12 sites and no human-associated markers (TaqHF183 and HumM2) were detected at any site during a one-day site survey. Results from this study indicate that the high levels of FIB observed likely stem from environmental sources combined with high persistence of FIB under the pier.
Collapse
Affiliation(s)
- Kathryn B Mika
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Karina A Chavarria
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Greg Imamura
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Chay Tang
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert Torres
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Jennifer A. Jay
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
50
|
Wiegner TN, Edens CJ, Abaya LM, Carlson KM, Lyon-Colbert A, Molloy SL. Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions. MARINE POLLUTION BULLETIN 2017; 114:952-961. [PMID: 27866724 DOI: 10.1016/j.marpolbul.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 05/19/2023]
Abstract
Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions.
Collapse
Affiliation(s)
- T N Wiegner
- Marine Science Department. University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States.
| | - C J Edens
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States.
| | - L M Abaya
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States.
| | - K M Carlson
- Marine Science Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States.
| | - A Lyon-Colbert
- Amber Lyon-Colbert, M.S., Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, United States.
| | - S L Molloy
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, United States.
| |
Collapse
|