1
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, El-Shabasy RM, Hasan ME. Foot-and-mouth disease: genomic and proteomic structure, antigenic sites, serotype relationships, immune evasion, recent vaccine development strategies, and future perspectives. Vet Res 2025; 56:78. [PMID: 40197411 PMCID: PMC11974090 DOI: 10.1186/s13567-025-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/31/2024] [Indexed: 04/10/2025] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and transmissible disease that can have significant economic and trade repercussions during outbreaks. In Egypt, despite efforts to mitigate FMD through mandatory immunization, the disease continues to pose a threat due to the high genetic variability and quasi-species nature of the FMD virus (FMDV). Vaccines have been crucial in preventing and managing FMD, and ongoing research focusses on developing next-generation vaccines that could provide universal protection against all FMDV serotypes. This review thoroughly examines the genetic structure of FMDV, including its polyprotein cleavage process and the roles of its structural and non-structural proteins in immune evasion. Additionally, it explores topics such as antigenic sites, specific mutations, and serotype relationships from Egypt and Ethiopia, as well as the structural changes in FMDV serotypes for vaccine development. The review also addresses the challenges associated with creating effective vaccines for controlling FMD, particularly focusing on the epitope-based vaccine. Overall, this review offers valuable insights for researchers seeking to develop effective strategies and vaccines for controlling FMD.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rehan M El-Shabasy
- Chemistry Department, The American University in Cairo, AUC Avenue, New Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - Mohamed E Hasan
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
2
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
3
|
Peta FRM, Sirdar MM, van Bavel P, Mutowembwa PB, Visser N, Olowoyo J, Seheri M, Heath L. Evaluation of Potency and Duration of Immunity Elicited by a Multivalent FMD Vaccine for Use in South Africa. Front Vet Sci 2022; 8:750223. [PMID: 34977205 PMCID: PMC8714748 DOI: 10.3389/fvets.2021.750223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
South Africa (SA) experiences sporadic foot and mouth disease (FMD) outbreaks irrespective of routine prophylactic vaccinations of cattle using imported commercial vaccines. The problem could be mitigated by preparation of vaccines from local virus strains related to those circulating in the endemically infected buffalo populations in the Kruger National Park (KNP). This study demonstrates the individual number of protective doses (PD) of five vaccine candidate strains after homologous virus challenge, as well as the vaccines safety and onset of humoral immunity in naïve cattle. Furthermore, the duration of post-vaccination immunity over a 12-month period is shown, when a multivalent vaccine prepared from the five strains is administered as a primary dose with or without booster vaccinations. The five monovalent vaccines were shown to contain a 50% PD between 4 and 32, elicit humoral immunity with antibody titers ≥2.0 log10 from day 7 post-vaccination, and cause no adverse reactions. Meanwhile, the multivalent vaccine elicited antibody titers ≥2.0 log10 and clinical protection up to 12 months when one or two booster vaccinations were administered within 6 months of the primary vaccination. An insignificant difference between the application of one or two booster vaccinations was revealed. Owing to the number of PDs, we anticipate that the multivalent vaccine could be used successfully for prophylactic and emergency vaccinations without adjustment of the antigen payloads. Furthermore, a prophylactic vaccination regimen comprising primary vaccination of naïve cattle followed by two booster vaccinations 1.5 and 6 months later could potentially maintain herd immunity over a period of 12 months.
Collapse
Affiliation(s)
- Faith R M Peta
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa.,Department of Medical Virology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - M M Sirdar
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa
| | - Peter van Bavel
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa.,Private Consultants, Boxmeer, Netherlands
| | - P B Mutowembwa
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa
| | - N Visser
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa.,Private Consultants, Boxmeer, Netherlands
| | - J Olowoyo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - M Seheri
- Department of Medical Virology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Livio Heath
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
4
|
Gerner W, Mair KH, Schmidt S. Local and Systemic T Cell Immunity in Fighting Pig Viral and Bacterial Infections. Annu Rev Anim Biosci 2021; 10:349-372. [PMID: 34724393 DOI: 10.1146/annurev-animal-013120-044226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like Actinobacillus pleuropneumoniae and Salmonella Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Wilhelm Gerner
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; .,Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Selma Schmidt
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| |
Collapse
|
5
|
Kenubih A. Foot and Mouth Disease Vaccine Development and Challenges in Inducing Long-Lasting Immunity: Trends and Current Perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:205-215. [PMID: 34513635 PMCID: PMC8420785 DOI: 10.2147/vmrr.s319761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Foot and mouth disease (FMD) is an extremely contagious viral disease of livestock caused by foot and mouse disease virus genus: Aphthovirus, which causes a serious economic impact on both individual farmers and the national economy. Many attempts to advance a vaccine for FMD have failed to induce sterile immunity. The classical methods of vaccine production were due to selective accumulation of mutations around antigenic and binding sites. Reversion of the agent by positive selection and quasi-species swarm, use of this method is inapplicable for use in non-endemic areas. Chemical attenuation using binary ethyleneimine (BEI) protected the capsid integrity and produced a pronounced immunity against the challenge strain. Viral antigens which have been chemically synthesized or expressed in viruses, plasmid, or plants were tried in the vaccination of animals. DNA vaccines expressing either structural or nonstructural protein antigens have been tried to immunize animals. Using interleukins as a genetic adjuvant for DNA vaccines have a promising effect. While the challenges of inducing sterile immunity lies on non-structural (NS) proteins of FMDV which are responsible for apoptosis of dendritic cells and have negative effects on lympho-proliferative responses which lead to transient immunosuppression. Furthermore, destruction of host protein trafficking by nonstructural proteins suppressed CD8+ T-cell proliferation. In this review, it tried to address multiple approaches for vaccine development trials and bottle necks of producing sterile immunity.
Collapse
Affiliation(s)
- Ambaye Kenubih
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Para-Clinical Studies, Gondar, Ethiopia
| |
Collapse
|
6
|
Rathogwa NM, Scott KA, Opperman P, Theron J, Maree FF. Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants. Vaccines (Basel) 2021; 9:vaccines9090996. [PMID: 34579233 PMCID: PMC8473074 DOI: 10.3390/vaccines9090996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The effective control of foot-and-mouth disease (FMD) relies strongly on the separation of susceptible and infected livestock or susceptible livestock and persistently infected wildlife, vaccination, and veterinary sanitary measures. Vaccines affording protection against multiple serotypes for longer than six months and that are less reliant on the cold chain during handling are urgently needed for the effective control of FMD in endemic regions. Although much effort has been devoted to improving the immune responses elicited through the use of modern adjuvants, their efficacy is dependent on the formulation recipe, target species and administration route. Here we compared and evaluated the efficacy of two adjuvant formulations in combination with a structurally stabilized SAT2 vaccine antigen, designed to have improved thermostability, antigen shelf-life and longevity of antibody response. Protection mediated by the Montanide ISA 206B-adjuvanted or Quil-A Saponin-adjuvanted SAT2 vaccines were comparable. The Montanide ISA 206B-adjuvanted vaccine elicited a higher SAT2 neutralizing antibody response and three times higher levels of systemic IFN-γ responses at 14- and 28-days post-vaccination (dpv) were observed compared to the Quil-A Saponin-adjuvanted vaccine group. Interestingly, serum antibodies from the immunized animals reacted similarly to the parental vaccine virus and viruses containing mutations in the VP2 protein that simulate antigenic drift in nature.
Collapse
Affiliation(s)
- Ntungufhadzeni M. Rathogwa
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Katherine A. Scott
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
| | - Pamela Opperman
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Francois F. Maree
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
7
|
Rangel G, Martín V, Bárcena J, Blanco E, Alejo A. An Adenovirus Vector Expressing FMDV RNA Polymerase Combined with a Chimeric VLP Harboring a Neutralizing Epitope as a Prime Boost Strategy to Induce FMDV-Specific Humoral and Cellular Responses. Pharmaceuticals (Basel) 2021; 14:ph14070675. [PMID: 34358101 PMCID: PMC8308840 DOI: 10.3390/ph14070675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Foot and mouth disease is a highly contagious disease affecting cattle, sheep, and swine among other cloven-hoofed animals that imposes serious economic burden by its direct effects on farm productivity as well as on commerce of farmed produce. Vaccination using inactivated viral strains of the different serotypes is an effective protective measure, but has several drawbacks including a lack of cross protection and the perils associated with the large-scale growth of infectious virus. We have previously developed chimeric virus-like particles (VLPs) bearing an FMDV epitope which induced strong specific humoral responses in vaccinated pigs but conferred only partial protection against homologous challenge. While this and other FMD vaccines under development mostly rely on the induction of neutralizing responses, it is thought that induction of specific T-cell responses might improve both cross protective efficacy as well as duration of immunity. Therefore, we here describe the development of a recombinant adenovirus expressing the highly conserved nonstructural FMDV 3D protein as well as its capacity to induce specific T-cell responses in a murine model. We further describe the generation of an FMDV serotype C-specific chimeric VLP and analyze the immunogenicity of two different prime-boost strategies combining both elements in mice. This combination can effectively induce both humoral and cellular FMDV-specific responses eliciting high titers of ELISA and neutralizing antibodies anti-FMDV as well as a high frequency of IFNγ-secreting cells. These results provide the basis for further testing of this anti FMD vaccination strategy in cattle or pig, two of the most relevant natural host of this pathogen.
Collapse
Affiliation(s)
- Giselle Rangel
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICA-SAT-AIP), City of Knowledge, Panama 0843-01103, Panama
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
- Correspondence: ; Tel.: +34-91-6202300
| |
Collapse
|
8
|
Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021; 9:vaccines9050477. [PMID: 34066901 PMCID: PMC8150788 DOI: 10.3390/vaccines9050477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Collapse
Affiliation(s)
- Mar Forner
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, 08193 Barcelona, Spain;
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
9
|
de León P, Cañas-Arranz R, Defaus S, Torres E, Forner M, Bustos MJ, Revilla C, Dominguez J, Andreu D, Blanco E, Sobrino F. Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Front Immunol 2021; 11:621537. [PMID: 33613553 PMCID: PMC7886804 DOI: 10.3389/fimmu.2020.621537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140–158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21–35)] or 3D [3D (56–70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3−) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.
Collapse
Affiliation(s)
- Patricia de León
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisa Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - María J Bustos
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Concepción Revilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Javier Dominguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Francisco Sobrino
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
10
|
Defaus S, Forner M, Cañas-Arranz R, de León P, Bustos MJ, Rodríguez-Pulido M, Blanco E, Sobrino F, Andreu D. Designing Functionally Versatile, Highly Immunogenic Peptide-Based Multiepitopic Vaccines against Foot-and-Mouth Disease Virus. Vaccines (Basel) 2020; 8:vaccines8030406. [PMID: 32707834 PMCID: PMC7565419 DOI: 10.3390/vaccines8030406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022] Open
Abstract
A broadly protective and biosafe vaccine against foot-and-mouth disease virus (FMDV) remains an unmet need in the animal health sector. We have previously reported solid protection against serotype O FMDV afforded by dendrimeric peptide structures harboring virus-specific B- and T-cell epitopes, and also shown such type of multivalent presentations to be advantageous over simple B-T-epitope linear juxtaposition. Chemically, our vaccine platforms are modular constructions readily made from specified B- and T-cell epitope precursor peptides that are conjugated in solution. With the aim of developing an improved version of our formulations to be used for on-demand vaccine applications, we evaluate in this study a novel design for epitope presentation to the immune system based on a multiple antigen peptide (MAP) containing six immunologically relevant motifs arranged in dendrimeric fashion (named B2T-TB2). Interestingly, two B2T units fused tail-to-tail into a single homodimer platform elicited higher B- and T-cell specific responses than former candidates, with immunization scores remaining stable even after 4 months. Moreover, this macromolecular assembly shows consistent immune response in swine, the natural FMDV host, at reduced dose. Thus, our versatile, immunogenic prototype can find application in the development of peptide-based vaccine candidates for various therapeutic uses using safer and more efficacious vaccination regimens.
Collapse
Affiliation(s)
- Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - María J. Bustos
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
11
|
Zou Y, Wu N, Miao C, Yue H, Wu J, Ma G. A novel multiple emulsion enhanced immunity via its biomimetic delivery approach. J Mater Chem B 2020; 8:7365-7374. [DOI: 10.1039/d0tb01318h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A special emulsion with biomimetic structural dynamic properties was fabricated, inducing efficient vaccine–cell interaction and robust immunity.
Collapse
Affiliation(s)
- Yongjuan Zou
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Nan Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
12
|
Chemokine CCL20 plasmid improves protective efficacy of the Montanide ISA™ 206 adjuvanted foot-and-mouth disease vaccine in mice model. Vaccine 2018; 36:5318-5324. [PMID: 30054161 DOI: 10.1016/j.vaccine.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the chemokine CCL20, a macrophage inflammatory protein-3 alpha, for adjuvant potential in inactivated foot-and-mouth disease (FMD) vaccine. Groups of mice were injected intramuscularly with either murine CCL20 DNA or CCL20 protein two days ahead of the immunization with Montanide ISA206 adjuvanted inactivated FMD vaccine and humoral and cellular immune responses were measured in post-vaccinal sera. We demonstrated that the mice immunized with CCL20 plasmid plus FMD vaccine showed earlier and significantly (p < 0.05) higher neutralizing antibody responses compared to the mice vaccinated with CCL20 protein plus FMD vaccine. In fact, CCL20 as a protein did not show any adjuvant effect and the immune responses induced in this group were comparable to that of the mice vaccinated with FMD vaccine alone. All the vaccination groups showed serum IgG1 and IgG2 antibody responses; however, the mice vaccinated with CCL20 plasmid plus FMD vaccine showed significantly (p < 0.05) higher IgG1 and IgG2 responses and the responses remained high at all-time points post vaccination, although not always statistically significant. Upon restimulation of the vaccinated splenocytes with the inactivated FMD viral antigen, significantly (p < 0.05) higher IFN-γ and IL-2 levels in culture supernatants were found in animals vaccinated with the CCL20 plasmid plus FMD vaccine, which is indicative of the TH1 type of cellular immunity. On challenge with the homologous FMD virus on 28th day post immunization, CCL20 plasmid plus FMD vaccine showed complete protection (100%) while animals immunized with CCL20 protein plus FMD vaccine or FMD vaccine alone showed 66% protection. In summary, we show that prior injection of CCL20 plasmid improved protective efficacy of the inactivated FMD vaccine and thus offers a valuable strategy to modulate the efficacy and polarization of specific immunity against inactivated vaccines.
Collapse
|
13
|
Gao FS, Zhai XX, Jiang P, Zhang Q, Gao H, Li ZB, Han Y, Yang J, Zhang ZH. Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-I proteins. Gene 2018; 653:91-101. [PMID: 29432828 DOI: 10.1016/j.gene.2018.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Currently available vaccines from inactivated foot-and-mouth disease virus (FMDV) only protect animals by inducing neutralizing antibodies. A vaccine that contains cytotoxic T lymphocytes (CTL) epitopes to induce strong CTL responses might protect animals more effectively. Herein, we used swine leukocyte antigen class I (SLAI) proteins derived from six different strains of domestic pigs to screen and identify shared FMDV CTL epitopes. Four potential FMDV CTL epitopes (Q01, Q02, AS3, and QA4) were confirmed by mass spectrometry. We also determined the antigenicity of these epitopes to elicit cell-mediated immunoresponse by the ELISPOT and CTL assays. Among the four peptides, Q01 and QA4 were found to bind all six SLA-I proteins with strong affinity and elicit significant activity of CTL (P < 0.01). We conclude that Q01 and QA4 peptides are novel shared epitopes that can be recognized by all six SLA-I molecules on representative CTLs.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China.
| | - Xiao-Xin Zhai
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Ping Jiang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Qiang Zhang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzou, Gansu 730046, PR China
| | - Hua Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China; Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China
| | - Yong Han
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zong-Hui Zhang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| |
Collapse
|
14
|
Abubakar M, Manzoor S, Ahmed A. Interplay of foot and mouth disease virus with cell-mediated and humoral immunity of host. Rev Med Virol 2017; 28. [PMID: 29282795 DOI: 10.1002/rmv.1966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
Foot and mouth disease virus (FMDV) causes a communicable disease of cloven hoofed animals, resulting in major economic losses during disease outbreaks. Like other members of the Picornaviridae FMDV has a relatively short infectious cycle; initiation of infection and dissemination, with production of infectious virions occurs in less than a week. The components of innate immunity as well as cell-mediated and humoral immunity play a crucial role in control of FMDV. However, it has been shown in vitro using a mouse model that FMDV has evolved certain mechanisms to counteract host immune responses ensuring its survival and spread. The viral leader proteinase, L pro, deters interferon beta (IFN-β) mRNA synthesis, thus, inhibiting host cell translation. Another viral proteinase, 3C pro, disrupts host cell transcription by cleaving histone H3. A transient lymphopenia in swine as a consequence of FMDV infection has also been observed, but the mechanism involved and viral protein(s) associated with this process are not clearly understood. In this review, we have covered the interaction of FMDV with different immune cells including lymphocytes and antigen presenting cells and their consequences.
Collapse
Affiliation(s)
| | | | - Afshan Ahmed
- FAO FMD Project (GCP/PAK/123/USA), Islamabad, Pakistan
| |
Collapse
|
15
|
Kenney M, Waters RA, Rieder E, Pega J, Perez-Filguera M, Golde WT. Enhanced sensitivity in detection of antiviral antibody responses using biotinylation of foot-and-mouth disease virus (FMDV) capsids. J Immunol Methods 2017; 450:1-9. [PMID: 28689695 DOI: 10.1016/j.jim.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/28/2023]
Abstract
Analysis of the immune response to infection of livestock by foot-and-mouth disease virus (FMDV) is most often reported as the serum antibody response to the virus. While measurement of neutralizing antibody has been sensitive and specific, measurements of the quality of the antibody response are less robust. Determining the immunoglobulin (Ig) isotype of the serum antibody response provides a deeper understanding of the biology of the response and more sensitive methods for these assays will facilitate analyses of B cell mediated immunity. We tested the hypothesis that using the virus as the molecular probe could be achieved by adding tags to the surface of the FMDV capsid, and that would enhance sensitivity in assays for anti-FMDV antibody responses. The use of a FLAG-tagged virus in these assays failed to yield improvement whereas chemically biotinylating the virus capsid resulted in significant enhancement of the signal. Here we describe methods using biotinylated virus for measuring anti-viral antibody in serum and antibody secreting cells (ASCs) in blood that are sensitive and specific. Finally, we describe using the biotinylated virus in flow cytometry where such assays should greatly enhance the analysis of anti-virus antibody producing B cells, allowing the investigator to focus on only the FMDV specific B cells when analyzing the development of the B cell response to either infection or vaccination.
Collapse
Affiliation(s)
- Mary Kenney
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Ryan A Waters
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Juan Pega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Mariano Perez-Filguera
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - William T Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States.
| |
Collapse
|
16
|
Korrelate für Infektionsschutz nach Impfung. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Lokhandwala S, Waghela SD, Bray J, Sangewar N, Charendoff C, Martin CL, Hassan WS, Koynarski T, Gabbert L, Burrage TG, Brake D, Neilan J, Mwangi W. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine. PLoS One 2017; 12:e0177007. [PMID: 28481911 PMCID: PMC5421782 DOI: 10.1371/journal.pone.0177007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.
Collapse
Affiliation(s)
- Shehnaz Lokhandwala
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Neha Sangewar
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Chloe Charendoff
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Cameron L Martin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Wisam S Hassan
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | | | - Lindsay Gabbert
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, Greenport, NY, United States of America
| | - Thomas G Burrage
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, Greenport, NY, United States of America
| | - David Brake
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, Greenport, NY, United States of America
| | - John Neilan
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, Greenport, NY, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
18
|
Correas I, Osorio FA, Steffen D, Pattnaik AK, Vu HLX. Cross reactivity of immune responses to porcine reproductive and respiratory syndrome virus infection. Vaccine 2017; 35:782-788. [PMID: 28062126 DOI: 10.1016/j.vaccine.2016.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/19/2023]
Abstract
Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.
Collapse
Affiliation(s)
- Ignacio Correas
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Fernando A Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Hiep L X Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States.
| |
Collapse
|
19
|
Lyons NA, Lyoo YS, King DP, Paton DJ. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs. Front Vet Sci 2016; 3:102. [PMID: 27965966 PMCID: PMC5127833 DOI: 10.3389/fvets.2016.00102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future.
Collapse
Affiliation(s)
- Nicholas A. Lyons
- The Pirbright Institute, Pirbright, UK
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
20
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
21
|
Eschbaumer M, Stenfeldt C, Rekant SI, Pacheco JM, Hartwig EJ, Smoliga GR, Kenney MA, Golde WT, Rodriguez LL, Arzt J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet Res 2016; 12:205. [PMID: 27634113 PMCID: PMC5025598 DOI: 10.1186/s12917-016-0838-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic response to vaccination and challenge was studied in 47 steers. Eighteen steers that had received a recombinant FMDV A vaccine 2 weeks earlier and 29 non-vaccinated steers were challenged by intra-nasopharyngeal deposition of FMDV A24. For up to 35 days after challenge, host factors including complete blood counts with T lymphocyte subsets, type I/III interferon (IFN) activity, neutralizing and total FMDV-specific antibody titers in serum, as well as antibody-secreting cells (in 6 non-vaccinated animals) were characterized in the context of viral infection dynamics. Results Vaccination generally induced a strong antibody response. There was a transient peak of FMDV-specific serum IgM in non-vaccinated animals after challenge, while IgM levels in vaccinated animals did not increase further. Both groups had a lasting increase of specific IgG and neutralizing antibody after challenge. Substantial systemic IFN activity in non-vaccinated animals coincided with viremia, and no IFN or viremia was detected in vaccinated animals. After challenge, circulating lymphocytes decreased in non-vaccinated animals, coincident with viremia, IFN activity, and clinical disease, whereas lymphocyte and monocyte counts in vaccinated animals were unaffected by vaccination but transiently increased after challenge. The CD4+/CD8+ T cell ratio in non-vaccinated animals increased during acute infection, driven by an absolute decrease of CD8+ cells. Conclusions The incidence of FMDV persistence was 61.5 % in non-vaccinated and 54.5 % in vaccinated animals. Overall, the systemic factors examined were not associated with the FMDV carrier/non-carrier divergence; however, significant differences were identified between responses of non-vaccinated and vaccinated cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0838-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Eschbaumer
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Carolina Stenfeldt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Steven I Rekant
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Juan M Pacheco
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Ethan J Hartwig
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - George R Smoliga
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Mary A Kenney
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - William T Golde
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Luis L Rodriguez
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Jonathan Arzt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.
| |
Collapse
|
22
|
Gimsa U, Ho CS, Hammer SE. Preferred SLA class I/class II haplotype combinations in German Landrace pigs. Immunogenetics 2016; 69:39-47. [DOI: 10.1007/s00251-016-0946-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
23
|
Pedersen LE, Patch JR, Kenney M, Glabman RA, Nielsen M, Jungersen G, Buus S, Golde WT. Expanding specificity of class I restricted CD8 + T cells for viral epitopes following multiple inoculations of swine with a human adenovirus vectored foot-and-mouth disease virus (FMDV) vaccine. Vet Immunol Immunopathol 2016; 181:59-67. [PMID: 27498407 DOI: 10.1016/j.vetimm.2016.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
The immune response to the highly acute foot-and-mouth disease virus (FMDV) is routinely reported as a measure of serum antibody. However, a critical effector function of immune responses combating viral infection of mammals is the cytotoxic T lymphocyte (CTL) response mediated by virus specific CD8 expressing T cells. This immune mechanism arrests viral spread by killing virus infected cells before new, mature virus can develop. We have previously shown that infection of swine by FMDV results in a measurable CTL response and have correlated CTL killing of virus-infected cells with specific class I major histocompatibility complex (MHC) tetramer staining. We also showed that a modified replication defective human adenovirus 5 vector expressing the FMDV structural proteins (Ad5-FMDV-T vaccine) targets the induction of a CD8+ CTL response with a minimal humoral response. In this report, we show that the specificity of the CD8+ T cell response to Ad5-FMDV-T varies between cohorts of genetically identical animals. Further, we demonstrate epitope specificity of CD8+ T cells expands following multiple immunizations with this vaccine.
Collapse
Affiliation(s)
- Lasse E Pedersen
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA; National Veterinary Institute and Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Jared R Patch
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA; Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Mary Kenney
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA
| | - Raisa A Glabman
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA; Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Morten Nielsen
- National Veterinary Institute and Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Gregers Jungersen
- National Veterinary Institute and Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Soren Buus
- University of Copenhagen, Copenhagen, Denmark
| | - William T Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA.
| |
Collapse
|
24
|
Pandya M, Rasmussen M, Hansen A, Nielsen M, Buus S, Golde W, Barlow J. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules. Immunogenetics 2015; 67:691-703. [PMID: 26496773 DOI: 10.1007/s00251-015-0877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/07/2015] [Indexed: 01/20/2023]
Abstract
Major histocompatibility complex (MHC) class Imolecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network-based predictions (NetMHCpan). The updated NetMHCpan server was used to predict BoLA-I binding peptides within the P1 structural polyprotein sequence of FMDV (strain A24 Cruzeiro) for Bo-LA-1*01901, BoLA-2*00801, BoLA-2*01201, and BoLA-4*02401. Peptide binding affinity and stability were determined for these BoLA-I molecules using the luminescent oxygen channeling immunoassay (LOCI) and scintillation proximity assay (SPA). The functional diversity of known BoLA alleles was predicted using theMHCcluster tool, and functional predictions for peptide motifs were compared to observed data from this and prior studies. The results of these analyses showed that BoLA alleles cluster into three distinct groups with the potential to define BBoLA supertypes.^ This streamlined approach identifies potential T cell epitopes from pathogens, such as FMDV, and provides insight into T cell immunity following infection or vaccination.
Collapse
|
25
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
26
|
Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol 2014; 66:3-13. [PMID: 25466616 DOI: 10.1016/j.molimm.2014.10.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/27/2022]
Abstract
Domestic pigs are considered as a valuable large animal model because of their close relation to humans in regard to anatomy, genetics and physiology. This includes their potential use as organ donors in xenotransplantation but also studies on various zoonotic infections affecting pigs and humans. Such work also requires a thorough understanding of the porcine immune system which was partially hampered in the past by restrictions on available immunological tools compared to rodent models. However, progress has been made during recent years in the study of both, the innate and the adaptive immune system of pigs. In this review we will summarize the current knowledge on porcine αβ T cells, which comprise two major lymphocyte subsets of the adaptive immune system: CD4(+) T cells with important immunoregulatory functions and CD8(+) T cells, also designated as cytolytic T cells. Aspects on their functional and phenotypic differentiation are presented. In addition, we summarize currently available tools to study these subsets which may support a more widespread use of swine as a large animal model.
Collapse
Affiliation(s)
- Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Hanna C Koinig
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Corinna Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
27
|
Mokhtar H, Eck M, Morgan SB, Essler SE, Frossard JP, Ruggli N, Graham SP. Proteome-wide screening of the European porcine reproductive and respiratory syndrome virus reveals a broad range of T cell antigen reactivity. Vaccine 2014; 32:6828-37. [DOI: 10.1016/j.vaccine.2014.04.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/06/2023]
|
28
|
Pedersen LE, Jungersen G, Sorensen MR, Ho CS, Vadekær DF. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers. Vet Immunol Immunopathol 2014; 162:108-16. [PMID: 25457547 DOI: 10.1016/j.vetimm.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022]
Abstract
The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination.
Collapse
Affiliation(s)
- Lasse Eggers Pedersen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Gregers Jungersen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark.
| | - Maria Rathmann Sorensen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Chak-Sum Ho
- Histocompatibility Laboratory, Gift of Life Michigan, Ann Arbor, MI 48108, USA
| | - Dorte Fink Vadekær
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| |
Collapse
|
29
|
Pedersen LE, Breum SØ, Riber U, Larsen LE, Jungersen G. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets. Virol J 2014; 11:163. [PMID: 25192825 PMCID: PMC4161877 DOI: 10.1186/1743-422x-11-163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/01/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. FINDINGS Four SwIV derived peptides were identified as T cell epitopes using fluorescent influenza:SLA tetramers. In addition, multiple CTL specificities were analyzed using peptide sequence substitutions in two of the four epitope candidates analyzed. Interestingly both conserved and substituted peptides were found to stain the CD4-CD8+ T cell subsets indicating multiple specificities. CONCLUSIONS This study describes a timely and cost-effective approach for viral epitope identification in livestock animals. Analysis of T cell subsets showed multiple specificities suggesting SLA-bound epitope recognition of different conformations.
Collapse
Affiliation(s)
- Lasse E Pedersen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Solvej Ø Breum
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Ulla Riber
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| |
Collapse
|
30
|
Yang QL, Zhao SG, Wang DW, Feng Y, Jiang TT, Huang XY, Gun SB. Association between Genetic Polymorphism in the Swine Leukocyte Antigen-DRA Gene and Piglet Diarrhea in Three Chinese Pig Breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1228-35. [PMID: 25178364 PMCID: PMC4150187 DOI: 10.5713/ajas.2013.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/30/2013] [Accepted: 03/27/2014] [Indexed: 01/25/2023]
Abstract
The swine leukocyte antigen (SLA)-DRA locus is noteworthy among other SLA class II loci for its limited variation and has not been investigated in depth. This study was investigated to detect polymorphisms of four exons of SLA-DRA gene and its association with piglet diarrhea in Landrace, Large White and Duroc pigs. No polymorphisms were detected in exon 3, while 2 SNPs (c.178G>A and c.211T>C), 2 SNPs (c.3093A>C and c.3104C>T) and 5 SNPs (c.4167A>G, c.4184A>G, c.4194A>G, c.4246A>G and c.4293G>A) were detected in exon 1, exon 2 and exon 4 respectively, and 1 SNP (c.4081T>C) in intron 3. Statistical results showed that genotype had significant effect on piglet diarrhea, individuals with genotype BC had a higher diarrhea score when compared with the genotypes AA, AB, AC and CC. Futhermore, genotype AC had a higher diarrhea score than the genotype CC in exon 1 (p<0.05); diarrhea scores of genotype AA and BB were higher than those of genotypes AC and CC in exon 2 (p<0.05); individuals with genotype AA had a higher diarrhea score than individuals with genotype AB and BB in exon 4 (p<0.05). Fourteen common haplotypes were founded by haplotype constructing of all SNPs in the three exons, its association with piglet diarrhea appeared that Hap2, 5, 8, 10, and 14 may be the susceptible haplotypes and Hap9 may be the resistant haplotype to piglet diarrhea. The genetic variations identified of the SLA-DRA gene may potentially be functional mutations related to piglet diarrhea.
Collapse
Affiliation(s)
- Q L Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China ; Animal Husbandry and Veterinary Institute of Gansu Province, Pingliang 744000, China
| | - S G Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China ; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - D W Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Feng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China ; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - T T Jiang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China ; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - X Y Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - S B Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China ; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
31
|
Infection with foot-and-mouth disease virus (FMDV) induces a natural killer (NK) cell response in cattle that is lacking following vaccination. Comp Immunol Microbiol Infect Dis 2014; 37:249-57. [PMID: 25150134 DOI: 10.1016/j.cimid.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
Abstract
Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFN-γ). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a disease of cloven-hoofed animals and remains a threat to livestock industries throughout the world. IL-2 stimulation of PBMC resulted in poor killing of human K562 cells, which are often used as NK target cells, while lysis of the bovine BL3.1 cell line was readily detected. Depletion of NKp46-expressing cells revealed that 80% of the killing induced by IL-2 could be attributed to NKp46(+) cells. In order to characterize the response of NK cells against FMDV in vivo, we infected groups of cattle with three different strains of the virus (A24 Cruzeiro, O1 Manisa, O Hong Kong) and evaluated the cytolytic ability of NK cells through the course of infection. We consistently observed a transient increase in cytolysis, although there was variation in magnitude and kinetics. This increase in cytolysis remained when CD3(+) cells were removed from the preparation of lymphocytes, indicating that cytolysis was independent of MHC-T cell receptor interaction or γδ T cell activation. In contrast, animals monitored following vaccination against FMDV did not exhibit any increase in NK killing. These data suggest that NK cells play a role in the host immune response of cattle against FMDV, and contrast with the suppression of NK activity previously observed in swine infected with FMDV.
Collapse
|
32
|
Yang QL, Kong JJ, Wang DW, Zhao SG, Gun SB. Swine Leukocyte Antigen-DQA Gene Variation and Its Association with Piglet Diarrhea in Large White, Landrace and Duroc. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1065-71. [PMID: 25049886 PMCID: PMC4093232 DOI: 10.5713/ajas.2013.13067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/23/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
The swine leukocyte antigen class II molecules are possibly associated with the induction of protective immunity. The study described here was to investigate the relationship between polymorphisms in exon 2 of the swine DQA gene and piglet diarrhea. This study was carried out on 425 suckling piglets from three purebred pig strains (Large White, Landrace and Duroc). The genetic diversity of exon 2 in swine DQA was detected by PCR-SSCP and sequencing analysis, eight unique SSCP patterns (AB, BB, BC, CC, CD, BD, BE and DD) representing five specific allele (A to E) sequences were detected. Sequence analysis revealed 21 nucleotide variable sites and resulting in 12 amino acid substitutions in the populations. A moderate level polymorphism and significant deviations from Hardy-Weinberg equilibrium of the genotypes distribution were observed in the populations (p<0.01). The association analysis indicated that there was a statistically significant difference in the score of piglet diarrhea between different genotypes, individuals with genotype CC showed a lower diarrhea score than genotypes AB (0.98±0.09), BB (0.85±0.77) and BC (1.25±0.23) (p<0.05), and significantly low than genotype BE (1.19±0.19) (p<0.01), CC genotype may be a most resistance genotype for piglet diarrhea.
Collapse
Affiliation(s)
- Q L Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - J J Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - D W Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - S G Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - S B Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
33
|
Abstract
In veterinary animal species, vaccines are the primary tool for disease prevention, a key tool for treatment of infection, and essential for helping maintain animal welfare and productivity. Traditional vaccine development by trial-and-error has achieved many successes. However, effective vaccines that provide solid cross-protective immunity with excellent safety are still needed for many diseases. The path to development of vaccines against difficult pathogens requires recognition of uniquely evolved immunological interactions of individual animal hosts and their specific pathogens. Here, general principles that currently guide veterinary immunology and vaccinology research are reviewed, with an emphasis on examples from swine. Advances in genomics and proteomics now provide the community with powerful tools for elucidation of regulatory and effector mechanisms of protective immunity that provide new opportunities for successful translation of immunological discoveries into safe and effective vaccines.
Collapse
|
34
|
Franzoni G, Kurkure NV, Essler SE, Pedrera M, Everett HE, Bodman-Smith KB, Crooke HR, Graham SP. Proteome-wide screening reveals immunodominance in the CD8 T cell response against classical swine fever virus with antigen-specificity dependent on MHC class I haplotype expression. PLoS One 2013; 8:e84246. [PMID: 24376799 PMCID: PMC3871537 DOI: 10.1371/journal.pone.0084246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/13/2013] [Indexed: 12/19/2022] Open
Abstract
Vaccination with live attenuated classical swine fever virus (CSFV) vaccines induces a rapid onset of protection which has been associated with virus-specific CD8 T cell IFN-γ responses. In this study, we assessed the specificity of this response, by screening a peptide library spanning the CSFV C-strain vaccine polyprotein to identify and characterise CD8 T cell epitopes. Synthetic peptides were pooled to represent each of the 12 CSFV proteins and used to stimulate PBMC from four pigs rendered immune to CSFV by C-strain vaccination and subsequently challenged with the virulent Brescia strain. Significant IFN-γ expression by CD8 T cells, assessed by flow cytometry, was induced by peptide pools representing the core, E2, NS2, NS3 and NS5A proteins. Dissection of these antigenic peptide pools indicated that, in each instance, a single discrete antigenic peptide or pair of overlapping peptides was responsible for the IFN-γ induction. Screening and titration of antigenic peptides or truncated derivatives identified the following antigenic regions: core₂₄₁₋₂₅₅ PESRKKLEKALLAWA and NS3₁₉₀₂₋₁₉₁₂ VEYSFIFLDEY, or minimal length antigenic peptides: E2₉₉₆₋₁₀₀₃ YEPRDSYF, NS2₁₂₂₃₋₁₂₃₀ STVTGIFL and NS5A₃₀₇₀₋₃₀₇₈ RVDNALLKF. The epitopes are highly conserved across CSFV strains and variable sequence divergence was observed with related pestiviruses. Characterisation of epitope-specific CD8 T cells revealed evidence of cytotoxicity, as determined by CD107a mobilisation, and a significant proportion expressed TNF-α in addition to IFN-γ. Finally, the variability in the antigen-specificity of these immunodominant CD8 T cell responses was confirmed to be associated with expression of distinct MHC class I haplotypes. Moreover, recognition of NS₁₂₂₃₋₁₂₃₀ STVTGIFL and NS3₁₉₀₂₋₁₉₁₂ VEYSFIFLDEY by a larger group of C-strain vaccinated animals showed that these peptides could be restricted by additional haplotypes. Thus the antigenic regions and epitopes identified represent attractive targets for evaluation of their vaccine potential against CSFV.
Collapse
Affiliation(s)
- Giulia Franzoni
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
- Department of Microbial & Cellular Sciences, University of Surrey, Guildford, United Kingdom
| | - Nitin V. Kurkure
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
- Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, India
| | - Sabine E. Essler
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Miriam Pedrera
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Helen E. Everett
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Kikki B. Bodman-Smith
- Department of Microbial & Cellular Sciences, University of Surrey, Guildford, United Kingdom
| | - Helen R. Crooke
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Simon P. Graham
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Liao YC, Lin HH, Lin CH, Chung WB. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine. PLoS One 2013; 8:e84443. [PMID: 24358361 PMCID: PMC3866179 DOI: 10.1371/journal.pone.0084443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/22/2013] [Indexed: 01/19/2023] Open
Abstract
Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8+ T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV), FMD virus (FMDV) and PRRS virus (PRRSV) and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| | - Hsin-Hung Lin
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh-Hua Lin
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
36
|
Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1604-16. [PMID: 23966552 DOI: 10.1128/cvi.00415-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination with live attenuated classical swine fever virus (CSFV) induces solid protection after only 5 days, which has been associated with virus-specific T cell gamma interferon (IFN-γ) responses. In this study, we employed flow cytometry to characterize T cell responses following vaccination and subsequent challenge infections with virulent CSFV. The CD3(+) CD4(-) CD8(hi) T cell population was the first and major source of CSFV-specific IFN-γ. A proportion of these cells showed evidence for cytotoxicity, as evidenced by CD107a mobilization, and coexpressed tumor necrosis factor alpha (TNF-α). To assess the durability and recall of these responses, a second experiment was conducted where vaccinated animals were challenged with virulent CSFV after 5 days and again after a further 28 days. While virus-specific CD4 T cell (CD3(+) CD4(+) CD8α(+)) responses were detected, the dominant response was again from the CD8 T cell population, with the highest numbers of these cells being detected 14 and 7 days after the primary and secondary challenges, respectively. These CD8 T cells were further characterized as CD44(hi) CD62L(-) and expressed variable levels of CD25 and CD27, indicative of a mixed effector and effector memory phenotype. The majority of virus-specific IFN-γ(+) CD8 T cells isolated at the peaks of the response after each challenge displayed CD107a on their surface, and subpopulations that coexpressed TNF-α and interleukin 2 (IL-2) were identified. While it is hoped that these data will aid the rational design and/or evaluation of next-generation marker CSFV vaccines, the novel flow cytometric panels developed should also be of value in the study of porcine T cell responses to other pathogens/vaccines.
Collapse
|
37
|
Hajam IA, Dar PA, Chandrasekar S, Nanda RK, Kishore S, Bhanuprakash V, Ganesh K. Co-administration of flagellin augments immune responses to inactivated foot-and-mouth disease virus (FMDV) antigen. Res Vet Sci 2013; 95:936-41. [PMID: 23941960 DOI: 10.1016/j.rvsc.2013.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most contagious animal virus known that affects livestock health and production. This study aimed to investigate the effect of flagellin, a toll-like receptor 5 agonist, on the immune responses to inactivated FMDV antigen in guinea pig model. Our results showed that the co-administration of flagellin with FMDV antigen through intradermal route induces earlier and higher anti-FMDV neutralizing antibody responses as compared to FMDV antigen alone. Both IgG1 and IgG2 antibody-isotype responses were enhanced, but the IgG1/IgG2 ratios were relatively low, indicative of TH1 type of immune activation. On live viral challenge, flagellin+FMDV immunized guinea pigs showed 70% (7 out of 10) protection rate as compared to 40% (4 out of 10) in FMDV alone immunized guinea pigs. The results demonstrate that the co-administration of flagellin augments immune responses (preferably TH1 type) and protective efficacy against FMDV in guinea pigs.
Collapse
Affiliation(s)
- Irshad A Hajam
- FMD Research Centre, Indian Veterinary Research Institute, Bangalore 560024, India
| | | | | | | | | | | | | |
Collapse
|
38
|
Patch JR, Kenney M, Pacheco JM, Grubman MJ, Golde WT. Characterization of cytotoxic T lymphocyte function after foot-and-mouth disease virus infection and vaccination. Viral Immunol 2013; 26:239-49. [PMID: 23829779 DOI: 10.1089/vim.2013.0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The induction of neutralizing antibodies specific for foot-and-mouth disease virus (FMDV) has been the central goal of vaccination efforts against this economically important disease of cloven-hoofed animals. Although these efforts have yielded much success, challenges remain, including little cross-serotype protection and inadequate duration of immunity. Commonly, viral infections are characterized by induction of cytotoxic T lymphocytes (CTL), yet the function of CTL in FMDV immunity is poorly defined. We developed an assay for detection of CTL specific for FMDV and reported that a modified adenovirus-vectored FMDV vaccine could induce CTL activity. This allowed us to determine whether FMDV-specific CTL responses are induced during infection and to test further whether vaccine-induced CTL could protect against challenge with FMDV. We now show the induction of antigen-specific CTL responses after infection of swine with FMDV strain A24 Cruizero. In addition, we developed a vaccination strategy that induces FMDV-specific CTL in the absence of significant neutralizing antibody. Animals vaccinated using this protocol showed delayed clinical disease and significantly suppressed viremia compared to control animals, suggesting a role for CTLs in the control of virus shedding. These results provide new insights showing induction of CTL responses to FMDV following infection or vaccination, and create the potential for improving vaccine performance by targeting cellular immunity.
Collapse
Affiliation(s)
- Jared R Patch
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | | | | | | | | |
Collapse
|
39
|
Dar P, Kalaivanan R, Sied N, Mamo B, Kishore S, Suryanarayana VVS, Kondabattula G. Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle. Vaccine 2013; 31:3327-32. [PMID: 23735678 DOI: 10.1016/j.vaccine.2013.05.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Despite significant advancements in modern vaccinology, inactivated whole virus vaccines for foot-and-mouth disease (FMD) remain the mainstay for prophylactic and emergency uses. Many efforts are currently devoted to improve the immune responses and protective efficacy of these vaccines. Adjuvants, which are often used to potentiate immune responses, provide an excellent mean to improve the efficacy of FMD vaccines. This study aimed to evaluate three oil adjuvants namely: Montanide ISA-201, ISA-206 (SEPPIC, France) and GAHOL (an in-house developed oil-adjuvant) for adjuvant potential in inactivated FMD vaccine. Groups of cattle (n=6) were immunized once intramuscularly with monovalent FMDV 'O' vaccine formulated in these adjuvants, and humoral (serum neutralizing antibody, IgG1 and IgG2) and cellular (lymphoproliferation) responses were measured. Montanide ISA-201 adjuvanted vaccine induced earlier and higher neutralizing antibody responses as compared to the two other adjuvants. All the adjuvants induced mainly serum IgG1 isotype antibody responses against FMDV. However, Montanide ISA-201 induced relatively higher IgG2 responses than the other two adjuvants. Lymphoproliferative responses to recall FMDV antigen were relatively higher with Montanide ISA-201, although not always statistically significant. On homologous FMDV challenge at 30 days post-vaccination, 100% (6/6) of the cattle immunized with Montanide-201 adjuvanted vaccine were protected, which was superior to those immunized with ISA-206 (66.6%, 4/6) or GAHOL adjuvanted vaccine (50%, 3/6). Virus replication following challenge infection, as determined by presence of the viral genome in oropharynx and non-structural protein serology, was lowest with Montanide ISA-201 adjuvant. Collectively, these results indicate that the Montanide ISA-201 adjuvanted FMD vaccine induces enhanced immune responses and protective efficacy in cattle.
Collapse
Affiliation(s)
- Pervaiz Dar
- Immunology Laboratory, FMD Vaccine QCQA Unit, Indian Veterinary Research Institute, Hebbal, Banguluru 560024, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Pedersen LE, Harndahl M, Nielsen M, Patch JR, Jungersen G, Buus S, Golde WT. Identification of peptides from foot-and-mouth disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA-1*0401 and SLA-2*0401. Anim Genet 2012; 44:251-8. [PMID: 22984928 DOI: 10.1111/j.1365-2052.2012.02400.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 11/30/2022]
Abstract
Characterization of the peptide-binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA-2*0401 molecule based on a positional scanning combinatorial peptide library approach. By combining this binding motif with data achieved by applying the NetMHCpan peptide prediction algorithm to both SLA-1*0401 and SLA-2*0401, we identified high-affinity binding peptides. A total of 727 different 9mer and 726 different 10mer peptides within the structural proteins of foot-and-mouth disease virus (FMDV), strain A24 were analyzed as candidate T-cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA-1*0401 and SLA-2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted FMDV peptides bound to SLA-2*0401, whereas five of the nine predicted FMDV peptides bound to SLA-1*0401. These methods provide the characterization of T-cell epitopes in response to pathogens in more detail. The development of such approaches to analyze vaccine performance will contribute to a more accelerated improvement of livestock vaccines by virtue of identifying and focusing analysis on bona fide T-cell epitopes.
Collapse
Affiliation(s)
- L E Pedersen
- Foreign Animal Disease Unit, Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Grubman MJ, Diaz-San Segundo F, Dias CCA, Moraes MP, Perez-Martin E, de los Santos T. Use of replication-defective adenoviruses to develop vaccines and biotherapeutics against foot-and-mouth disease. Future Virol 2012. [DOI: 10.2217/fvl.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a replication-defective human adenovirus (Ad5) vectored foot-and-mouth disease (FMD) vaccine platform that protects both swine and cattle from subsequent challenge with homologous virus after a single immunization. This Ad5-FMD vaccine has undergone testing following the requirements of the Center for Veterinary Biologics of the Animal Plant and Health Inspection Service, US Department of Agriculture, and has recently been granted a conditional license for inclusion of the vaccine in the US National Veterinary Vaccine Stockpile. In this review, we will describe the approaches we have taken to improve the potency and efficacy of this vaccine platform. Furthermore, we will discuss the development of Ad5 vector-based biotherapeutics to generate rapid protection against FMD virus prior to vaccine-induced adaptive immunity and describe the use of a combination of these approaches to stimulate both fast and long-lasting immunity.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| | - Camila CA Dias
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science & Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Mauro P Moraes
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
- Ceva Biomune, 8906 Rosehill Rd, Shawnee Mission, KS 66215, USA
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science & Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Teresa de los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| |
Collapse
|
42
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
43
|
Essler SE, Ertl W, Deutsch J, Ruetgen BC, Groiss S, Stadler M, Wysoudil B, Gerner W, Ho CS, Saalmueller A. Molecular characterization of swine leukocyte antigen gene diversity in purebred Pietrain pigs. Anim Genet 2012; 44:202-5. [DOI: 10.1111/j.1365-2052.2012.02375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Sabine E. Essler
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Werner Ertl
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Julia Deutsch
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Barbara C. Ruetgen
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Sandra Groiss
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Maria Stadler
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Bhuma Wysoudil
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Wilhelm Gerner
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| | - Chak-Sum Ho
- Gift of Life Michigan; Histocompatibility Lab; Ann Arbor MI 48108-2217 USA
| | - Armin Saalmueller
- Department for Pathobiology; Institute of Immunology; University of Veterinary Medicine Vienna; Vienna A-1210 Austria
| |
Collapse
|
44
|
Designing bovine T cell vaccines via reverse immunology. Ticks Tick Borne Dis 2012; 3:188-92. [PMID: 22621863 DOI: 10.1016/j.ttbdis.2011.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 11/20/2022]
Abstract
T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphoproliferative disease of cattle prevalent in sub-Saharan Africa and caused by Theileria parva. To complement the more traditional approaches to CTL antigen identification and vaccine development that we have previously undertaken we propose a use of immunoinformatics to predict CTL peptide epitopes followed by experimental verification of T cell specificity to candidate epitopes using peptide-MHC (pMHC) tetramers. This system, adapted from human and rodent studies, is in the process of being developed for cattle. Briefly, we have used an artificial neural network called NetMHCpan, which has been trained mainly on existing human, mouse, and non-human primate MHC-peptide binding data in an attempt to predict the peptide-binding specificity of bovine MHC class I molecules. Our data indicate that this algorithm needs to be further optimized by incorporation of bovine MHC-peptide binding data. When retrained, NetMHCpan may be used to predict parasite peptide epitopes by scanning the predicted T. parva proteome and known parasite CTL antigens. A range of pMHC tetramers, made "on-demand", will then be used to assay cattle that are immune to ECF or in vaccine trials to determine if CTLs of the predicted epitope specificity are present or not. Thus, pMHC tetramers can be used in one step to identify candidate CTL antigens and to map CTL epitopes. Our current research focuses on 9 different BoLA class I molecules. By expanding this repertoire to include the most common bovine MHCs, these methods could be used as generic assays to predict and measure bovine T cell immune responses to any pathogen.
Collapse
|
45
|
Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease. J Virol 2011; 86:1316-27. [PMID: 22114339 DOI: 10.1128/jvi.05941-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L(pro) is also associated with degradation of nuclear factor κB (NF-κB), a process that requires L(pro) nuclear localization. Additionally, we reported that disruption of a conserved protein domain within the L(pro) coding sequence, SAP mutation, prevented L(pro) nuclear retention and degradation of NF-κB, resulting in in vitro attenuation. Here we report that inoculation of swine with this SAP-mutant virus does not cause clinical signs of disease, viremia, or virus shedding even when inoculated at doses 100-fold higher than those required to cause disease with wild-type (WT) virus. Remarkably, SAP-mutant virus-inoculated animals developed a strong neutralizing antibody response and were completely protected against challenge with WT FMDV as early as 2 days postinoculation and for at least 21 days postinoculation. Early protection correlated with a distinct pattern in the serum levels of proinflammatory cytokines in comparison to the levels detected in animals inoculated with WT FMDV that developed disease. In addition, animals inoculated with the FMDV SAP mutant displayed a memory T cell response that resembled infection with WT virus. Our results suggest that L(pro) plays a pivotal role in modulating several pathways of the immune response. Furthermore, manipulation of the L(pro) coding region may serve as a viable strategy to derive live attenuated strains with potential for development as effective vaccines against foot-and-mouth disease.
Collapse
|
46
|
Moraes MP, Segundo FDS, Dias CC, Pena L, Grubman MJ. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response. Vaccine 2011; 29:9431-40. [DOI: 10.1016/j.vaccine.2011.10.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 10/16/2011] [Indexed: 10/15/2022]
|
47
|
Pedersen LE, Harndahl M, Rasmussen M, Lamberth K, Golde WT, Lund O, Nielsen M, Buus S. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities. Immunogenetics 2011; 63:821-34. [PMID: 21739336 PMCID: PMC3214623 DOI: 10.1007/s00251-011-0555-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/20/2011] [Indexed: 11/21/2022]
Abstract
In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC effectively individualizes the immune response of each member of the species. We have recently developed efficient methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying peptide-binding assays and predictors, and HLA tetramers for specific CTL staining and manipulation. This has enabled a complete mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules. A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data indicate that it is possible to extend the biochemical and bioinformatics tools of the Human MHC Project to other vertebrate species.
Collapse
|