1
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Klimova RR, Demidova NA, Masalova OV, Kushch AA. Preventive Vaccination with Mesenchymal Stem Cells Protects Mice from Lethal Infection Caused by Herpes Simplex Virus 1. Mol Biol 2021; 55:413-423. [PMID: 34931092 PMCID: PMC8675305 DOI: 10.1134/s0026893321020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022]
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect almost all organs and tissues, cause genital herpes-the most common sexually transmitted disease-disorders of the central nervous system (CNS), and lead to severe complications in children. Despite the available drugs, the incidence of HSV-1/2 continues to rise. None of the prophylactic vaccine candidates have shown a protective effect in trials nor approval for use in clinical practice. We have investigated the protective properties of mesenchymal stem cells (MSC) isolated from the bone marrow of mice. A comparative analysis of the protective response to the introduction of primary and modified MSCs (mMSC) was carried out using the plasmid containing gene of the HSV and an inactivated virus in a model of lethal HSV-1 infection in mice. mMSCs were obtained by transfection of the Us6 gene encoding glycoprotein D (gD) of the HSV, the plasmid contained the same gene. After twofold immunization with primary MSCs, the formation of antibodies interacting with the viral antigen (according to enzyme immunoassay data) and neutralizing the infectious activity of HSV-1 in the reaction of biological neutralization was observed in the peripheral blood of mice. In addition, the introduction of primary MSCs induced the production of interferon gamma (INF-γ) which is detected in the peripheral blood of mice. After infection with HSV-1, the immunized mice showed significantly increased titers of virus-specific antibodies, an increased level of IFNγ, and were completely protected from lethal HSV-1 infection. The protective effect of the other three immunogens was lower and did not exceed 50-65%. Considering the wide availability of MSCs, the proven safety of intravenous administration, and the results obtained in this work on the ability to induce innate, adaptive and protective immunity to HSV-1, MSCs can be considered a promising basis for the development of new cellular vaccines for the prevention of herpesvirus and other viral infections.
Collapse
Affiliation(s)
- R. R. Klimova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - N. A. Demidova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - O. V. Masalova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - A. A. Kushch
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
3
|
Singh VK, Kumar S, Dhaked RK, Ansari AS, Lohiya NK, Tapryal S. Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen. 3 Biotech 2020; 10:463. [PMID: 33047090 PMCID: PMC7541101 DOI: 10.1007/s13205-020-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To enhance the immunogenicity of gD, a fresh approach of fusing its ectodomain with the Fc domain(s) of IgM has been adopted to oligomerize the viral antigen and to exploite the immune-modulating potential of IgM Fc. Six vaccine constructs, generated by fusing three gD-ectodomain-length-variants with the Ig µ-chain domain 4 (µCH4) and µCH3-CH4 fragment, were cloned in Escherichia coli using pET28b( +) vector. The vaccine proteins were expressed in the form of inclusion bodies (IBs) and were in vitro refolded into protein oligomers of high stoichiometries of ~ 15–24, with 70–80% refolding yields. The conformations of gD and Fc components of the refolded oligomers were analyzed by ELISA and CD spectroscopy and were found to be native-like. The sizes and profiles of the size-distribution of oligomers were determined by dynamic light scattering (DLS). The candidate C2 (gD-μCH3-CH4), showing the most compact oligomer size and uniform distribution of its particles was chosen as the suitable candidate for mice immunization studies to assess the immunogenicity of the antigen gD. The C2 oligomer stimulated a strong anti-gD humoral response with an antibody titer of 102,400 and a strong, biased Th1 immune response in C57BL/6 mice, indicating its potential as a strong immunogen which may serve as an effective vaccine candidate.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Sandeep Kumar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Rajeev Kumar Dhaked
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Abdul S. Ansari
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Nirmal K. Lohiya
- Indian Society for the Study of Reproduction and Fertility, Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| |
Collapse
|
4
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
5
|
Jenks JA, Goodwin ML, Permar SR. The Roles of Host and Viral Antibody Fc Receptors in Herpes Simplex Virus (HSV) and Human Cytomegalovirus (HCMV) Infections and Immunity. Front Immunol 2019; 10:2110. [PMID: 31555298 PMCID: PMC6742691 DOI: 10.3389/fimmu.2019.02110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/21/2019] [Indexed: 12/01/2022] Open
Abstract
Herpesvirus infections are a leading cause of neurodevelopmental delay in newborns and end-organ disease in immunocompromised patients. One leading strategy to reduce the disease burden of herpesvirus infections such as herpes simplex virus (HSV) and human cytomegalovirus (HCMV) is to prevent primary acquisition by vaccination, yet vaccine development remains hampered by limited understanding of immune correlates of protection against infection. Traditionally, vaccine development has aimed to increase antibody titers with neutralizing function, which involves the direct binding of antibodies to viral particles. However, recent research has explored the numerous other responses that can be mediated by engagement of the antibody constant region (Fc) with Fc receptors (FcR) present on immune cells or with complement molecules. These functions include antiviral responses such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Uniquely, herpesviruses encode FcR that can act as distractor receptors for host antiviral IgG, thus enabling viral evasion of host defenses. This review focuses on the relative roles of neutralizing and non-neutralizing functions antibodies that target herpesvirus antigens for HSV and HCMV, as well as the roles of Fc-FcR interactions for both host defenses and viral escape.
Collapse
Affiliation(s)
- Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pediatrics, Children's Health and Discovery Institute, Durham, NC, United States
| |
Collapse
|
6
|
Hook LM, Cairns TM, Awasthi S, Brooks BD, Ditto NT, Eisenberg RJ, Cohen GH, Friedman HM. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs. PLoS Pathog 2018; 14:e1007095. [PMID: 29791513 PMCID: PMC5988323 DOI: 10.1371/journal.ppat.1007095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen.
Collapse
Affiliation(s)
- Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tina M. Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Noah T. Ditto
- Carterra, Inc., Salt Lake City, Utah, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Turning the screw even further to increase microparticle retention and ocular bioavailability of associated drugs: The bioadhesion goal. Int J Pharm 2017; 531:167-178. [DOI: 10.1016/j.ijpharm.2017.08.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
|
8
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
9
|
Awasthi S, Hook LM, Shaw CE, Pahar B, Stagray JA, Liu D, Veazey RS, Friedman HM. An HSV-2 Trivalent Vaccine Is Immunogenic in Rhesus Macaques and Highly Efficacious in Guinea Pigs. PLoS Pathog 2017; 13:e1006141. [PMID: 28103319 PMCID: PMC5245903 DOI: 10.1371/journal.ppat.1006141] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
A genital herpes vaccine is urgently needed to prevent pain and suffering, reduce the incidence of neonatal herpes, and decrease the risk of HIV acquisition and transmission that accompanies genital infection. We evaluated a trivalent HSV-2 subunit antigen vaccine administered with CpG and alum in rhesus macaques and guinea pigs. The vaccine contains glycoproteins C, D and E (gC2, gD2, gE2) to block virus entry by gD2 and immune evasion by gC2 and gE2. In rhesus macaques, the trivalent vaccine induced plasma and mucosa neutralizing antibodies, antibodies that block gC2 and gE2 immune evasion activities, and stimulated CD4 T cell responses. After intravaginal challenge, a self-limited vaginal infection of brief duration was detected by histopathology and immunohistochemistry in naïve, but not in trivalent immunized macaques. Vaccine efficacy was evaluated in female guinea pigs. Animals were mock immunized, or immunized with gD2, the trivalent vaccine or the trivalent vaccine followed by a booster dose of gD2 (trivalent + gD2). The trivalent and trivalent + gD2 groups were 97% and 99% efficacious, respectively in preventing genital lesions and both outperformed gD2 alone. As a marker of transmission risk, vaginal swabs were evaluated daily for HSV-2 DNA and replication competent virus between five and seven weeks after challenge. HSV-2 DNA shedding was reduced in all groups compared with mock. Shedding of replication competent virus occurred on fewer days in the trivalent than gD2 immunized animals while the trivalent + gD2 group had no shedding of replication competent virus. Overall, the trivalent group had genital lesions on < 1% days and shedding of replication competent virus on 0.2% days. The vaccine has outstanding potential for prevention of genital herpes in humans. Approximately a half-billion people worldwide are infected with herpes simplex virus type 2 (HSV-2), the virus that causes genital herpes. In some individuals, infection results in painful, recurrent genital ulcers, while in others, the infection remains quiescent. In both settings, infected individuals may transmit virus to their intimate partners. Genital herpes increases the risk that an infected person will acquire HIV if exposed during sexual intercourse. A vaccine for the prevention of genital herpes is a high priority. We describe a vaccine that induces antibodies that block the ability of the virus to enter cells and that prevents the virus from escaping immune attack mediated by antibody and complement. The vaccine contains HSV-2 glycoproteins C, D and E and is immunogenic in non-human primates. The vaccine protects immunized non-human primates against a mild vaginal infection that develops in naïve animals after intravaginal inoculation of virus. Naïve guinea pigs develop severe genital disease, while immunized animals are almost 100% protected after intravaginal infection. The vaccine greatly reduces the number of days during the recurrent phase of infection that animals shed virus in genital secretions, thereby reducing the risk of transmission. We consider this novel vaccine a leading candidate for clinical trials aimed at preventing genital herpes infection in humans.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolyn E. Shaw
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Jacob A. Stagray
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Evans DM, Thorn JM, Arch-Douglas K, Sperry JB, Thompson B, Davis HL, McCluskie MJ. Support for the revocation of general safety test regulations in biologics license applications. Biologicals 2016; 44:178-81. [PMID: 26996102 DOI: 10.1016/j.biologicals.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/19/2022] Open
Abstract
The United States Food and Drug Administration recently removed the requirement for a General Safety Test (GST) for biologics in the Code of Federal Regulations (21 CFR 610.11). The GST, as well as abnormal toxicity (European Pharmacopeia) and innocuity tests (World Health Organization), were designed to test for extraneous toxic contaminants on each product lot intended for human use. Tests require one-week observations for general health and weight following injection of specified volumes of product batches into guinea pigs and mice. At the volumes specified, dose-related toxicity may result when the product is pharmacologically active in rodents. With vaccines, required doses may be > 3 logs higher than intended human dose on a weight-adjusted basis and if an immune modulatory adjuvant is included, systemic immune hyperactivation may cause toxicity. Herein, using the CpG/alum adjuvant combination we evaluated the different test protocols and showed their unsuitability for this adjuvant combination.
Collapse
Affiliation(s)
- Dana M Evans
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON, Canada
| | - Jennifer M Thorn
- Pfizer Biotherapeutics Pharmaceutical Sciences, St. Louis, MO, USA
| | | | - Justin B Sperry
- Pfizer Biotherapeutics Pharmaceutical Sciences, St. Louis, MO, USA
| | - Bruce Thompson
- Pfizer Biotherapeutics Pharmaceutical Sciences, St. Louis, MO, USA
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
Stanfield B, Kousoulas KG. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:125-136. [PMID: 27114893 DOI: 10.1007/s40588-015-0020-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.
Collapse
Affiliation(s)
- Brent Stanfield
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin Gus Kousoulas
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Royer DJ, Cohen A, Carr D. The Current State of Vaccine Development for Ocular HSV-1 Infection. EXPERT REVIEW OF OPHTHALMOLOGY 2015; 10:113-126. [PMID: 25983856 DOI: 10.1586/17469899.2015.1004315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HSV-1 continues to be the leading cause of infectious corneal blindness. Clinical trials for vaccines against genital HSV infection have been ongoing for more than three decades. Despite this, no approved vaccine exists, and no formal clinical trials have evaluated the impact of HSV vaccines on eye health. We review here the current state of development for an efficacious HSV-1 vaccine and call for involvement of ophthalmologists and vision researchers.
Collapse
Affiliation(s)
- D J Royer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center
| | - A Cohen
- Ophthalmology, University of Oklahoma Health Sciences Center
| | - Djj Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center ; Ophthalmology, University of Oklahoma Health Sciences Center
| |
Collapse
|
13
|
Abstract
The successful human papillomavirus and hepatitis B virus subunit vaccines contain single viral proteins that represent 22 and 12%, respectively, of the antigens encoded by these tiny viruses. The herpes simplex virus 2 (HSV-2) genome is >20 times larger. Thus, a single protein subunit represents 1% of HSV-2's total antigenic breadth. Antigenic breadth may explain why HSV-2 glycoprotein subunit vaccines have failed in clinical trials, and why live HSV-2 vaccines that express 99% of HSV-2's proteome may be more effective. I review the mounting evidence that live HSV-2 vaccines offer a greater opportunity to stop the spread of genital herpes, and I consider the unfounded 'safety concerns' that have kept live HSV-2 vaccines out of U.S. clinical trials for 25 years.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
14
|
Görander S, Ekblad M, Bergström T, Liljeqvist JÅ. Anti-glycoprotein g antibodies of herpes simplex virus 2 contribute to complete protection after vaccination in mice and induce antibody-dependent cellular cytotoxicity and complement-mediated cytolysis. Viruses 2014; 6:4358-72. [PMID: 25398047 PMCID: PMC4246227 DOI: 10.3390/v6114358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of antibodies against the mature portion of glycoprotein G (mgG-2) of herpes simplex virus 2 (HSV-2) in protective immunity after vaccination. Mice were immunized intramuscularly with mgG-2 and oligodeoxynucleotides containing two CpG motifs plus alum as adjuvant. All C57BL/6 mice survived and presented no genital or systemic disease. High levels of immunoglobulin G subclass 1 (IgG1) and IgG2 antibodies were detected and re-stimulated splenic CD4+ T cells proliferated and produced IFN-γ. None of the sera from immunized mice exhibited neutralization, while all sera exerted antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis (ACMC) activity. Passive transfer of anti-mgG-2 monoclonal antibodies, or immune serum, to naive C57BL/6 mice did not limit disease progression. Immunized B‑cell KO mice presented lower survival rate and higher vaginal viral titers, as compared with vaccinated B-cell KO mice after passive transfer of immune serum and vaccinated C57BL/6 mice. Sera from mice that were vaccinated subcutaneously and intranasally with mgG-2 presented significantly lower titers of IgG antibodies and lower ADCC and ACMC activity. We conclude that anti-mgG-2 antibodies were of importance to limit genital HSV‑2 infection. ADCC and ACMC activity are potentially important mechanisms in protective immunity, and could tentatively be evaluated in future animal vaccine studies and in clinical trials.
Collapse
Affiliation(s)
- Staffan Görander
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Maria Ekblad
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Tomas Bergström
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| |
Collapse
|
15
|
McAllister SC, Schleiss MR. Prospects and perspectives for development of a vaccine against herpes simplex virus infections. Expert Rev Vaccines 2014; 13:1349-60. [PMID: 25077372 DOI: 10.1586/14760584.2014.932694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, 3-216 McGuire Translational Research Facility, 2001 6th Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
16
|
Hornig J, McGregor A. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 2014; 9:891-915. [DOI: 10.1517/17460441.2014.922538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Zhu XP, Muhammad ZS, Wang JG, Lin W, Guo SK, Zhang W. HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine. Viruses 2014; 6:371-90. [PMID: 24469503 PMCID: PMC3939461 DOI: 10.3390/v6020371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines.
Collapse
Affiliation(s)
- Xiao-Peng Zhu
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Zaka S Muhammad
- School of International Studies, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Jian-Guang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wu Lin
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Shi-Kun Guo
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wei Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| |
Collapse
|
19
|
Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 2013; 8:e65523. [PMID: 23755244 PMCID: PMC3675040 DOI: 10.1371/journal.pone.0065523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 12/27/2022] Open
Abstract
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2's antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0− viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.
Collapse
|
20
|
Leroux-Roels G, Clément F, Vandepapelière P, Fourneau M, Heineman TC, Dubin G. Immunogenicity and safety of different formulations of an adjuvanted glycoprotein D genital herpes vaccine in healthy adults: a double-blind randomized trial. Hum Vaccin Immunother 2013; 9:1254-62. [PMID: 23434737 PMCID: PMC3901814 DOI: 10.4161/hv.24043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) type 2 (HSV-2) is the main cause of genital and neonatal herpes and is highly prevalent worldwide. Previous phase I and II studies showed the immunogenicity and safety of the candidate prophylactic HSV-2 glycoprotein D-based subunit vaccine (gD2-AS04), containing aluminum hydroxide and 3-O-deacylated monophosphoryl lipid A (MPL) as adjuvant (AS04), in healthy adults. The primary objective of the study presented here was to compare the immunogenicity and safety of five different vaccine formulations: 3 different antigen doses [20, 40 or 80 μg of truncated glycoprotein D from HSV-2 strain (gD-2t)], different aluminum salts [AlPO4 or Al(OH)3], different preservatives or different volumes of vaccine (0.5 or 1 ml). One hundred and fifty healthy men and women aged 18–45 years, with negative serological markers for HSV-1 and HSV-2 infection, were vaccinated with one of 5 formulations of the gD2-AS04 candidate vaccine according to a 0-, 1-, 6-month schedule. No statistically significant difference was observed in humoral or cellular immune responses between different antigen doses or the different aluminum salts, preservatives or volumes of vaccine. The gD2-AS04 vaccine was well tolerated by study participants for the duration of the study period. Local symptoms were more frequently reported than general symptoms, with muscle stiffness and/or injection site redness being the most frequently reported. Overall, the incidence of adverse events was comparable in all groups. Based on these results the gD2-AS04 formulation, containing 20 μg of gD-2t, was selected for evaluation of prophylactic efficacy in further clinical trials.
Collapse
|
21
|
Stanberry LR. Genital and Perinatal Herpes Simplex Virus Infections. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Bright H, Perez DL, Christy C, Cockle P, Eyles JE, Hammond D, Khodai T, Lang S, West K, Loudon PT. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine 2012; 30:7529-35. [PMID: 23103198 DOI: 10.1016/j.vaccine.2012.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/26/2012] [Accepted: 10/13/2012] [Indexed: 01/08/2023]
Abstract
DNA vaccines expressing HSV-2 gD, gB, ICP27, VP22 and VP13/14 were shown to be immunogenic in mice; gD and gB elicited neutralising antibody, and all five antigens induced T cell responses measured by IFNγ ELISPOT. In murine HSV-2 challenge studies, gD and gB provided moderate to high levels of protection while ICP27 provided a lower level of protection depending on the model (intravaginal or intranasal) and the challenge dose. Combining vaccines expressing gB or gD with vaccines expressing ICP27 provided greater protection than any antigen alone. We conclude that the addition of ICP27 to enhance the anti-viral T cell response can improve the efficacy of gD- and gB-based vaccines.
Collapse
|
23
|
Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model. PLoS One 2012; 7:e46714. [PMID: 23071620 PMCID: PMC3469653 DOI: 10.1371/journal.pone.0046714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/03/2012] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs. Here we show that ACAM529 given via the intramuscular route affords significantly greater immunogenicity and protection in comparison with subcutaneous administration in the mouse vaginal HSV-2 challenge model. Further, we describe a side-by-side comparison of intramuscular ACAM529 with a gD vaccine across a range of challenge virus doses. While differences in protection against death are not significant, ACAM529 protects significantly better against mucosal infection, reducing peak challenge virus shedding at the highest challenge dose by over 500-fold versus 5-fold for gD. Over 27% (11/40) of ACAM529-immunized animals were protected from viral shedding while 2.5% (1/40) were protected by the gD vaccine. Similarly, 35% (7/20) of mice vaccinated with ACAM529 were protected from infection of their dorsal root ganglia while none of the gD-vaccinated mice were protected. These results indicate that measuring infection of the vaginal mucosa and of dorsal root ganglia over a range of challenge doses is more sensitive than evaluating survival at a single challenge dose as a means of directly comparing vaccine efficacy in the mouse vaginal challenge model. The data also support further investigation of ACAM529 for prophylaxis in human subjects.
Collapse
|
24
|
Zhang X, Dervillez X, Chentoufi AA, Badakhshan T, Bettahi I, Benmohamed L. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88. THE JOURNAL OF IMMUNOLOGY 2012; 189:4496-509. [PMID: 23018456 DOI: 10.4049/jimmunol.1201121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p < 0.005) after intravaginal HSV-2 challenge. Polyfunctional CD8(+) T cells, producing IFN-γ, TNF-α, and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8(+) T cell response was significantly compromised in the absence of the adapter MyD88 (p = 0.0001). Taken together, these findings indicate that targeting of the vaginal mucosa with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8(+) T cell protective immunity against sexually transmitted herpes infection and disease.
Collapse
Affiliation(s)
- Xiuli Zhang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
25
|
Morello CS, Kraynyak KA, Levinson MS, Chen Z, Lee KF, Spector DH. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge. Vaccine 2012; 30:6541-6550. [PMID: 22947141 DOI: 10.1016/j.vaccine.2012.08.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
Herpes Simplex Virus Type 2 (HSV-2) infection can result in life-long recurrent genital disease, asymptomatic virus shedding, and transmission. No vaccine to date has shown significant protection clinically. Here, we used a mouse model of genital HSV-2 infection to test the efficacy of a vaccine consisting of whole, formalin-inactivated HSV-2 (FI-HSV2) formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Vaccine components were administered alone or as a prime-boost immunization together with DNA vaccines encoding a truncated glycoprotein D2 (gD2t) and two conserved HSV-2 genes necessary for virus replication, UL5 (DNA helicase) and UL30 (DNA polymerase). Our results show: (1) compared with mock immunized controls, mice immunized with FI-HSV2 plus MPL/alum consistently showed protection against disease burden and total viral shedding while the mice immunized with gD2t protein with MPL/alum did not; (2) protection against genital disease and viral replication correlated with the type of boost in a prime-boost immunization with little advantage afforded by a DNA prime; (3) intramuscular (i.m.) immunization with FI-HSV2 in MPL/Alhydrogel adjuvant provided nearly complete protection against vaginal HSV-2 shedding after a lethal intravaginal (i.vag.) short-term challenge and long-term rechallenge; (4) single formulation immunization with DNA vaccines, FI-HSV2, and MPL in an aluminum phosphate (Adju-Phos) adjuvant did not increase protection relative to FI-HSV2/MPL/Adju-Phos alone; and (5) addition of MPL/alum to the FI-HSV2 was required for optimal protection against disease, viral replication, and latent virus load in the dorsal root ganglia (DRG). Most notably, an optimized vaccine formulation of FI-HSV2 MPL/Alhydrogel given i.m. completely protected against detectable vaginal HSV-2 shedding in the majority of animals and HSV-2 latent DNA in the DRG of all animals.
Collapse
Affiliation(s)
- Christopher S Morello
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0712
| | - Kimberly A Kraynyak
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0712
| | - Michael S Levinson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0712
| | - Zhijiang Chen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Deborah H Spector
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093-0712.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0712
| |
Collapse
|