1
|
Alsakini KAMH, Sanci E, Buhur A, Yavasoglu A, Karabay Yavasoglu NÜ, Nalbantsoy A. Single and repeat-dose toxicity and local tolerance assessment of newly developed oil emulsion adjuvant formulations for veterinary purposes. Drug Chem Toxicol 2024; 47:827-838. [PMID: 38093608 DOI: 10.1080/01480545.2023.2291985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/21/2023] [Indexed: 11/21/2024]
Abstract
Adjuvants are components of vaccines that boost the intensity, duration, and breadth of the immune response. Insight into the mechanisms responsible for the immunotoxicity of both local and systemic adverse reactions following the use of adjuvants has been gained through research over the past twenty years. In the present study, single and repeated-dose toxicity and local tolerance of newly developed Water-in-Oil (W/O) and Water-in-Oil-in-Water (W/O/W) Emulsion adjuvants (Coralvac RZ 528, Coralvac RZ 506, Coralvac AT 318, Coralvac AT 318 SIS and Coralvac 252) by Coral Biotechnology Industry and Trade Incorporated Company were demonstrated after intramuscular injection in mice. In both toxicity studies, no adverse reactions such as death, general appearance, behavior, or weight loss were observed in the mice in the experimental groups. The results indicate that clinical chemistry parameters demonstrated normal function of the major organs and no irreversible damage to the mice in all adjuvant groups compared to the control group. In histopathologic investigation of single dose toxicity study, inflammation, edema, and large amounts of lipid droplets were observed on the 7th day in all experimental groups. On the 14th day, when the control group and the experimental groups were compared, it was seen that inflammation and edema had decreased considerably. Similarly, repeated dose toxicity study showed mild inflammation and edema in the control group, while quite widespread and severe inflammation, edema, and diffuse lipid droplets of varying sizes were observed in all adjuvant groups compared to the control group. These observations would be useful for the future development of oil-based adjuvants and their use in veterinary inactive vaccines.
Collapse
Affiliation(s)
| | - Ebru Sanci
- Center for Drug Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Altuğ Yavasoglu
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | | | | |
Collapse
|
2
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
3
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
4
|
Synthesis and Characterization of Innovative Microgels Based on Polyacrylic Acid and Microalgae Cell Wall and Their Potential as Antigen Delivery Vehicles. Pharmaceutics 2022; 15:pharmaceutics15010133. [PMID: 36678762 PMCID: PMC9863243 DOI: 10.3390/pharmaceutics15010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, hybrid polyacrylic acid and Schizochytrium sp. microalgae (PAA/Schizo) microgels were synthesized by inverse emulsion assisted by ultrasound using the cell wall fraction as crosslinker. Physicochemical characterization of PAA/Schizo microgels revealed polymeric spherical particles (288 ± 39 nm) and were deemed stable and negatively charged. The produced microgels are not inherently toxic as cell viability was sustained above 80% when mice splenocytes were exposed to concentrations ranging 10-900 µg/mL. PAA/Schizo microgels were evaluated as antigen delivery nanovehicle by adsorbing bovine serum albumin (BSA); with a loading efficiency of 72% and loading capacity of 362 µg/mg. Overall, intranasally-immunized BALB/c mice showed null IgG or IgA responses against PAA/Schizo microgel-BSA, whereas soluble BSA induced significant humoral responses in systemic and mucosal compartments. Splenocytes proliferation assay upon BSA stimulus revealed positive CD4+ T cells-proliferation response in PAA/Schizo microgels-BSA group. Thus, PAA/Schizo microgels constitute functional antigen delivery vehicles of simple and ecofriendly synthesis. Moreover, the use of cell wall fraction as cross-linker agent provides an alternative use for the generation of high-value products using residual algae biomass from the oil industry. Our data suggests that the PAA/Schizo microgels are potential antigen delivery vehicles for immunotherapy development.
Collapse
|
5
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
6
|
The Influence of Nanoparticle on Vaccine Responses against Bacterial Infection. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6856982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, nanovaccine is considered as an evolving method in the field of vaccination to induce immunity in the human body against various diseases, including bacterial or viral diseases as well as virulent tumors. Nanovaccines are more efficient than traditional vaccines since they could potentially induce both humoral and cellular immune reactions. Various studies have shown that nanoparticles with multiple compounds have been designed as delivery systems or as adjuvants for vaccines. Nanoparticles could function as a drug delivery tool, as an adjuvant to promote antigen processing, and as an immune modulator to induce immune responses. These nanoparticles generate immune responses through activating immune cells as well as through the production of antibody responses. Design engineering of nanoparticles (NPs) used to produce nanovaccines to induce immunity in the human body needs comprehensive information about the ways they interact with the component of immune system. Challenges remain due to the lack of sufficient and comprehensive information about the nanoparticles' mode of action. Several studies have described the interactions between various classes of nanoparticles and the immune system in the field of prevention of bacterial infections. The results of some studies conducted in recent years on the interaction between nanoparticles and biosystems have considerably affected the methods used to design nanoparticles for medical applications. In this review, NPs’ characteristics influencing their interplay with the immune system were discussed in vivo. The information obtained could lead to the development of strategies for rationalizing the design of nanovaccines in order to achieve optimum induction of immune response.
Collapse
|
7
|
Song X, Zhang W, Zhai L, Guo J, Zhao Y, Zhang L, Hu L, Xiong X, Zhou D, Lv M, Yang W. Aerosolized Intratracheal Inoculation of Recombinant Protective Antigen (rPA) Vaccine Provides Protection Against Inhalational Anthrax in B10.D2-Hc 0 Mice. Front Immunol 2022; 13:819089. [PMID: 35154137 PMCID: PMC8826967 DOI: 10.3389/fimmu.2022.819089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Anthrax caused by Bacillus anthracis is a fatal zoonotic disease with a high lethality and poor prognosis. Inhalational anthrax is the most severe of the three forms of anthrax. The currently licensed commercial human anthrax vaccines require a complex immunization procedure for efficacy and have side effects that limit its use in emergent situations. Thus, development of a better anthrax vaccine is necessary. In this study, we evaluate the potency and efficacy of aerosolized intratracheal (i.t.) inoculation with recombinant protective antigen (rPA) subunit vaccines against aerosolized B. anthracis Pasteur II spores (an attenuated strain) challenge in a B10.D2-Hc0 mouse (deficient in complement component C5) model. Immunization of rPA in liquid, powder or powder reconstituted formulations via i.t. route conferred 100% protection against a 20× LD50 aerosolized Pasteur II spore challenge in mice, compared with only 50% of subcutaneous (s.c.) injection with liquid rPA. Consistently, i.t. inoculation of rPA vaccines induced a higher lethal toxin (LeTx) neutralizing antibody titer, a stronger lung mucosal immune response and a greater cellular immune response than s.c. injection. Our results demonstrate that immunization with rPA dry powder vaccine via i.t. route may provide a stable and effective strategy to improve currently available anthrax vaccines and B10.D2-Hc0 mice challenged with B. anthracis attenuated strains might be an alternative model for anthrax vaccine candidate screening.
Collapse
Affiliation(s)
- Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lina Zhai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yue Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Mangla B, Javed S, Sultan MH, Ahsan W, Aggarwal G, Kohli K. Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit. Front Pharmacol 2022; 12:757761. [PMID: 35087403 PMCID: PMC8787087 DOI: 10.3389/fphar.2021.757761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kanchan Kohli
- Director Research and Publication, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| |
Collapse
|
10
|
Garcia CR, Malik MH, Biswas S, Tam VH, Rumbaugh KP, Li W, Liu X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022; 10:633-653. [PMID: 34994371 DOI: 10.1039/d1bm01537k] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ever-growing threat of new and existing infectious diseases in combination with antimicrobial resistance requires the need for innovative and effective forms of drug delivery. Optimal drug delivery systems for existing and newly developed antimicrobials can enhance drug bioavailability, enable site-specific drug targeting, and overcome current limitations of drug formulations such as short elimination half-lives, poor drug solubility, and undesirable side effects. Nanoemulsions (NE) consist of nanometer-sized droplets stabilized by emulsifiers and are typically more stable and permeable due to their smaller particle sizes and higher surface area compared to conventional emulsions. NE have been identified as a promising means of antimicrobial delivery due to their intrinsic antimicrobial properties, ability to increase drug solubility, stability, bioavailability, organ and cellular targeting potentials, capability of targeting biofilms, and potential to overcome antimicrobial resistance. Herein, we discuss non-drug loaded essential oil-based NE that can confer antimicrobial actions through predominantly physical or biochemical mechanisms without drug payloads. We also describe drug-loaded NE for enhanced antimicrobial efficacy by augmenting the potency of existing antimicrobials. We highlight the versatility of NE to be administered through multiple different routes (oral, parenteral, dermal, transdermal, pulmonary, nasal, ocular, and rectal). We summarize recent advances in the clinical translation of antimicrobial NE and shed light on future development of effective antimicrobial therapy to combat infectious diseases.
Collapse
Affiliation(s)
- Celine R Garcia
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muhammad H Malik
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Vincent H Tam
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
11
|
Jangra S, Landers JJ, Rathnasinghe R, O’Konek JJ, Janczak KW, Cascalho M, Kennedy AA, Tai AW, Baker JR, Schotsaert M, Wong PT. A Combination Adjuvant for the Induction of Potent Antiviral Immune Responses for a Recombinant SARS-CoV-2 Protein Vaccine. Front Immunol 2021; 12:729189. [PMID: 34603303 PMCID: PMC8481386 DOI: 10.3389/fimmu.2021.729189] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/immunology
- Chlorocebus aethiops
- Cross Protection/immunology
- DEAD Box Protein 58
- HEK293 Cells
- Humans
- Immunity, Humoral/immunology
- Immunization, Passive
- Mice
- Mice, Inbred C57BL
- Receptors, Immunologic/agonists
- Recombinant Proteins/immunology
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Vaccination
- Vaccines, Synthetic/immunology
- Vero Cells
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey J. Landers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica J. O’Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marilia Cascalho
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew A. Kennedy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew W. Tai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
- Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - James R. Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
13
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
14
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|
15
|
Jangra S, Landers JJ, Rathnasinghe R, O'Konek JJ, Janczak KW, Cascalho M, Kennedy AA, Tai AW, Baker JR, Schotsaert M, Wong PT. A Combination Adjuvant for the Induction of Potent Antiviral Immune Responses for a Recombinant SARS-CoV-2 Protein Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431484. [PMID: 33619480 PMCID: PMC7899444 DOI: 10.1101/2021.02.18.431484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced T H 1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.
Collapse
|
16
|
Farazuddin M, Landers JJ, Janczak KW, Lindsey HK, Finkelman FD, Baker JR, O'Konek JJ. Mucosal Nanoemulsion Allergy Vaccine Suppresses Alarmin Expression and Induces Bystander Suppression of Reactivity to Multiple Food Allergens. Front Immunol 2021; 12:599296. [PMID: 33717078 PMCID: PMC7946984 DOI: 10.3389/fimmu.2021.599296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
We have demonstrated that intranasal immunotherapy with allergens formulated in a nanoemulsion (NE) mucosal adjuvant suppresses Th2/IgE-mediated allergic responses and protects from allergen challenge in murine food allergy models. Protection conferred by this therapy is associated with strong suppression of allergen specific Th2 cellular immunity and increased Th1 cytokines. Here we extend these studies to examine the effect of NE-allergen immunization in mice sensitized to multiple foods. Mice were sensitized to both egg and peanut and then received NE vaccine formulated with either one or both of these allergens. The animals were then subjected to oral challenges with either egg or peanut to assess reactivity. Immunization with NE formulations containing both egg and peanut markedly reduced reactivity after oral allergen challenge with either allergen. Interestingly, mice that received the vaccine containing only peanut also had reduced reactivity to challenge with egg. Protection from oral allergen challenge was achieved despite the persistence of allergen-specific IgE and was associated with strong suppression of both Th2-polarized immune responses, alarmins and type 2 innate lymphoid cells (ILC2). NE-induced bystander suppression of reactivity required IFN-γ and the presence of an allergen in the NE vaccine. These results demonstrate that anaphylactic reactions to food allergens can be suppressed using allergen-specific immunotherapy without having to eliminate allergen-specific IgE and suggests that modulation of Th2 immunity towards one allergen may induce bystander effects that suppress reactivity to other allergens through the induction of IFN-γ and suppression of alarmins in the intestine. In addition, these data suggest that a NE vaccine for a single food allergen may lead to a global suppression of allergic responses to multiple foods.
Collapse
Affiliation(s)
- Mohammad Farazuddin
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Katarzyna W Janczak
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Hayley K Lindsey
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S, Ahmad FJ. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des 2020; 26:1145-1166. [PMID: 32183664 DOI: 10.2174/1381612826666200317140600] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.
Collapse
Affiliation(s)
- Md A Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Le Studium research fellow for Centre de Biophysique Moléculaire (CBM)-CNRS, University of Orléans, UPR4301, Orléans, France
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Huang CH, Huang CY, Ho HM, Lee CH, Lai PT, Wu SC, Liu SJ, Huang MH. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J Immunother Cancer 2020; 8:jitc-2020-001022. [PMID: 33037116 PMCID: PMC7549439 DOI: 10.1136/jitc-2020-001022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. METHODS The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. RESULTS Uniform structures with ~200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. CONCLUSIONS In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Hung Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Ti Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Oh Y, Kim JA, Kim CH, Choi SK, Pan JG. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency. BMC Vet Res 2020; 16:259. [PMID: 32723323 PMCID: PMC7385935 DOI: 10.1186/s12917-020-02468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis is the causative agent of anthrax, a disease of both humans and various animal species, and can be used as a bioterror agent. Effective vaccines are available, but those could benefit from improvements, including increasing the immunity duration, reducing the shot frequency and adverse reactions. In addition, more sophisticated antigen delivery and potentiation systems are urgently required. The protective antigen (PA), one of three major virulence factors associated with anthrax was displayed on the surface of Bacillus subtilis spores, which is a vaccine production host and delivery vector with several advantages such as a low production cost, straightforward administration as it is safe for human consumption and the particulate adjuvanticity. Mice were immunized orally (PO), intranasally (IN), sublingually (SL) or intraperitoneally (IP) with the PA displaying probiotic spore vaccine. Clinical observation, serological analysis and challenge experiment were conducted to investigate the safety and efficacy of the vaccine. RESULTS A/J mice immunized with the PA spore vaccine via PO, IN, SL, and IP were observed to have increased levels of active antibody titer, isotype profiles and toxin neutralizing antibody in sera, and IgA in saliva. The immunized mice were demonstrated to raise protective immunity against the challenge with lethal B. anthracis spores. CONCLUSIONS In this study, we developed a B. subtilis spore vaccine that displays the PA on its surface and showed that the PA-displaying spore vaccine was able to confer active immunity to a murine model based on the results of antibody isotype titration, mucosal antibody identification, and a lethal challenge experiment.
Collapse
Affiliation(s)
- Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341 Republic of Korea
| | - Jung Ae Kim
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Chang-Hwan Kim
- The 4th R&D Institute, Agency for Defense Development (ADD), Yuseong, Daejeon, 34186 Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jae-Gu Pan
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
20
|
Weilhammer DR, Dunkle AD, Boone T, Gilmore SF, Khemmani M, Peters SKG, Hoeprich PD, Fischer NO, Blanchette CD, Driks A, Rasley A. Characterization of Bacillus anthracis Spore Proteins Using a Nanoscaffold Vaccine Platform. Front Immunol 2020; 11:1264. [PMID: 32714323 PMCID: PMC7344197 DOI: 10.3389/fimmu.2020.01264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023] Open
Abstract
Subunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against Bacillus anthracis. Modified lipids enabled attachment of disparate spore and toxin protein antigens. Intranasal vaccination of mice with B. anthracis antigen-MPLA-NLP constructs induced robust IgG and IgA responses in serum and in bronchoalveolar and nasal lavage. Typically, a single dose sufficed to induce sustained antibody titers over time. When multiple immunizations were required for sustained titers, specific antibodies were detected earlier in the boost schedule with MPLA-NLP-mediated delivery than with free MPLA. Administering combinations of constructs induced responses to multiple antigens, indicating potential for a multivalent vaccine preparation. No off-target responses to the NLP scaffold protein were detected. In summary, the NLP platform enhances humoral and mucosal responses to intranasal immunization, indicating promise for NLPs as a flexible, robust vaccine platform against B. anthracis and potentially other inhalational pathogens.
Collapse
Affiliation(s)
- Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alexis D Dunkle
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Tyler Boone
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sandra K G Peters
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D Hoeprich
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Craig D Blanchette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
21
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
22
|
Savransky V, Ionin B, Reece J. Current Status and Trends in Prophylaxis and Management of Anthrax Disease. Pathogens 2020; 9:E370. [PMID: 32408493 PMCID: PMC7281134 DOI: 10.3390/pathogens9050370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.
Collapse
Affiliation(s)
- Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA; (B.I.); (J.R.)
| | | | | |
Collapse
|
23
|
Dewangan HK. Rational application of nanoadjuvant for mucosal vaccine delivery system. J Immunol Methods 2020; 481-482:112791. [PMID: 32387695 DOI: 10.1016/j.jim.2020.112791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
The surface of the mucosa is the biggest path through which pathogens enter the human body. We need an understanding of mucosal immune systems to use vaccines that generate protective mucosal and systemic immunity to regulate the outbreak of various infectious diseases. The better impact of the mucosal vaccine over traditional injectable vaccines are that not only do they induce efficient immune reactions to the mucosa but they are also comfortable in physical aspect & psychological aspect. The material of the vaccine includes pathogens antigens and adjuvants, which enable vaccination to be effective. Vaccines are classified into different criteria, including the used vaccine material and method of administration. Vaccines have traditionally been injected through a needle. However, as most of the pathogens first infect the mucosal surfaces, and growing interest is expressed in establishing protective immunity from the mucosa, which is accomplished through mucosal paths through vaccinosis. To improve the existing vaccines further, innovative strategies derived from interdisciplinary scientific research will need to develop new vaccine production, storage, and delivery systems. A distinctive & vast research and development platform has been set up for the growth of the next generation of mucosal vaccinations. The latest science and technological advancement in the areas of molecular biology, bio and chemical engineering, genome and system biology has provided accumulated understanding of the inborn and acquired multi-dimensional immune system. This review summarizes recent developments in the use of mucosal vaccines and their associated nanoadjuvants for the control of infectious diseases.
Collapse
Affiliation(s)
- Hitesh Kumar Dewangan
- Institute of Pharmaceutical Research (IPR), GLA University, Mathura, NH-2, Mathura Delhi Road, Chaumuhan Mathura, Uttar Pradesh 281406, India.
| |
Collapse
|
24
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
25
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
26
|
|
27
|
Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine 2019; 37:6470-6477. [PMID: 31515143 DOI: 10.1016/j.vaccine.2019.08.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2). Using the HSV-2 genital herpes guinea pig model, we demonstrate that IN NE01-gD2/gB2 induces higher levels of neutralizing antibody compared to a monovalent IN NE01-gD2 vaccine, but less than an intramuscular (IM) Alum/MPL-gD2 vaccine. Following intravaginal (IVag) challenge with HSV-2, the group immunized with IN NE01-gD2/gB2 exhibited significantly reduced acute and recurrent disease scores compared to placebo recipients. Significantly, latent virus was only detected in the dorsal root ganglia of 1 of 12 IN NE01-gD2/gB2-vaccinated animals compared to 11 of 12 placebo recipient. In the therapeutic model, IN NE01-gD2/gB2 immunized guinea pigs exhibited a significant reduction in the recurrent lesions scores (64%, p < 0.01), number of animal days with disease (64%, p < 0.01), number of animals with viral shedding (50%, p < 0.04) and reduction in virus positive vaginal swabs (56%, p < 0.04), These data suggests that the treatment may be effective in treating chronic disease and minimizing virus transmission. These results warrant advancing the development of IN NE01-gD2/gB2 as both a prophylactic and therapeutic vaccine against HSV-2.
Collapse
|
28
|
Smith D, Streatfield SJ, Acosta H, Ganesan S, Fattom A. A nanoemulsion-adjuvanted intranasal H5N1 influenza vaccine protects ferrets against homologous and heterologous H5N1 lethal challenge. Vaccine 2019; 37:6162-6170. [PMID: 31495593 DOI: 10.1016/j.vaccine.2019.08.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Flu vaccines administered intramuscularly (IM) have shown seasonally fluctuating efficacy, 20-60%, throughout the last 15 years. We formulated a recombinant H5 (rH5) in our Nanovax® (NE01) (rH5/NE01) adjuvant for intranasal vaccination in ferrets. We evaluated the regimen, one vs two immunization, and cross clade protection a ferret challenge model. METHODS Plant derived recombinant H5 (rH5) antigen was formulated with NE01 and administered intranasally to ferrets. Immunogenicity (IgG), hemagglutination inhibition (HI), and protection against lethal challenge, were measured following one or two immunizations. Protection against homologous (strain A/Indo) and heterologous (strain A/Vn) was evaluated in ferrets following two immunizations. RESULTS IN immunization with rH5/NE01 induced significant IgG levels after one and two immunizations. One vaccination did not induce any HI while low HI was measured after two immunizations. Homologous challenge with H5N1 A/ Indonesia showed 100% survival, with minimal weight loss in animals vaccinated twice compared to the unvaccinated controls. Analysis of nasal wash from these challenged ferrets vaccinated twice showed decreased viral shedding compared to unvaccinated controls. Interestingly, animals that received one vaccination showed 88% survival with moderate weight loss. Cross clade protection was evaluated using an increased antigen dose (45 µg rH5). Vaccinated animals demonstrated increased IgG and HAI antibody responses. Both homologous (A/Indo) and heterologous challenge (A/Vietnam) following two immunizations showed 100% survival with no loss of body weight. However viral clearance was more rapid against the homologous (day 3) compared to the heterologous (day 5) post challenge. CONCLUSION Intranasal administration of NE01 adjuvant-formulated rH5 vaccine elicited systemic and probably mucosal immunity that conferred protection against lethal challenge with homologous or heterologous viral strains. It also enhanced viral clearance with decreased shedding. These outcomes strongly suggest that intranasal immunization using NE01 against flu infections warrants clinical testing.
Collapse
Affiliation(s)
| | - Stephen J Streatfield
- Fraunhofer USA Center for Molecular Biotechnology (FhCMB), Newark, DE, United States
| | - Hugo Acosta
- BlueWillow Biologics, Ann Arbor, MI, United States
| | | | - Ali Fattom
- BlueWillow Biologics, Ann Arbor, MI, United States.
| |
Collapse
|
29
|
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release 2019; 303:130-150. [PMID: 31022431 PMCID: PMC7111479 DOI: 10.1016/j.jconrel.2019.04.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Liposomes are widely utilized as a carrier to improve therapeutic efficacy of agents thanks to their merits of high loading capacity, targeting delivery, reliable protection of agents, good biocompatibility, versatile structure modification and adjustable characteristics, such as size, surface charge, membrane flexibility and the agent loading mode. In particular, in recent years, through modification with immunopotentiators and targeting molecules, and in combination with innovative immunization devices, liposomes are rapidly developed as a multifunctional vaccine adjuvant-delivery system (VADS) that has a high capability in inducing desired immunoresponses, as they can target immune cells and even cellular organelles, engender lysosome escape, and promote Ag cross-presentation, thus enormously enhancing vaccination efficacy. Moreover, after decades of development, several products developed on liposome VADS have already been authorized for clinical immunization and are showing great advantages over conventional vaccines. This article describes in depth some critical issues relevant to the development of liposomes as a VADS, including principles underlying immunization, physicochemical properties of liposomes as the immunity-influencing factors, functional material modification to enhance immunostimulatory functions, the state-of-the-art liposome VADSs, as well as the marketed vaccines based on a liposome VADS. Therefore, this article provides a comprehensive reference to the development of novel liposome vaccines.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
30
|
Gogoi H, Mani R, Bhatnagar R. A niosome formulation modulates the Th1/Th2 bias immune response in mice and also provides protection against anthrax spore challenge. Int J Nanomedicine 2018; 13:7427-7440. [PMID: 30532531 PMCID: PMC6241689 DOI: 10.2147/ijn.s153150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction In this study, we have investigated the immunogenicity and protective efficacy of a niosomal formulation encapsulating protective antigen (PA) and PA domain 4 (D4) of Bacillus anthracis. Methods Nonionic surfactant–based vesicles (NISV) + PA and NISV + D4 were prepared from span-60 and cholesterol by reverse-phase evaporation method and were evaluated for in vitro characteristics and immunological studies. Results Particle characterization using transmission electron microscopy and atomic force microscopy analysis showed that the niosomal formulation was spherical in shape. The entrapment efficiency values were calculated to be 58.5% and 44.75% for PA and D4, respectively. Confocal microscopy and flow cytometry studies showed an enhanced uptake of antigen in THP1 macrophages by niosome as compared to antigen only. An in vitro release assay showed a burst release of antigen from niosome within 24 hours followed by a gradual release for 144 hours. Immunological studies showed that both PA- and D4-encapsulated niosome elicited a robust IgG titer. Antibody isotyping and cytokine profile showed that NISV + PA and NISV + D4 enhanced both Th1 and Th2 responses in mice, suggesting a mixed Th1/Th2 response. Both NISV + PA and NISV + D4 elicited high levels of anti-inflammatory cytokine interleukin-10 with low levels of pro-inflammatory cytokine tumor necrosis factor-α, suggesting the anti-inflammatory property of niosome. Both the niosomal formulations were also able to confer protection against BA infection as compared to only PA and D4. Conclusion PA and D4 encapsulated NISV formulation could modulate both the Th1 and Th2 adaptive immune system and was found to be a better prophylactic against anthrax.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| |
Collapse
|
31
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
32
|
Modified Nanoemulsions with Iron Oxide for Magnetic Resonance Imaging. NANOMATERIALS 2016; 6:nano6120223. [PMID: 28335351 PMCID: PMC5302717 DOI: 10.3390/nano6120223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
Abstract
A nanoemulsion (NE) is a surfactant-based, oil-in-water, nanoscale, high-energy emulsion with a mean droplet diameter of 400–600 nm. When mixed with antigen and applied nasally, a NE acts as a mucosal adjuvant and induces mucosal immune responses. One possible mechanism for the adjuvant effect of this material is that it augments antigen uptake and distribution to lymphoid tissues, where the immune response is generated. Biocompatible iron oxide nanoparticles have been used as a unique imaging approach to study the dynamics of cells or molecular migration. To study the uptake of NEs and track them in vivo, iron oxide nanoparticles were synthesized and dispersed in soybean oil to make iron oxide-modified NEs. Our results show that iron oxide nanoparticles can be stabilized in the oil phase of the nanoemulsion at a concentration of 30 µg/μL and the iron oxide-modified NEs have a mean diameter of 521 nm. In vitro experiments demonstrated that iron oxide-modified NEs can affect uptake by TC-1 cells (a murine epithelial cell line) and reduce the intensity of magnetic resonance (MR) images by shortening the T2 time. Most importantly, in vivo studies demonstrated that iron oxide-modified NE could be detected in mouse nasal septum by both transmission electron microscopy and MR imaging. Altogether these experiments demonstrate that iron oxide-modified NE is a unique tool that can be used to study uptake and distribution of NEs after nasal application.
Collapse
|
33
|
Gallovic MD, Schully KL, Bell MG, Elberson MA, Palmer JR, Darko CA, Bachelder EM, Wyslouzil BE, Keane-Myers AM, Ainslie KM. Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure. Adv Healthc Mater 2016; 5:2617-2627. [PMID: 27594343 DOI: 10.1002/adhm.201600642] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Indexed: 12/30/2022]
Abstract
Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs.
Collapse
Affiliation(s)
- Matthew D. Gallovic
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Kevin L. Schully
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Matthew G. Bell
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Margaret A. Elberson
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - John R. Palmer
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Christian A. Darko
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Eric M. Bachelder
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Barbara E. Wyslouzil
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Department of Chemistry and Biochemistry; College of Arts and Sciences; The Ohio State University; Columbus OH 43210 USA
| | - Andrea M. Keane-Myers
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Kristy M. Ainslie
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
34
|
O'Konek JJ, Makidon PE, Landers JJ, Cao Z, Malinczak CA, Pannu J, Sun J, Bitko V, Ciotti S, Hamouda T, Wojcinski ZW, Lukacs NW, Fattom A, Baker JR. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum Vaccin Immunother 2016; 11:2904-12. [PMID: 26307915 DOI: 10.1080/21645515.2015.1075680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.
Collapse
Affiliation(s)
- Jessica J O'Konek
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Paul E Makidon
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA.,b The Unit for Laboratory Animal Medicine; Medical School; University of Michigan ; Ann Arbor , MI USA
| | - Jeffrey J Landers
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Zhengyi Cao
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | | | | | | | - Vira Bitko
- c NanoBio Corporation ; Ann Arbor , MI USA
| | | | | | | | - Nicholas W Lukacs
- e Department of Pathology ; University of Michigan ; Ann Arbor , MI USA
| | - Ali Fattom
- c NanoBio Corporation ; Ann Arbor , MI USA
| | - James R Baker
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| |
Collapse
|
35
|
Bielinska AU, O'Konek JJ, Janczak KW, Baker JR. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant. Vaccine 2016; 34:4017-24. [PMID: 27317451 PMCID: PMC4962973 DOI: 10.1016/j.vaccine.2016.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
TH2-biased immune responses are associated with inadequate protection against some pathogens and with cancer, colitis, asthma and allergy. Since most currently used vaccine adjuvants induce a TH2-biased response, this has led to interest in developing adjuvants capable of activating TH1 immunity and modulating existing TH2 responses. Immunotherapies to shift immune responses from TH2 to TH1 have generally required prolonged immunization protocols and have not induced effective TH1 responses. We have demonstrated that nanoscale emulsions (NE), a novel mucosal adjuvant, induce robust IgA and IgG antibody responses and TH1/TH17 cellular immunity resulting in protection against a variety of respiratory and mucosal infections. Because intranasal (i.n.) delivery of NE adjuvant consistently induces TH1/TH17 biased responses, we hypothesized that NE could be used as a therapeutic vaccine to redirect existing TH2 polarized immunity towards a more balanced TH1/TH2 profile. To test this, a TH2 immune response was established by intramuscular immunization of mice with alum-adjuvanted hepatitis B surface antigen (HBs), followed by a single subsequent i.n. immunization with NE-HBs. These animals exhibited increased TH1 associated immune responses and IL-17, and decreased TH2 cytokines (IL-4 and IL-5) and IgG1. NE immunization induced regulatory T cells and IL-10, and IL-10 was required for the suppression of TH2 immunity. These data demonstrate that NE-based vaccines can modulate existing TH2 immune responses to promote TH1/TH17 immunity and suggest the potential therapeutic use of NE vaccines for diseases associated with TH2 immunity.
Collapse
Affiliation(s)
- Anna U Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jessica J O'Konek
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Katarzyna W Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
36
|
Fan Y, Moon JJ. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27038091 DOI: 10.1002/wnan.1403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. WIREs Nanomed Nanobiotechnol 2017, 9:e1403. doi: 10.1002/wnan.1403 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
38
|
Shukla A, Mishra V, Bhoop BS, Katare OP. Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid. (Part A). Systematic optimization, development and characterization. Int J Pharm 2015; 495:220-233. [DOI: 10.1016/j.ijpharm.2015.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/01/2015] [Accepted: 08/08/2015] [Indexed: 12/15/2022]
|
39
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
40
|
Woo SJ, Kang SS, Park SM, Yang JS, Song MK, Yun CH, Han SH. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response. Mol Immunol 2015; 67:492-500. [PMID: 26278659 DOI: 10.1016/j.molimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/16/2023]
Abstract
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.
Collapse
Affiliation(s)
- Sun-Je Woo
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jae Seung Yang
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Man Ki Song
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
41
|
Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination. Vaccine 2015; 33:3609-13. [DOI: 10.1016/j.vaccine.2015.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 11/21/2022]
|
42
|
Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants. PLoS One 2015; 10:e0126120. [PMID: 25962136 PMCID: PMC4427474 DOI: 10.1371/journal.pone.0126120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/29/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications.
Collapse
|
43
|
Orzechowska BU, Kukowska-Latallo JF, Coulter AD, Szabo Z, Gamian A, Myc A. Nanoemulsion-based mucosal adjuvant induces apoptosis in human epithelial cells. Vaccine 2015; 33:2289-2296. [PMID: 25817825 DOI: 10.1016/j.vaccine.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/18/2022]
Abstract
Nanoemulsions (NEs) are adjuvants that enhance antigen penetration of the nasal mucosa, increase cellular uptake of antigens by both epithelial and dendritic cells, and promote the migration of antigen-loaded dendritic cells to regional lymph nodes within 24-h of vaccine administration. The objective of this study was to elucidate cell death caused by W805EC NE and identify caspases and genes associated with death pathways. Consistent with this aim, we show that exposure of human epithelial cells (EC), both RPMI 2650 and FaDu, to NE results in the activation of caspases (1, 3/7, 6, 8, and 9) and the expression of genes involved in apoptotic as well as authophagy and necrosis pathways. Interestingly, the NE activates caspase 8 which promotes "immunogenic apoptosis". The rescue assay was employed to investigate the fate of RPMI 2650 cells treated with W805EC NE. After four-hour treatment with as little as 0.03% of NE no cells were rescued at 72h. Remarkably, immediately after four-hour treatment, the cells morphologically resembled untreated cells and most of the cells were alive. Altogether, these results suggest that NE induces death of human ECs through multiple pathways. Epithelial cell death caused by W805EC may have further implications on antigen uptake, processing, and presentation by DC's.
Collapse
Affiliation(s)
- Beata U Orzechowska
- Department of Immunology of Infectious Diseases, Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jolanta F Kukowska-Latallo
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexa D Coulter
- The University of Michigan, College of Literature, Science and the Arts, Ann Arbor, MI, United States
| | - Zsuzsanna Szabo
- The University of Michigan, College of Literature, Science and the Arts, Ann Arbor, MI, United States
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Wroclaw Research Center EIT+, Wroclaw, Poland
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States; Faculty of Biological Sciences, University of Zielona Gora, Zielona Gora, Poland.
| |
Collapse
|
44
|
Hu J, Chen D, Jiang R, Tan Q, Zhu B, Zhang J. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine-phospholipid nanocomplex. Int J Nanomedicine 2014; 9:4411-20. [PMID: 25258531 PMCID: PMC4172252 DOI: 10.2147/ijn.s59812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose The purpose of this study was to assess the improved absorption and in vivo kinetic characteristics of a novel water-in-oil nanoemulsion containing evodiamine–phospholipid nanocomplex (NEEPN) when administered orally. Methods NEEPN was fabricated by loading an evodiamine–phospholipid nanocomplex into a water-in-oil nanoemulsive system. The gastrointestinal absorption of NEEPN was investigated using an in situ perfusion method. The modified in vivo kinetic characteristics of evodiamine (EDA) in NEEPN were also evaluated. Results Compared with EDA or conventional nanoemulsions containing EDA instead of evodiamine–phospholipid complex, NEEPN with its favorable in vivo kinetic characteristics clearly enhanced the gastrointestinal absorption and oral bioavailability of EDA; for example, the relative bioavailability of NEEPN to free EDA was calculated to be 630.35%, and the effective permeability of NEEPN in the colon was 8.64-fold that of EDA. Conclusion NEEPN markedly improved the oral bioavailability of EDA, which was probably due to its increased gastrointestinal absorption. NEEPN also increased efficacy and reduced adverse effects for oral delivery of EDA. Such finding demonstrates great clinical significance as an ideal drug delivery system demands high efficacy and no adverse effects.
Collapse
Affiliation(s)
- Jiangbo Hu
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Dilong Chen
- Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rong Jiang
- Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Biyue Zhu
- West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Jingqing Zhang
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
45
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
46
|
Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the Management of Microbial Infection - Overview and Perspectives. NANO TODAY 2014; 9:478-498. [PMID: 25267927 PMCID: PMC4175422 DOI: 10.1016/j.nantod.2014.06.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
For more than 2 billion years, microbes have reigned on our planet, evolving or outlasting many obstacles they have encountered. In the 20th century, this trend took a dramatic turn with the introduction of antibiotics and vaccines. Nevertheless, since then, microbes have progressively eroded the effectiveness of previously successful antibiotics by developing resistance, and many infections have eluded conventional vaccine design approaches. Moreover, the emergence of resistant and more virulent strains of bacteria has outpaced the development of new antibiotics over the last few decades. These trends have had major economic and health impacts at all levels of the socioeconomic spectrum - we need breakthrough innovations that could effectively manage microbial infections and deliver solutions that stand the test of time. The application of nanotechnologies to medicine, or nanomedicine, which has already demonstrated its tremendous impact on the pharmaceutical and biotechnology industries, is rapidly becoming a major driving force behind ongoing changes in the antimicrobial field. Here we provide an overview on the current progress of nanomedicine in the management of microbial infection, including diagnosis, antimicrobial therapy, drug delivery, medical devices, and vaccines, as well as perspectives on the opportunities and challenges in antimicrobial nanomedicine.
Collapse
Affiliation(s)
- Xi Zhu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Aleksandar F. Radovic-Moreno
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Jinjun Shi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
48
|
Adamo R. Glycan surface antigens fromBacillus anthracisas vaccine targets: current status and future perspectives. Expert Rev Vaccines 2014; 13:895-907. [DOI: 10.1586/14760584.2014.924404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
50
|
Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R, Sarin NB, Bhatnagar R. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol 2014; 176:1-10. [PMID: 24548460 DOI: 10.1016/j.jbiotec.2014.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/30/2013] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax.
Collapse
Affiliation(s)
- Jyotsna Gorantala
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonam Grover
- Molecular Technology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prerna Chaudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Rajwanshi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|