1
|
Yun SY, Nguyen MN, Hong H, Bae GJ, Eom TH, Hoang VT, Park H, Yeo SJ. Immunogenicity and efficacy in mice of two adjuvant formulations based on the C -and N-terminus of merozoite surface protein 1 of Plasmodium yoelii. Vaccine 2025; 55:127032. [PMID: 40112557 DOI: 10.1016/j.vaccine.2025.127032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The carboxyl-terminal fragment of MSP-1 is a potential malaria vaccine candidate, but its limited immunogenicity in humans has slowed clinical progress, needing the optimization of formulation of adjuvant and construct. In this study, the N- and C-terminal fragments of the PyMSP-1 (PyMSP-1 N and PyMSP-1C) were immunized to mice with either incomplete Freund's adjuvant (IFA) plus CpG ODN 1826 or Aluminum salts (Alum) plus CpG, followed by a challenge with Plasmodium yoelii 17XNL to investigate vaccine efficacy. Humoral response and antigen-specific T-cell-derived IFN-γ cytokines were analyzed to compare both fragments. After challenge infection, all mice immunized by PyMSP-1C in IFA plus CpG ODN survived with low-grade parasitemia, while 50 % of mice immunized with PyMSP-1 N in Alum plus CpG ODN died with high levels of parasitemia. Co-immunized with both fragments prevented parasitemia entirely, with IFA plus CpG adjuvants proving more suitable than Alum plus CpG. Both fragments elicited a comparable humoral response when they were formulated with IFA plus CpG ODN but PyMSP-1 N formulated with Alum plus CpG ODN significantly decreased the antigen-specific IgG level. While both IgG1 and IgG2c levels were comparable in two fragments formulated by IFA plus CpG ODN, it was efficient to induce the level of IgG2c of PyMSP-1 N fragment (P < 0.0001). Likewise, IFN-γ from both CD8+ and CD4+ T-cells was significantly lower by PyMSP-1 N than PyMSP-1C formulated in IFA plus CpG ODN (P < 0.0001). In conclusion, the N-terminal fragment of PyMSP-1 protected mice although it showed lower humoral and cellular immune response compared to C-terminal of MSP-1 in IFA plus CpG. The antibody level of PyMSP-1 N was comparable to that of PyMSP-1C when it was formulated with IFA plus CpG.
Collapse
Affiliation(s)
- Su-Yeon Yun
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Minh-Ngoc Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Hyelee Hong
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gum-Ju Bae
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Tae Hui Eom
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Seon-Ju Yeo
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Deshmukh B, Khatri D, Kochar SK, Athale C, Karmodiya K. In vitro evaluation of multi-protein chimeric antigens in effectively clearing the blood stage of Plasmodium falciparum. Vaccine 2025; 53:126952. [PMID: 40037124 DOI: 10.1016/j.vaccine.2025.126952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Plasmodium falciparum-induced malaria remains a fatal disease affecting millions of people worldwide. Mainly, the blood stage of malaria is highly pathogenic and symptomatic, rapidly damaging the host organs and occasionally leading to death. Currently, no vaccines are approved for use against the blood stage of malaria. Canonical vaccines in the past have selected the most immunodominant or essential protein to block the growth of the parasite. This strategy works efficiently for low-complexity organisms such as viruses and a few bacteria but has not shown promising results for a malaria vaccine. Plasmodium has a complex life cycle and vaccine candidates especially during blood stage are ineffective due to multiple gene families showing redundancy, immune evasion, and insufficient antibody titer. Herein, we demonstrate a strategy of combining multiple antigens from the blood stage of Plasmodium falciparum using only the most immunodominant peptide sequences as a way of tackling polymorphism and redundancy. We created three chimeric antigens targeting eight PfEMP1 proteins (chimeric varB) and eight merozoite surface proteins (chimeric MSP and InvP) by selecting and stitching B-cell epitopes. Our chimeric constructs show naturally circulating antibodies against individual peptides using epitope-mapping microarray as well as entire proteins in malaria-infected patients. We demonstrate that anti-varB antibodies are neutralizing in nature and significantly reduce the cytoadhesion on an organ-on-chip system with a microfluidic device mimicking physiological conditions. We have applied a Deep Learning based method to quantify the number of adhered RBCs under fluidic conditions that is used to study cytoadhesion. Furthermore, the anti-MSP and InvP antibodies show complete growth inhibition in a single cycle at a combined concentration of 0.13 mg/ml. Overall, our preliminary results show that a combination of antigenic peptides from multiple antigens can potentially effectively reduce cytoadhesion and clear blood stage infection in in-vitro settings.
Collapse
Affiliation(s)
- Bhagyashree Deshmukh
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - Dhruv Khatri
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | | | - Chaitanya Athale
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India.
| |
Collapse
|
3
|
Zerebinski J, Margerie L, Han NS, Moll M, Ritvos M, Jahnmatz P, Ahlborg N, Ngasala B, Rooth I, Sjöberg R, Sundling C, Yman V, Färnert A, Plaza DF. Naturally acquired IgG responses to Plasmodium falciparum do not target the conserved termini of the malaria vaccine candidate Merozoite Surface Protein 2. Front Immunol 2024; 15:1501700. [PMID: 39717775 PMCID: PMC11663719 DOI: 10.3389/fimmu.2024.1501700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Malaria remains a significant burden, and a fully protective vaccine against Plasmodium falciparum is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from P. falciparum malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail. This study sought to better understand naturally acquired MSP2-specific antibody responses. Methods IgG responses against recombinantly expressed full-length, central polymorphic regions, and peptides derived from the conserved termini of MSP2 variants sequenced from patient isolates, were tested in plasma from travelers with recent, acute malaria and from individuals living in an endemic area of Tanzania. Results IgG responses towards full MSP2 and truncated MSP2 antigens were variant specific. IgG antibodies in the plasma of first-time infected or previously exposed travelers did not recognize the conserved termini of expressed MSP2 variants by ELISA, but they bound 13-amino acid long linear epitopes from the termini in a custom-made peptide array. Alphafold3 modelling suggests extensive structural heterogeneity in the conserved termini upon antigen oligomerization. IgG from individuals living in an endemic region, many who were asymptomatically infected, did not recognize the conserved termini by ELISA. Discussion Our results suggest that responses to the variable regions are critical for the development of naturally acquired immunity towards MSP2.
Collapse
Affiliation(s)
- Julia Zerebinski
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lucille Margerie
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Nan Sophia Han
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Moll
- University Hospital of Bonn, Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University of Bonn, Bonn, Germany
| | - Matias Ritvos
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ronald Sjöberg
- Autoimmunity and Serology Profiling Unit, SciLifeLab, Solna, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, Stockholm, Sweden
- Department of Global Health, Infectious Disease Epidemiology & Analytics Unit, Institut Pasteur Paris, Paris, France
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Odera DO, Tuju J, Mwai K, Nkumama IN, Fürle K, Chege T, Kimathi R, Diehl S, Musasia FK, Rosenkranz M, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Anti-merozoite antibodies induce natural killer cell effector function and are associated with immunity against malaria. Sci Transl Med 2023; 15:eabn5993. [PMID: 36753561 PMCID: PMC7616656 DOI: 10.1126/scitranslmed.abn5993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.
Collapse
Affiliation(s)
- Dennis O. Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Chege
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stefan Diehl
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Fauzia K. Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C. Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H. A. Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, UK
| |
Collapse
|
5
|
Sauer LM, Canovas R, Roche D, Shams-Eldin H, Ravel P, Colinge J, Schwarz RT, Ben Mamoun C, Rivals E, Cornillot E. FT-GPI, a highly sensitive and accurate predictor of GPI-anchored proteins, reveals the composition and evolution of the GPI proteome in Plasmodium species. Malar J 2023; 22:27. [PMID: 36698187 PMCID: PMC9876418 DOI: 10.1186/s12936-022-04430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Protozoan parasites are known to attach specific and diverse group of proteins to their plasma membrane via a GPI anchor. In malaria parasites, GPI-anchored proteins (GPI-APs) have been shown to play an important role in host-pathogen interactions and a key function in host cell invasion and immune evasion. Because of their immunogenic properties, some of these proteins have been considered as malaria vaccine candidates. However, identification of all possible GPI-APs encoded by these parasites remains challenging due to their sequence diversity and limitations of the tools used for their characterization. METHODS The FT-GPI software was developed to detect GPI-APs based on the presence of a hydrophobic helix at both ends of the premature peptide. FT-GPI was implemented in C ++and applied to study the GPI-proteome of 46 isolates of the order Haemosporida. Using the GPI proteome of Plasmodium falciparum strain 3D7 and Plasmodium vivax strain Sal-1, a heuristic method was defined to select the most sensitive and specific FT-GPI software parameters. RESULTS FT-GPI enabled revision of the GPI-proteome of P. falciparum and P. vivax, including the identification of novel GPI-APs. Orthology- and synteny-based analyses showed that 19 of the 37 GPI-APs found in the order Haemosporida are conserved among Plasmodium species. Our analyses suggest that gene duplication and deletion events may have contributed significantly to the evolution of the GPI proteome, and its composition correlates with speciation. CONCLUSION FT-GPI-based prediction is a useful tool for mining GPI-APs and gaining further insights into their evolution and sequence diversity. This resource may also help identify new protein candidates for the development of vaccines for malaria and other parasitic diseases.
Collapse
Affiliation(s)
- Lena M. Sauer
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- Present Address: GRN-Klinik Sinsheim, Alte Waibstadter Straße 2a, 74889 Sinsheim, Germany
| | - Rodrigo Canovas
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Daniel Roche
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Hosam Shams-Eldin
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Patrice Ravel
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Jacques Colinge
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Ralph T. Schwarz
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Choukri Ben Mamoun
- grid.47100.320000000419368710Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520 USA
| | - Eric Rivals
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.510302.5Institut Français de Bioinformatique, CNRS UAR 3601, 2, rue Gaston Crémieux, 91057 Évry, France
| | - Emmanuel Cornillot
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
- Wespran SAS, 13 Rue de Penthièvre, 75008 Paris, France
| |
Collapse
|
6
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
7
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
8
|
Cyclic constrained immunoreactive peptides from crucial P. falciparum proteins: potential implications in malaria diagnostics. Transl Res 2022; 249:28-36. [PMID: 35697275 DOI: 10.1016/j.trsl.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
Malaria is still a global challenge with significant morbidity and mortality, especially in the African, South-East Asian, and Latin American regions. Malaria diagnosis is a crucial pillar in the control and elimination efforts, often accomplished by the administration of mass-scale Rapid diagnostic tests (RDTs). The inherent limitations of RDTs- insensitivity in scenarios of low transmission settings and deletion of one of the target proteins- Histidine rich protein 2/3 (HRP-2/3) are evident from multiple reports, thus necessitating the need to explore novel diagnostic tools/targets. The present study used peptide microarray to screen potential epitopes from 13 antigenic proteins (CSP, EXP1, LSA1, TRAP, AARP, AMA1, GLURP, MSP1, MSP2, MSP3, MSP4, P48/45, HAP2) of P. falciparum. Three cyclic constrained immunoreactive peptides- C6 (EXP1), A8 (MSP2), B7 (GLURP) were identified from 5458 cyclic constrained peptides (in duplicate) against P. falciparum-infected sera. Peptides (C6, A8, B7- cyclic constrained) and (G11, DSQ, NQN- corresponding linear peptides) were fairly immunoreactive towards P. falciparum-infected sera in dot-blot assay. Using direct ELISA, cyclic constrained peptides (C6 and B7) were found to be specific to P. falciparum-infected sera. A substantial number of samples were tested and the peptides successfully differentiated the P. falciparum positive and negative samples with high confidence. In conclusion, the study identified 3 cyclic constrained immunoreactive peptides (C6, B7, and A8) from P. falciparum secretory/surface proteins and further validated for diagnostic potential of 2 peptides (C6 and B7) with field-collected P. falciparum-infected sera samples.
Collapse
|
9
|
Neutralizing and interfering human antibodies define the structural and mechanistic basis for antigenic diversion. Nat Commun 2022; 13:5888. [PMID: 36202833 PMCID: PMC9537153 DOI: 10.1038/s41467-022-33336-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Defining mechanisms of pathogen immune evasion and neutralization are critical to develop potent vaccines and therapies. Merozoite Surface Protein 1 (MSP-1) is a malaria vaccine antigen and antibodies to MSP-1 are associated with protection from disease. However, MSP-1-based vaccines performed poorly in clinical trials in part due to a limited understanding of the protective antibody response to MSP-1 and of immune evasion by antigenic diversion. Antigenic diversion was identified as a mechanism wherein parasite neutralization by a MSP-1-specific rodent antibody was disrupted by MSP-1-specific non-inhibitory blocking/interfering antibodies. Here, we investigated a panel of MSP-1-specific naturally acquired human monoclonal antibodies (hmAbs). Structures of multiple hmAbs with diverse neutralizing potential in complex with MSP-1 revealed the epitope of a potent strain-transcending hmAb. This neutralizing epitope overlaps with the epitopes of high-affinity non-neutralizing hmAbs. Strikingly, the non-neutralizing hmAbs outcompete the neutralizing hmAb enabling parasite survival. These findings demonstrate the structural and mechanistic basis for a generalizable pathogen immune evasion mechanism through neutralizing and interfering human antibodies elicited by antigenic diversion, and provides insights required to develop potent and durable malaria interventions. The Plasmodium falciparum Merozoite Surface Protein 1 (MSP-1) is a prime vaccine candidate for malaria. Here, the authors structurally and functionally characterise a panel of naturally acquired MSP-1 specific antibodies to identify one with potent broadly neutralising activity and better understand immune evasion mechanisms.
Collapse
|
10
|
Zheng X, Zhang J, Lu C, Zhuang Y, Zhang X. Rational Design of Peptide Inhibitor Against Amyloidogenesis-Correlated Membrane Disruption by Merozoite Surface Protein 2. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yong Huang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Jian He
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Liping Zhong
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| |
Collapse
|
12
|
Nie Z, Ao Y, Wang S, Shu X, Li M, Zhan X, Yu L, An X, Sun Y, Guo J, Zhao Y, He L, Zhao J. Erythrocyte Adhesion of Merozoite Surface Antigen 2c1 Expressed During Extracellular Stages of Babesia orientalis. Front Immunol 2021; 12:623492. [PMID: 34079537 PMCID: PMC8165267 DOI: 10.3389/fimmu.2021.623492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Babesia orientalis, a major infectious agent of water buffalo hemolytic babesiosis, is transmitted by Rhipicephalus haemaphysaloides. However, no effective vaccine is available. Essential antigens that are involved in parasite invasion of host red blood cells (RBCs) are potential vaccine candidates. Therefore, the identification and the conduction of functional studies of essential antigens are highly desirable. Here, we evaluated the function of B. orientalis merozoite surface antigen 2c1 (BoMSA-2c1), which belongs to the variable merozoite surface antigen (VMSA) family in B. orientalis. We developed a polyclonal antiserum against the purified recombinant (r)BoMSA-2c1 protein. Immunofluorescence staining results showed that BoMSA-2c1 was expressed only on extracellular merozoites, whereas the antigen was undetectable in intracellular parasites. RBC binding assays suggested that BoMSA-2c1 specifically bound to buffalo erythrocytes. Cytoadherence assays using a eukaryotic expression system in vitro further verified the binding and inhibitory ability of BoMSA-2c1. We found that BoMSA-2c1 with a GPI domain was expressed on the surface of HEK293T cells that bound to water buffalo RBCs, and that the anti-rBoMSA2c1 antibody inhibited this binding. These results indicated that BoMSA-2c1 was involved in mediating initial binding to host erythrocytes of B. orientalis. Identification of the occurrence of binding early in the invasion process may facilitate understanding of the growth characteristics, and may help in formulating strategies for the prevention and control of this parasite.
Collapse
Affiliation(s)
- Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yangsiqi Ao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xiang Shu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xiaomeng An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
13
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
14
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
15
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
16
|
Beg AZ, Khan AU. Motifs and interface amino acid-mediated regulation of amyloid biogenesis in microbes to humans: potential targets for intervention. Biophys Rev 2020; 12:1249-1256. [PMID: 32930961 DOI: 10.1007/s12551-020-00759-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Amyloids are linked to many debilitating diseases in mammals. Some organisms produce amyloids that have a functional role in the maintenance of their biological processes. Microbes utilize functional bacterial amyloids (FuBA) for pathogenicity and infections. Amyloid biogenesis is regulated differentially in various systems to avoid its toxic accumulation. A familiar feature in the process of amyloid biogenesis from humans to microbes is its regulation by protein-protein interactions (PPI). The spatial arrangement of amino acid residues in proteins generates topologies like flat interface and linear motif, which participate in protein interactions. Motifs and interface residue-mediated interactions have a direct or an indirect impact on amyloid secretion and assembly. Some motifs undergo post-translational modifications (PTM), which effects interactions and dynamics of the amyloid biogenesis cascade. Interaction-induced local changes stimulate global conformational transitions in the PPI complex, which indirectly affects amyloid formation. Perturbation of such motifs and interface residues results in amyloid abolishment. Interface residues, motifs and their respective interactive protein partners could serve as potential targets for intervention to inhibit amyloid biogenesis.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
17
|
Gunalan K, Gao X, Yap SSL, Lai SK, Ravasio A, Ganesan S, Li HY, Preiser PR. A processing product of the Plasmodium falciparum reticulocyte binding protein RH1 shows a close association with AMA1 during junction formation. Cell Microbiol 2020; 22:e13232. [PMID: 32452132 DOI: 10.1111/cmi.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand-receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in-situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiaohong Gao
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sally Shu Lin Yap
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Soak Kuan Lai
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrea Ravasio
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Institute of Biological and Medical Engineering of the Pontifical Catholic University of Chile, Chile
| | - Sundar Ganesan
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hoi Yeung Li
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter R Preiser
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
Detection of Protein Aggregation in Live Plasmodium Parasites. Antimicrob Agents Chemother 2020; 64:AAC.02135-19. [PMID: 32284383 DOI: 10.1128/aac.02135-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells, we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was used to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.
Collapse
|
19
|
Arisue N, Palacpac NMQ, Tougan T, Horii T. Characteristic features of the SERA multigene family in the malaria parasite. Parasit Vectors 2020; 13:170. [PMID: 32252804 PMCID: PMC7132891 DOI: 10.1186/s13071-020-04044-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/27/2020] [Indexed: 02/28/2023] Open
Abstract
Serine repeat antigen (SERA) is conserved among species of the genus Plasmodium. Sera genes form a multigene family and are generally tandemly clustered on a single chromosome. Although all Plasmodium species encode multiple sera genes, the number varies between species. Among species, the members share similar sequences and gene organization. SERA possess a central papain-like cysteine protease domain, however, in some members, the active site cysteine residue is substituted with a serine. Recent studies implicate this gene family in a number of aspects in parasite biology and induction of protective immune response. This review summarizes the current understanding on this important gene family in several Plasmodium species. The Plasmodium falciparum (Pf)-sera family, for example, consists of nine gene members. Unlike other multigene families in Plasmodium species, Pf-sera genes do not exhibit antigenic variation. Pf-sera5 nucleotide diversity is also low. Moreover, although Pf-sera5 is highly transcribed during the blood stage of malaria infection, and a large amount is released into the host blood following schizont rupture, in malaria endemic countries the sero-positive rates for Pf-SERA5 are low, likely due to Pf-SERA5 binding of host proteins to avoid immune recognition. As an antigen, the N-terminal 47 kDa domain of Pf-SERA5 is a promising vaccine candidate currently undergoing clinical trials. Pf-SERA5 and Pf-SERA6, as well as P. berghei (Pb)-SERA3, and Pb-SERA5, have been investigated for their roles in parasite egress. Two P. yoelii SERA, which have a serine residue at the protease active center, are implicated in parasite virulence. Overall, these studies provide insight that during the evolution of the Plasmodium parasite, the sera gene family members have increased by gene duplication, and acquired various functions that enable the parasite to survive and successfully maintain infection in the host.![]()
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tougan
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Amlabu E, Ilani P, Opoku G, Nyarko PB, Quansah E, Thiam LG, Anim M, Ayivor-Djanie R, Akuh OA, Mensah-Brown H, Rayner JC, Awandare GA. Molecular Characterization and Immuno-Reactivity Patterns of a Novel Plasmodium falciparum Armadillo-Type Repeat Protein, PfATRP. Front Cell Infect Microbiol 2020; 10:114. [PMID: 32266165 PMCID: PMC7100384 DOI: 10.3389/fcimb.2020.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.
Collapse
Affiliation(s)
- Emmanuel Amlabu
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Philip Ilani
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Grace Opoku
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Evelyn Quansah
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Laty G. Thiam
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Manfred Anim
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biomedical Sciences, SBBS, University of Health and Allied Sciences, Ho, Ghana
| | - Ojo-ajogu Akuh
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Henrietta Mensah-Brown
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon A. Awandare
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
21
|
Das D, Krishnan SR, Roy A, Bulusu G. A network-based approach reveals novel invasion and Maurer's clefts-related proteins in Plasmodium falciparum. Mol Omics 2019; 15:431-441. [PMID: 31631203 DOI: 10.1039/c9mo00124g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Malaria continues to be a major concern in developing countries despite continuous efforts to find a cure for the disease. Understanding the pathogenesis mechanism is necessary to identify more effective drug targets against malaria. Many years of experimental research have generated a large amount of data for the malarial parasite, Plasmodium falciparum. These data are useful to understand the importance of certain parasite proteins, but it often remains unclear how these proteins come together, interact with other proteins and carry out their function. Identification of all proteins involved in pathogenesis is an important step towards understanding the molecular mechanism of pathogenesis. In this study, dynamic stage-specific protein-protein interaction networks were created based on gene expression data during the parasite's intra-erythrocytic stages and static protein-protein interaction data. Using previously known proteins of a biological event as seed proteins, the random walk with restart (RWR) method was used on the dynamic protein-protein interaction networks to identify novel proteins related to that event. Two screening procedures namely, permutation test and GO enrichment test were performed to increase the reliability of the RWR predictions. The proposed method was first validated on Plasmodium falciparum proteins related to invasion, where it could reproduce the existing knowledge from a small set of seed proteins. It was then used to identify novel Maurer's clefts resident proteins, where it could identify 152 parasite proteins. We show that the current approach can annotate conserved proteins with unknown function. The predicted proteins can help build a mechanistic model for disease pathogenesis, which will be useful in identifying new drug targets.
Collapse
Affiliation(s)
- Dibyajyoti Das
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India.
| | | | | | | |
Collapse
|
22
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
23
|
Amlabu E, Mensah-Brown H, Nyarko PB, Akuh OA, Opoku G, Ilani P, Oyagbenro R, Asiedu K, Aniweh Y, Awandare GA. Functional Characterization of Plasmodium falciparum Surface-Related Antigen as a Potential Blood-Stage Vaccine Target. J Infect Dis 2019; 218:778-790. [PMID: 29912472 PMCID: PMC6057521 DOI: 10.1093/infdis/jiy222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Plasmodium falciparum erythrocyte invasion is a multistep process that involves a spectrum of interactions that are not well characterized. We have characterized a 113-kDa immunogenic protein, PF3D7_1431400 (PF14_0293), that possesses coiled-coil structures. The protein is localized on the surfaces of both merozoites and gametocytes, hence the name Plasmodium falciparum surface-related antigen (PfSRA). The processed 32-kDa fragment of PfSRA binds normal human erythrocytes with different sensitivities to enzyme treatments. Temporal imaging from initial attachment to internalization of viable merozoites revealed that a fragment of PfSRA, along with PfMSP119, is internalized after invasion. Moreover, parasite growth inhibition assays showed that PfSRA P1 antibodies potently inhibited erythrocyte invasion of both sialic acid–dependent and –independent parasite strains. Also, immunoepidemiological studies show that malaria-infected populations have naturally acquired antibodies against PfSRA. Overall, the results demonstrate that PfSRA has the structural and functional characteristics of a very promising target for vaccine development.
Collapse
Affiliation(s)
- Emmanuel Amlabu
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra.,Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Henrietta Mensah-Brown
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Prince B Nyarko
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Ojo-Ajogu Akuh
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Grace Opoku
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Philip Ilani
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Richard Oyagbenro
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Kwame Asiedu
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Yaw Aniweh
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra
| |
Collapse
|
24
|
Eacret JS, Gonzales DM, Franks RG, Burns JM. Immunization with merozoite surface protein 2 fused to a Plasmodium-specific carrier protein elicits strain-specific and strain-transcending, opsonizing antibody. Sci Rep 2019; 9:9022. [PMID: 31227760 PMCID: PMC6588637 DOI: 10.1038/s41598-019-45440-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.
Collapse
Affiliation(s)
- Jacqueline S Eacret
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Donna M Gonzales
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Raymond G Franks
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| |
Collapse
|
25
|
Cheng CW, Jongwutiwes S, Putaporntip C, Jackson AP. Clinical expression and antigenic profiles of a Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7). Malar J 2019; 18:197. [PMID: 31196098 PMCID: PMC6567670 DOI: 10.1186/s12936-019-2826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vivax malaria is the predominant form of malaria outside Africa, affecting about 14 million people worldwide, with about 2.5 billion people exposed. Development of a Plasmodium vivax vaccine is a priority, and merozoite surface protein 7 (MSP-7) has been proposed as a plausible candidate. The P. vivax genome contains 12 MSP-7 genes, which contribute to erythrocyte invasion during blood-stage infection. Previous analysis of MSP-7 sequence diversity suggested that not all paralogs are functionally equivalent. To explore MSP-7 functional diversity, and to identify the best vaccine candidate within the family, MSP-7 expression and antigenicity during bloodstream infections were examined directly from clinical isolates. Methods Merozoite surface protein 7 gene expression was profiled using RNA-seq data from blood samples isolated from ten human patients with vivax malaria. Differential expression analysis and co-expression cluster analysis were used to relate PvMSP-7 expression to genetic markers of life cycle stage. Plasma from vivax malaria patients was also assayed using a custom peptide microarray to measure antibody responses against the coding regions of 12 MSP-7 paralogs. Results Ten patients presented diverse transcriptional profiles that comprised four patient groups. Two MSP-7 paralogs, 7A and 7F, were expressed abundantly in all patients, while other MSP-7 genes were uniformly rare (e.g. 7J). MSP-7H and 7I were significantly more abundant in patient group 4 only, (two patients having experienced longer patency), and were co-expressed with a schizont-stage marker, while negatively associated with liver-stage and gametocyte-stage markers. Screening infections with a PvMSP-7 peptide array identified 13 linear B-cell epitopes in five MSP-7 paralogs that were recognized by plasma from all patients. Conclusions These results show that MSP-7 family members vary in expression profile during blood infections; MSP-7A and 7F are expressed throughout the intraerythrocytic development cycle, while expression of other paralogs is focused on the schizont. This may reflect developmental regulation, and potentially functional differentiation, within the gene family. The frequency of B-cell epitopes among paralogs also varies, with MSP-7A and 7L consistently the most immunogenic. Thus, MSP-7 paralogs cannot be assumed to have equal potential as vaccines. This analysis of clinical infections indicates that the most abundant and immunogenic paralog is MSP-7A. Electronic supplementary material The online version of this article (10.1186/s12936-019-2826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
26
|
Siau A, Huang X, Loh HP, Zhang N, Meng W, Sze SK, Renia L, Preiser P. Immunomic Identification of Malaria Antigens Associated With Protection in Mice. Mol Cell Proteomics 2019; 18:837-853. [PMID: 30718293 DOI: 10.1074/mcp.ra118.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop vaccines against malaria represent a major research target. The observations that 1) sterile protection can be obtained when the host is exposed to live parasites and 2) the immunity against blood stage parasite is principally mediated by protective antibodies suggest that a protective vaccine is feasible. However, only a small number of proteins have been investigated so far and most of the Plasmodium proteome has yet to be explored. To date, only few immunodominant antigens have emerged for testing in clinical trials but no formulation has led to substantial protection in humans. The nature of parasite molecules associated with protection remains elusive. Here, immunomic screening of mice immune sera with different protection efficiencies against the whole parasite proteome allowed us to identify a large repertoire of antigens validated by screening a library expressing antigens. The calculation of weighted scores reflecting the likelihood of protection of each antigen using five predictive criteria derived from immunomic and proteomic data sets, highlighted a priority list of protective antigens. Altogether, the approach sheds light on conserved antigens across Plasmodium that are amenable to targeting by the host immune system upon merozoite invasion and blood stage development. Most of these antigens have preliminary protection data but have not been widely considered as candidate for vaccine trials, opening new perspectives that overcome the limited choice of immunodominant, poorly protective vaccines currently being the focus of malaria vaccine researches.
Collapse
Affiliation(s)
- Anthony Siau
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| | - Ximei Huang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Han Ping Loh
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Neng Zhang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Wei Meng
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Siu Kwan Sze
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Laurent Renia
- §Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore
| | - Peter Preiser
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| |
Collapse
|
27
|
Lu C, Zheng X, Zhang W, Zhao H, MacRaild CA, Norton RS, Zhuang Y, Wang J, Zhang X. Interaction of merozoite surface protein 2 with lipid membranes. FEBS Lett 2019; 593:288-295. [PMID: 30588612 DOI: 10.1002/1873-3468.13320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 11/07/2022]
Abstract
Merozoite surface protein 2 (MSP2) is a potential vaccine candidate against malaria, although its functional role is yet to be elucidated. Previous studies showed that MSP2 can interact with membranes, which may facilitate merozoite invasion into the host cell. The N-terminal 25 residues of MSP2 (MSP21-25 ), which may be aggregated on the merozoite surface, play a key role in the interaction with membranes. Here, we investigated the effects of MSP21-25 -membrane interactions on the conformation and aggregation of MSP21-25 and on membrane integrity, using nanodiscs and small unilamellar vesicles as mimetics of cell membranes. MSP21-25 -membrane interactions induced the peptide to form β-structure and to aggregate, depending on the lipid composition of the membrane. Nonfibrillar aggregates in turn disrupted the membrane.
Collapse
Affiliation(s)
- Chenghui Lu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Xue Zheng
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yonglong Zhuang
- Modern Experimental Technology Center, Anhui University, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
28
|
Feng G, Boyle MJ, Cross N, Chan JA, Reiling L, Osier F, Stanisic DI, Mueller I, Anders RF, McCarthy JS, Richards JS, Beeson JG. Human Immunization With a Polymorphic Malaria Vaccine Candidate Induced Antibodies to Conserved Epitopes That Promote Functional Antibodies to Multiple Parasite Strains. J Infect Dis 2018; 218:35-43. [PMID: 29584918 PMCID: PMC6904323 DOI: 10.1093/infdis/jiy170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
Background Overcoming antigenic diversity is a key challenge in the development of effective Plasmodium falciparum malaria vaccines. Strategies that promote the generation of antibodies targeting conserved epitopes of vaccine antigens may provide protection against diverse parasites strains. Understanding differences between vaccine-induced and naturally acquired immunity is important to achieving this goal. Methods We analyzed antibodies generated in a phase 1 human vaccine trial, MSP2-C1, which included 2 allelic forms of MSP2, an abundant vaccine antigen on the merozoite surface. Vaccine-induced responses were assessed for functional activity against multiple parasite strains, and cross-reactivity of antibodies was determined using competition ELISA and epitope mapping approaches. Results Vaccination induced cytophilic antibody responses with strain-transcending opsonic phagocytosis and complement-fixing function. In contrast to antibodies acquired via natural infection, vaccine-induced antibodies were directed towards conserved epitopes at the C-terminus of MSP2, whereas naturally acquired antibodies mainly targeted polymorphic epitopes. Functional activity of C-terminal-targeted antibodies was confirmed using monoclonal antibodies that promoted opsonic phagocytosis against multiple parasite strains. Conclusion Vaccination generated markedly different responses to polymorphic antigens than naturally acquired immunity and targeted conserved functional epitopes. Induction of antibodies targeting conserved regions of malaria antigens provides a promising vaccine strategy to overcome antigenic diversity for developing effective malaria vaccines.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
| | | | | | | | | | - Faith Osier
- Burnet Institute, Melbourne
- Centre for Geographic Medicine - Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Germany
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe University, Melbourne
| | - James S McCarthy
- Clinical Tropical Medicine Laboratory, Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston
| | - Jack S Richards
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Funwei RI, Thomas BN, Falade CO, Ojurongbe O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 2018; 17:1. [PMID: 29291736 PMCID: PMC5749027 DOI: 10.1186/s12936-017-2149-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
Background Nigeria carries a high burden of malaria which makes continuous surveillance for current information on genetic diversity imperative. In this study, the merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) of Plasmodium falciparum collected from two communities representing rural and urban settings in Ibadan, southwestern Nigeria were analysed. Methods A total of 511 febrile children, aged 3–59 months, whose parents/guardians provided informed consent, were recruited into the study. Capillary blood was obtained for malaria rapid diagnostic test, thick blood smears for parasite count and blood spots on filter paper for molecular analysis. Results Three-hundred and nine samples were successfully genotyped for msp-1, msp-2 and glurp genes. The allelic distribution of the three genes was not significantly different in the rural and urban communities. R033 and 3D7 were the most prevalent alleles in both rural and urban communities for msp-1 and msp-2, respectively. Eleven of glurp RII region genotypes, coded I–XII, with sizes ranging from 500 to 1100 base pairs were detected in the rural setting. Genotype XI (1000–1050 bp) had the highest prevalence of 41.5 and 38.5% in rural and urban settings, respectively. Overall, 82.1 and 70.0% of samples had multiclonal infection with msp-1 gene resulting in a mean multiplicity of infection (MOI) of 2.8 and 2.6 for rural and urban samples, respectively. Msp-1 and msp-2 genes displayed higher levels of diversity and higher MOI rates than the glurp gene. Conclusion Significant genetic diversity was observed between rural and urban parasite populations in Ibadan, southwestern Nigeria. The results of this study show that malaria transmission intensity in these regions is still high. No significant difference was observed between rural and urban settings, except for a completely different msp-1 allele, compared to previous reports, thereby confirming the changing face of malaria transmission in these communities. This study provides important baseline information required for monitoring the impact of malaria elimination efforts in this region and data points useful in revising current protocols.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacy Technician Studies, Bayelsa State College of Health Technology, Yenagoa, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA.,Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria. .,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
30
|
Mechanisms of naturally acquired immunity to P. falciparum and approaches to identify merozoite antigen targets. Parasitology 2017; 145:839-847. [PMID: 29144217 DOI: 10.1017/s0031182017001949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Malaria is one the most serious infectious diseases with over 200 million clinical cases annually. Most cases of the severe disease are caused by Plasmodium falciparum. The blood stage of Plasmodium parasite is entirely responsible for malaria-associated pathology. The population most susceptible to severe malaria are children under the age of 5, with low levels of immunity. It is only after many years of repeated exposure that individuals living in endemic areas develop clinical immunity. This form of protection prevents clinical episodes by substantially reducing parasite burden. Naturally acquired immunity predominantly targets blood-stage parasites with antibody responses being the main mediators of protection. The targets of clinical immunity are the extracellular merozoite and the infected erythrocyte surface, with the extremely diverse PfEMP1 proteins the main target here. This observation provides a strong rationale that an effective anti-malaria vaccine targeting blood-stage parasites is achievable. Thus the identification of antigenic targets of naturally acquired immunity remains an important step towards the formulation of novel vaccine combinations before testing their efficacy in clinical trials. This review summarizes the main findings to date defining antigenic targets present on the extracellular merozoite associated with naturally acquired immunity to P. falciparum malaria.
Collapse
|
31
|
Perraut R, Varela ML, Joos C, Diouf B, Sokhna C, Mbengue B, Tall A, Loucoubar C, Touré A, Mercereau-Puijalon O. Association of antibodies to Plasmodium falciparum merozoite surface protein-4 with protection against clinical malaria. Vaccine 2017; 35:6720-6726. [PMID: 29042203 DOI: 10.1016/j.vaccine.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/10/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022]
Abstract
Identification of parasite antigens targeted by immune effector mechanisms that confer protection against malaria is important for the design of a multi-component malaria vaccine. Here, the association of antibodies reacting with the Plasmodium falciparum merozoite surface protein-4 (MSP4) with protection against clinical malaria was investigated in a Senegalese community living in an area of moderate, seasonal malaria transmission. Blood samples were collected at the end of an 8-month long dry season without any recorded parasite transmission from 206 residents enrolled in a prospective follow-up study. Active daily clinical monitoring was implemented during the subsequent five months. Entomologic monitoring documented parasite transmission during the first three months of follow-up. Serum IgG levels were determined by ELISA against three MSP4 baculovirus-encoded recombinant protein constructs, namely the full-length MSP4p40, MSP4p30 devoid of a highly polymorphic sequence stretch and the conserved C-terminal EGF-containing MSP4p20, as well as against a merozoite crude extract. Community seroprevalence against all three constructs was quite high, the lowest being against MSP4p30. Seroprevalence and antibody levels against the three MSP4 constructs were age-dependent. IgG1 dominated the anti-MSP4p20 responses, while both IgG1 and IgG3 were observed against MSP4p40. Anti-MSP4 antibodies were associated with the antibody-dependent respiratory burst (ADRB) activity in a functional assay of merozoite phagocytosis by polymorphonuclear cells. Importantly, high antibody levels against each of the three MSP4 constructs at the end of the dry season were associated with reduced morbidity during the subsequent transmission season in an age-adjusted Poisson regression model (IRR = 0.65 [0.50-0.83], P<0.001 for responses over the median values). These data are consistent with a protective role for the naturally acquired anti-MSP4 antibodies and support further development of MSP4 as a candidate component of malaria vaccine.
Collapse
Affiliation(s)
- Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Senegal.
| | | | | | - Babacar Diouf
- Unité d'Immunologie, Institut Pasteur de Dakar, Senegal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, UMR 198, Dakar, Senegal
| | | | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, G4 Biostatistiques Bioinformatique et Modélisation, Dakar, Senegal
| | | | - Odile Mercereau-Puijalon
- Institut Pasteur, Département Parasites et Insectes Vecteurs, 25 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
32
|
Tijani MK, Babalola OA, Odaibo AB, Anumudu CI, Asinobi AO, Morenikeji OA, Asuzu MC, Langer C, Reiling L, Beeson JG, Wahlgren M, Nwuba RI, Persson KEM. Acquisition, maintenance and adaptation of invasion inhibitory antibodies against Plasmodium falciparum invasion ligands involved in immune evasion. PLoS One 2017; 12:e0182187. [PMID: 28787025 PMCID: PMC5546579 DOI: 10.1371/journal.pone.0182187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Erythrocyte-binding antigens (EBAs) and P. falciparum reticulocyte-binding homologue proteins (PfRhs) are two important protein families that can vary in expression and utilization by P. falciparum to evade inhibitory antibodies. We evaluated antibodies at repeated time-points among individuals living in an endemic region in Nigeria over almost one year against these vaccine candidates. Antibody levels against EBA140, EBA175, EBA181, PfRh2, PfRh4, and MSP2, were measured by ELISA. We also used parasites with disrupted EBA140, EBA175 and EBA181 genes to show that all these were targets of invasion inhibitory antibodies. However, antigenic targets of inhibitory antibodies were not stable and changed substantially over time in most individuals, independent of age. Antibodies levels measured by ELISA also varied within and between individuals over time and the antibodies against EBA181, PfRh2 and MSP2 declined more rapidly in younger individuals (≤15 years) compared with older (>15). The breadth of high antibody responses over time was more influenced by age than by the frequency of infection. High antibody levels were associated with a more stable invasion inhibitory response, which could indicate that during the long process of formation of immunity, many changes not only in levels but also in functional responses are needed. This is an important finding in understanding natural immunity against malaria, which is essential for making an efficacious vaccine.
Collapse
Affiliation(s)
- Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Oluwatoyin A. Babalola
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Alex B. Odaibo
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Chiaka I. Anumudu
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Adanze O. Asinobi
- Department of Paediatrics, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olajumoke A. Morenikeji
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Michael C. Asuzu
- Department of Preventive Medicine and Primary Care, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christine Langer
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Linda Reiling
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G. Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Roseangela I. Nwuba
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Kristina E. M. Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, University Hospital, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
33
|
Abstract
The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.
Collapse
Affiliation(s)
| | - John Parkinson
- a Program in Molecular Structure and Function , Hospital for Sick Children , Toronto , Ontario , Canada
- b Departments of Biochemistry, Molecular Genetics and Computer Science , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
34
|
Castillo AI, Andreína Pacheco M, Escalante AA. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach. INFECTION GENETICS AND EVOLUTION 2017; 50:7-19. [PMID: 28163236 DOI: 10.1016/j.meegid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/17/2023]
Abstract
Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
36
|
Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A. Immune Escape Strategies of Malaria Parasites. Front Microbiol 2016; 7:1617. [PMID: 27799922 PMCID: PMC5066453 DOI: 10.3389/fmicb.2016.01617] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.
Collapse
Affiliation(s)
- Pollyanna S Gomes
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jyoti Bhardwaj
- Division of Parasitology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, Uttar Pradesh, India; Academy of Scientific and Innovative ResearchAnusandhan Bhawan, New Delhi, India
| | - Juan Rivera-Correa
- Division of Parasitology, Department of Microbiology, New York University School of Medicine New York, NY, USA
| | - Celio G Freire-De-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Kobayashi K, Kato K. Evaluating the use of heparin for synchronization of in vitro culture of Plasmodium falciparum. Parasitol Int 2016; 65:549-551. [PMID: 27600143 DOI: 10.1016/j.parint.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
The malaria parasite Plasmodium falciparum infects human erythrocytes and reproduces asexually through an intraerythrocytic developmental cycle. In vitro culture of P. falciparum allows investigation of the parasite's blood-stage development, which spans approximately 48h from the time of invasion to the lysis of mature schizonts to release merozoites. To focus on a specific step in the developmental cycle, synchronization techniques are utilized. d-Sorbitol treatment and the Percoll-sorbitol method have been used; however, these techniques have limitations in terms of the degree of synchronization achieved, the amount of synchronized parasite acquired, convenience, reproducibility, and cost. Here, we evaluated an existing synchronization method involving heparin. Heparin reversibly inhibits erythrocyte invasion by P. falciparum merozoites. We confirm that parasite cultures can be inexpensively, reproducibly, and tightly synchronized by combining a sorbitol step to limit cultures to the ring stages and by adding and removing heparin to manipulate the window during which merozoites can invade erythrocytes.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido 080-8555, Japan.
| |
Collapse
|
38
|
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol 2016; 209:64-75. [DOI: 10.1016/j.molbiopara.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
|
39
|
Goh YS, Peng K, Chia WN, Siau A, Chotivanich K, Gruner AC, Preiser P, Mayxay M, Pukrittayakamee S, Sriprawat K, Nosten F, White NJ, Renia L. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy. PLoS One 2016; 11:e0159347. [PMID: 27427762 PMCID: PMC4948787 DOI: 10.1371/journal.pone.0159347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antibody Specificity
- Antigens, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antimalarials/therapeutic use
- Artemether
- Artemisinins/therapeutic use
- Azithromycin/therapeutic use
- Cohort Studies
- Erythrocytes/drug effects
- Erythrocytes/parasitology
- Ethanolamines/therapeutic use
- Female
- Fluorenes/therapeutic use
- Humans
- Immune Sera/pharmacology
- Immunity, Humoral
- Lumefantrine
- Malaria, Falciparum/blood
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Male
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/growth & development
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recurrence
- Treatment Outcome
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaitian Peng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Anne-Charlotte Gruner
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Peter Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
| | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
40
|
Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2. Sci Rep 2016; 6:20613. [PMID: 26865062 PMCID: PMC4749986 DOI: 10.1038/srep20613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022] Open
Abstract
MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum.
Collapse
|
41
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Riglar DT, Whitehead L, Cowman AF, Rogers KL, Baum J. Localisation-based imaging of malarial antigens during erythrocyte entry reaffirms a role for AMA1 but not MTRAP in invasion. J Cell Sci 2015; 129:228-42. [PMID: 26604223 PMCID: PMC4732298 DOI: 10.1242/jcs.177741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023] Open
Abstract
Microscopy-based localisation of proteins during malaria parasite (Plasmodium) invasion of the erythrocyte is widely used for tentative assignment of protein function. To date, however, imaging has been limited by the rarity of invasion events and the poor resolution available, given the micron size of the parasite, which leads to a lack of quantitative measures for definitive localisation. Here, using computational image analysis we have attempted to assign relative protein localisation during invasion using wide-field deconvolution microscopy. By incorporating three-dimensional information we present a detailed assessment of known parasite effectors predicted to function during entry but as yet untested or for which data are equivocal. Our method, termed longitudinal intensity profiling, resolves confusion surrounding the localisation of apical membrane antigen 1 (AMA1) at the merozoite–erythrocyte junction and predicts that the merozoite thrombospondin-related anonymous protein (MTRAP) is unlikely to play a direct role in the mechanics of entry, an observation supported with additional biochemical evidence. This approach sets a benchmark for imaging of complex micron-scale events and cautions against simplistic interpretations of small numbers of representative images for the assignment of protein function or prioritisation of candidates as therapeutic targets. Highlighted Article: Here we develop a high-definition imaging approach to dissect and assign function to proteins involved in the rapid process of malaria parasite invasion of the human erythrocyte.
Collapse
Affiliation(s)
- David T Riglar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia Department of Medical Biology, University of Melbourne, Victoria, 3050, Melbourne, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia Department of Medical Biology, University of Melbourne, Victoria, 3050, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia Department of Medical Biology, University of Melbourne, Victoria, 3050, Melbourne, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia Department of Medical Biology, University of Melbourne, Victoria, 3050, Melbourne, Australia
| | - Jake Baum
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
43
|
Abstract
Plasmodium falciparum is the protozoan parasite that causes most malaria-associated morbidity and mortality in humans with over 500,000 deaths annually. The disease symptoms are associated with repeated cycles of invasion and asexual multiplication inside red blood cells of the parasite. Partial, non-sterile immunity to P. falciparum malaria develops only after repeated infections and continuous exposure. The successful evasion of the human immune system relies on the large repertoire of antigenically diverse parasite proteins displayed on the red blood cell surface and on the merozoite membrane where they are exposed to the human immune system. Expression switching of these polymorphic proteins between asexual parasite generations provides an efficient mechanism to adapt to the changing environment in the host and to maintain chronic infection. This chapter discusses antigenic diversity and variation in the malaria parasite and our current understanding of the molecular mechanisms that direct the expression of these proteins.
Collapse
Affiliation(s)
- Michaela Petter
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| | - Michael F Duffy
- Department of Medicine Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
44
|
Mutungi JK, Yahata K, Sakaguchi M, Kaneko O. Isolation of invasive Plasmodium yoelii merozoites with a long half-life to evaluate invasion dynamics and potential invasion inhibitors. Mol Biochem Parasitol 2015; 204:26-33. [DOI: 10.1016/j.molbiopara.2015.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/28/2015] [Accepted: 12/05/2015] [Indexed: 11/28/2022]
|
45
|
Abstract
The main therapeutic and prophylactic tools against malaria have been locked for more than a century in the classical approaches of using drugs targeting metabolic processes of the causing agent, the protist Plasmodium spp., and of designing vaccines against chosen antigens found on the parasite's surface. Given the extraordinary resources exhibited by Plasmodium to escape these traditional strategies, which have not been able to free humankind from the scourge of malaria despite much effort invested in them, new concepts have to be explored in order to advance toward eradication of the disease. In this context, amyloid-forming proteins and peptides found in the proteome of the pathogen should perhaps cease being regarded as mere anomalous molecules. Their likely functionality in the pathophysiology of Plasmodium calls for attention being paid to them as a possible Achilles' heel of malaria. Here we will give an overview of Plasmodium-encoded amyloid-forming polypeptides as potential therapeutic targets and toxic elements, particularly in relation to cerebral malaria and the blood-brain barrier function. We will also discuss the recent finding that the genome of the parasite contains an astonishingly high proportion of prionogenic domains.
Collapse
|
46
|
Maskus DJ, Bethke S, Seidel M, Kapelski S, Addai-Mensah O, Boes A, Edgü G, Spiegel H, Reimann A, Fischer R, Barth S, Klockenbring T, Fendel R. Isolation, production and characterization of fully human monoclonal antibodies directed to Plasmodium falciparum MSP10. Malar J 2015; 14:276. [PMID: 26174014 PMCID: PMC4502606 DOI: 10.1186/s12936-015-0797-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Semi-immunity against the malaria parasite is defined by a protection against clinical episodes of malaria and is partially mediated by a repertoire of inhibitory antibodies directed against the blood stage of Plasmodium falciparum, in particular against surface proteins of merozoites, the invasive form of the parasite. Such antibodies may be used for preventive or therapeutic treatment of P. falciparum malaria. Here, the isolation and characterization of novel human monoclonal antibodies (humAbs) for such applications is described. METHODS B lymphocytes had been selected by flow cytometry for specificity against merozoite surface proteins, including the merozoite surface protein 10 (MSP10). After Epstein-Barr virus (EBV) transformation and identification of promising resulting lymphoblastoid cell lines (LCLs), human immunoglobulin heavy and light chain variable regions (Vh or Vl regions) were secured, cloned into plant expression vectors and transiently produced in Nicotiana benthamiana in the context of human full-size IgG1:κ. The specificity and the affinity of the generated antibodies were assessed by ELISA, dotblot and surface plasmon resonance (SPR) spectroscopy. The growth inhibitory activity was evaluated based on growth inhibition assays (GIAs) using the parasite strain 3D7A. RESULTS Supernatants from two LCLs, 5E8 and 5F6, showed reactivity against the second (5E8) or first (5F6) epidermal growth factor (EGF)-like domain of MSP10. The isolated V regions were recombinantly expressed in their natural pairing as well as in combination with each other. The resulting recombinant humAbs showed affinities of 9.27 × 10(-7) M [humAb10.1 (H5F6:κ5E8)], 5.46 × 10(-9) M [humAb10.2 (H5F6:κ5F6)] and 4.34 × 10(-9) M [humAb10.3 (H5E8:κ5E8)]. In GIAs, these antibodies exhibited EC50 values of 4.1 mg/ml [95% confidence interval (CI) 2.6-6.6 mg/ml], 6.9 mg/ml (CI 5.5-8.6 mg/ml) and 9.5 mg/ml (CI 5.5-16.4 mg/ml), respectively. CONCLUSION This report describes a platform for the isolation of human antibodies from semi-immune blood donors by EBV transformation and their subsequent characterization after transient expression in plants. To our knowledge, the presented antibodies are the first humAbs directed against P. falciparum MSP10 to be described. They recognize the EGF-like folds of MSP10 and bind these with high affinity. Moreover, these antibodies inhibit P. falciparum 3D7A growth in vitro.
Collapse
Affiliation(s)
- Dominika J Maskus
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Güven Edgü
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Aachen, Germany.
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Aachen, Germany.
| |
Collapse
|
47
|
Reddy SB, Anders RF, Cross N, Mueller I, Senn N, Stanisic DI, Siba PM, Wahlgren M, Kironde F, Beeson JG, Persson KEM. Differences in affinity of monoclonal and naturally acquired polyclonal antibodies against Plasmodium falciparum merozoite antigens. BMC Microbiol 2015; 15:133. [PMID: 26149471 PMCID: PMC4491891 DOI: 10.1186/s12866-015-0461-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a major global cause of deaths and a vaccine is urgently needed. Results We have employed the P. falciparum merozoite antigens MSP2-3D7/FC27 and AMA1, used them in ELISA, and coupled them in different ways using surface plasmon resonance (SPR) and estimated affinity (measured as kd) of monoclonal as well as naturally-acquired polyclonal antibodies in human plasma. There were major differences in kd depending on how the antigens were immobilized and where the His-tag was placed. For AMA1 we could see correlations with invasion inhibition. Using different immobilizations of proteins in SPR, we could see only moderate correlations with levels of antibodies in ELISA, indicating that in ELISA the proteins were not uniformly bound and that antibodies with many specificities exist in natural immunisation. The correlations between ELISA and SPR were enhanced when only parasite positive samples were included, which may indicate that high affinity antibodies are difficult to maintain over long periods of time. We found higher kd values for MSP2 (indicating lower affinity) compared to AMA1, which might be partly explained by MSP2 being an intrinsically disordered protein, while AMA1 is globular. Conclusions For future vaccine studies and for understanding immunity, it is important to consider how to present proteins to the immune system to achieve highest antibody affinities. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0461-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sreenivasulu B Reddy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Robin F Anders
- Department of Biochemistry, La Trobe University, Vic, 3086, Australia
| | - Nadia Cross
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Goroka, 441, Papua New Guinea
| | - Nicolas Senn
- Papua New Guinea Institute of Medical Research, Goroka, 441, Papua New Guinea.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Danielle I Stanisic
- Papua New Guinea Institute of Medical Research, Goroka, 441, Papua New Guinea.,Institute for Glycomics, Griffith University, Queensland, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, 441, Papua New Guinea
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Fred Kironde
- Department of Biochemistry, Makerere University, Kampala, Uganda.,Habib Medical School, IUIU, Kampala, Uganda
| | - James G Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Laboratory Medicine, Lund University, 22185, Lund, Sweden.
| |
Collapse
|
48
|
Boyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling-Jones H, Cheng YS, Stubbs J, Tetteh KKA, Conway DJ, McCarthy JS, Muller I, Marsh K, Anders RF, Beeson JG. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 2015; 42:580-90. [PMID: 25786180 PMCID: PMC4372259 DOI: 10.1016/j.immuni.2015.02.012] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/01/2014] [Accepted: 02/23/2015] [Indexed: 11/26/2022]
Abstract
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C′) inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C′ inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Antibodies function with complement to inhibit P. falciparum replication Antibodies fix C1q to block invasion and lyse merozoites Complement-fixing antibodies are strongly associated with immunity in children Antibody-complement inhibition can be induced by human vaccination
Collapse
Affiliation(s)
- Michelle J Boyle
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC 3010, Australia
| | - Linda Reiling
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Gaoqian Feng
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Christine Langer
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Faith H Osier
- Centre for Geographic Medicine Research, Kenya Medical Research Institute, Coast, PO Box 230, 80108 Kilifi, Kenya
| | | | - Yik Sheng Cheng
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC 3010, Australia
| | - Janine Stubbs
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kevin K A Tetteh
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | - David J Conway
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, University of Queensland, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivo Muller
- Walter and Eliza Hall Institute, Royal Parade, Melbourne, VIC 3050, Australia
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Kenya Medical Research Institute, Coast, PO Box 230, 80108 Kilifi, Kenya
| | - Robin F Anders
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - James G Beeson
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
49
|
Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate. Sci Rep 2015; 5:10103. [PMID: 25965408 PMCID: PMC4428071 DOI: 10.1038/srep10103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 12/15/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an intrinsically disordered, membrane-anchored antigen of the malaria parasite Plasmodium falciparum. MSP2 can elicit a protective, albeit strain-specific, antibody response in humans. Antibodies are generated to the conserved N- and C-terminal regions but many of these react poorly with the native antigen on the parasite surface. Here we demonstrate that recognition of a conserved N-terminal epitope by mAb 6D8 is incompatible with the membrane-bound conformation of that region, suggesting a mechanism by which native MSP2 escapes antibody recognition. Furthermore, crystal structures and NMR spectroscopy identify transient, strain-specific interactions between the 6D8 antibody and regions of MSP2 beyond the conserved epitope. These interactions account for the differential affinity of 6D8 for the two allelic families of MSP2, even though 6D8 binds to a fully conserved epitope. These results highlight unappreciated mechanisms that may modulate the specificity and efficacy of immune responses towards disordered antigens.
Collapse
|
50
|
MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Nováček J, Žídek L, Sklenář V, Richards JS, Beeson JG, Anders RF, Norton RS. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One 2015; 10:e0119899. [PMID: 25742002 PMCID: PMC4351039 DOI: 10.1371/journal.pone.0119899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
- * E-mail:
| | - Milan Zachrdla
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| | - Jiří Nováček
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukáš Žídek
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Sklenář
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, 3086, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|