1
|
Burton AM, Else KJ, Irving J, Mair I, Shultz S. Antibodies and Inflammation: Fecal Biomarkers of Gut Health in Domestic Ruminants. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:468-479. [PMID: 39840509 PMCID: PMC11959687 DOI: 10.1002/jez.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025]
Abstract
Gastrointestinal infections present major challenges to ruminant livestock systems, and gut health is a key constraint on fitness, welfare, and productivity. Fecal biomarkers present opportunities to monitor animal health without using invasive methods, and with greater resolution compared to observational metrics. Here we developed enzyme-linked immunosorbent assays for three potential fecal biomarkers of gut health in domestic ruminants: two immunological (total immunoglobulin [Ig]A and total IgG) and one inflammatory (lactoferrin). We analytically validated the assays, then evaluated whether they could be used as a biomarker of clinically diagnosed gastrointestinal pathologies in cattle (Bos taurus), and finally compared them with helminth fecal egg counts in sheep (Ovis aries). The analytes were detected above the lower limits of detection in cattle, sheep, and goats. Fecal IgA and lactoferrin were higher in cattle with infectious pathologies (strongyles, coccidiosis and symptomatic Johne's disease) compared to healthy controls. Lactoferrin was additionally higher in animals with infectious pathologies compared to noninfectious pathologies, and to asymptomatic Johne's cases. No significant relationships were found with sheep fecal egg counts. These initial findings suggest that fecal IgA and lactoferrin may be useful biomarkers of poor gastrointestinal health in cattle, and that fecal lactoferrin is specific to active inflammation caused by infectious agents. These could be incorporated into the growing suite of noninvasive ecoimmunological tools and used to understand ruminant gut health in a range of species. Applications include improving treatment regimens for gastrointestinal infections, and understanding wildlife physiological responses to infectious challenges.
Collapse
Affiliation(s)
- A. M. Burton
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - K. J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - J. Irving
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - I. Mair
- Institute of Ecology and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesThe University of EdinburghEdinburghUK
| | - S. Shultz
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
2
|
Costa M, Mansilla F, Manuel Sala J, Saravia A, Ubios D, Lores P, Capozzo AV, Freire T. Fasciola hepatica infection modifies IgG1 specific immune response to foot-and-mouth disease virus induced by vaccination. Vaccine 2024; 42:541-547. [PMID: 38185546 DOI: 10.1016/j.vaccine.2023.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Fasciola hepatica, a worldwide distributed helminth, has a robust immunoregulatory effect in the host, increasing the susceptibility to secondary infections. Foot and mouth disease (FMD) is a highly contagious acute vesicular viral disease effectively controlled by vaccination in endemic regions. Despite the evidence of immunoregulatory effects, the impact of fasciolosis on the immune response induced by FMD vaccination in cattle has never been assessed. Our objective was to evaluate whether the infection by F. hepatica in cattle influences the long-term immunity elicited by the currently used commercial FMD-inactivated vaccines. Aberdeen Angus steers negative for F. hepatica were vaccinated twice against FMD virus (FMDV) during the first 6 months of age using a commercial oil vaccine formulated with A24/Cruzeiro and O1/Campos strains. When maternal antibodies against F. hepatica were weaned (18--20 months of age) animals were divided into groups of 12 and infected or mock-infected with 500 metacercariae/animal. Individual serum samples were collected at 0-, 28-, 59-, 87- and 157-days post-infection (dpi). Indirect ELISAs were used to detect A24/Cruzeiro specific bovine IgG and IgG subtypes. The total IgG antibody levels and avidity against FMDV did not show significant differences between all the groups. The commercial vaccine induced higher IgG2 than IgG1 titers in vaccinated animals. Anti-FMDV IgG1 levels significantly decreased in the infected group at 28 dpi. In addition, the avidity of IgG1 FMDV-specific antibodies at day 28 in the infected group was reduced compared to the control. These results show that F. hepatica infection modified anamnestic responses against FMDV, reducing serum IgG1 titers and avidity. To our knowledge, this is the first report of immune-regulation of F. hepatica altering the immune response of FMD vaccines, one of the most globally used animal vaccines.
Collapse
Affiliation(s)
- Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Florencia Mansilla
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA, Hurlingham, Buenos Aires, Argentina
| | - Juan Manuel Sala
- Estación Experimental Agropecuaria- Instituto Nacional de Tecnología Agropecuaria (INTA), Juan Pujol al Este s/n (3470), Mercedes, Corrientes, Argentina
| | - Anderson Saravia
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Ruta 50, km 11, Colonia 70006, Uruguay
| | - Diego Ubios
- Programa de carne y lana, Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Ruta 50, km 11, Colonia 70006, Uruguay
| | - Pablo Lores
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Alejandra Victoria Capozzo
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli-lipopolysaccharide, whereas it modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. Microbiol Spectr 2024; 12:e0347523. [PMID: 38018982 PMCID: PMC10782955 DOI: 10.1128/spectrum.03475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Loyda B. Mendez
- School of Sciences and Technologies, University Ana G. Mendez, Carolina, Puerto Rico
| | - Ana M. Espino
- Department of Microbiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
4
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli -lipopolysaccharide whereas modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552847. [PMID: 37609327 PMCID: PMC10441391 DOI: 10.1101/2023.08.10.552847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The helminth Fasciola hepatica is known as a master of immunomodulation. It suppresses antigen specific Th1 responses in concurrent bacterial infections while promoting the Th2/Treg regulatory responses, thus demonstrating its anti-inflammatory ability in vivo . We have recently demonstrated that a single intraperitoneal injection with native F. hepatica Glutathione S -Transferase (nFhGST), mostly comprised of mu-class isoforms, can suppresses the cytokine storm and increasing the survival rate in a mouse model of septic shock (1). Knowing that the peritoneal macrophages in response to microbial stimuli play essential roles in the defense, tissue repairment, and maintenance of homeostasis, the present study aimed to determine whether nFhGST could modulate the amount and dynamic of these cells concurrently to the suppression of pro-inflammatory cytokines. The remarkable findings described in this article are, (i) nFhGST suppresses serum IL-12, TNF-α, and IFN-γ in BALB/c mice challenged with a lethal dose of LPS, (ii) Although nFhGST does not elicit IL-10, it was able to significantly suppress the high levels of LPS-induced IL-10, which is considered a key cytokine in the pathophysiology of sepsis (2). iii) nFhGST prevent the disappearance of large peritoneal macrophages (LPM) whereas significantly increasing this population in the peritoneal cavity (PerC) of LPS treated animals, (iv) nFhGST promotes the alternative activation of macrophages whereas suppress the classical activation of macrophages in vitro by expressing high levels of Ym-1, a typical M2-type marker, secreting the production of IL-37, and preventing the production of TNF-α, iNOS2 and nitric oxide, which are typical markers of M1-type macrophages, (v) nFhGST suppress the bacterial phagocytosis of macrophages, a role that plays both, M1-and M2-macrophages, thus partially affecting the capacity of macrophages in destroying microbial pathogens. These findings present the first evidence that nFhGST is an excellent modulator of the PerC content in vivo, reinforcing the capacity of nFhGST as an anti-inflammatory drug against sepsis in animal models. Importance Sepsis is an infection that can lead to a life-threatening complication. Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cells' activation by bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by toll-like receptor 4 (TLR4). For this reason, scientists aimed to develop antagonists able to block the cytokine storm by blocking TLR4. We report here that a mixture of mu-class isoforms from the F. hepatica glutathione S-transferase (nFhGST) protein family administered intraperitoneally 1 h after a lethal LPS injection, is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock whereas modulate the dynamic and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice. These results suggest that nFhGST is a prominent candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
|
5
|
Sultana N, Pervin M, Sultana S, Mostaree M, Tamanna Mumu T, Abu Hadi Noor Ali Khan M. Fascioliasis may promote tuberculous infectivity in small ruminants. Saudi J Biol Sci 2022; 29:103402. [PMID: 36039324 PMCID: PMC9418601 DOI: 10.1016/j.sjbs.2022.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/05/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Fascioliasis and bovine tuberculosis (TB) are global impediments to livestock development. We investigated the co-infectivity of fascioliasis and TB in small ruminants at slaughter. A total of 84 goats and 16 sheep were investigated from different slaughter houses in Mymensingh city, Bangladesh from June 2019 to February 2020. Grossly, acute fascioliasis was characterized by hemorrhagic tracts in the liver and chronic fascioliasis with biliary cirrhosis and pipe-stem liver. Grossly, seven goats and two sheep were associated with the acute and sixty goats and seven sheep were associated with the chronic phase of fascioliasis. Five goats’ livers showed both the acute and chronic phases of fascioliasis. In TB, granulomas with central core of caseous necrosis were seen in the lymph nodes (21), livers (10) and lungs (01) of goats or in the lymph nodes (03) and liver (01) of sheep. Histopathologically, biliary cirrhosis was seen in fascioliasis and granuloma, caseous necrosis and calcification in TB. In co-infection revealed granuloma (TB) with acid-fast bacilli and widespread biliary cirrhosis in the livers of goats (14) and sheep (02). The fragments of the 16S rRNA gene (372 bp, M. tuberculosis complex) and MPB83 gene (600 bp, M. bovis) were detected in the lymph nodes, livers and lungs using polymerase chain reaction. This study showed the existence of co-infectivity of Fasciola and M. bovis in goats and sheep in Bangladesh. Chronic fascioliasis may be associated with establishing tuberculous infection in small ruminants. Therefore, extremely zoonotic bovine TB control programs require active management of fascioliasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammad Abu Hadi Noor Ali Khan
- Corresponding author at: Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
6
|
Kelly RF, Gonzaléz Gordon L, Egbe NF, Freeman EJ, Mazeri S, Ngwa VN, Tanya V, Sander M, Ndip L, Muwonge A, Morgan KL, Handel IG, Bronsvoort BMDC. Bovine Tuberculosis Antemortem Diagnostic Test Agreement and Disagreement in a Naturally Infected African Cattle Population. Front Vet Sci 2022; 9:877534. [PMID: 35873684 PMCID: PMC9301138 DOI: 10.3389/fvets.2022.877534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
The interferon-gamma (IFN-γ) assay and single comparative cervical skin test (SCITT) are used to estimate bovine tuberculosis (bTB) prevalence globally. Prevalence estimates of bTB, caused by Mycobacterium bovis, are poorly quantified in many Sub-Saharan African (SSA) cattle populations. Furthermore, antemortem diagnostic performance can vary at different stages of bTB pathogenesis and in different cattle populations. In this study, we aim to explore the level of agreement and disagreement between the IFN-γ assay and SCITT test, along with the drivers for disagreement, in a naturally infected African cattle population. In, 2013, a pastoral cattle population was sampled using a stratified clustered cross-sectional study in Cameroon. A total of 100 pastoral cattle herds in the North West Region (NWR) and the Vina Division (VIN) were sampled totalling 1,448 cattle. Individual animal data and herd-level data were collected, and animals were screened using both the IFN-γ assay and SCITT. Serological ELISAs were used to detect exposure to immunosuppressing co-infections. Agreement analyses were used to compare the performance between the two bTB diagnostic tests, and multivariable mixed-effects logistic regression models (MLR) were developed to investigate the two forms of IFN-γ assay and SCITT binary disagreement. Best agreement using the Cohen's κ statistic, between the SCITT (>2 mm) and the IFN-γ assay implied a ‘fair-moderate' agreement for the NWR [κ = 0.42 (95%CI: 0.31–0.53)] and ‘poor-moderate' for the VIN [κ = 0.33 (95% CI: 0.18–0.47)]. The main test disagreement was the animals testing positive on the IFN-γ assay and negative by the SCITT. From MLR modeling, adults (adults OR: 7.57; older adults OR = 7.21), females (OR = 0.50), bovine leucosis (OR = 2.30), and paratuberculosis positivity (OR = 6.54) were associated with IFN-γ-positive/SCITT-negative disagreement. Subsets to investigate diagnostic test disagreement for being SCITT-positive and IFN-γ-negative also identified that adults (adults OR = 15.74; older adults OR = 9.18) were associated with IFN-γ-negative/SCITT-positive disagreement. We demonstrate that individual or combined use of the IFN-γ assay and SCITT can lead to a large variation in bTB prevalence estimates. Considering that animal level factors were associated with disagreement between the IFN-γ assay and SCITT in this study, future work should further investigate their impact on diagnostic test performance to develop the approaches to improve SSA prevalence estimates.
Collapse
Affiliation(s)
- Robert F. Kelly
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Robert F. Kelly
| | - Lina Gonzaléz Gordon
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nkongho F. Egbe
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Emily J. Freeman
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stella Mazeri
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor N. Ngwa
- School of Veterinary Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Melissa Sander
- Tuberculosis Reference Laboratory Bamenda, Hospital Roundabout, Bamenda, Cameroon
| | - Lucy Ndip
- Laboratory of Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Adrian Muwonge
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenton L. Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Ian G. Handel
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Barend M. de C. Bronsvoort
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
8
|
Wang X, Zhao C, Zhang G, Zhang K, Li Z, Shang Y, Ning C, Ji C, Xia X, Cai X, Qiao J, Meng Q. Molecular characterization of a novel GSTO2 of Fasciola hepatica and its roles in modulating murine macrophages. Parasite 2022; 29:16. [PMID: 35315767 PMCID: PMC8939299 DOI: 10.1051/parasite/2022016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Fascioliasis is an important zoonotic helminthic disease caused by Fasciola hepatica and poses a serious threat to global public health. To evade the immune response of its host (humans or animals), F. hepatica secretes various antioxidant enzymes such as glutathione transferase (GST) to facilitate its invasion, migration and parasitism in vivo. To investigate the biological functions of a novel omega-class GST (GSTO), the molecular features of GSTO2 of F. hepatica were analyzed by online software, and the biochemical properties in vitro of recombinant GSTO2 (rGSTO2) were dissected. Then, the regulatory roles of rGSTO2 protein in murine macrophages in vitro were further explored. The results revealed that the GSTO2 gene encodes 254 amino acids, which harbor the characteristic N-terminal domain (βαβαββα) and C-terminal domain (α-helical) of the cytoplasmic GST superfamily. GSTO2 was mainly expressed in F. hepatica vitelline follicles, intestinal tract, excretory pores and vitelline cells, with thioltransferase and dehydroascorbate reductase activities. Moreover, rGSTO2 protein could be taken up by murine macrophages and significantly inhibit the viability of macrophages. In addition, rGSTO2 protein could significantly promote apoptosis and modulate the expression of cytokines in macrophages. These findings suggested that F. hepatica GSTO2 plays an important role in modulating the physiological functions of macrophages, whereby this protein might be involved in immunomodulatory and anti-inflammatory roles during infection. This study provided new insights into the immune-evasion mechanism of F. hepatica and may contribute to the development of a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunguang Zhao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
9
|
Heme-Oxygenase-1 Attenuates Oxidative Functions of Antigen Presenting Cells and Promotes Regulatory T Cell Differentiation during Fasciola hepatica Infection. Antioxidants (Basel) 2021; 10:antiox10121938. [PMID: 34943041 PMCID: PMC8750899 DOI: 10.3390/antiox10121938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Fasciola hepatica is a fluke that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. The parasite regulates the host immune system by inducing a strong Th2 and regulatory T (Treg) cell immune response through mechanisms that might involve the expression or activity of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that also has immunoregulatory and antioxidant properties. In this paper, we show that F. hepatica-infected mice upregulate HO-1 on peritoneal antigen-presenting cells (APC), which produce decreased levels of both reactive oxygen and nitrogen species (ROS/RNS). The presence of these cells was associated with increased levels of regulatory T cells (Tregs). Blocking the IL-10 receptor (IL-10R) during parasite infection demonstrated that the presence of splenic Tregs and peritoneal APC expressing HO-1 were both dependent on IL-10 activity. Furthermore, IL-10R neutralization as well as pharmacological treatment with the HO-1 inhibitor SnPP protected mice from parasite infection and allowed peritoneal APC to produce significantly higher ROS/RNS levels than those detected in cells from infected control mice. Finally, parasite infection carried out in gp91phox knockout mice with inactive NADPH oxidase was associated with decreased levels of peritoneal HO-1+ cells and splenic Tregs, and partially protected mice from the hepatic damage induced by the parasite, revealing the complexity of the molecular mechanisms involving ROS production that participate in the complex pathology induced by this helminth. Altogether, these results contribute to the elucidation of the immunoregulatory and antioxidant role of HO-1 induced by F. hepatica in the host, providing alternative checkpoints that might control fasciolosis.
Collapse
|
10
|
Bayissa B, Sirak A, Worku A, Zewude A, Zeleke Y, Chanyalew M, Gumi B, Berg S, Conlan A, Hewinson RG, Wood JLN, Vordermeier HM, Ameni G. Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia. Front Vet Sci 2021; 8:702402. [PMID: 34368285 PMCID: PMC8339472 DOI: 10.3389/fvets.2021.702402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups. Twenty-two calves were vaccinated within 2 weeks of age, and 18 were kept as a control. Six weeks post-vaccination, the two groups were exposed and kept mixed with known SICCT test positive cows for 1 year. Immune responses were monitored by interferon gamma (IFN-γ) release assay (IGRA), SICCT test, and antibody assay. Vaccinated calves developed strong responses to the SICCT test at the sixth week post-vaccination, but did not respond to ESAT-6/CFP-10 peptide antigen-based IGRA. During the exposure, IFN-γ response to the specific peptide cocktail [F(2.44, 92.67) = 26.96; p < 0.001] and skin reaction to the specific proteins cocktail [F(1.7, 64.3); p < 0.001] increased progressively in both groups while their antibody responses were low. The prevalence of bTB was 88.9% (95% CI: 65.3–98.6) and 63.6% (95% CI: 40.7–83.8) in the control and vaccinated calves, respectively, based on Mycobacterium bovis isolation, giving a direct protective efficacy estimate of 28.4% (95% CI: −2.7 to 50.1). The proportion of vaccinated calves with lesion was 7.0% (34/484) against 11.4% (45/396) in control calves, representing a 38% (95% CI: 5.8–59.4) reduction of lesion prevalence. Besides, the severity of pathology was significantly lower (Mann–Whitney U-test, p < 0.05) in vaccinated (median score = 2.0, IQR = 0–4.75) than in control (median score = 5, IQR = 3.0–6.25) calves. Moreover, survival from M. bovis infection in vaccinated calves was significantly (log-rank test: χ2 = 6.749, p < 0.01) higher than that of the control calves. In conclusion, the efficacy of BCG was low, but the reduced frequency and severity of lesion in vaccinated calves could suggest its potential role in containing onward transmission.
Collapse
Affiliation(s)
- Berecha Bayissa
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Asegedech Sirak
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia
| | - Adane Worku
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yemisrach Zeleke
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Chanyalew
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Andrew Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Glyn Hewinson
- Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | | | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - H Martin Vordermeier
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | - Gobena Ameni
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
ANTIBODY RESPONSE TO EPSILON TOXIN OF CLOSTRIDIUM PERFRINGENS IN CAPTIVE ADULT SPRINGBOK ( ANTIDORCAS MARSUPIALIS), IMPALA ( AEPYCEROS MELAMPUS), ALPACA ( VICUGNA PACOS), AND RED-NECKED WALLABY ( MACROPUS RUFOGRISEUS) OVER A YEAR. J Zoo Wildl Med 2021; 52:192-199. [PMID: 33827176 DOI: 10.1638/2020-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Enterotoxemia is an important issue in various zoological taxa. In this study, serologic responses over a 1-yr period after vaccination with a multivalent clostridial vaccine were evaluated in 10 adult springboks (Antidorcas marsupialis), 12 impalas (Aepyceros melampus), seven alpacas (Vicugna pacos), and five red-necked wallabies (Macropus rufogriseus). Antibody production to the Clostridium perfringens type D epsilon toxin component of the vaccine was measured using an indirect enzyme-linked immunosorbent assay and determined as the percentage of inhibition (% inhib). Initial % inhib was (0.01-18.9)%. All animals received initial vaccination with a booster vaccine 4 weeks apart. Serum samples were collected at T0 (nonvaccinated), 15, 30, 60, 180, and 360 days postvaccination (dpv) for analysis. The vaccine induced a high antibody response that peaked at 15, 30, and 60 dpv in springboks, 30 and 60 dpv in impalas (P < 0.01), and 60 dpv in alpacas and wallabies (P < 0.01). The booster vaccine was followed by a high antibody response, which slowly decreased with time. The antibody response was significantly higher at 360 dpv than at T0 in wallabies and alpacas (P < 0.01). In impalas and springboks, it appeared that a booster every 6 mo might be required to maintain an antibody response above baseline (P < 0.01). Because no challenge studies were performed, it is unknown whether the measured humoral immune responses would have been protective. Further research is warranted to investigate protective effects of antibodies to inoculation challenge in nondomestic species.
Collapse
|
12
|
Musah-Eroje M, Hoyle RC, Japa O, Hodgkinson JE, Haig DM, Flynn RJ. A host-independent role for Fasciola hepatica transforming growth factor-like molecule in parasite development. Int J Parasitol 2021; 51:481-492. [PMID: 33581140 DOI: 10.1016/j.ijpara.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
The trematode parasite Fasciola hepatica causes chronic infection in hosts, enabled by an immunosuppressed environment. Both host and parasite factors are known to contribute to this suggesting that avoidance of immunopathology is beneficial to both parties. We have previously characterised a parasite transforming growth factor (TGF)-like molecule, FhTLM, that interacts with host macrophages to prevent antibody-dependent cell cytotoxicity (ADCC). FhTLM is one of many described helminth TGF homologues and multiple helminths are now known to utilise host immune responses as developmental cues. To test whether, or how, F. hepatica uses FhTLM to manipulate host immunity, we initially examined its effects on the CD4 T-cell phenotype. Despite inducing IL-10, there was no induction of FoxP3 within the CD4 T-cell compartment. In addition to inducing IL-10, a wide range of chemokines were elicited from both CD4 T-cells and macrophages. However, no growth or survival advantage was conferred on F. hepatica in our co-culture system when CD4 T-cells, macrophages, or eosinophils were tested. Finally, using RNA interference we were able to verify a host-independent role for FhTLM in parasite growth. Despite the similarities of FhTLM with other described helminth TGF homologues, here we demonstrate species-specific divergence.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Boningto, LE12 5RD, UK
| | - Rebecca C Hoyle
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK
| | - Ornampai Japa
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK; Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Thailand
| | - Jane E Hodgkinson
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK
| | - David M Haig
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Boningto, LE12 5RD, UK
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK.
| |
Collapse
|
13
|
Jiménez M, Hidalgo C, Stoore C, Corrêa F, Pereira I, Hernández M, Sáenz L, Benavides J, Ferreras MC, Royo M, Paredes R. Fasciola hepatica co-infection enhances Th1 immune response in the adventitial layer of non-fertile Echinococcus granulosus cysts. Vet Parasitol 2021; 290:109343. [PMID: 33422750 DOI: 10.1016/j.vetpar.2021.109343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
Cystic echinococcosis is a widespread zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus. In intermediary hosts, two types of echinococcal cysts can be found: fertile, which produce protoscoleces, the infective form of the parasite to dogs; and infertile, that do not present protoscoleces and therefore are not able to continue with the parasite life cycle. The adventitial layer, the local immune response against the cyst, plays an important role in cyst fertility. Grazing cattle can often feature Fasciola hepatica co-infection, a parasite known to modulate the host systemic immune response. In this work the cellular Th1/Th2 immune profiles were evaluated in the adventitial layer of fertile and non-fertile cysts with and without co-infection with Fasciola hepatica. Measuring with immunohistochemistry and qPCR in adventitial layer, we report that non-fertile cysts present higher levels of Th1 cytokines (IFN-γ (P < 0.0001) and TNF-α (P < 0.05)), and fertile cysts have higher levels of Th2 cytokines (IL-4 (P < 0.001)). Co-infection with Fasciola hepatica is associated with a decrease in the expression of IL-4 (P < 0.05) and an increase in the expression of IFN-γ (P < 0.0001) in the adventitial layer of fertile cysts. Non-fertile cysts were associated with higher levels of Th1 cytokines in the adventitial layer, with IFN-γ expression enhanced by F. hepatica co-infection (P < 0.0001), confirming that polyparasitism should be considered in the treatment and control of naturally infected cattle.
Collapse
Affiliation(s)
- Mauricio Jiménez
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Laboratorio de Biotecnología, LIMOR de Colombia S.A.S, Bogotá, Colombia
| | - Christian Hidalgo
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Felipe Corrêa
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ismael Pereira
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernández
- Laboratorio de Biología Periodontal y Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Leonardo Sáenz
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Julio Benavides
- Dpto de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Facultad de Veterinaria, Campus de Vegazana s/n, León, Spain
| | - M Carmen Ferreras
- Dpto de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Facultad de Veterinaria, Campus de Vegazana s/n, León, Spain
| | - Marcos Royo
- Dpto de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Facultad de Veterinaria, Campus de Vegazana s/n, León, Spain
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
14
|
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators. Acta Trop 2020; 210:105548. [PMID: 32505597 DOI: 10.1016/j.actatropica.2020.105548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
Through the years, helminths have co-existed with many species. This process has allowed parasites to live within them for long periods and, in some cases, to generate offspring. In particular, this ability has allowed Fasciola hepatica to survive the diverse immunological responses faced within its wide range of hosts. The vast repertoire of molecules that are constantly secreted in large quantities by the parasite, acts directly on several cells of the immune system affecting their antiparasitic capacities. Interestingly, these molecules can direct the host immune response to an anti-inflammatory and regulatory phenotype that assures the survival of the parasite with less harm to the host. Based on these observations, some of the products of F. hepatica, as well as those of other helminths, have been studied, either as a total extract, extracellular vesicles or as purified molecules, to establish and characterize their anti-inflammatory mechanisms. Until now, the results obtained encourage further research directed to discover new helminth-derived alternatives to replace current therapies, which can be useful for people suffering from inflammatory diseases like autoimmunity or allergy processes that affect their life quality. In this review, some of the most studied molecules derived from F. hepatica and their modulating capacities are discussed.
Collapse
Affiliation(s)
- Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México.
| |
Collapse
|
15
|
Corrêa F, Hidalgo C, Stoore C, Jiménez M, Hernández M, Paredes R. Cattle co-infection of Echinococcus granulosus and Fasciola hepatica results in a different systemic cytokine profile than single parasite infection. PLoS One 2020; 15:e0238909. [PMID: 32915902 PMCID: PMC7485845 DOI: 10.1371/journal.pone.0238909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
E. granulosus is a cestode that causes Cystic Echinococcosis (CE), a zoonotic disease with worldwide presence. The immune response generated by the host against the metacestode induces a permissive Th2 response, as opposed to pro-inflammatory Th1 response. In this view, mixed Th2 and regulatory responses allow parasite survival. Overall, larval Echinococcus infections induce strong regulatory responses. Fasciola hepatica, another common helminth parasite, represents a major infection in cattle. Co-infection with different parasite species in the same host, polyparasitism, is a common occurrence involving E. granulosus and F. hepatica in cattle. ‘While it is known that infection with F. hepatica also triggers a polarized Th2/Treg immune response, little is reported regarding effects on the systemic immune response of this example of polyparasitism. F. hepatica also triggers immune responses polarized to the Th2/ Treg spectrum. Serum samples from 107 animals were analyzed, and were divided according to their infection status and Echinococcal cysts fertility. Cytokines were measured utilizing a Milliplex Magnetic Bead Panel to detect IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12 and IL-18. Cattle infected only with F. hepatica had the highest concentration of every cytokine analyzed, with both 4.24 and 3.34-fold increases in IL-10 and IL-4, respectively, compared to control animals, followed by E. granulosus and F. hepatica co-infected animals with two-fold increase in IL-10 and IL-4, compared to control animals, suggesting that E. granulosus co-infection dampens the cattle Th2/Treg immune response against F. hepatica. When considering Echinococcal cyst fertility and systemic cytokine concentrations, fertile cysts had higher IFN-γ, IL-6 and IL-18 concentrations, while infertile cysts had higher IL-10 concentrations. These results show that E. granulosus co-infection lowers Th1 and Th2 cytokine serological concentration when compared to F. hepatica infection alone. E. granulosus infections show no difference in IFN-γ, IL-1, IL-2, IL-6 and IL-18 levels compared with control animals, highlighting the immune evasion mechanisms of this cestode.
Collapse
Affiliation(s)
- Felipe Corrêa
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O’Higgins, San Fernando, Chile
| | - Caroll Stoore
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Jiménez
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernández
- Laboratorio de Biología Periodontal y Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
16
|
Naranjo-Lucena A, García-Campos A, Garza-Cuartero L, Britton L, Blanco A, Zintl A, Mulcahy G. Fasciola hepatica products can alter the response of bovine immune cells to Mycobacterium avium subsp. paratuberculosis. Parasite Immunol 2020; 42:e12779. [PMID: 32725900 PMCID: PMC8365740 DOI: 10.1111/pim.12779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fasciola hepatica causes economically important disease in livestock worldwide. The relevance of this parasitic infection extends beyond its direct consequences due to its immunoregulatory properties. OBJECTIVES Given the importance of the T helper 1 (Th1) immune response in controlling infections with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle, we aimed to establish the immunological consequences that co-infection with F. hepatica might have on the course of Johne's disease (JD). METHODS This study compared the in vitro response of bovine immune cells to infection with MAP or exposure to MAP antigens following F. hepatica infection or stimulation with F. hepatica products. RESULTS We found a decreased proliferation of peripheral blood mononuclear cells (PBMCs) after infection with F. hepatica. This reduction was inversely correlated with fluke burden. Pre-stimulation with F. hepatica molecules produced a significant reduction of ileocaecal lymph node leucocyte proliferation in response to MAP antigens. Additionally,F. hepatica products reduced expression of the CD14 receptor by macrophages and increased levels of apoptosis and bacterial (MAP) uptake. CONCLUSIONS Overall, F. hepatica infection had little impact on the in vitro response of immune cells to MAP, whereas in vitro co-stimulation with F. hepatica molecules had a measurable effect. Whether this is likely to affect JD progression during in vivo chronic conditions remains unclear.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Andrés García-Campos
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Britton
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annetta Zintl
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Hidalgo C, Stoore C, Hernández M, Paredes R. Fasciola hepatica coinfection modifies the morphological and immunological features of Echinococcus granulosus cysts in cattle. Vet Res 2020; 51:76. [PMID: 32503674 PMCID: PMC7275569 DOI: 10.1186/s13567-020-00799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Polyparasitism occurs when animals harbour multiple parasites concomitantly. It is a common occurrence but is generally understudied in wild and domestic animals. Fasciola hepatica and Echinococcus granulosus, which are helminths of ungulates, frequently coinfect cattle. The effects of this particular type of polyparasitism are not well documented. The metacestode of Echinococcus granulosus is surrounded by the adventitial layer, which constitutes the host immune response to the parasite. This layer in cattle is produced by a granulomatous reaction and is involved in echinococcal cyst (EC) fertility. Due to the systemic immune-modulating abilities of Fasciola hepatica, coinfection possibly generates a favourable environment for EC growth. A total of 203 Echinococcus granulosus sensu stricto cysts were found in 82 cattle, of which 42 ECs were found in 31 animals coinfected with Fasciola hepatica. The overall infection intensity was 3 cysts per animal. Coinfection with Fasciola hepatica decreased the mean infection intensity to 1.4 cysts per animal. Regarding EC size, coinfection resulted in smaller ECs (15.91 vs 22.09 mm), especially for infertile lung cysts. The adventitial layer of ECs in coinfected animals lacked lymphoid follicles and palisading macrophages, which are generally hallmarks of the granulomatous immune response. The ECs in coinfected animals had organized laminated layers, whereas those in animals without coinfection did not. Although coinfection was not statistically associated with EC fertility, we did not find fertile cysts in the livers of coinfected animals. We concluded that coinfection with Fasciola hepatica and Echinococcus granulosus has a detrimental effect on ECs, particularly infertile cysts.
Collapse
Affiliation(s)
- Christian Hidalgo
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernández
- Laboratorio de Biología Periodontal y Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
18
|
Cadmus SI, Akinseye VO, Taiwo BO, Pinelli EO, van Soolingen D, Rhodes SG. Interactions between helminths and tuberculosis infections: Implications for tuberculosis diagnosis and vaccination in Africa. PLoS Negl Trop Dis 2020; 14:e0008069. [PMID: 32498074 PMCID: PMC7272205 DOI: 10.1371/journal.pntd.0008069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Africa is the second most populous continent and has perennial health challenges. Of the estimated 181 million school aged children in sub-Saharan Africa (SSA), nearly half suffer from ascariasis, trichuriasis, or a combination of these infections. Coupled with these is the problem of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection, which is a leading cause of death in the region. Compared to the effect of the human immunodeficiency virus on the development of TB, the effect of chronic helminth infections is a neglected area of research, yet helminth infections are as ubiquitous as they are varied and may potentially have profound effects upon host immunity, particularly as it relates to TB infection, diagnosis, and vaccination. Protection against active TB is known to require a clearly delineated T-helper type 1 (Th1) response, while helminths induce a strong opposing Th2 and immune-regulatory host response. This Review highlights the potential challenges of helminth-TB co-infection in Africa and the need for further research.
Collapse
Affiliation(s)
- Simeon I. Cadmus
- Depeartment of Veterinary Public Health & Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
| | - Victor O. Akinseye
- Depeartment of Veterinary Public Health & Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babafemi O. Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elena O. Pinelli
- Center for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick van Soolingen
- Center for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Medical Microbiology, Radboud University Medical Center Nijmegen, the Netherlands
| | - Shelley G. Rhodes
- TB Research Group, Animal and Plant Health Agency, Surrey, United Kingdom
| |
Collapse
|
19
|
Possible Role for Toll-Like Receptors in Interaction of Fasciola hepatica Excretory-Secretory Products with Human Monocyte Cell Line. Methods Mol Biol 2020. [PMID: 32399928 DOI: 10.1007/978-1-0716-0475-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter presents a proteomic approach to purify and identify native excretory-secretory products (ESPs) in the range of >10-30 kDa proteins capable of interacting with toll-like receptors (TLRs). Here we present a protocol to fractionate the total ESPs using an ultrafiltration system to recover ESP proteins >10-30 kDa. The fraction of the proteins >10-30 kDa is purified by ion exchange chromatography (IEC) using a mono Q-column in a fast protein liquid chromatography system (FPLC) to separate its components based on charge. Finally, a screening system is presented using THP1-Blue CD14 cells to investigate whether TLRs could also be targeted by Fasciola hepatica ESPs and the interaction with TLR4 using HEK293 Blue-TLR4 cells.
Collapse
|
20
|
Abdoli A, Ardakani HM. Helminth infections and immunosenescence: The friend of my enemy. Exp Gerontol 2020; 133:110852. [PMID: 32007545 DOI: 10.1016/j.exger.2020.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Age-associated alterations of the immune system, which known as "immunosenescence", is characterized by a decline in innate and adaptive immunity, which leading to increased susceptibility to age-associated diseases, such as infectious diseases, rheumatic disease and malignancies. On the other hand, helminth infections are among the most prevalent infections in older individuals, especially in the nursing homes. Most of helminth infections have minor clinical symptoms and usually causing chronic infections without treatment. Nevertheless, chronic helminthiasis alters immune responses somewhat similar to the immunosenescence. Some similarities also exist between helminth infections and immunosenescence: 1) both of them led to declining the immune responses; 2) undernutrition is a consequence of immunosenescence and helminthiasis; 3) vaccine efficacy declines in aging and individuals with helminth infections; 4) increase incidence and prevalence of infectious diseases in the elder individuals and patients with helminth infections; and 5) both of them promote tumorigenesis. Hence, it is probable that helminth infections in the elderly population can intensify the immunosenescence outcomes due to the synergistic immunoregulatory effects of each of them. It would be suggested that, diagnosis, treatment and prevention of helminth infections should be more considered in older individuals. Also, it would be suggested that helminths or their antigens can be used for investigation of immunosenescence because both of them possess some similarities in immune alterations. Taken together, this review offers new insights into the immunology of aging and helminth infections.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Howell AK, Williams DJL. The Epidemiology and Control of Liver Flukes in Cattle and Sheep. Vet Clin North Am Food Anim Pract 2020; 36:109-123. [PMID: 32029178 DOI: 10.1016/j.cvfa.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fasciola hepatica, Fasciola gigantica, and Fascioloides magna are liver flukes causing disease in cattle and sheep. Damage to the liver due to F hepatica and F gigantica results in clinical disease and/or production losses. F magna seems to have little effect in cattle but causes high mortality in sheep. The fluke life cycle involves an aquatic or amphibious snail intermediate host and thus requires suitable moisture and temperature conditions. F magna requires the presence of deer. Drug treatment is the mainstay of control and needs to be applied considering the life cycle and epidemiology of the parasite.
Collapse
Affiliation(s)
- Alison K Howell
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK.
| | - Diana J L Williams
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
22
|
Howell AK, McCann CM, Wickstead F, Williams DJL. Co-infection of cattle with Fasciola hepatica or F. gigantica and Mycobacterium bovis: A systematic review. PLoS One 2019; 14:e0226300. [PMID: 31887151 PMCID: PMC6936813 DOI: 10.1371/journal.pone.0226300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/23/2019] [Indexed: 01/29/2023] Open
Abstract
The liver flukes, Fasciola hepatica and F. gigantica, are common trematode parasites of livestock. F. hepatica is known to modulate the immune response, including altering the response to co-infecting pathogens. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease which is difficult to control and is of both animal welfare and public health concern. Previous research has suggested that infection with liver fluke may affect the accuracy of the bTB skin test, but direction of the effect differs between studies. In a systematic review of the literature, all experimental and observational studies concerning co-infection with these two pathogens were sought. Data were extracted on the association between fluke infection and four measures of bTB diagnosis or pathology, namely, the bTB skin test, interferon γ test, lesion detection and culture/bacterial recovery. Of a large body of literature dating from 1950 to 2019, only thirteen studies met the inclusion criteria. These included studies of experimentally infected calves, case control studies on adult cows, cross sectional abattoir studies and a herd level study. All the studies had a medium or high risk of bias. The balance of evidence from the 13 studies included in the review suggests that liver fluke exposure was associated with either no effect or a decreased response to all of the four aspects of bTB diagnosis assessed: skin test, IFN γ, lesion detection and mycobacteria cultured or recovered. Most studies showed a small and/or non-significant effect so the clinical and practical importance of the observed effect is likely to be modest, although it could be more significant in particular groups of animals, such as dairy cattle.
Collapse
Affiliation(s)
- Alison K. Howell
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Catherine M. McCann
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Francesca Wickstead
- School of Veterinary Science, University of Liverpool, Leahurst, Neston, United Kingdom
| | - Diana J. L. Williams
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Byrne AW, Graham J, McConville J, Milne G, Guelbenzu-Gonzalo M, McDowell S. Liver fluke (Fasciola hepatica) co-infection with bovine tuberculosis in cattle: A prospective herd-level assessment of herd bTB risk in dairy enterprises. Transbound Emerg Dis 2019; 66:1727-1736. [PMID: 31012527 DOI: 10.1111/tbed.13209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022]
Abstract
Co-infection of tuberculosis (TB) and helminths is recognized as a significant problem in regions where such pathogens are endemic and chronic cases exist. Co-infection can modulate the immune system leading to interference with diagnostic tests, increased pathological impacts and pathogen persistence. However, research has found that such interactions between pathogens can be context and species specific. Recent studies have suggested that liver fluke, Fasciola hepatica, infection may impact on immunological responses and diagnostics for bovine tuberculosis (bTB; caused by Mycobacterium bovis) in cattle. Where evidence of such interaction exists, there would be an onus on policy makers to adjust eradication programs to minimize impacts. We assessed the association between herd-level bTB breakdown risk and seasonal variation in liver fluke exposure based on 5,753 bulk tank milk (BTM) samples from 1,494 dairy herds across Northern Ireland. BTM was tested by an IDEXX antibody specific enzyme-linked immunosorbent assay (ELISA) using the 'f2' antigen as a detection agent. The ELISA determined the result based on a sample to (known) positive ratio (S/P%) from which binary status and categories of exposure were derived. Associations were tested using multivariable random effects models. Models predicting bTB risk were not improved with the inclusion of liver fluke exposure levels. Variations in modelling liver fluke exposure (S/P%, binary, categories of exposure) and bTB risk (skin test breakdowns, post-mortem confirmed breakdowns, breakdown size and lag effects) also failed to support associations (neither positive nor negative) between the pathogens at herd-level. These results, along with previously published animal-level data from Northern Ireland, suggest that the nexus between bTB and F. hepatica may have small size effects at the population-level. However, our results also highlight the high prevalence of F. hepatica in cattle in our study population, and therefore we cannot fully discount the potential hypothesis of population-level depression of immune response to M. bovis due to co-infection.
Collapse
Affiliation(s)
- Andrew W Byrne
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jordon Graham
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - James McConville
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Georgina Milne
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Maria Guelbenzu-Gonzalo
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK.,Animal Health Ireland, Carrick on Shannon, Co. Leitrim, Ireland
| | - Stanley McDowell
- Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| |
Collapse
|
24
|
May K, Scheper C, Brügemann K, Yin T, Strube C, Korkuć P, Brockmann GA, König S. Genome-wide associations and functional gene analyses for endoparasite resistance in an endangered population of native German Black Pied cattle. BMC Genomics 2019; 20:277. [PMID: 30961534 PMCID: PMC6454736 DOI: 10.1186/s12864-019-5659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal nematodes (GIN), liver flukes (Fasciola hepatica) and bovine lungworms (Dictyocaulus viviparus) are the most important parasitic agents in pastured dairy cattle. Endoparasite infections are associated with reduced milk production and detrimental impacts on female fertility, contributing to economic losses in affected farms. In quantitative-genetic studies, the heritabilities for GIN and F. hepatica were moderate, encouraging studies on genomic scales. Genome-wide association studies (GWAS) based on dense single nucleotide polymorphism (SNP) marker panels allow exploration of the underlying genomic architecture of complex disease traits. The current GWAS combined the identification of potential candidate genes with pathway analyses to obtain deeper insights into bovine immune response and the mechanisms of resistance against endoparasite infections. Results A 2-step approach was applied to infer genome-wide associations in an endangered dual-purpose cattle subpopulation [Deutsches Schwarzbuntes Niederungsrind (DSN)] with a limited number of phenotypic records. First, endoparasite traits from a population of 1166 Black and White dairy cows [including Holstein Friesian (HF) and DSN] naturally infected with GIN, F. hepatica and D. viviparus were precorrected for fixed effects using linear mixed models. Afterwards, the precorrected phenotypes were the dependent traits (rFEC-GIN, rFEC-FH, and rFLC-DV) in GWAS based on 423,654 SNPs from 148 DSN cows. We identified 44 SNPs above the genome-wide significance threshold (pBonf = 4.47 × 10− 7), and 145 associations surpassed the chromosome-wide significance threshold (range: 7.47 × 10− 6 on BTA 1 to 2.18 × 10− 5 on BTA 28). The associated SNPs identified were annotated to 23 candidate genes. The DAVID analysis inferred four pathways as being related to immune response mechanisms or involved in host-parasite interactions. SNP effect correlations considering specific chromosome segments indicate that breeding for resistance to GIN or F. hepatica as measured by fecal egg counts is genetically associated with a higher risk for udder infections. Conclusions We detected a large number of loci with small to moderate effects for endoparasite resistance. The potential candidate genes regulating resistance identified were pathogen-specific. Genetic antagonistic associations between disease resistance and productivity were specific for specific chromosome segments. The 2-step approach was a valid methodological approach to infer genetic mechanisms in an endangered breed with a limited number of phenotypic records. Electronic supplementary material The online version of this article (10.1186/s12864-019-5659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany.,Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hanover, 30559, Hannover, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Christina Strube
- Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hanover, 30559, Hannover, Germany
| | - Paula Korkuć
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Faculty of Live Science, Humboldt-Universität of Berlin, 10115, Berlin, Germany
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Faculty of Live Science, Humboldt-Universität of Berlin, 10115, Berlin, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany.
| |
Collapse
|
25
|
Aguayo V, Valdés Fernandez BN, Rodríguez-Valentín M, Ruiz-Jiménez C, Ramos-Benítez MJ, Méndez LB, Espino AM. Fasciola hepatica GST downregulates NF-κB pathway effectors and inflammatory cytokines while promoting survival in a mouse septic shock model. Sci Rep 2019; 9:2275. [PMID: 30783117 PMCID: PMC6381083 DOI: 10.1038/s41598-018-37652-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Parasitic helminths and helminth-derived molecules have demonstrated to possess powerful anti-inflammatory properties and confirmed therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress specific Th1 specific immune responses induced by concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. In this study, we demonstrate that native F. hepatica glutathione S-transferase (nFhGST), a major parasite excretory-secretory antigen, majorly comprised of Mu-class GST isoforms, significantly suppresses the LPS-induced TNFα and IL1β of mouse bone-marrow derived macrophages in vitro and the pro-inflammatory cytokine/chemokine storm within C57BL/6 mice exposed to lethal doses of LPS increasing their survival rate by more than 85%. Using THP1-Blue CD14 cells, a human monocyte cell line, we also demonstrate that nFhGST suppresses NF-κB activation in response to multiple TLR-ligands, including whole bacteria clinical isolates and this suppression was found to be dose-dependent and independent of the timing of exposure. Moreover, the suppressive effect of nFhGST on NF-κB activation was shown to be independent of enzyme activity or secondary structure of protein. As part of its anti-inflammatory effect nFhGST target multiple proteins of the canonic and non-canonic NF-κB signaling pathway as well as also JAK/STAT pathway. Overall, our results demonstrate the potent anti-inflammatory properties of nFhGST and its therapeutic potential as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Vasti Aguayo
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | | | | | - Caleb Ruiz-Jiménez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Marcos J Ramos-Benítez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Loyda B Méndez
- School of Science & Technology Universidad del Este, Carolina, Puerto Rico
| | - Ana M Espino
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico.
| |
Collapse
|
26
|
May K, Brügemann K, König S, Strube C. Patent infections with Fasciola hepatica and paramphistomes (Calicophoron daubneyi) in dairy cows and association of fasciolosis with individual milk production and fertility parameters. Vet Parasitol 2019; 267:32-41. [PMID: 30878082 DOI: 10.1016/j.vetpar.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 11/24/2022]
Abstract
Infections with the liver fluke Fasciola hepatica may result in considerable economic losses in the dairy livestock industry worldwide. Infections have been associated with detrimental impacts on milk production and milk quality as well as reduced fertility. However, most related data rely on examinations on herd level and the rather few studies on individual cow level are based solely on antibodies as measure for F. hepatica infections. This entails the risk of including false-positives as anti-F. hepatica antibodies persist for months even if the infection is cleared. Therefore, the presented study aimed to overcome this issue by assessing the association between F. hepatica infections measured via faecal egg counts (FEC) and milk production as well as fertility parameters in individual dairy cows. In total, 2006 faecal samples from 1166 Black and White dairy cows from 17 small and medium-sized German grassland farms were examined in July and September 2015. The relationship between patent F. hepatica infections and the milk production parameters milk yield, milk protein content, milk fat content and somatic cell score (SCS) was assessed in a linear mixed model using test-day records of individual cows. Patent F. hepatica infections were found on 35.3% (7/17) of farms with an individual cow prevalence of 10.1% (97/963) in July and 9.1% (95/1036) in September. Patent rumen fluke infections were detected on 17.6% (3/17) farms with an individual cow prevalence of 0.4% (4/963) in July and 0.7% (9/1036) in September. No significant association was found between F. hepatica infection status and either SCS as an indicator of udder health or milk production parameters, despite 0.06 and 0.10% lower values for milk protein and fat content in patently infected cows. Linear mixed models and generalized linear mixed models were established to estimate the impact of fasciolosis on the fertility parameters calving to first service (CTFS), calving interval (CI), success in first insemination (SFI) and 56-day nonreturn rate (NRR56). A significantly higher average CTFS of 4.69 days was detected in F. hepatica infected cows (P = 0.025), but no significant relationship was found for the other fertility parameters.
Collapse
Affiliation(s)
- Katharina May
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Gießen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
27
|
Imrie H, Williams DJL. Stimulation of bovine monocyte-derived macrophages with lipopolysaccharide, interferon-ɣ, Interleukin-4 or Interleukin-13 does not induce detectable changes in nitric oxide or arginase activity. BMC Vet Res 2019; 15:45. [PMID: 30704453 PMCID: PMC6357487 DOI: 10.1186/s12917-019-1785-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Bacterial lipopolysaccharide and interferon-γ stimulation of rodent macrophages in vitro induces up-regulation of inducible nitric oxide synthase, whereas interleukin-4 stimulation results in increased activity of arginase-1. Thus different stimulants result in differing macrophage phenotypes, appropriate for responses to a range of pathogens. The current study was conducted in order to determine whether bovine macrophages derived from monocytes and spleen respond similarly. RESULTS Lipopolysaccharide and interferon-γ did not induce detectable increases in nitric oxide production by bovine monocyte-derived or splenic macrophages in vitro. Similarly, interleukin-4 and interleukin-13 did not affect arginase activity. However, changes in transcription of genes coding for these products were detected. CONCLUSION Differences between macrophage activation patterns exist between cattle and other species and these differences may occur during the post-transcription phase.
Collapse
Affiliation(s)
- Heather Imrie
- Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF UK
- Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Lane, Southwell, NG25 0DT UK
| | - Diana J. L. Williams
- Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF UK
| |
Collapse
|
28
|
Byrne AW, McBride S, Graham J, Lahuerta-Marin A, McNair J, Skuce RA, McDowell SW. Liver fluke (Fasciola hepatica) co-infection with bovine tuberculosis (bTB) in cattle: A retrospective animal-level assessment of bTB risk in dairy and beef cattle. Transbound Emerg Dis 2018; 66:785-796. [PMID: 30484969 DOI: 10.1111/tbed.13083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a persistent problem for cattle industries in endemic countries. The frequency, quality, and performance of tests, and the presence of wildlife reservoirs, have been identified as impediments to eradication. Recently, exposure to helminth infection (Fasciola hepatica) has been associated negatively with the disclosure of bTB. Here, for the first time, we assess impact of concurrent infections of Fasciola hepatica and the disclosure of bTB at the animal-level using large surveillance datasets. We utilized a dataset of 138,566 animal records from an abattoir from Northern Ireland (2011-2013). The presence of F. hepatica infection was assessed from macroscopic tissue inspection at abattoir. Multivariable models were developed to assess co-infection associations with bTB status based on: Single Intradermal Comparative Tuberculin Test (SICTT), lesion, bacteriological confirmation, including either all animals, or only skin-test negative animals (lesions at routine slaughter; LRS; confirmed nonreactors at routine slaughter; cNRs) or positive (reactors) animals alone, respectively. The relationship between skin tuberculin reaction sizes and fluke status was also explored for a subset of animals with field recordings (n = 24,680). Controlling for known risk factors (e.g., climatic, herd, and individual level characteristics), we did not find significant associations between the SICTT (standard or severe interpretation), lesion, nor confirmation status of animals and their liver fluke status. The only exception was a negative association between liver fluke positivity, and LRS or cNRs, respectively; though effect-sizes were small (e.g., LRS Odds-Ratio: 0.87; 95% CI: 0.76-1.00). There was limited evidence of a relationship between tuberculin reaction sizes during SICTT testing and liver fluke infection status. These data do not support the contention that the detection of bTB using skin-tests or reactor postmortem follow-up may be compromised by co-infection at a population level, but the relationship with lesion formation (pathogenesis) may indicate an impact for postmortem surveillance.
Collapse
Affiliation(s)
- Andrew W Byrne
- AFBI Stormont, Agri-Food and Biosciences Institute (AFBI), Belfast, UK.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Stewart McBride
- AFBI Stormont, Agri-Food and Biosciences Institute (AFBI), Belfast, UK
| | - Jordon Graham
- AFBI Stormont, Agri-Food and Biosciences Institute (AFBI), Belfast, UK
| | | | - Jim McNair
- AFBI Stormont, Agri-Food and Biosciences Institute (AFBI), Belfast, UK
| | - Robin A Skuce
- AFBI Stormont, Agri-Food and Biosciences Institute (AFBI), Belfast, UK
| | | |
Collapse
|
29
|
Ramos-Benitez MJ, Ruiz-Jimenez C, Rosado-Franco JJ, Ramos-Pérez WD, Mendez LB, Osuna A, Espino AM. Fh15 Blocks the Lipopolysaccharide-Induced Cytokine Storm While Modulating Peritoneal Macrophage Migration and CD38 Expression within Spleen Macrophages in a Mouse Model of Septic Shock. mSphere 2018; 3:e00548-18. [PMID: 30567900 PMCID: PMC6300687 DOI: 10.1128/msphere.00548-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis caused by Gram-negative bacteria is the consequence of an unrestrained infection that continuously releases lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to multiorgan failure and death. After scrutinizing the immune modulation exerted by a recombinant Fasciola hepatica fatty acid binding protein termed Fh15, our group demonstrated that addition of Fh15 to murine macrophages 1 h prior to LPS stimulation significantly suppresses the expression of proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL1-β). The present study aimed to demonstrate that Fh15 could exert a similar anti-inflammatory effect in vivo using a mouse model of septic shock. Among the novel findings reported in this article, (i) Fh15 suppressed numerous serum proinflammatory cytokines/chemokines when injected intraperitoneally 1 h after exposure of animals to lethal doses of LPS, (ii) concurrently, Fh15 increased the population of large peritoneal macrophages (LPMs) in the peritoneal cavity (PerC) of LPS-injected animals, and (iii) Fh15 downregulated the expression on spleen macrophages of CD38, a cell surface ectoenzyme with a critical role during inflammation. These findings present the first evidence that the recombinant parasitic antigen Fh15 is an excellent modulator of the PerC cell content and in vivo macrophage activation, endorsing Fh15's potential as a drug candidate against sepsis-related inflammatory response.IMPORTANCE Sepsis is a potentially life-threatening complication of an infection. Sepsis is mostly the consequence of systemic bacterial infections leading to exacerbated activation of immune cells by bacterial products, resulting in enhanced release of inflammatory mediators. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a critical factor in the pathogenesis of sepsis, which is sensed by Toll-like receptor 4 (TLR4). The scientific community highly pursues the development of antagonists capable of blocking the cytokine storm by blocking TLR4. We report here that a recombinant molecule of 14.5 kDa belonging to the Fasciola hepatica fatty acid binding protein (Fh15) is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock when administered by the intraperitoneal route 1 h after a lethal LPS injection. These results suggest that Fh15 is an excellent candidate for drug development against endotoxemia.
Collapse
Affiliation(s)
- Marcos J Ramos-Benitez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Caleb Ruiz-Jimenez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Jose J Rosado-Franco
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Willy D Ramos-Pérez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| | - Loyda B Mendez
- School of Science & Technology Universidad del Este, Carolina, Puerto Rico
| | - Antonio Osuna
- Instituto de Biotecnologia, Grupo de Bioquimica y Parasitología Molecular, Departamento de Parasitologia, Universidad de Granada, Granada, Spain
| | - Ana M Espino
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, San Juan, Puerto Rico
| |
Collapse
|
30
|
Mabbott NA. The Influence of Parasite Infections on Host Immunity to Co-infection With Other Pathogens. Front Immunol 2018; 9:2579. [PMID: 30467504 PMCID: PMC6237250 DOI: 10.3389/fimmu.2018.02579] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Parasites have evolved a wide range of mechanisms that they use to evade or manipulate the host's immune response and establish infection. The majority of the in vivo studies that have investigated these host-parasite interactions have been undertaken in experimental animals, especially rodents, which were housed and maintained to a high microbiological status. However, in the field situation it is increasingly apparent that pathogen co-infections within the same host are a common occurrence. For example, chronic infection with pathogens including malarial parasites, soil-transmitted helminths, Mycobacterium tuberculosis and viruses such as HIV may affect a third of the human population of some developing countries. Increasing evidence shows that co-infection with these pathogens may alter susceptibility to other important pathogens, and/or influence vaccine efficacy through their effects on host immune responsiveness. Co-infection with certain pathogens may also hinder accurate disease diagnosis. This review summarizes our current understanding of how the host's immune response to infection with different types of parasites can influence susceptibility to infection with other pathogenic microorganisms. A greater understanding of how infectious disease susceptibility and pathogenesis can be influenced by parasite co-infections will enhance disease diagnosis and the design of novel vaccines or therapeutics to more effectively control the spread of infectious diseases.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Buddle BM, Vordermeier HM, Chambers MA, de Klerk-Lorist LM. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front Vet Sci 2018; 5:259. [PMID: 30417002 PMCID: PMC6214331 DOI: 10.3389/fvets.2018.00259] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/01/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (TB) continues to be an intractable problem in many countries, particularly where "test and slaughter" policies cannot be implemented or where wildlife reservoirs of Mycobacterium bovis infection serve as a recurrent source of infection for domestic livestock. Alternative control measures are urgently required and vaccination is a promising option. Although the M. bovis bacille Calmette-Guérin (BCG) vaccine has been used in humans for nearly a century, its use in animals has been limited, principally as protection against TB has been incomplete and vaccination may result in animals reacting in the tuberculin skin test. Valuable insights have been gained over the past 25 years to optimise protection induced by BCG vaccine in animals and in the development of tests to differentiate infected from vaccinated animals (DIVA). This review examines factors affecting the efficacy of BCG vaccine in cattle, recent field trials, use of DIVA tests and the effectiveness of BCG vaccine in other domestic livestock as well as in wildlife. Oral delivery of BCG vaccine to wildlife reservoirs of infection such as European badgers, brushtail possums, wild boar, and deer has been shown to induce protection against TB and could prove to be a practical means to vaccinate these species at scale. Testing of BCG vaccine in a wide range of animal species has indicated that it is safe and vaccination has the potential to be a valuable tool to assist in the control of TB in both domestic livestock and wildlife.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Mark A Chambers
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Faculty of Health & Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lin-Mari de Klerk-Lorist
- Veterinary Wildlife Services, Kruger National Park, Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa
| |
Collapse
|
32
|
Musah-Eroje M, Flynn RJ. Fasciola hepatica, TGF-β and host mimicry: the enemy within. Curr Opin Microbiol 2018; 46:80-85. [PMID: 30317150 DOI: 10.1016/j.mib.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Helminths parasites undergo developmental changes and migration within their definitive host, in addition to establishing chronic infection. Essential to this is the evasion of host immune responses; the canonical Th2 response is effective at removing parasites resident in the intestine. Conversely, helminths also promote the development of antigen-specific anergy and regulation. This often limits pathology but allows parasite survival, parasite effectors mediating this are the subject of intense study. They may be useful as future vaccine targets or xenogenic therapeutics. Fasciola hepatica possesses a family of TGF-like molecules of which one member, FhTLM, is capable of promoting intrinsic and extrinsic effects. Here we review the extrinsic effects of FhTLM on the host macrophage and its consequences for protective immunity. This review also discusses the specificities of FhTLM in light a very recent description of a nematode TGF-β mimic and the effects of endogenous TGF-β.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, United Kingdom
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF, United Kingdom.
| |
Collapse
|
33
|
Kelly RF, Callaby R, Egbe NF, Williams DJL, Victor NN, Tanya VN, Sander M, Ndip L, Ngandolo R, Morgan KL, Handel IG, Mazeri S, Muwonge A, de C Bronsvoort BM. Association of Fasciola gigantica Co-infection With Bovine Tuberculosis Infection and Diagnosis in a Naturally Infected Cattle Population in Africa. Front Vet Sci 2018; 5:214. [PMID: 30238010 PMCID: PMC6136300 DOI: 10.3389/fvets.2018.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a major livestock and public health problem in both high and low-income countries. With the current absence of an effective vaccine, control in cattle populations is reliant on regular testing and removal of positive animals. However, surveillance and control are hampered by imperfect diagnostic tests that have poorly described properties in naturally infected populations. Recent research in cattle co-infected with the temperate liver fluke, Fasciola hepatica, has raised concerns about the performance of the intradermal skin test in high fluke incidence areas. Further, recent studies of parasitic co-infections have demonstrated their impact on Th1 and Th2 responses, concurrent disease pathology and susceptibility to mycobacterial infections. Here we report for the first time the association of co-infection with the tropical liver fluke, Fasciola gigantica, with the presence of bTB-like lesions and the IFN-γ response in naturally infected African cattle. After adjusting for age and sex we observed a complex interaction between fluke status and breed. Fulani cattle had a higher risk of having bTB-like lesions than the mixed breed group. The risk of bTB-like lesions increased in the mixed breed group if they had concurrent evidence of fluke pathology but was less clear in the coinfected Fulani breed. Further, we observed a slight decline in the IFN-γ levels in fluke infected animals. Finally we explored factors associated with IFN-γ false negative results compared to the presence of bTB-like lesions. Fulani cattle had a higher risk of having a false negative result compared to the mixed breed group. Further, the mixed breed cattle had an increased risk of being false negative if also co-infected with fluke. Interesting, as with the risk of bTB-like lesions, this association was less clear in the Fulani cattle with weak evidence of a slight decrease in risk of having a false negative test result when fluke pathology positive. This interesting interaction where different breeds appear to have different responses to co-infections is intriguing but further work is needed to confirm and understand more clearly the possible confounding effects of different other co-infections not measured here, breed, management or exposure risks.
Collapse
Affiliation(s)
- Robert F. Kelly
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Rebecca Callaby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Nkongho F. Egbe
- Microbiology and Parasitology Unit, Faculty of Allied Medical Science, University of Calabar, Calabar, Nigeria
| | - Diana J. L. Williams
- Veterinary Parasitology, Institute of Infection and Global Health and School of Veterinary Science, Liverpool, United Kingdom
| | - Ngu Ngwa Victor
- School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Melissa Sander
- Tuberculosis Reference Laboratory Bamenda, Hospital Roundabout, Bamenda, Cameroon
| | - Lucy Ndip
- Laboratory of Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Richard Ngandolo
- Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha, N'Djamena, Chad
| | - Kenton L. Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Ian G. Handel
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Stella Mazeri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Barend M. de C Bronsvoort
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
34
|
Allen AR, Skuce RA, Byrne AW. Bovine Tuberculosis in Britain and Ireland - A Perfect Storm? the Confluence of Potential Ecological and Epidemiological Impediments to Controlling a Chronic Infectious Disease. Front Vet Sci 2018; 5:109. [PMID: 29951489 PMCID: PMC6008655 DOI: 10.3389/fvets.2018.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Successful eradication schemes for bovine tuberculosis (bTB) have been implemented in a number of European and other countries over the last 50 years. However, the islands of Britain and Ireland remain a significant aberration to this trend, with the recent exception of Scotland. Why have eradication schemes failed within these countries, while apparently similar programs have been successful elsewhere? While significant socio-economic and political factors have been discussed elsewhere as key determinants of disease eradication, here we review some of the potential ecological and epidemiological constraints that are present in these islands relative to other parts of Europe. We argue that the convergence of these potential factors may interact additively to diminish the potential of the present control programs to achieve eradication. Issues identified include heterogeneity of diagnostic testing approaches, the presence of an abundant wildlife reservoir of infection and the challenge of sustainably managing this risk effectively; the nature, size, density and network structure of cattle farming; potential effects of Mycobacterium bovis strain heterogeneity on disease transmission dynamics; possible impacts of concurrent endemic infections on the disclosure of truly infected animals; climatological differences and change coupled with environmental contamination. We further argue that control and eradication of this complex disease may benefit from an ecosystem level approach to management. We hope that this perspective can stimulate a new conversation about the many factors potentially impacting bTB eradication schemes in Britain and Ireland and possibly stimulate new research in the areas identified.
Collapse
Affiliation(s)
| | - R. A. Skuce
- Veterinary Science Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | | |
Collapse
|
35
|
Ghebremariam MK, Michel AL, Vernooij JCM, Nielen M, Rutten VPMG. Prevalence of bovine tuberculosis in cattle, goats, and camels of traditional livestock raising communities in Eritrea. BMC Vet Res 2018. [PMID: 29514650 PMCID: PMC5842630 DOI: 10.1186/s12917-018-1397-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the current study was to assess the prevalence of bovine tuberculosis (BTB) in cattle, goats, and camels, and its zoonotic potential within the traditional livestock raising communities in four regions of Eritrea. The Single Intradermal Comparative Tuberculin Test (SICTT) as indicator of M. bovis infection was conducted on 1077 cattle, 876 goats, and 195 camels. To elucidate possible risk factors for BTB transmission between animals and its potential zoonotic implication, questionnaire based face-to-face interviews were conducted in households of which 232 raised cattle, 128 goats, and 29 camels. Results The results of the SCITT were interpreted using the OIE standard (> 4 mm cut-off) for positive responses. In cattle, individual animal (n = 1077) and herd (n = 413) prevalences were 1.2% (n = 13) [Confidence Interval (CI) 95% CI, 1.0–1.3%] and 3.2% (n = 13) (95% CI, 3.0–3.4%), respectively. In goats (n = 876), none of the animals was positive. In camels, individual animal (n = 195) and herd (n = 70), BTB prevalences were 1.5% (n = 3) (95% CI,1.4–1.6%) and 2.9(n = 2) (95% CI, 0.9–4.6%), respectively. Overall, male animals were more at risk (OR = 2.6; 95% CI:1.0–8.7) when compared to females. Sharing of water points, introduction of new animals into herds and migration of animals over large distances were common events that may contribute to intra and inter-species transmission of BTB. Consumption of raw milk, lack of BTB transmission awareness, and low levels of education were common in the farming communities. Conclusion The current study highlighted a low prevalence of M. bovis in cattle, goats and camels in extensive traditional livestock in Eritrea. Despite this, the spatial distribution of affected animals across most of the sampled regions and consumption of unpasteurized milk warrants surveillance, cautious and timely control measures for the disease. Electronic supplementary material The online version of this article (10.1186/s12917-018-1397-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael K Ghebremariam
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Department of Veterinary Sciences, Hamelmalo Agricultural College, Keren, Eritrea.
| | - A L Michel
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Research Associate at the National Zoological Gardens of South Africa, Pretoria, South Africa
| | - J C M Vernooij
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Nielen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - V P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Twomey AJ, Carroll RI, Doherty ML, Byrne N, Graham DA, Sayers RG, Blom A, Berry DP. Genetic correlations between endo-parasite phenotypes and economically important traits in dairy and beef cattle. J Anim Sci 2018; 96:407-421. [PMID: 29385479 PMCID: PMC6140888 DOI: 10.1093/jas/sky008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 11/14/2022] Open
Abstract
Parasitic diseases have economic consequences in cattle production systems. Although breeding for parasite resistance can complement current control practices to reduce the prevalence globally, there is little knowledge of the implications of such a strategy on other performance traits. Records on individual animal antibody responses to Fasciola hepatica, Ostertagia ostertagi, and Neospora caninum were available from cows in 68 dairy herds (study herds); national abattoir data on F. hepatica-damaged livers were also available from dairy and beef cattle. After data edits, 9,271 dairy cows remained in the study herd dataset, whereas 19,542 dairy cows and 68,048 young dairy and beef animals had a record for the presence or absence of F. hepatica-damaged liver in the national dataset. Milk, reproductive, and carcass phenotypes were also available for a proportion of these animals as well as their contemporaries. Linear mixed models were used to estimate variance components of antibody responses to the three parasites; covariance components were estimated between the parasite phenotypes and economically important traits. Heritability of antibody responses to the different parasites, when treated as a continuous trait, ranged from 0.07 (O. ostertagi) to 0.13 (F. hepatica), whereas the coefficient of genetic variation ranged from 4% (O. ostertagi) to 20% (F. hepatica). The antibody response to N. caninum was genetically correlated with the antibody response to both F. hepatica (-0.29) and O. ostertagi (-0.67); a moderately positive genetic correlation existed between the antibody response to F. hepatica and O. ostertagi (0.66). Genetic correlations between the parasite phenotypes and the milk production traits were all close to zero (-0.14 to 0.10), as were the genetic correlations between F. hepatica-damaged livers and the carcass traits of carcass weight, conformation, and fat score evaluated in cows and young animals (0.00 to 0.16). The genetic correlation between F. hepatica-damaged livers in cows and milk somatic cell score was 0.32 (SE = 0.20). Antibody responses to F. hepatica and O. ostertagi had favorable genetic correlations with fertility traits, but conversely, antibody response to N. caninum and F. hepatica-damaged livers were unfavorably genetically correlated with fertility. This study provides the necessary information to undertake national multitrait genetic evaluations for parasite phenotypes.
Collapse
Affiliation(s)
- Alan J Twomey
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | - Michael L Doherty
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Noel Byrne
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - David A Graham
- Animal Health Ireland, Carrick on Shannon, Co. Leitrim, Ireland
| | - Riona G Sayers
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Astrid Blom
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland
| | - Donagh P Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
37
|
Stempin CC, Motrán CC, Aoki MP, Falcón CR, Cerbán FM, Cervi L. PD-L2 negatively regulates Th1-mediated immunopathology during Fasciola hepatica infection. Oncotarget 2018; 7:77721-77731. [PMID: 27783986 PMCID: PMC5363616 DOI: 10.18632/oncotarget.12790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 10/01/2016] [Indexed: 12/22/2022] Open
Abstract
Macrophage plasticity is critical for controlling inflammation including those produced by helminth infections, where alternatively activated macrophages (AAM) are accumulated in tissues. AAM expressing the co-inhibitory molecule programmed death ligand 2 (PD-L2), which is capable of binding programmed death 1 (PD-1) expressed on activated T cells, have been demonstrated in different parasitic infections. However, the role of PD-L2 during F. hepatica infection has not yet been explored. We observed that F. hepatica infection or a F. hepatica total extract (TE) injection increased the expression of PD-L2 on peritoneal macrophages. In addition, the absence of PD-L2 expression correlated with an increase in susceptibility to F. hepatica infection, as evidenced by the shorter survival and increased liver damage observed in PD-L2 deficient (KO) mice. We assessed the contribution of the PD-L2 pathway to Th2 polarization during this infection, and found that the absence of PD-L2 caused a diminished Th2 type cytokine production by TE stimulated splenocytes from PD-L2 KO infected compared with WT mice. Besides, splenocytes and intrahepatic leukocytes from infected PD-L2 KO mice showed higher levels of IFN-γ than those from WT mice. Arginase expression and activity and IL-10 production were reduced in macrophages from PD-L2 KO mice compared to those from WT mice, revealing a strong correlation between PD-L2 expression and AAM polarization. Taken together, our data indicate that PD-L2 expression in macrophages is critical for AAM induction and the maintenance of an optimal balance between the Th1- and Th2-type immune responses to assure host survival during F. hepatica infection.
Collapse
Affiliation(s)
- Cinthia C Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Claudia C Motrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - María P Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Cristian R Falcón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Fabio M Cerbán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Laura Cervi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
38
|
Byrne AW, Graham J, Brown C, Donaghy A, Guelbenzu-Gonzalo M, McNair J, Skuce RA, Allen A, McDowell SW. Modelling the variation in skin-test tuberculin reactions, post-mortem lesion counts and case pathology in tuberculosis-exposed cattle: Effects of animal characteristics, histories and co-infection. Transbound Emerg Dis 2018; 65:844-858. [PMID: 29363285 DOI: 10.1111/tbed.12814] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 01/03/2023]
Abstract
Correctly identifying bovine tuberculosis (bTB) in cattle remains a significant problem in endemic countries. We hypothesized that animal characteristics (sex, age, breed), histories (herd effects, testing, movement) and potential exposure to other pathogens (co-infection; BVDV, liver fluke and Mycobacterium avium reactors) could significantly impact the immune responsiveness detected at skin testing and the variation in post-mortem pathology (confirmation) in bTB-exposed cattle. Three model suites were developed using a retrospective observational data set of 5,698 cattle culled during herd breakdowns in Northern Ireland. A linear regression model suggested that antemortem tuberculin reaction size (difference in purified protein derivative avium [PPDa] and bovine [PPDb] reactions) was significantly positively associated with post-mortem maximum lesion size and the number of lesions found. This indicated that reaction size could be considered a predictor of both the extent (number of lesions/tissues) and the pathological progression of infection (maximum lesion size). Tuberculin reaction size was related to age class, and younger animals (<2.85 years) displayed larger reaction sizes than older animals. Tuberculin reaction size was also associated with breed and animal movement and increased with the time between the penultimate and disclosing tests. A negative binomial random-effects model indicated a significant increase in lesion counts for animals with M. avium reactions (PPDb-PPDa < 0) relative to non-reactors (PPDb-PPDa = 0). Lesion counts were significantly increased in animals with previous positive severe interpretation skin-test results. Animals with increased movement histories, young animals and non-dairy breed animals also had significantly increased lesion counts. Animals from herds that had BVDV-positive cattle had significantly lower lesion counts than animals from herds without evidence of BVDV infection. Restricting the data set to only animals with a bTB visible lesion at slaughter (n = 2471), an ordinal regression model indicated that liver fluke-infected animals disclosed smaller lesions, relative to liver fluke-negative animals, and larger lesions were disclosed in animals with increased movement histories.
Collapse
Affiliation(s)
- A W Byrne
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - J Graham
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - C Brown
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - A Donaghy
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - M Guelbenzu-Gonzalo
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - J McNair
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - R A Skuce
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - A Allen
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| | - S W McDowell
- Veterinary Science Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK
| |
Collapse
|
39
|
Byrne AW, Graham J, Brown C, Donaghy A, Guelbenzu-Gonzalo M, McNair J, Skuce R, Allen A, McDowell S. Bovine tuberculosis visible lesions in cattle culled during herd breakdowns: the effects of individual characteristics, trade movement and co-infection. BMC Vet Res 2017; 13:400. [PMID: 29284483 PMCID: PMC5747088 DOI: 10.1186/s12917-017-1321-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a significant problem for livestock industries in many countries worldwide including Northern Ireland, where a test and slaughter regime has utilised the Single Intradermal Comparative Cervical Tuberculin (SICCT) test since 1959. We investigated the variation in post-mortem confirmation based on bTB visible lesion (VL) presence during herd breakdowns using two model suites. We investigated animal-level characteristics, while controlling for herd-level factors and clustering. We were interested in potential impacts of concurrent infection, and therefore we assessed whether animals with evidence of liver fluke infection (Fasciola hepatica; post-mortem inspection), M. avium reactors (animals with negative M. bovis-avium (b-a) tuberculin reactions) or Bovine Viral Diarrhoea Virus (BVDV; RT-PCR tested) were associated with bTB confirmation. RESULTS The dataset included 6242 animals removed during the 14 month study period (2013-2015). bTB-VL presence was significantly increased in animals with greater b-a reaction size at the disclosing SICCT test (e.g. b-a = 5-9 mm vs. b-a = 0 mm, adjusted Odds ratio (aOR): 14.57; p < 0.001). M. avium reactor animals (b-a < 0) were also significantly more likely to disclose VL than non-reactor animals (b-a = 0; aOR: 2.29; p = 0.023). Animals had a greater probability of exhibiting lesions with the increasing number of herds it had resided within (movement; log-herds: aOR: 2.27-2.42; p < 0.001), if it had an inconclusive penultimate test result (aOR: 2.84-3.89; p < 0.001), and with increasing time between tests (log-time; aOR: 1.23; p = 0.003). Animals were less likely to have VL if they were a dairy breed (aOR: 0.79; p = 0.015) or in an older age-class (e.g. age-quartile 2 vs. 4; aOR: 0.65; p < 0.001). Liver fluke or BVDV variables were not retained in either multivariable model as they were non-significantly associated with bTB-VL status (p > 0.1). CONCLUSIONS Our results suggest that neither co-infection of liver fluke nor BVDV had a significant effect on the presence of VLs in this high-risk cohort. M. avium tuberculin reactors had a significantly increased risk of disclosing with a bTB lesion, which could be related to the impact of co-infection with M. avium subsp. paratuberculosis (MAP) affecting the performance of the SICCT however further research in this area is required. Movements, test history, breed and age were important factors influencing confirmation in high-risk animals.
Collapse
Affiliation(s)
- Andrew W Byrne
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK. .,School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Jordon Graham
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Craig Brown
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Aoibheann Donaghy
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Maria Guelbenzu-Gonzalo
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Jim McNair
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Robin Skuce
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Adrian Allen
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| | - Stanley McDowell
- Agri-food and Biosciences Institute, Veterinary Science Division, Stormont, Belfast, Northern Ireland, BT43SD, UK
| |
Collapse
|
40
|
Dairy Heifers Naturally Exposed to Fasciola hepatica Develop a Type 2 Immune Response and Concomitant Suppression of Leukocyte Proliferation. Infect Immun 2017; 86:IAI.00607-17. [PMID: 28993458 PMCID: PMC5736823 DOI: 10.1128/iai.00607-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Fasciola hepatica is a parasitic trematode of global importance in livestock. Control strategies reliant on anthelmintics are unsustainable due to the emergence of drug resistance. Vaccines are under development, but efficacies are variable. Evidence from experimental infection suggests that vaccine efficacy may be affected by parasite-induced immunomodulation. Little is known about the immune response to F. hepatica following natural exposure. Hence, we analyzed the immune responses over time in calves naturally exposed to F. hepatica infection. Cohorts of replacement dairy heifer calves (n = 42) with no prior exposure to F. hepatica, on three commercial dairy farms, were sampled over the course of a grazing season. Exposure was determined through an F. hepatica-specific serum antibody enzyme-linked immunosorbent assay (ELISA) and fluke egg counts. Concurrent changes in peripheral blood leukocyte subpopulations, lymphocyte proliferation, and cytokine responses were measured. Relationships between fluke infection and immune responses were analyzed by using multivariable linear mixed-effect models. All calves from one farm showed evidence of exposure, while cohorts from the remaining two farms remained negative over the grazing season. A type 2 immune response was associated with exposure, with increased interleukin-4 (IL-4) production, IL-5 transcription, and eosinophilia. Suppression of parasite-specific peripheral blood mononuclear cell (PBMC) proliferation was evident, while decreased mitogen-stimulated gamma interferon (IFN-γ) production suggested immunomodulation, which was not restricted to parasite-specific responses. Our findings show that the global immune response is modulated toward a nonproliferative type 2 state following natural challenge with F. hepatica. This has implications in terms of the timing of the administration of vaccination programs and for host susceptibility to coinfecting pathogens.
Collapse
|
41
|
Shi W, Wei ZY, Elsheikha HM, Zhang FK, Sheng ZA, Lu KJ, Wang DY, Huang WY, Zhu XQ. Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes. Parasit Vectors 2017; 10:602. [PMID: 29216911 PMCID: PMC5721666 DOI: 10.1186/s13071-017-2538-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection. METHODS Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology. RESULTS Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3-10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host's Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis. CONCLUSIONS Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhi-Yong Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ke-Jing Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ying Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
42
|
Co-infection with Fasciola hepatica may increase the risk of Escherichia coli O157 shedding in British cattle destined for the food chain. Prev Vet Med 2017; 150:70-76. [PMID: 29406086 PMCID: PMC5812777 DOI: 10.1016/j.prevetmed.2017.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/04/2022]
Abstract
Escherichia coli O157 is a zoonotic bacterium that can cause haemorrhagic diarrhoea in humans and is of worldwide public health concern. Cattle are considered to be the main reservoir for human infection. Fasciola hepatica is a globally important parasite of ruminant livestock that is known to modulate its host’s immune response and affect susceptibility to bacterial pathogens such as Salmonella Dublin. Shedding of E. coli O157 is triggered by unknown events, but the immune system is thought to play a part. We investigated the hypothesis that shedding of E. coli O157 is associated with F. hepatica infection in cattle. Three hundred and thirty four cattle destined for the food chain, from 14 British farms, were tested between January and October 2015. E. coli O157 was detected by immunomagnetic separation and bacterial load enumerated. F. hepatica infection status was assessed by copro-antigen ELISA. A significant association (p = 0.01) was found between the log percent positivity (PP) of the F. hepatica copro-antigen ELISA and E. coli O157 shedding when the fixed effects of day of sampling and the age of the youngest animal in the group, plus the random effect of farm were adjusted for. The results should be interpreted cautiously due to the lower than predicted level of fluke infection in the animals sampled. Nevertheless these results indicate that control of F. hepatica infection may have an impact on the shedding of E. coli O157 in cattle destined for the human food chain.
Collapse
|
43
|
Ezenwa VO. Helminth-microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol 2017; 38:527-34. [PMID: 27426017 DOI: 10.1111/pim.12348] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Co-infection is now recognized as the natural state of affairs in most hosts and co-infecting parasites interact in a variety of ways that can impact host health and parasite fitness. Interactions between helminths and microparasites have captured particular attention in this regard owing to the ubiquity of helminth infections in many host populations. The mechanistic underpinnings and health implications of co-infection are typically studied in laboratory and clinical settings, but recently studies of wild species have begun to tackle similar issues. Case studies from three wild mammal groups-ruminants, rodents and rabbits-serve to highlight how wild studies are contributing to the broader co-infection literature. This work suggests that wildlife research can generate new and unique insights about helminth-microparasite co-infection that are fostered in part by studying parasite interactions in a natural context. For this reason, increased integration of wild studies with research in human, laboratory and veterinary animal populations can help pave the way towards a more complete understanding of the issue of co-infection.
Collapse
Affiliation(s)
- V O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
44
|
Ramos-Benítez MJ, Ruiz-Jiménez C, Aguayo V, Espino AM. Recombinant Fasciola hepatica fatty acid binding protein suppresses toll-like receptor stimulation in response to multiple bacterial ligands. Sci Rep 2017; 7:5455. [PMID: 28710478 PMCID: PMC5511235 DOI: 10.1038/s41598-017-05735-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
Recently, we reported that a native Fasciola hepatica fatty acid binding protein (FABP) termed Fh12 is a powerful anti-inflammatory protein capable of suppressing the LPS-induced expression of inflammatory markers in vivo and in vitro. Because the purification of a protein in native form is, in many situations not cost-beneficial and unsuitable for industrial grade scale-up, this study accomplished the task of optimizing the expression and purification of a recombinant form of FABP (Fh15). Additionally, we ascertained whether this molecule could exhibit a similar suppressive effect on TLR-stimulation and inflammatory cytokine expression from macrophages than those previously demonstrated for the native molecule. Results demonstrated that Fh15 suppresses the expression of IL-1β and TNFα in murine macrophages and THP1 Blue CD14 cells. Additionally, Fh15 suppress the LPS-induced TLR4 stimulation. This effect was not impaired by a thermal denaturing process or blocked by the presence of anti-Fh12 antibodies. Fh15 also suppressed the stimulation of various TLRs in response to whole bacteria extracts, suggesting that Fh15 could have a broad spectrum of action. These results support the possibility of using Fh15 as an excellent alternative for an anti-inflammatory drug in preclinical studies in the near future.
Collapse
Affiliation(s)
- Marcos J Ramos-Benítez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, PO BOX 365067, San Juan, Puerto Rico, 00936, USA
| | - Caleb Ruiz-Jiménez
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, PO BOX 365067, San Juan, Puerto Rico, 00936, USA
| | - Vasti Aguayo
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, PO BOX 365067, San Juan, Puerto Rico, 00936, USA
| | - Ana M Espino
- University of Puerto Rico, Medical Sciences Campus, Department of Microbiology, PO BOX 365067, San Juan, Puerto Rico, 00936, USA.
| |
Collapse
|
45
|
Ruiz-Campillo MT, Molina Hernandez V, Escamilla A, Stevenson M, Perez J, Martinez-Moreno A, Donnelly S, Dalton JP, Cwiklinski K. Immune signatures of pathogenesis in the peritoneal compartment during early infection of sheep with Fasciola hepatica. Sci Rep 2017; 7:2782. [PMID: 28584245 PMCID: PMC5459796 DOI: 10.1038/s41598-017-03094-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
Immune signatures of sheep acutely-infected with Fasciola hepatica, an important pathogen of livestock and humans were analysed within the peritoneal compartment to investigate early infection. Within the peritoneum, F. hepatica antibodies coincided with an intense innate and adaptive cellular immune response, with infiltrating leukocytes and a marked eosinophilia (49%). However, while cytokine qPCR analysis revealed IL-10, IL-12, IL-13, IL-23 and TGFβ were elevated, these were not statistically different at 18 days post-infection compared to uninfected animals indicating that the immune response is muted and not yet skewed to a Th2 type response that is associated with chronic disease. Proteomic analysis of the peritoneal fluid identified infection-related proteins, including several structural proteins derived from the liver extracellular matrix, connective tissue and epithelium, and proteins related to the immune system. Periostin and vascular cell adhesion protein 1 (VCAM-1), molecules that mediate leukocyte infiltration and are associated with inflammatory disorders involving marked eosinophilia (e.g. asthma), were particularly elevated in the peritoneum. Immuno-histochemical studies indicated that the source of periostin and VCAM-1 was the inflamed sheep liver tissue. This study has revealed previously unknown aspects of the immunology and pathogenesis associated with acute fascioliasis in the peritoneum and liver.
Collapse
Affiliation(s)
| | - Veronica Molina Hernandez
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | | | - Michael Stevenson
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Jose Perez
- School of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | | | - Sheila Donnelly
- The i3 Institute & School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
46
|
Fasciola hepatica reinfection potentiates a mixed Th1/Th2/Th17/Treg response and correlates with the clinical phenotypes of anemia. PLoS One 2017; 12:e0173456. [PMID: 28362822 PMCID: PMC5376296 DOI: 10.1371/journal.pone.0173456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Background Fascioliasis is a severe zoonotic disease of worldwide extension caused by liver flukes. In human fascioliasis hyperendemic areas, reinfection and chronicity are the norm and anemia is the main sign. Herein, the profile of the Th1/Th2/Th17/Treg expression levels is analyzed after reinfection, correlating them with their corresponding hematological biomarkers of morbidity. Methodology/Principal findings The experimental design reproduces the usual reinfection/chronicity conditions in human fascioliasis endemic areas and included Fasciola hepatica primo-infected Wistar rats (PI) and rats reinfected at 8 weeks (R8), and at 12 weeks (R12), and negative control rats. In a cross-sectional study, the expression of the genes associated with Th1 (Ifng, Il12a, Il12b, Nos2), Th2 (Il4, Arg1), Treg (Foxp3, Il10, Tgfb, Ebi3), and Th17 (Il17) in the spleen and thymus was analyzed. After 20 weeks of primary infection, PI did not present significant changes in the expression of those genes when compared to non-infected rats (NI), but an increase of Il4, Arg1 and Ifng mRNA in the spleen was observed in R12, suggesting the existence of an active mixed Th1/Th2 systemic immune response in reinfection. Foxp3, Il10, Tgfb and Ebi3 levels increased in the spleen in R12 when compared to NI and PI, indicating that the Treg gene expression levels are potentiated in chronic phase reinfection. Il17 gene expression levels in R12 in the spleen increased when compared to NI, PI and R8. Gene expression levels of Il10 in the thymus increased when compared to NI and PI in R12. Ifng expression levels in the thymus increased in all reinfected rats, but not in PI. The clinical phenotype was determined by the fluke burden, the rat body weight and the hemogram. Multivariate mathematical models were built to describe the Th1/Th2/Th17/Treg expression levels and the clinical phenotype. In reinfection, two phenotypic patterns were detected: i) one which includes only increased splenic Ifng expression levels but no Treg expression, correlating with severe anemia; ii) another which includes increased splenic Ifng and Treg expression levels, correlating with a less severe anemia. Conclusions/Significance In animals with established F. hepatica infection a huge increase in the immune response occurs, being a mixed Th2/Treg associated gene expression together with an expression of Ifng. Interestingly, a Th17 associated gene expression is also observed. Reinfection in the chronic phase is able to activate a mixed immune response (Th1/Th2/Th17/Treg) against F. hepatica but T and B proliferation to mitogens is strongly suppressed in all infected rats vs control in the advanced chronic phase independently of reinfection The systemic immune response is different in each group, suggesting that suppression is mediated by different mechanisms in each case. Immune suppression could be due to the parasite in PI and R8 rats and the induction of suppressive cells such as Treg in R12. This is the first study to provide fundamental insight into the immune profile in fascioliasis reinfection and its relation with the clinical phenotypes of anemia.
Collapse
|
47
|
Figueroa-Santiago O, Espino AM. Fasciola hepatica ESPs Could Indistinctly Activate or Block Multiple Toll-Like Receptors in a Human Monocyte Cell Line. ANNALS OF CLINICAL PATHOLOGY 2017; 5:1112. [PMID: 29152559 PMCID: PMC5690573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fasciola hepatica is a parasitic helminth that induces Th2/Treg responses in its mammalian host. Some reports have suggested that ESPs achieve these polarized immune responses by delaying the activation of dendritic cells and macrophages during the early stages of innate immunity, a process that is mediated by TLR4. The present study aimed to investigate whether TLRs other than TLR4 could also be targeted by F. hepatica ESPs. To achieve this aim a screening system was optimized using THP1-Blue CD14 cells. ESPs were first separated based on their molecular weight and according their net charge by ion exchange chromatography (IEC). Results demonstrated that F. hepatica ESPs mainly cathepsin, serpin and endopin are capable of activating TLR2, TLR4, TLR8 and likely also TLR5 and TLR6. In contrast, fatty acid binding protein strongly suppressed the stimulation induced by various TLR-ligands. Further studies are needed to understand how these apparent contradictory effects of molecules of the same protein mix complement each other in the context of an active infection resulting in the polarized Th2-immune response that characterize F. hepatica infections.
Collapse
Affiliation(s)
| | - Ana M Espino
- Department of Microbiology, University of Puerto Rico-Medical Sciences Campus, USA
| |
Collapse
|
48
|
Garza-Cuartero L, O'Sullivan J, Blanco A, McNair J, Welsh M, Flynn RJ, Williams D, Diggle P, Cassidy J, Mulcahy G. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response. Parasite Immunol 2017; 38:387-402. [PMID: 27108767 PMCID: PMC6680181 DOI: 10.1111/pim.12326] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long‐standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co‐infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis‐specific Th1 immune response. We hypothesized that these changes in co‐infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co‐infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyte‐derived macrophages (MDM) from F. hepatica‐infected cattle which is associated with suppression of pro‐inflammatory cytokines and a switch to alternative activation of macrophages. However, the cell surface expression of TLR2 and CD14 in MDM from F. hepatica‐infected cattle is increased. These findings reflecting the bystander effect of helminth‐induced downregulation of pro‐inflammatory responses provide insights to understand host‐pathogen interactions in co‐infection.
Collapse
Affiliation(s)
- L Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - J O'Sullivan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - A Blanco
- Conway Institute, University College Dublin, Dublin, Ireland
| | - J McNair
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - M Welsh
- CSO, SISAF, The Innovation Centre, Belfast, UK
| | - R J Flynn
- School of Veterinary Science, University of Nottingham, Nottingham, UK
| | - D Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - P Diggle
- Division of Medicine, Lancaster University, Lancaster, UK
| | - J Cassidy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - G Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
The immunoregulatory effects of co-infection with Fasciola hepatica: From bovine tuberculosis to Johne's disease. Vet J 2017; 222:9-16. [PMID: 28410676 DOI: 10.1016/j.tvjl.2017.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/16/2023]
Abstract
Fasciola hepatica (liver fluke) is a parasite prevalent in much of the world that causes the economically-important disease of fasciolosis in livestock. The threat that this disease poses extends beyond its direct effects due to the parasite's immunomodulatory effects. Research at this laboratory is focusing on whether this immunoregulation can, in animals infected with liver fluke, exert a bystander effect on concurrent infections in the host. It has already been established that F. hepatica infection reduces cell mediated immune responses to Mycobacterium bovis in cattle, and that the interaction between the two pathogens can be detected on an epidemiological scale. This review explores the immunological consequences of co-infection between F. hepatica and other bacterial infections. Arguments are presented suggesting that immunity of cattle to Mycobacterium avium subsp. paratuberculosis is also likely to be affected.
Collapse
|
50
|
Zhang FK, Zhang XX, Elsheikha HM, He JJ, Sheng ZA, Zheng WB, Ma JG, Huang WY, Guo AJ, Zhu XQ. Transcriptomic responses of water buffalo liver to infection with the digenetic fluke Fasciola gigantica. Parasit Vectors 2017; 10:56. [PMID: 28143561 PMCID: PMC5286860 DOI: 10.1186/s13071-017-1990-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Background Fasciola gigantica, the tropical liver fluke, infects buffaloes in Asian and African countries and causes significant economic losses and poses public health threat in these countries. However, little is known of the transcriptional response of buffaloes to infection with F. gigantica. The objective of the present study was to perform the first transcriptomic analysis of buffalo liver infected by F. gigantica. Understanding the mechanisms that underpin F. gigantica infection in buffaloes will contribute to our ability to control this parasite. Methods We challenged buffaloes with 500 viable F. gigantica metacercariae and collected liver samples through a time course at 3, 42 and 70 days post-infection (dpi). Then, we performed gene expression analysis on liver samples using RNA sequencing (RNA-Seq) Illumina technology and confirmed the RNA-Seq data by quantitative RT-PCR analysis. Results Totals of 496, 880 and 441 differentially expressed transcripts were identified in the infected livers at 3, 42 and 70 dpi, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that transcriptional changes in the liver of infected buffaloes evolve over the course of infection. The predominant response of buffaloes to infection was mediated by certain pathways, such as MHC antigen processing and presentation, Toll-like receptor 4 (TLR4), transforming growth factor beta (TGF-β), and the cytochrome P450. Hepatic drug metabolizing enzymes and bile secretion were also affected. Conclusions Fasciola gigantica can induce statistically significant and biologically plausible differences in the hepatic gene expression of infected buffaloes. These findings provide new insights into the response of buffaloes to F. gigantica over the course of infection, which may be useful in determining pathways that can modulate host-parasite interaction and thus potentially important for clearance of the parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jian-Gang Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Ai-Jiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|