1
|
Bernabeu M, Prieto A, Salguero D, Miró L, Cabrera-Rubio R, Collado MC, Hüttener M, Pérez-Bosque A, Juárez A. Infection of mice by the enteroaggregative E. coli strain 042 and two mutant derivatives overexpressing virulence factors: impact on disease markers, gut microbiota and concentration of SCFAs in feces. Sci Rep 2024; 14:16945. [PMID: 39043759 PMCID: PMC11266498 DOI: 10.1038/s41598-024-67731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Several pathogenic Escherichia coli strains cause diarrhea. Enteroaggregative E. coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC cells form a "stacked-brick" arrangement over the intestinal epithelial cells. EAEC isolates express, among other virulence determinants, the AggR transcriptional activator and the aggregative adherence fimbriae (AAF). Overexpression of the aggR gene results in increased expression of virulence factors such as the aff genes, as well as several genes involved in specific metabolic pathways such as fatty acid degradation (fad) and arginine degradation (ast). To support the hypothesis that induction of the expression of some of these pathways may play a role in EAEC virulence, in this study we used a murine infection model to evaluate the impact of the expression of these pathways on infection parameters. Mice infected with a mutant derivative of the EAEC strain 042, characterized by overexpression of the aggR gene, showed increased disease symptoms compared to those exhibited by mice infected with the wild type (wt) strain 042. Several of these symptoms were not increased when the infecting mutant, which overexpressed aggR, lacked the fad and ast pathways. Therefore, our results support the hypothesis that different metabolic pathways contribute to EAEC virulence.
Collapse
Affiliation(s)
- M Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - A Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - D Salguero
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - L Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - R Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - A Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain.
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
2
|
Differential Expression of Two Copies of the irmA Gene in the Enteroaggregative E. coli Strain 042. Microbiol Spectr 2022; 10:e0045422. [PMID: 35766495 PMCID: PMC9431211 DOI: 10.1128/spectrum.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene duplications significantly impact the gene repertoires of both eukaryotic and prokaryotic microorganisms. The genomes of pathogenic Escherichia coli strains share a group of duplicated genes whose function is mostly unknown. The irmA gene is one of the duplicates encoded in several pathogenic E. coli strains. The function of its gene product was investigated in the uropathogenic E. coli strain CFT073, which contains a single functional copy. The IrmA protein structure mimics that of human interleukin receptors and likely plays a role during infection. The enteroaggregative E. coli strain 042 contains two functional copies of the irmA gene. In the present work, we investigated their biological roles. The irmA_4509 allele is expressed under several growth conditions. Its expression is modulated by the global regulators OxyR and Hha, with optimal expression at 37°C and under nutritional stress conditions. Expression of the irmA_2244 allele can only be detected when the irmA_4509 allele is knocked out. Differences in the promoter regions of both alleles account for their differential expression. Our results show that under several environmental conditions, the expression of the IrmA protein in strain 042 is dictated by the irmA_4509 allele. The irmA_2244 allele appears to play a backup role to ensure IrmA expression when the irmA_4509 allele loses its function. IMPORTANCE Gene duplications occur in prokaryotic genomes at a detectable frequency. In many instances, the biological function of the duplicates is unknown, and hence, the significance of the presence of multiple copies of these genes remains unclear. In pathogenic E. coli isolates, the irmA gene can be present either as a single copy or in two or more copies. We focused our work on studying why a different pathogenic E. coli strain encodes two functional copies of the irmA gene. We show that under several environmental conditions, one of the alleles dictates IrmA expression, and the second remains silent. The latter allele is only expressed when the former is silenced. The presence of more than one functional copy of the irmA gene in some pathogenic E. coli strains can result in sufficient expression of this virulence factor during the infection process.
Collapse
|
3
|
Ferreira AF, Braga RLL, Andrade MF, Rosa ACDP, Pereira-Manfro WF. SYNERGISTIC IMMUNOMODULATORY ACTIVITY OF PROBIOTICS BIFIDOBACTERIUM ANIMALIS AND LACTOBACILLUS CASEI IN ENTEROAGGREGATIVE ESCHERICHIA COLI (EAEC)-INFECTED CACO-2 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:433-438. [PMID: 34909846 DOI: 10.1590/s0004-2803.202100000-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an E. coli pathotype that presents aggregative adhesion patterns on in vitro cultivated cells, mainly related to persistent diarrhea cases in children. EAEC virulence factors are important for host colonization and pathogeni-city. Intestinal epithelial cells (IECs) recognize pathogen-associated molecular patterns (PAMPs) and initiate an immune response. Several studies using in vivo and in vitro models emphasize the probiotic activity and immunomodulatory capacity of Lactobacillus and Bifidobacterium species. OBJECTIVE To evaluate the modulation of cytokine production by probiotics Bifidobacterium animalis and Lactobacillus casei in human intestinal Caco-2 cells exposed to different strains of EAEC. METHODS Caco-2 cells were incubated with EAEC strains in the presence or absence of probiotics. The production of cytokines IL-8, TNF-α, IL-1β and IL-10 was evaluated in the supernatants by a sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Cytokine production did not change when uninfected and EAEC-infected Caco-2 cells were exposed to probiotics separately. All EAEC induced a significant increase in IL-8 production by Caco-2 cells, but the probiotics, even together, could not reduce its production. On the other hand, the synergic activity of probiotic strains significantly increased TNF-α production but decreased the basal production of IL-1ß. Also, probiotics induced a significant increase in the production of the anti-inflammatory cytokine IL-10 during EAEC infection. CONCLUSION Our results reinforce the synergistic immunomodulatory activity of probiotics during EAEC infection.
Collapse
Affiliation(s)
- Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Maysa Ferreira Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Prieto A, Bernabeu M, Sánchez-Herrero JF, Pérez-Bosque A, Miró L, Bäuerl C, Collado C, Hüttener M, Juárez A. Modulation of AggR levels reveals features of virulence regulation in enteroaggregative E. coli. Commun Biol 2021; 4:1295. [PMID: 34785760 PMCID: PMC8595720 DOI: 10.1038/s42003-021-02820-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC strains harbor a virulence plasmid (pAA2) that encodes, among other virulence determinants, the aggR gene. The expression of the AggR protein leads to the expression of several virulence determinants in both plasmids and chromosomes. In this work, we describe a novel mechanism that influences AggR expression. Because of the absence of a Rho-independent terminator in the 3'UTR, aggR transcripts extend far beyond the aggR ORF. These transcripts are prone to PNPase-mediated degradation. Structural alterations in the 3'UTR result in increased aggR transcript stability, leading to increased AggR levels. We therefore investigated the effect of increased AggR levels on EAEC virulence. Upon finding the previously described AggR-dependent virulence factors, we detected novel AggR-regulated genes that may play relevant roles in EAEC virulence. Mutants exhibiting high AggR levels because of structural alterations in the aggR 3'UTR show increased mobility and increased pAA2 conjugation frequency. Furthermore, among the genes exhibiting increased fold change values, we could identify those of metabolic pathways that promote increased degradation of arginine, fatty acids and gamma-aminobutyric acid (GABA), respectively. In this paper, we discuss how the AggR-dependent increase in specific metabolic pathways activity may contribute to EAEC virulence.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
5
|
Olvera A, Carter H, Rajan A, Carlin LG, Yu X, Zeng XL, Shelburne S, Bhatti M, Blutt SE, Shroyer NF, Jenq R, Estes MK, Maresso A, Okhuysen PC. Enteropathogenic Escherichia coli Infection in Cancer and Immunosuppressed Patients. Clin Infect Dis 2021; 72:e620-e629. [PMID: 32930708 DOI: 10.1093/cid/ciaa1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The role of enteropathogenic Escherichia coli (EPEC) as a cause of diarrhea in cancer and immunocompromised patients is controversial. Quantitation of fecal bacterial loads has been proposed as a method to differentiate colonized from truly infected patients. METHODS We studied 77 adult cancer and immunosuppressed patients with diarrhea and EPEC identified in stools by FilmArray, 25 patients with pathogen-negative diarrhea, and 21 healthy adults without diarrhea. Stools were studied by quantitative polymerase chain reaction (qRT-PCR) for EPEC genes eaeA and lifA/efa-1 and strains characterized for virulence factors and adherence to human intestinal enteroids (HIEs). RESULTS Patients with EPEC were more likely to have community-acquired diarrhea (odds ratio, 3.82 [95% confidence interval, 1.5-10.0]; P = .008) compared with pathogen-negative cases. Although EPEC was identified in 3 of 21 (14%) healthy subjects by qPCR, the bacterial burden was low compared to patients with diarrhea (≤55 vs median, 6 × 104 bacteria/mg stool; P < .001). Among EPEC patients, the bacterial burden was higher in those who were immunosuppressed (median, 6.7 × 103 vs 55 bacteria/mg; P < .001) and those with fecal lifA/ifa-1 (median, 5 × 104 vs 120 bacteria/mg; P = .015). Response to antimicrobial therapy was seen in 44 of 48 (92%) patients with EPEC as the sole pathogen. Antimicrobial resistance was common and strains exhibited distinct patterns of adherence with variable cytotoxicity when studied in HIEs. Cancer care was delayed in 13% of patients. CONCLUSIONS Immunosuppressed cancer patients with EPEC-associated diarrhea carry high burden of EPEC with strains that are resistant to antibiotics, exhibit novel patterns of adherence when studied in HIEs, and interfere with cancer care.
Collapse
Affiliation(s)
- Adilene Olvera
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hannah Carter
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Lily G Carlin
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Samuel Shelburne
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Micah Bhatti
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E Blutt
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Noah F Shroyer
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
7
|
Garrine M, Matambisso G, Nobela N, Vubil D, Massora S, Acácio S, Nhampossa T, Alonso P, Mandomando I. Low frequency of enterohemorrhagic, enteroinvasive and diffusely adherent Escherichia coli in children under 5 years in rural Mozambique: a case-control study. BMC Infect Dis 2020; 20:659. [PMID: 32894092 PMCID: PMC7475947 DOI: 10.1186/s12879-020-05380-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) are among the leading pathogens associated with endemic diarrhea in low income countries. Yet, few epidemiological studies have focused the contribution of enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and diffusely adherent E. coli (DAEC). Methods We assessed the contribution of EHEC, EIEC and DAEC isolated from stool samples from a case-control study conducted in children aged < 5 years in Southern Mozambique between December 2007 and November 2012. The isolates were screened by conventional PCR targeting stx1 and stx2 (EHEC), ial and ipaH (EIEC), and daaE (DAEC) genes. Results We analyzed 297 samples from cases with less-severe diarrhea (LSD) matched to 297 controls, and 89 samples from cases with moderate-to-severe diarrhea (MSD) matched to 222 controls, collected between November 3, 2011 and November 2, 2012. DEC were more common among LSD cases (2.7%, [8/297] of cases vs. 1.3% [4/297] of controls; p = 0.243]) than in MSD cases (0%, [0/89] of cases vs. 0.4%, [1/222] of controls; p = 1.000). Detailed analysis revealed low frequency of EHEC, DAEC or EIEC and no association with diarrhea in all age strata. Although the low frequency, EIEC was predominant in LSD cases aged 24–59 months (4.1% for cases vs. 0% for controls), followed by DAEC in similar frequency for cases and controls in infants (1.9%) and lastly EHEC from one control. Analysis of a subset of samples from previous period (December 10, 2007 and October 31, 2011) showed high frequency of DEC in controls compared to MSD cases (16.2%, [25/154] vs. 11.9%, [14/118], p = 0.383, respectively). Among these, DAEC predominated, being detected in 7.7% of cases vs. 17.6% of controls aged 24–59 months, followed by EIEC in 7.7% of cases vs. 5.9% of controls for the same age category, although no association was observed. EHEC was detected in one sample from cases and two from controls. Conclusions Our data suggests that although EHEC, DAEC and EIEC are less frequent in endemic diarrhea in rural Mozambique, attention should be given to their transmission dynamics (e.g. the role on sporadic or epidemic diarrhea) considering that the role of asymptomatic individuals as source of dissemination remains unknown.
Collapse
Affiliation(s)
- Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sérgio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Pedro Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique. .,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique.
| |
Collapse
|
8
|
Bernabeu M, Sánchez-Herrero JF, Huedo P, Prieto A, Hüttener M, Rozas J, Juárez A. Gene duplications in the E. coli genome: common themes among pathotypes. BMC Genomics 2019; 20:313. [PMID: 31014240 PMCID: PMC6480617 DOI: 10.1186/s12864-019-5683-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/10/2019] [Indexed: 11/12/2022] Open
Abstract
Background Gene duplication underlies a significant proportion of gene functional diversity and genome complexity in both eukaryotes and prokaryotes. Although several reports in the literature described the duplication of specific genes in E. coli, a detailed analysis of the extent of gene duplications in this microorganism is needed. Results The genomes of the E. coli enteroaggregative strain 042 and other pathogenic strains contain duplications of the gene that codes for the global regulator Hha. To determine whether the presence of additional copies of the hha gene correlates with the presence of other genes, we performed a comparative genomic analysis between E. coli strains with and without hha duplications. The results showed that strains harboring additional copies of the hha gene also encode the yeeR irmA (aec69) gene cluster, which, in turn, is also duplicated in strain 042 and several other strains. The identification of these duplications prompted us to obtain a global map of gene duplications, first in strain 042 and later in other E. coli genomes. Duplications in the genomes of the enteroaggregative strain 042, the uropathogenic strain CFT073 and the enterohemorrhagic strain O145:H28 have been identified by a BLASTp protein similarity search. This algorithm was also used to evaluate the distribution of the identified duplicates among the genomes of a set of 28 representative E. coli strains. Despite the high genomic diversity of E. coli strains, we identified several duplicates in the genomes of almost all studied pathogenic strains. Most duplicated genes have no known function. Transcriptomic analysis also showed that most of these duplications are regulated by the H-NS/Hha proteins. Conclusions Several duplicated genes are widely distributed among pathogenic E. coli strains. In addition, some duplicated genes are present only in specific pathotypes, and others are strain specific. This gene duplication analysis shows novel relationships between E. coli pathotypes and suggests that newly identified genes that are duplicated in a high percentage of pathogenic E. coli isolates may play a role in virulence. Our study also shows a relationship between the duplication of genes encoding regulators and genes encoding their targets. Electronic supplementary material The online version of this article (10.1186/s12864-019-5683-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - José Francisco Sánchez-Herrero
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona, Spain
| | - Pol Huedo
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Julio Rozas
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain. .,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
9
|
Braga RLL, Pereira ACM, Ferreira AF, Rosa ACDP, Pereira-Manfro WF. INTRACELLULAR PERSISTENCE OF ENTEROAGGREGATIVE ESCHERICHIA COLI INDUCES A PROINFLAMMATORY CYTOKINES SECRETION IN INTESTINAL EPITHELIAL T84 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2018; 55:133-137. [PMID: 30043861 DOI: 10.1590/s0004-2803.201800000-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The competence of enteroaggregative Escherichia coli (EAEC) to adhere to the intestinal epithelium of the host is a key role to the colonization and disease development. The virulence genes are crucial for EAEC pathogenicity during adherence, internalization and persistence in the host. The overwhelming majority of antigen encounters in a host occurs on the intestine surface, which is considered a part of innate mucosal immunity. Intestinal epithelial cells (IECs) can be activated by microorganisms and induce an immune response. OBJECTIVE The present study investigated the interaction of invasive EAEC strains with T84 intestinal epithelial cell line in respect to bacterial invasiveness, persistence and cytokines production. METHODS We evaluated intracellular persistence of invasive EAEC strains (H92/3, I49/3 and the prototype 042) and production of cytokines by sandwich ELISA in T84 cells upon 24 hours of infection. RESULTS The survival rates of the prototype 042 was 0.5x103 CFU/mL while survival of I49/3 and H92/3 reached 3.2x103 CFU/mL and 1.4x103 CFU/mL, respectively. Infection with all EAEC strains tested induced significant amounts of IL-8, IL-6 and TNF-α compared to uninfected T84 cells. CONCLUSION These data showed that infection by invasive EAEC induce a proinflammatory immune response in intestinal epithelial T84 cells.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia Machado Pereira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Hüttener M, Prieto A, Espelt J, Bernabeu M, Juárez A. Stringent Response and AggR-Dependent Virulence Regulation in the Enteroaggregative Escherichia coli Strain 042. Front Microbiol 2018; 9:717. [PMID: 29692772 PMCID: PMC5902536 DOI: 10.3389/fmicb.2018.00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Virulence expression in the enteroaggregative Escherichia coli strain 042 requires the transcriptional activator AggR. We show in this report that, as reported for other virulence factors, the nucleotide second messenger (p)ppGpp is needed for a high expression level of AggR. As expected from these findings, expression of AggR-activated genes such as the AafA pilin subunit is downregulated in the absence of (p)ppGpp. Considering the fact that biofilm formation in strain 042 requires the AafA protein, biofilm development in strain 042 is impaired in derivatives that lack either the AggR protein, the virulence plasmid that encodes AggR (pAA2) or the ability to synthesize (p)ppGpp. These results show a direct correlation between (p)ppGpp, expression of AggR and biofilm development in strain 042.
Collapse
Affiliation(s)
- Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joan Espelt
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
11
|
Silva C, Zavala-Alvarado C, Puente JL. Self-Conjugation of the Enteropathogenic Escherichia coli Adherence Factor Plasmid of Four Typical EPEC Isolates. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6325736. [PMID: 29226143 PMCID: PMC5684527 DOI: 10.1155/2017/6325736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/01/2017] [Indexed: 11/17/2022]
Abstract
The enteropathogenic Escherichia coli (EPEC) adherence factor plasmid (pEAF) encodes the proteins involved in the biogenesis of the bundle-forming pilus (BFP), a key virulence factor that mediates microcolony formation and the localized adherence phenotype on the surface of the host enterocytes. The presence or absence of this plasmid defines typical EPEC (tEPEC) and atypical EPEC (aEPEC), respectively. Although lateral transfer of pEAF has been evidenced by phylogenetic studies, conjugal transfer ability has been experimentally established only for two pEAF plasmids from strains isolated in the late 60s. In the present work, we tested the self-conjugation ability of four pEAF plasmids from tEPEC strains isolated between 2007 and 2008 from children in Peru and the potential of aEPEC to receive them. A kanamycin resistance cassette was inserted into donor pEAF plasmids in order to provide a selectable marker in the conjugation experiments. Two aEPEC isolated from the same geographic region were used as recipient strains along with the laboratory E. coli DH5α strain. Here we show that the four pEAF plasmids tested are self-conjugative, with transfer frequencies in the range of 10-6 to 10-9. Moreover, the generation of aEPEC strains harboring pEAF plasmids provides valuable specimens to further perform functional studies.
Collapse
Affiliation(s)
- Claudia Silva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - Crispín Zavala-Alvarado
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| |
Collapse
|
12
|
Braga RLL, Pereira ACM, Santos PAD, Freitas-Almeida AC, Rosa ACDP. EX VIVO MODEL OF RABBIT INTESTINAL EPITHELIUM APPLIED TO THE STUDY OF COLONIZATION BY ENTEROAGGREGATIVE ESCHERICHIA COLI. ARQUIVOS DE GASTROENTEROLOGIA 2017; 54:130-134. [PMID: 28327823 DOI: 10.1590/s0004-2803.201700000-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND The diarrheal syndrome is considered a serious public health problem all over the world and is considered a major cause of morbidity and mortality in developing countries. The high incidence of enteroaggregative Escherichia coli in diarrheal syndromes classified as an emerging pathogen of gastrointestinal infections. After decades of study, your pathogenesis remains uncertain and has been investigated mainly using in vitro models of adhesion in cellular lines. OBJECTIVE The present study investigated the interaction of enteroaggregative Escherichia coli strains isolated from childhood diarrhea with rabbit ileal and colonic mucosa ex vivo, using the in vitro organ culture model. METHODS The in vitro adhesion assays using cultured tissue were performed with the strains co-incubated with intestinal fragments of ileum and colon over a period of 6 hours. Each strain was tested with three intestinal fragments for each region. The fragments were analysed by scanning electron microscopy. RESULTS Through scanning electron microscopy we observed that all strains adhered to rabbit ileal and colonic mucosa, with the typical aggregative adherence pattern of "stacked bricks" on the epithelium. However, the highest degree of adherence was observed on colonic mucosa. Threadlike structures were found in greater numbers in the ileum compared to the colon. CONCLUSION These data showed that enteroaggregative Escherichia coli may have a high tropism for the human colon, which was ratified by the higher degree of adherence on the rabbit colonic mucosa. Finally, data indicated that in vitro organ culture of intestinal mucosa from rabbit may be used to elucidate the enteroaggregative Escherichia coli pathogenesis.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Ana Claudia Machado Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Paula Azevedo Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Angela Corrêa Freitas-Almeida
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| | - Ana Cláudia de Paula Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro
| |
Collapse
|
13
|
Robins-Browne RM, Holt KE, Ingle DJ, Hocking DM, Yang J, Tauschek M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front Cell Infect Microbiol 2016; 6:141. [PMID: 27917373 PMCID: PMC5114240 DOI: 10.3389/fcimb.2016.00141] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
The empirical and pragmatic nature of diagnostic microbiology has given rise to several different schemes to subtype E.coli, including biotyping, serotyping, and pathotyping. These schemes have proved invaluable in identifying and tracking outbreaks, and for prognostication in individual cases of infection, but they are imprecise and potentially misleading due to the malleability and continuous evolution of E. coli. Whole genome sequencing can be used to accurately determine E. coli subtypes that are based on allelic variation or differences in gene content, such as serotyping and pathotyping. Whole genome sequencing also provides information about single nucleotide polymorphisms in the core genome of E. coli, which form the basis of sequence typing, and is more reliable than other systems for tracking the evolution and spread of individual strains. A typing scheme for E. coli based on genome sequences that includes elements of both the core and accessory genomes, should reduce typing anomalies and promote understanding of how different varieties of E. coli spread and cause disease. Such a scheme could also define pathotypes more precisely than current methods.
Collapse
Affiliation(s)
- Roy M Robins-Browne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of MelbourneParkville, VIC, Australia; Murdoch Childrens Research Institute, Royal Children's HospitalParkville, VIC, Australia
| | - Kathryn E Holt
- Centre for Systems Genomics, The University of MelbourneParkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneParkville, VIC, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of MelbourneParkville, VIC, Australia; Centre for Systems Genomics, The University of MelbourneParkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneParkville, VIC, Australia
| | - Dianna M Hocking
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
14
|
Glaubman J, Hofmann J, Bonney ME, Park S, Thomas JM, Kokona B, Ramos Falcón LI, Chung YK, Fairman R, Okeke IN. Self-association motifs in the enteroaggregative Escherichia coli heat-resistant agglutinin 1. MICROBIOLOGY-SGM 2016; 162:1091-1102. [PMID: 27166217 DOI: 10.1099/mic.0.000303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heat-resistant agglutinin 1 (Hra1) is an integral outer membrane protein found in strains of Escherichia coli that are exceptional colonizers. Hra1 from enteroaggregative E. coli strain 042 is sufficient to confer adherence to human epithelial cells and to cause bacterial autoaggregation. Hra1 is closely related to the Tia invasin, which also confers adherence, but not autoaggregation. Here, we have demonstrated that Hra1 mediates autoaggregation by self-association and we hypothesize that at least some surface-exposed amino acid sequences that are present in Hra1, but absent in Tia, represent autoaggregation motifs. We inserted FLAG tags along the length of Hra1 and used immune-dot blots to verify that four in silico-predicted outer loops were indeed surface exposed. In Hra1 we swapped nine candidate motifs in three of these loops, ranging from one to ten amino acids in length, to the corresponding sequences in Tia. Three of the motifs were required for Hra1-mediated autoaggregation. The database was searched for other surface proteins containing these motifs; the GGXWRDDXK motif was also present in a surface-exposed region of Rck, a Salmonella enterica serotype Typhimurium complement resistance protein. Cloning and site-specific mutagenesis demonstrated that Rck can confer weak, GGXWRDDXK-dependent autoaggregation by self-association. Hra1 and Rck appear to form heterologous associations and GGXWRDDXK is required on both molecules for Hra1-Rck association. However, a GGYWRDDLKE peptide was not sufficient to interfere with Hra1-mediated autoaggregation. In the present study, three autoaggregation motifs in an integral outer membrane protein have been identified and it was demonstrated that at least one of them works in the context of a different cell surface.
Collapse
Affiliation(s)
| | | | - Megan E Bonney
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Sumin Park
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Yoonjie K Chung
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Iruka N Okeke
- Department of Biology, Haverford College, Haverford, PA, USA
| |
Collapse
|
15
|
Garcia BG, Ooka T, Gotoh Y, Vieira MAM, Yamamoto D, Ogura Y, Girão DM, Sampaio SCF, Melo AB, Irino K, Hayashi T, Gomes TAT. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells. Int J Med Microbiol 2016; 306:152-64. [PMID: 27083266 DOI: 10.1016/j.ijmm.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we have not identified any plasmid genes specifically present in all LA/AA-like+ strains and absent in the LA+ strains, these results suggest the presence of an unknown mechanism to promote the AA-like pattern production and biofilm formation by the LA/AA-like+ strains. Because their ability to produce A/E lesions and biofilm concomitantly could exacerbate the clinical condition of the patient and lead to persistent diarrhea, the mechanism underlying the enhanced biofilm formation by the LA/AA-like+ O119:H6 strains and their spread and involvement in severe diarrheal diseases should be more intensively investigated.
Collapse
Affiliation(s)
- Bruna G Garcia
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Yasuhiro Gotoh
- Department of Infectious Diseases, Division of Microbiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Dennys M Girão
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde-Ilha do Fundão, Rio de Janeiro, Brazil.
| | - Suely C F Sampaio
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Alexis Bonfim Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Kinue Irino
- Seção de Bacteriologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde, São Paulo, Brazil.
| | - Tetsuya Hayashi
- Department of Infectious Diseases, Division of Microbiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| |
Collapse
|
16
|
Genomic diversity of EPEC associated with clinical presentations of differing severity. Nat Microbiol 2016; 1:15014. [PMID: 27571975 DOI: 10.1038/nmicrobiol.2015.14] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 01/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are diarrhoeagenic E. coli, and are a significant cause of gastrointestinal illness among young children in developing countries. Typical EPEC are identified by the presence of the bundle-forming pilus encoded by a virulence plasmid, which has been linked to an increased severity of illness, while atypical EPEC lack this feature. Comparative genomics of 70 total EPEC from lethal (LI), non-lethal symptomatic (NSI) or asymptomatic (AI) cases of diarrhoeal illness in children enrolled in the Global Enteric Multicenter Study was used to investigate the genomic differences in EPEC isolates obtained from individuals with various clinical outcomes. A comparison of the genomes of isolates from different clinical outcomes identified genes that were significantly more prevalent in EPEC isolates of symptomatic and lethal outcomes than in EPEC isolates of asymptomatic outcomes. These EPEC isolates exhibited previously unappreciated phylogenomic diversity and combinations of virulence factors. These comparative results highlight the diversity of the pathogen, as well as the complexity of the EPEC virulence factor repertoire.
Collapse
|
17
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
18
|
Ibrahim IA, Al-Shwaikh RM, Ismaeil MI. Virulence and antimicrobial resistance of Escherichia coli isolated from Tigris River and children diarrhea. Infect Drug Resist 2014; 7:317-22. [PMID: 25473302 PMCID: PMC4251758 DOI: 10.2147/idr.s70684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective To investigate the virulence factors including hemolysin production, β-lactamase production, and biofilm formation. Antimicrobial resistance and plasmid content of 20 Escherichia coli isolates obtained from feces and Tigris water were screened. Methods Ten clinical and ten environmental E. coli isolates were collected from children diarrhea and swim areas on Tigris River in Baghdad city, Iraq, respectively. The bacterial isolates were identified by cultural characteristics, Gram stain, biochemical tests, and screened for the presence of E. coli O157:H7 serotype. Bacterial E. coli isolates were investigated for hemolysin production, biofilm formation, and β-lactamase production. Antibiotics susceptibility and plasmid content were determined. Results A total of ten clinical and ten water E. coli isolates were studied. Results showed that all E. coli isolates give negative results for latex O157:H7. Virulence factors analysis showed that 6/10 water isolates and 2/10 clinical isolates were hemolytic, 5/10 water isolates and 3/10 clinical isolates were biofilm formation, and 7/10 water isolates and 4/10 clinical isolates were β-lactamase producer. Antibiotics profile showed that all bacterial isolates were multidrug resistant. All E. coli isolates (100%) were resistant to carbenicillin, cefodizime, imipenem, and piperacillin. The plasmid DNA analysis showed that all E. coli isolates contained plasmid with molecular weight range between 4.507 kbp and 5.07 kbp, but clinical isolates contained multiple small and mega plasmids. Conclusion Our study revealed that E. coli isolates from river water exhibit a higher level of hemolysin production, β-lactamase production, and biofilm formation than feces isolates may be due to long adaptation. On the other hand, clinical E. coli isolates from feces showed higher level of antibiotic resistance and have multiple plasmids.
Collapse
Affiliation(s)
- Israa Aj Ibrahim
- Department of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Rana M Al-Shwaikh
- Department of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Mahmoud I Ismaeil
- Department of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
19
|
Meraz IM, Arikawa K, Ogasawara J, Hase A, Nishikawa Y. Epithelial Cells Secrete Interleukin-8 in Response to Adhesion and Invasion of Diffusely AdheringEscherichia coliLacking Afa/Dr Genes. Microbiol Immunol 2013; 50:159-69. [PMID: 16547413 DOI: 10.1111/j.1348-0421.2006.tb03781.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli that sparsely adhere to human epithelial cells are known as diffusely adherent E. coli (DAEC), and the role of the Afa/Dr family of adhesins is now understood. Strains that do not possess Afa/Dr, however, comprise another group of DAEC, of which the pathogenicity remains unknown. The ability to induce interleukin-8 (IL-8) secretion from intestinal epithelial cells might be a feature of enterovirulent bacteria. We previously found that some Afa/Dr DAEC strains induce IL-8 by stimulating epithelial cells with flagella. The present study examines whether non-Afa/Dr DAEC can induce IL-8 in epithelial cells (HEp-2, INT407, and T84). Among 21 strains, 11 (52%; 11/21) induced as much IL-8 as high inducer strains of Afa/Dr DAEC. Adhesion did not significantly differ between high and low inducers; therefore diffuse adhesion alone is probably insufficient to induce IL-8. It was shown that IL-8 induction and the number of intracellular bacteria directly correlated. Wortmannin, an inhibitor of the phosphatidylinositol-3-phosphate kinase, reduced both intracellular bacteria and IL-8 secretion. Motile strains were significantly more prevalent among high (10/11) than low (4/10) inducers. However, 4 low invasive strains hardly induced IL-8 despite their motility. In conclusion, some non-Afa/Dr DAEC invoke the induction of high levels of inflammatory cytokines. Unlike Afa/Dr DAEC, however, non-Afa/Dr strains may require invasion to cause strong induction. These non-Afa/Dr high inducers can be enteropathogenic for the cytokine-inducing properties.
Collapse
Affiliation(s)
- Ismail Mustafa Meraz
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
20
|
Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:12810-5. [PMID: 23858472 DOI: 10.1073/pnas.1306836110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The attaching and effacing Escherichia coli (AEEC) are characterized by the presence of a type III secretion system encoded by the locus of enterocyte effacement (LEE). Enterohemorrhagic E. coli (EHEC) are often identified as isolates that are LEE+ and carry the Shiga toxin (stx)-encoding phage, which are labeled Shiga toxin-producing E. coli; whereas enteropathogenic E. coli (EPEC) are LEE+ and often carry the EPEC adherence factor plasmid-encoded bundle-forming pilus (bfp) genes. All other LEE+/bfp-/stx- isolates have been historically designated atypical EPEC. These groups have been defined based on the presence or absence of a limited number of virulence factors, many of which are encoded on mobile elements. This study describes the comparative analysis of the genomes of 114 LEE+ E. coli isolates. Based on a whole-genome phylogeny and analysis of type III secretion system effectors, the AEEC are divided into five distinct genomic lineages. The LEE+/stx+/bfp- genomes were primarily divided into two genomic lineages, the O157/O55 EHEC1 and non-O157 EHEC2. The LEE+/bfp+/stx- AEEC isolates sequenced in this study separated into the EPEC1, EPEC2, and EPEC4 genomic lineages. A multiplex PCR assay for identification of each of these AEEC genomic lineages was developed. Of the 114 AEEC genomes analyzed, 31 LEE+ isolates were not in any of the known AEEC lineages and thus represent unclassified AEEC that in most cases are more similar to other E. coli pathovars than to text modification AEEC. Our findings demonstrate evolutionary relationships among diverse AEEC pathogens and the utility of phylogenomics for lineage-specific identification of AEEC clinical isolates.
Collapse
|
21
|
Adhesion of Diarrheagenic Escherichia coli and Inhibition by Glycocompounds Engaged in the Mucosal Innate Immunity. BIOLOGY 2013; 2:810-31. [PMID: 24832810 PMCID: PMC3960885 DOI: 10.3390/biology2020810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022]
Abstract
Escherichia coli colonizes the human intestine shortly after birth, with most strains engaging in a commensal relationship. However, some E. coli strains have evolved toward acquiring genetic traits associated with virulence. Currently, five categories of enteroadherent E. coli strains are well-recognized, and are classified in regard to expressed adhesins and the strategy used during the colonization. The high morbidity associated with diarrhea has motivated investigations focusing on E. coli adhesins, as well on factors that inhibit bacterial adherence. Breastfeeding has proved to be the most effective strategy for preventing diarrhea in children. Aside from the immunoglobulin content, glycocompounds and oligosaccharides in breast milk play a critical role in the innate immunity against diarrheagenic E. coli strains. This review summarizes the colonization factors and virulence strategies exploited by diarrheagenic E. coli strains, addressing the inhibitory effects that oligosaccharides and glycocompounds, such as lactoferrin and free secretory components, exert on the adherence and virulence of these strains. This review thus provides an overview of experimental data indicating that human milk glycocompounds are responsible for the universal protective effect of breastfeeding against diarrheagenic E. coli pathotypes.
Collapse
|
22
|
The heat-resistant agglutinin family includes a novel adhesin from enteroaggregative Escherichia coli strain 60A. J Bacteriol 2011; 193:4813-20. [PMID: 21764925 DOI: 10.1128/jb.05142-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat-resistant agglutinin 1 (Hra1) is an accessory colonization factor of enteroaggregative Escherichia coli (EAEC) strain 042. Tia, a close homolog of Hra1, is an invasin and adhesin that has been described in enterotoxigenic E. coli. We devised a PCR-restriction fragment length polymorphism screen for the associated genes and found that they occur among 55 (36.7%) of the enteroaggregative E. coli isolates screened, as well as lower proportions of enterotoxigenic, enteropathogenic, enterohemorrhagic, and commensal E. coli isolates. Overall, 25%, 8%, and 3% of 150 EAEC strains harbored hra1 alone, tia alone, or both genes, respectively. One EAEC isolate, 60A, produced an amplicon with a unique restriction profile, distinct from those of hra1 and tia. We cloned and sequenced the full-length agglutinin gene from strain 60A and have designated it hra2. The hra2 gene was not detected in any of 257 diarrheagenic E. coli isolates in our collection but is present in the genome of Salmonella enterica serovar Heidelberg strain SL476. The cloned hra2 gene from strain 60A, which encodes a predicted amino acid sequence that is 64% identical to that of Hra1 and 68% identical to that of Tia, was sufficient to confer adherence on E. coli K-12. We constructed an hra2 deletion mutant of EAEC strain 60A. The mutant was deficient in adherence but not autoaggregation or invasion, pointing to a functional distinction from the autoagglutinin Hra1 and the Tia invasin. Hra1, Tia, and the novel accessory adhesin Hra2 are members of a family of integral outer membrane proteins that confer different colonization-associated phenotypes.
Collapse
|
23
|
Humphries RM, Armstrong GD. Sticky situation: localized adherence of enteropathogenic Escherichia coli to the small intestine epithelium. Future Microbiol 2011; 5:1645-61. [PMID: 21133687 DOI: 10.2217/fmb.10.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily cause gastrointestinal illness in neonates. They accomplish this by a complex coordinated multistage strategy, whereby the organisms colonize the epithelial lining of the small intestine. This process can be divided into four stages: first, localized, nonintimate adherence; second, type III secretion-mediated injection of effector proteins, third effacement of microvilli and, finally, intimate adherence. In this article, we review the history and current state of knowledge, as well as present potential future directions for further investigating the fascinating processes by which EPEC and related organisms colonize the human intestine and cause disease.
Collapse
Affiliation(s)
- Romney M Humphries
- University of Calgary, Department of Microbiology and Infectious Diseases, Calgary, Alberta, Canada
| | | |
Collapse
|
24
|
Handford CL, Stang CT, Raivio TL, Dennis JJ. The contribution of small cryptic plasmids to the antibiotic resistance of enteropathogenic Escherichia coli E2348/69. Can J Microbiol 2010; 55:1229-39. [PMID: 19940931 DOI: 10.1139/w09-079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two uncharacterized small cryptic plasmids (SCPs) were isolated from enteropathogenic Escherichia coli strain E2348/69. Genomic DNA sequence analysis of both SCPs indicated that the smaller plasmid, p5217, encoded several mobilization genes, whereas the larger plasmid, p6148, encoded several putative antibiotic resistance determinants. Complementation analysis showed that p6148 encodes functional streptomycin resistance genes but, owing to the presence of several frameshift mutations, a nonfunctional sulfonamide resistance determinant. A plasmid similar to p6148 has previously been shown to confer a slight growth advantage on E. coli. However, we were unable to observe any significant growth advantage in different E. coli strains transformed with p6148. The p6148 DNA sequence is homologous in sequence and arrangement to DNA from other plasmid families, including large conjugative plasmids and SXT integrative and conjugative elements. This study suggests that gene clusters of the sul2-strAB antibiotic resistance genes are widespread and highly transferable, owing to their presence in a wide variety of mobile genetic elements.
Collapse
Affiliation(s)
- Cynthia L Handford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. coli virulence plasmids exist, including those essential for the virulence of enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli, and extraintestinal pathogenic E. coli. Despite their diversity, these plasmids belong to a few plasmid backbones that present themselves in a conserved and syntenic manner. Thanks to some recent research, including sequence analysis of several representative plasmid genomes and molecular pathogenesis studies, the evolution of these virulence plasmids and the implications of their acquisition by E. coli are now better understood and appreciated. Here, work involving each of the E. coli virulence plasmid types is summarized, with the available plasmid genomic sequences for several E. coli pathotypes being compared in an effort to understand the evolution of these plasmid types and define their core and accessory components.
Collapse
|
26
|
Nara JM, Cianciarullo AM, Culler HF, Bueris V, Horton DSPQ, Menezes MA, Franzolin MR, Elias WP, Piazza RMF. Differentiation of typical and atypical enteropathogenic Escherichia coli using colony immunoblot for detection of bundle-forming pilus expression. J Appl Microbiol 2009; 109:35-43. [PMID: 19968733 DOI: 10.1111/j.1365-2672.2009.04625.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS The aim of study was to develop a colony immunoblot assay to differentiate typical from atypical enteropathogenic Escherichia coli (EPEC) by detection of bundle-forming pilus (BFP) expression. METHODS AND RESULTS Anti-BFP antiserum was raised in rabbits and its reactivity was confirmed by immunoelectron microscopy and by immunoblotting recognizing bundlin, the major pilus repeating subunit. The bacterial isolates tested in the colony immunoblot assay were grown in different media. Proteins from bacterial isolates were transferred to nitrocellulose membrane after treatment with phosphate buffer containing Triton X-100, EDTA and sodium chloride salts. When 24 typical EPEC and 96 isolates including, 72 atypical EPEC, 13 Gram-negative type IV-expressing strains and 11 enterobacteriaceae were cultivated in Dulbecco's Modified Eagle's Medium agar containing fetal bovine serum or in blood agar in the presence of CaCl(2) , they showed a positivity of 92 and 83%, and specificity of 96 and 97%, respectively. CONCLUSION The assay enables reliable identification of BFP-expressing isolates and contributes to the differentiation of typical and atypical EPEC. SIGNIFICANCE AND IMPACT OF THE STUDY The colony immunoblot for BFP detection developed in this study combines the simplicity of an immunoserological assay with the high efficiency of testing a large number of EPEC colonies.
Collapse
Affiliation(s)
- J M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Functional organization of the autotransporter adhesin involved in diffuse adherence. J Bacteriol 2007; 189:9020-9. [PMID: 17933890 DOI: 10.1128/jb.01238-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. To elucidate the structure-function relationships of AIDA-I, we performed transposon-based linker scanning mutagenesis and constructed mutants with site-directed deletions. Twenty-nine different mutants with insertions that did not affect protein expression were obtained. Eleven mutants were deficient for one or two but not all of the functions associated with the expression of AIDA-I. Functional characterization of the transposon mutants and of an additional deletion mutant suggested that the N-terminal third of mature AIDA-I is involved in binding of this protein to cultured epithelial cells. The purified product of the putative domain could bind to cultured epithelial cells, confirming the importance of this region in adhesion. We also identified several different mutants in which invasion and adhesion were changed to different extents and two mutants in which autoaggregation and biofilm formation were also affected differently. These results suggest that although conceptually linked, adhesion and invasion, as well as autoaggregation and biofilm formation, are phenomena that may rely on distinct mechanisms when they are mediated by AIDA-I. This study sheds new light on the workings of a protein belonging to an emerging family of strikingly versatile virulence factors.
Collapse
|
28
|
Lacher DW, Steinsland H, Blank TE, Donnenberg MS, Whittam TS. Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling. J Bacteriol 2006; 189:342-50. [PMID: 17098897 PMCID: PMC1797380 DOI: 10.1128/jb.01472-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid.
Collapse
Affiliation(s)
- David W Lacher
- National Food Safety & Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
29
|
Chart H, Spencer J, Smith HR, Rowe B. Magnesium ions are required for HEp-2 cell adhesion by enteroaggregative strains of Escherichia coli O126:H27 and O44:H18. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10265.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
31
|
Huang DB, DuPont HL, Jiang ZD, Carlin L, Okhuysen PC. Interleukin-8 response in an intestinal HCT-8 cell line infected with enteroaggregative and enterotoxigenic Escherichia coli. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:548-51. [PMID: 15138180 PMCID: PMC404585 DOI: 10.1128/cdli.11.3.548-551.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study examined the interleukin-8 (IL-8) response of the intestinal adenocarcinoma HCT-8 cell line to infection with enteroaggregative and enterotoxigenic Escherichia coli pathotypes isolated from patients with travelers' diarrhea. Individual diarrheagenic E. coli strains (enteroaggregative E. coli [EAEC]; n = 30), heat-stable enterotoxin (ST)-producing enterotoxigenic E. coli (ETEC ST; n = 11), heat-labile enterotoxin (LT)-producing enterotoxigenic E. coli (ETEC LT; n = 10), and ST- and LT-producing enterotoxigenic E. coli (ETEC ST:LT; n = 8) were coincubated with HCT-8 cells for 3 h. Tissue culture supernatants were assayed for IL-8 content by enzyme-linked immunosorbent assay. Fifty percent of EAEC (72% of those EAEC carrying the virulence factors aggR, aggA, and aspU and 40% of those EAEC not carrying virulence factors) and 64% of ETEC ST elicited IL-8 production. In contrast, 10% of ETEC LT elicited the production of IL-8 above baseline. These results suggest that (i) the HCT-8 cell line infection model can be used as a tool to differentiate proinflammatory E. coli from noninflammatory isolates; (ii) EAEC has a heterogeneous ability to induce the production of IL-8, and this may be associated with the presence of virulence factors; and (iii) ETEC ST can elicit an inflammatory response and helps explain our earlier findings of increased fecal IL-8 in patients with ETEC diarrhea.
Collapse
Affiliation(s)
- David B Huang
- University of Texas Health Science Center, Houston Medical School, 6431 Fannin, JFB 1.728, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Chen HD, Frankel G. EnteropathogenicEscherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 2005; 29:83-98. [PMID: 15652977 DOI: 10.1016/j.femsre.2004.07.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to intestinal epithelial cells, causing diarrhoea. It constitutes a significant risk to human health and remains an important cause of infant mortality in developing countries. Although EPEC was the first E. coli strain to be implicated in human disease in the 1940s and 1950s, the mechanisms by which this pathogen induced diarrhoea remained a complete mystery throughout most of the 40 years since its description. It was only during the late 1980s that major advances were made in unravelling the mechanisms behind EPEC pathogenesis. Ever since, progress has been made at a stunning pace and there have been major breakthroughs in identifying the bacterial factors involved in attaching and effacing (A/E) lesion formation, host signal transduction pathways in response to EPEC infection and the genetic basis of EPEC pathogenesis. The rapid pace of discovery is a result of intensive research by investigators in this field and portends that EPEC will soon be among one of the most understood diarrhoea-causing infectious agents. This review aims to trace the progress of EPEC research since its existence was first reported by John Bray in 1945, highlighting the major findings that have revolutionised our understanding of EPEC pathogenesis.
Collapse
Affiliation(s)
- Huiwen Deborah Chen
- Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College London, Flowers Building, London SW7 2AZ, UK
| | | |
Collapse
|
33
|
Clarke SC, Haigh RD, Freestone PPE, Williams PH. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 2003; 16:365-78. [PMID: 12857773 PMCID: PMC164217 DOI: 10.1128/cmr.16.3.365-378.2003] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) remains an important cause of diarrheal disease worldwide. Research into EPEC is intense and provides a good virulence model of other E. coli infections as well as other pathogenic bacteria. Although the virulence mechanisms are now better understood, they are extremely complex and much remains to be learnt. The pathogenesis of EPEC depends on the formation of an ultrastructural lesion in which the bacteria make intimate contact with the host apical enterocyte membrane. The formation of this lesion is a consequence of the ability of EPEC to adhere in a localized manner to the host cell, aided by bundle-forming pili. Tyrosine phosphorylation and signal transduction events occur within the host cell at the lesion site, leading to a disruption of the host cell mechanisms and, consequently, to diarrhea. These result from the action of highly regulated EPEC secreted proteins which are released via a type III secretion system, many genes of which are located within a pathogenicity island known as the locus of enterocyte effacement. Over the last few years, dramatic increases in our knowledge of EPEC virulence have taken place. This review therefore aims to provide a broad overview of and update to the virulence aspects of EPEC.
Collapse
Affiliation(s)
- S C Clarke
- Scottish Meningococcus and Pneumococcus Reference Laboratory, Glasgow University, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
34
|
de Almeida CMC, Quintana-Flores VM, Medina-Acosta E, Schriefer A, Barral-Netto M, Dias da Silva W. Egg yolk anti-BfpA antibodies as a tool for recognizing and identifying enteropathogenic Escherichia coli. Scand J Immunol 2003; 57:573-82. [PMID: 12791096 DOI: 10.1046/j.1365-3083.2003.01243.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major aetiological agent of childhood diarrhoea in developing countries. The structural repeating protein A subunit, BfpA, found in the bundle-forming pilus, is one of the virulent factors for EPEC pathogenesis. Recombinant BfpA in laying hens elicited sustained and vigorous antibody production. Immunoglobulin Y (IgY) anti-BfpA antibodies were recovered from egg yolk, purified and characterized. Immunoadsorption with whole extracts of the isogenic E. coli EPEC adherence factor (EAF) strain that lacks BfpA rendered the resulting IgY preparations capable of: (a) recognizing purified or recombinant BfpA proteins in a dose-dependent fashion; (b) blocking the colonization of HeLa cells by EPEC EAF+, in vitro; (c) specifically identifying E. coli bearing EAF+; and (d) inhibiting the growth of E. coli EAF+ but not the EAF strain. IgY anti-BfpA is potentially useful as a specific, low-cost immunobiological reagent to screen human faecal specimens for the presence of EPEC.
Collapse
Affiliation(s)
- C M C de Almeida
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darci Ribeiro-UENF, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Ramer SW, Schoolnik GK, Wu CY, Hwang J, Schmidt SA, Bieber D. The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol 2002; 184:3457-65. [PMID: 12057939 PMCID: PMC135125 DOI: 10.1128/jb.184.13.3457-3465.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of type IV bundle-forming pili (BFP) by enteropathogenic Escherichia coli (EPEC) requires the protein products of 12 genes of the 14-gene bfp operon. Antisera against each of these proteins were used to demonstrate that in-frame deletion of individual genes within the operon reduces the abundance of other bfp operon-encoded proteins. This result was demonstrated not to be due to downstream polar effects of the mutations but rather was taken as evidence for protein-protein interactions and their role in the stabilization of the BFP assembly complex. These data, combined with the results of cell compartment localization studies, suggest that pilus formation requires the presence of a topographically discrete assembly complex that is composed of BFP proteins in stoichiometric amounts. The assembly complex appears to consist of an inner membrane component containing three processed, pilin-like proteins, BfpI, -J, and -K, that localize with BfpE, -L, and -A (the major pilin subunit); an outer membrane, secretin-like component, BfpB and -G; and a periplasmic component composed of BfpU. Of these, only BfpL consistently localizes with both the inner and outer membranes and thus, together with BfpU, may articulate between the Bfp proteins in the inner membrane and outer membrane compartments.
Collapse
Affiliation(s)
- Sandra W Ramer
- Department of Medicine (Infectious Diseases and Geographic Medicine) and Microbiology & Immunology, Stanford Medical School, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
36
|
Dias da Silveira W, Ferreira A, Brocchi M, Maria de Hollanda L, Pestana de Castro AF, Tatsumi Yamada A, Lancellotti M. Biological characteristics and pathogenicity of avian Escherichia coli strains. Vet Microbiol 2002; 85:47-53. [PMID: 11792491 DOI: 10.1016/s0378-1135(01)00482-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fifty avian (chicken) pathogenic Escherichia coli strains (APEC) isolated from individuals suffering from omphalitis, septicaemia and swollen head syndrome, and 30 strains isolated from healthy chickens were studied regarding their biological characteristics such as serogroups, haemolysin, colicin, cytotoxin, toxin and siderophore production, adhesion capacity to in vitro cultivated cells, and absorption of Congo red dye. Serotyping demonstrated that most of the omphalitis and normal strains were untypable, whereas most of the septicaemic strains were either untypable or rough. There was no prevalent serogroup among the pathogenic strains studied. The capacity for adhesion and invasion of in vitro cultured cells (HeLa, HEp-2, KPCC), as well as the agglutination of different types of red blood cells and the LD50 of each strain were also evaluated. No correlation was observed between the biological characteristics and pathogenicity, except that colicin was characteristically produced by swollen head syndrome E. coli strains. No correlation was found between adhesion or haemagglutination patterns and pathogenicity. Only six of the 50 strains revealed invasive capacity and the strain that best invaded the cell lines was the one with the lowest LD50.
Collapse
Affiliation(s)
- Wanderley Dias da Silveira
- Department of Microbiology and Immunology IB, Biology Institute, State University of Campinas, CP 6109, CEP 13081-970 Campinas, SP Brazil.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tobe T, Sasakawa C. Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 2002; 4:29-42. [PMID: 11856171 DOI: 10.1046/j.1462-5822.2002.00167.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.
Collapse
Affiliation(s)
- Toru Tobe
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minatoku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
38
|
Abstract
Diarrhea remains one of the main sources of morbidity and morbidity in today's world and a large proportion is caused by diarrheagenic Escherichia coli. They are a particular problem in developed countries although traveler's diarrhea and hemorrhagic colitis are also a problem in developed countries. There are seven classes of diarrheagenic E. coli, namely enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAggEC), diarrhea-associated hemolytic E. coli (DHEC) and cytolethal distending toxin (CDT)- producing E. coli. Many of their virulence determinants have been determined and some classes of diarrheagenic E. coli produce toxins. The virulence factors of some diarrhogenic E. coli have yet to be full determined and in the meantime they remain a large and emerging problem without the availability of effective vaccines.
Collapse
Affiliation(s)
- S C Clarke
- Scottish Meningococcus and Pneumococcus Reference Laboratory, Department of Microbiology, Stobhill Hospital, Balornock Road, G21 3UW, Glasgow, United Kingdom.
| |
Collapse
|
39
|
Sheikh J, Hicks S, Dall'Agnol M, Phillips AD, Nataro JP. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 2001; 41:983-97. [PMID: 11555281 DOI: 10.1046/j.1365-2958.2001.02512.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) forms thick biofilms on the intestinal mucosa. Here, we show that most EAEC strains form a biofilm on glass or plastic surfaces when grown in cell culture medium with high sugar and osmolarity. Biofilm-forming ability in two prototype EAEC strains required aggregative adherence fimbriae (AAF), although many other EAEC strains that do not express AAF also developed biofilms under these conditions. Ten thousand transposon mutants of EAEC strain 042 were isolated, and 100 were found to be deficient in biofilm formation. Of these, 93 were either deficient in in vitro growth or mapped to genes known to be required for AAF/II expression. Of the seven remaining insertions, five mapped to one of two unsuspected loci. Two insertions involved the E. coli chromosomal fis gene, a DNA-binding protein that is involved in growth phase-dependent regulation. Using reverse transcription-polymerase chain reaction (RT-PCR), we determined that the effect of fis was at the level of transcription of the AAF/II activator aggR. Biofilm formation also required the product of the yafK gene, which is predicted to encode a secreted 28 kDa protein. The yafK product is required for transcription of AAF/II-encoding genes. Our data do not suggest a role for type 1 fimbriae or motility in biofilm formation. EAEC appears to form a novel biofilm, which may be mediated solely by AAF and may reflect its interactions with the intestinal mucosa.
Collapse
Affiliation(s)
- J Sheikh
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
40
|
Tobe T, Sasakawa C. Role of bundle-forming pilus of enteropathogenic Escherichia coli in host cell adherence and in microcolony development. Cell Microbiol 2001; 3:579-85. [PMID: 11553010 DOI: 10.1046/j.1462-5822.2001.00136.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) adheres to epithelial cells and forms microcolonies in localized areas. Bundle-forming pili (BFP) are necessary for autoaggregation and the formation of microcolonies. In this study, we show that BFP, expressed by EPEC on epithelial cells, disappeared with the expansion of the microcolony. Bacterial dispersal and the release of BFP from the EPEC aggregates were induced by contact with host cellular membrane extract. In addition, BFP-expressing EPEC adhered directly to cell surfaces, in preference to attaching to pre-formed microcolonies on the cells. These results suggested that BFP mediate the initial attachment of EPEC through direct interaction with the host cell rather than through the recruitment of unattached bacteria to microcolonies on the cell.
Collapse
Affiliation(s)
- T Tobe
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | |
Collapse
|
41
|
Schmidt SA, Bieber D, Ramer SW, Hwang J, Wu CY, Schoolnik G. Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J Bacteriol 2001; 183:4848-59. [PMID: 11466288 PMCID: PMC99539 DOI: 10.1128/jb.183.16.4848-4859.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Production of type IV bundle-forming pili by enteropathogenic Escherichia coli (EPEC) requires BfpB, an outer-membrane lipoprotein and member of the secretin protein superfamily. BfpB was found to compose a ring-shaped, high-molecular-weight outer-membrane complex that is stable in 4% sodium dodecyl sulfate at temperatures of < or = 65 degrees C. Chemical cross-linking and immunoprecipitation experiments disclosed that the BfpB multimeric complex interacts with BfpG, and mutational studies showed that BfpG is required for the formation and/or stability of the multimer but not for the outer-membrane localization of BfpB. Formation of the BfpB multimer also does not require BfpA, the repeating subunit of the pilus filament. Functional studies of the BfpB-BfpG complex revealed that its presence confers vancomycin sensitivity, indicating that it may form an incompletely gated channel through the outer membrane. BfpB expression is also associated with accumulation of EPEC proteins in growth medium, suggesting that it may support both pilus biogenesis and protein secretion.
Collapse
Affiliation(s)
- S A Schmidt
- Departments of Medicine (Infectious Diseases and Geographic Medicine) and Microbiology & Immunology, Stanford Medical School, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
42
|
Pouttu R, Westerlund-Wikström B, Lång H, Alsti K, Virkola R, Saarela U, Siitonen A, Kalkkinen N, Korhonen TK. matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 2001; 183:4727-36. [PMID: 11466275 PMCID: PMC99526 DOI: 10.1128/jb.183.16.4727-4736.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel fimbrial type in Escherichia coli was identified and characterized. The expression of the fimbria was associated with the O18acK1H7 clonal group of E. coli, which cause newborn meningitis and septicemia when grown at low temperature; hence, it was named the Mat (meningitis associated and temperature regulated) fimbria. The fimbriae were purified from a fimA::cat sfaA::Gm fliC::St derivative of the O18K1H7 isolate E. coli IHE 3034. The purified Mat fimbrillin had an apparent molecular mass of 18 kDa and did not serologically cross-react with the type 1 or S fimbria of the same strain. The matB gene encoding the major fimbrillin was cloned from the genomic DNA of the fimA::cat sfaA::Gm fliC::St derivative of IHE 3034. The predicted MatB sequence was of 195 amino acids, contained a signal sequence of 22 residues, and did not show significant homology to any of the previously characterized fimbrial proteins. The DNA sequence of matB was 97.8% identical to a region from nucleotides 17882 to 18469 in the 6- to 8-min region of the E. coli K-12 chromosome, reported to encode a hypothetical protein. The 7-kb DNA fragment containing matB of IHE 3034 was found by restriction mapping and partial DNA sequencing to be highly similar to the corresponding region in the K-12 chromosome. Trans complementation of the matB::cat mutation in the IHE 3034 chromosome showed that matB in combination with matA or matC restored surface expression of the Mat fimbria. A total of 27 isolates representing K-12 strains and the major pathogroups of E. coli were analyzed for the presence of a matB homolog as well as for expression of the Mat fimbria. A conserved matB homolog was found in 25 isolates; however, expression of the Mat fimbriae was detected only in the O18acK1H7 isolates. Expression of the Mat fimbria was temperature regulated, with no or a very small amount of fimbriae or intracellular MatB fimbrillin being detected in cells cultivated at 37(o)C. Reverse transcriptase PCR and complementation assays with mat genes controlled by the inducible trc promoter indicated that regulation of Mat fimbria expression involved both transcriptional and posttranscriptional events.
Collapse
Affiliation(s)
- R Pouttu
- Division of General Microbiology, Department of Biosciences, FIN-00014 University of Helsinki, FIN-00300 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Penteado AS, Aidar L, Pestana de Castro AF, Yamada A, Andrade JR, Blanco J, Blanco M, Blanco JE. eae-negative attaching and effacing Escherichia coli from piglets with diarrhea. Res Microbiol 2001; 152:75-81. [PMID: 11281328 DOI: 10.1016/s0923-2508(00)01170-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One hundred and ninety strains of Escherichia coli that were isolated from pigs with diarrhea in the state of São Paulo, Brazil, and that were negative for enterotoxins and cytotoxins were investigated. Strains which adhered to HeLa cells were examined for fluorescence actin staining (FAS), the ability to induce attaching and effacing (A/E) lesions on HEp-2 cells detectable by transmission electron microscopy and the presence of eae gene sequences detected by PCR. Intimin production was detected by western blot and serogrouping was performed. Forty-seven isolates adhered to HeLa cells in several patterns, but none adhered in a localized adherence pattern. However, seven of the 47 adherent strains were positive for the FAS reaction, although the reactions were usually weak or atypical. One FAS-negative and three FAS-positive strains, which were examined for their ability to induce A/E lesions, were all positive. Subsequently, testing of these strains for the eae gene showed that they all lacked this gene. These findings, along with earlier reports of eae-negative A/E E. coli, suggest that higher quantities of E. coli in this category might be detected if more reliance were placed on phenotypic tests rather than on gene detection tests alone.
Collapse
Affiliation(s)
- A S Penteado
- Departmento de Microbiologia e Imunologia, Instituto de Biologia, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Blank TE, Zhong H, Bell AL, Whittam TS, Donnenberg MS. Molecular variation among type IV pilin (bfpA) genes from diverse enteropathogenic Escherichia coli strains. Infect Immun 2000; 68:7028-38. [PMID: 11083828 PMCID: PMC97813 DOI: 10.1128/iai.68.12.7028-7038.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical enteropathogenic Escherichia coli (EPEC) strains produce bundle-forming pili (BFP), type IVB fimbriae that have been implicated in EPEC virulence, antigenicity, autoaggregation, and localized adherence to epithelial cells (LA). BFP are polymers of bundlin, a pilin protein that is encoded by the bfpA gene found on a large EPEC plasmid. Striking sequence variation has previously been observed among type IV pilin genes of other gram-negative bacterial pathogens (e.g., Pseudomonas and Neisseria spp.). In contrast, the established sequences of bfpA genes from two distantly related prototype EPEC strains vary by only a single base pair. To determine whether bundlin sequences vary more extensively, we used PCR to amplify the bfpA genes from 19 EPEC strains chosen for their various serotypes and sites and years of isolation. Eight different bfpA alleles were identified by sequencing of the PCR products. These alleles can be classified into two major groups. The alpha group contains three alleles derived from strains carrying O55, O86, O111, O119, O127, or O128 somatic antigens. The beta group contains five alleles derived from strains carrying O55, O110, O128ab, O142, or nontypeable antigens. Sequence comparisons show that bundlin has highly conserved and variable regions, with most of the variation occurring in the C-terminal two-thirds of the protein. The results of multilocus enzyme electrophoresis support the hypothesis that bfpA sequences have spread horizontally across distantly related clonal lineages. Strains with divergent bundlin sequences express bundlin protein, produce BFP, and carry out autoaggregation and LA. However, four strains lack most or all of these phenotypes despite having an intact bfpA gene. These results have important implications for our understanding of bundlin structure, transmission of the bfp gene cluster among EPEC strains, and the role of bundlin variation in the evasion of host immune system responses.
Collapse
Affiliation(s)
- T E Blank
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Tobe T, Tatsuno I, Katayama E, Wu CY, Schoolnik GK, Sasakawa C. A novel chromosomal locus of enteropathogenic Escherichia coli (EPEC), which encodes a bfpT-regulated chaperone-like protein, TrcA, involved in microcolony formation by EPEC. Mol Microbiol 1999; 33:741-52. [PMID: 10447884 DOI: 10.1046/j.1365-2958.1999.01522.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bfpTVW operon, also known as the per operon, of enteropathogenic Escherichia coli (EPEC) is required for the transcriptional activation of the bfp operon, which encodes the major subunit and assembly machinery of bundle-forming pili (BFP). An immobilized T7-tagged BfpT fusion protein that binds specifically to upstream promoter sequences of bfpA and eae was used to 'fish out' from a promoter library other EPEC chromosomal fragments that are bound by the BfpT protein. After screening for promoters exhibiting bfpTVW-dependent expression, one was identified that was positively regulated by bfpTVW and that is not present in the chromosomes of two non-virulent E. coli laboratory strains, DH5alpha and HB101. Further analysis of this positively regulated promoter in EPEC showed that it resided within a 4.9 kb sequence that is not present in E. coli K12. This locus, located downstream of the potB gene, was found to contain four open reading frames (ORFs): bfpTVW-activated promoter was localized upstream of ORF1. An ORF1 knockout mutant produced less of the BFP structural subunit (BfpA) and formed smaller than normal adherent microcolonies on cultured epithelial cells; however, this mutation did not affect bfp transcription. An ORF1-His6 fusion protein specifically bound the preprocessed and mature forms of the BfpA protein and thus appears to stabilize the former within the cytoplasmic compartment. ORF1 therefore is a newly isolated EPEC chromosomal gene that encodes a chaperone-like protein involved in the production of BFP. Hence, ORF1 was designated trcA (bfpT-regulated chaperone-like protein gene). The TrcA protein also specifically bound 39 kDa and 90 kDa proteins that are expressed by EPEC but not by E. coli K12. The 90 kDa protein was revealed to be intimin, a protein product of the eae gene, which is required for the EPEC attaching/effacing phenotype, suggesting a direct interaction of TrcA with intimin in the cytoplasmic compartment.
Collapse
Affiliation(s)
- T Tobe
- Department of Bacteriology, Institute of Medical Science, University ofTokyo 108-0071, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Schriefer A, Maltez JR, Silva N, Stoeckle MY, Barral-Netto M, Riley LW. Expression of a pilin subunit BfpA of the bundle-forming pilus of enteropathogenic Escherichia coli in an aroA live salmonella vaccine strain. Vaccine 1999; 17:770-8. [PMID: 10067682 DOI: 10.1016/s0264-410x(98)00261-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of childhood diarrhea in developing countries and is a leading cause of severe diarrheal illness among Brazilian infants. As one approach to constructing a vaccine candidate against diarrhea caused by EPEC, we evaluated whether the pilin subunit (BfpA) of the bundle-forming pilus (BFP) could be expressed by a live Salmonella vaccine strain. Several copies of the coding region of BfpA (bfpA) were amplified by PCR from a preparation of the EAF plasmid of EPEC strain B171 and cloned into plasmid vectors. An intact copy of bfpA was subcloned into the heat inducible prokaryotic expression vector pCYTEXP1, and the resulting pBfpA was used to transform the aroA S. typhimurium strain SL3261, generating SL3261(pBfpA). The recombinant vaccine strain was able to express, but not to process, rBfpA as evidenced by a prominent 21 kDa protein that crossreacted with anti-BFP antiserum found only in extracts of heat-treated SL3261(pBfpA), but not in strains of untreated SL3261(pBfpA) or SL3261 not carrying the plasmid. Furthermore, rBfpA accumulation was not toxic to the Salmonella host, as evidenced by similar plating efficiencies between induced and uninduced strains of SL3261(pBfpA). Finally, SL3261(pBfpA) orally administered to BALB/c mice was capable of eliciting a sustained and vigorous humoral immune response to BfpA, achievable even with a single oral dose of approximately 10(9) organisms. Therefore, this pilin product may serve as a potential immunogen as part of a live combined vaccine strategy to prevent two of the major public health problems in Brazil--salmonellosis and EPEC childhood diahrrea.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibody Specificity
- Bacterial Outer Membrane Proteins/biosynthesis
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/pathogenicity
- Escherichia coli Proteins
- Female
- Fimbriae Proteins
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Gene Expression Regulation, Bacterial/immunology
- Genetic Vectors/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Salmonella Vaccines
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transformation, Bacterial
- Typhoid-Paratyphoid Vaccines
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- A Schriefer
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz, Salvador, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Gomes TA, Vieira MA, Abe CM, Rodrigues D, Griffin PM, Ramos SR. Adherence patterns and adherence-related DNA sequences in Escherichia coli isolates from children with and without diarrhea in São Paulo city, Brazil. J Clin Microbiol 1998; 36:3609-13. [PMID: 9817882 PMCID: PMC105249 DOI: 10.1128/jcm.36.12.3609-3613.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The correlation between various adherence patterns and adherence-related DNA sequences in Escherichia coli isolates from 1- to 4-year-old children with and without diarrhea in São Paulo, Brazil, was evaluated. A total of 1,801 isolates obtained from 200 patients and 200 age-matched controls were studied. The adherence patterns found were classified as diffuse, aggregative, aggregative in a 6-h assay, aggregative predominantly in coverslips, localized, localized-like, and noncharacteristic. In general, the DNA sequences used as probes showed excellent specificities (>93%), but their sensitivities varied. Thus, the results of bioassays and assays with DNA probes normally used to search for adherent E. coli did not correlate well, and the best method for the identification of these organisms in the clinical research setting remains controversial. Isolates presenting diffuse adherence or hybridizing with the related daaC probe, or both, were by far the most frequent in patients (31.5, 26.0, and 23.0%, respectively), followed by isolates presenting aggregative adherence or hybridizing with the related EAEC probe, or both (21.5, 13.0, and 10.5%, respectively). None of the different combinations of adherence patterns and adherence-related DNA sequences found were associated with acute diarrhea.
Collapse
Affiliation(s)
- T A Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, S.P., Brazil, CEP 04023-062.
| | | | | | | | | | | |
Collapse
|
49
|
China B, Pirson V, Mainil J. Prevalence and molecular typing of attaching and effacing Escherichia coli among calf populations in Belgium. Vet Microbiol 1998; 63:249-59. [PMID: 9851003 PMCID: PMC7117297 DOI: 10.1016/s0378-1135(98)00237-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Accepted: 06/29/1998] [Indexed: 11/17/2022]
Abstract
Attaching and effacing Escherichia coli are involved in diarrhea in 2 to 8-week old calves. The virulence factors of these bacteria include: (i) the secretion of proteins (i.e. EspB) involved in microvilli effacement, (ii) the production of the intimin, a 94 kDa outer membrane protein encoded by the eaeA gene and involved in the intimate attachment of bacteria to epithelial cell and (iii) the production of verotoxins: VT1 and/or VT2. We investigated the presence and the pathotype of these strains in several calf populations by colony hybridization or by genetic amplification. Using the colony hybridization method we showed first that only 5% of calves who died from diarrhea presented EaeA+ E. coli strains and secondly that 19% of healthy calves showed an asymptomatic carriage. However, using colony hybridization and genetic amplification, we identified EaeA+ strains in 91% of calves living in farms with recurrent diarrhea problems. In 66% of the calves, there was a correlation between the presence of AEEC and diarrhea. At the pathotype level, most of the EaeA+ isolates were negative for VT probes. In VT+ bacteria, the majority were VT1+. The number of VT positive bacteria was significantly higher in calves who died from diarrhea than in healthy or sick calves. This underlined the aggravating role of verotoxins in the disease. Moreover, only 25% of the bovine AEEC were positive with the EaeB probe. Surprisingly, the proportion of EaeB+ strains was significantly higher in healthy calves than in other populations.
Collapse
Affiliation(s)
- B China
- University of Liège, Faculty of Veterinary Medicine, Laboratory of Bacteriology, Belgium.
| | | | | |
Collapse
|
50
|
McCabe K, Mann MD, Bowie MD. D-lactate production and [14C]succinic acid uptake by adherent and nonadherent Escherichia coli. Infect Immun 1998; 66:907-11. [PMID: 9488374 PMCID: PMC107994 DOI: 10.1128/iai.66.3.907-911.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli isolates of different adherence phenotypes produced different amounts of D-lactate. Alterations of culture conditions did not influence the amount of D-lactate produced. The observed pH decreases in tissue culture medium corresponded with increases in D-lactate concentration. Very little [14C]succinic acid was incorporated into cells during the in vitro incubation of adherent and nonadherent E. coli with HeLa cells, but the amounts of tracer removed from the culture medium by adherent and nonadherent strains differed. The results are further evidence of a difference in the metabolic behavior of adherent and nonadherent E. coli.
Collapse
Affiliation(s)
- K McCabe
- Institute of Child Health, University of Cape Town, Red Cross War Memorial Children's Hospital, Rondebosch, South Africa
| | | | | |
Collapse
|