1
|
Morón Á, Ortiz-Miravalles L, Peñalver M, García-del Portillo F, Pucciarelli MG, Ortega AD. Rli51 Attenuates Transcription of the Listeria Pathogenicity Island 1 Gene mpl and Functions as a Trans-Acting sRNA in Intracellular Bacteria. Int J Mol Sci 2024; 25:9380. [PMID: 39273334 PMCID: PMC11394854 DOI: 10.3390/ijms25179380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - Laura Ortiz-Miravalles
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Alvaro Darío Ortega
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
2
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
3
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Ramadan H, Al-Ashmawy M, Soliman AM, Elbediwi M, Sabeq I, Yousef M, Algammal AM, Hiott LM, Berrang ME, Frye JG, Jackson CR. Whole-genome sequencing of Listeria innocua recovered from retail milk and dairy products in Egypt. Front Microbiol 2023; 14:1160244. [PMID: 37234542 PMCID: PMC10206011 DOI: 10.3389/fmicb.2023.1160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.
Collapse
Affiliation(s)
- Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Tukh, Qalyubia, Egypt
| | - Mona Yousef
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Mark E. Berrang
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| |
Collapse
|
5
|
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase. FEBS Open Bio 2021; 11:3262-3275. [PMID: 34709730 PMCID: PMC8634861 DOI: 10.1002/2211-5463.13320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria
monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabian Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
6
|
La Pietra L, Hudel M, Pillich H, Abu Mraheil M, Berisha B, Aden S, Hodnik V, Lochnit G, Rafiq A, Perniss A, Anderluh G, Chakraborty T. Phosphocholine Antagonizes Listeriolysin O-Induced Host Cell Responses of Listeria monocytogenes. J Infect Dis 2020; 222:1505-1516. [DOI: 10.1093/infdis/jiaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Bacterial toxins disrupt plasma membrane integrity with multitudinous effects on host cells. The secreted pore-forming toxin listeriolysin O (LLO) of the intracellular pathogen Listeria monocytogenes promotes egress of the bacteria from vacuolar compartments into the host cytosol often without overt destruction of the infected cell. Intracellular LLO activity is tightly controlled by host factors including compartmental pH, redox, proteolytic, and proteostatic factors, and inhibited by cholesterol.
Methods
Combining infection studies of L. monocytogenes wild type and isogenic mutants together with biochemical studies with purified phospholipases, we investigate the effect of their enzymatic activities on LLO.
Results
Here, we show that phosphocholine (ChoP), a reaction product of the phosphatidylcholine-specific phospholipase C (PC-PLC) of L. monocytogenes, is a potent inhibitor of intra- and extracellular LLO activities. Binding of ChoP to LLO is redox-independent and leads to the inhibition of LLO-dependent induction of calcium flux, mitochondrial damage, and apoptosis. ChoP also inhibits the hemolytic activities of the related cholesterol-dependent cytolysins (CDC), pneumolysin and streptolysin.
Conclusions
Our study uncovers a strategy used by L. monocytogenes to modulate cytotoxic LLO activity through the enzymatic activity of its PC-PLC. This mechanism appears to be widespread and also used by other CDC pore-forming toxin-producing bacteria.
Collapse
Affiliation(s)
- Luigi La Pietra
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Helena Pillich
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Besim Berisha
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Amir Rafiq
- Institute of Anatomy and Cell Biology, Cardiopulmonary Institute, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Alexander Perniss
- Institute of Anatomy and Cell Biology, Cardiopulmonary Institute, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Hadjilouka A, Gkolfakis P, Patlaka A, Grounta A, Vourli G, Paramithiotis S, Touloumi G, Triantafyllou K, Drosinos EH. In Vitro Gene Transcription of Listeria monocytogenes after Exposure to Human Gastric and Duodenal Aspirates. J Food Prot 2020; 83:89-100. [PMID: 31855615 DOI: 10.4315/0362-028x.jfp-19-210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to assess, for the first time to our knowledge, Listeria monocytogenes CFU changes, as well as to determine the transcription of key virulence genes, namely, sigB, prfA, hly, plcA, plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 after in vitro exposure to human gastric and duodenal aspirates. Furthermore, investigations of the potential correlation between CFU changes and gene regulation with factors influencing gastric (proton pump inhibitor intake and presence of gastric atrophy) and duodenal pH were the secondary study aims. Gastric and duodenal fluids that were collected from 25 individuals undergoing upper gastrointestinal endoscopy were inoculated with L. monocytogenes serotype 4b strain LQC 15257 at 9 log CFU·mL-1 and incubated at 37°C for 100 min and 2 h, respectively, with the time corresponding to the actual exposure time to gastric and duodenal fluids in the human gastrointestinal tract. Sampling was performed upon gastric fluid inoculation, after incubation of the inoculated gastric fluids, upon pathogen resuspension in duodenal fluids and after incubation of the inoculated duodenal fluids. L. monocytogenes CFU changes were assessed by colony counting, as well as reverse transcription quantitative PCR by using inlB as a target. Gene transcription was assessed by reverse transcription quantitative PCR. In 56% of the cases, reduction of the pathogen CFU occurred immediately after exposure to gastric aspirate. Upregulation of hly and inlC was observed in 52 and 58% of the cases, respectively. On the contrary, no upregulation or downregulation was noticed regarding sigB, prfA, plcA, plcB, inlA, inlB, inlJ, inlP, and lmo2672. In addition, sigB and plcA transcription was positively and negatively associated, respectively, with an increase of the pH value, and inlA transcription was negatively associated with the presence of gastric atrophy. Finally, a positive correlation between the transcriptomic responses of plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 was detected. This study revealed that the CFU of the pathogen was negatively affected after exposure to human gastroduodenal aspirates, as well as significant correlations between the characteristics of the aspirates with the virulence potential of the pathogen.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Apostolia Patlaka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Athena Grounta
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| |
Collapse
|
8
|
Hadjilouka A, Paramithiotis S, Drosinos EH. Genetic Analysis of the Listeria Pathogenicity Island 1 of Listeria monocytogenes 1/2a and 4b Isolates. Curr Microbiol 2018; 75:857-865. [PMID: 29468304 DOI: 10.1007/s00284-018-1458-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to apply descriptive, phylogenetic, recombination, and selection analyses on alignments of the Listeria Pathogenicity Island 1 (LIPI-1) of 1/2a and 4b Listeria monocytogenes isolates of different origin in order to gain insights into the evolution of this virulence gene cluster. For that purpose, a total of 19 L. monocytogenes isolates (9 meat isolates, serotype 1/2a; 5 meat isolates, serotype 4b; 5 strawberry isolates, serotype 4b) that have been previously separated at strain level were subjected to sequencing of their LIPI-1. Descriptive analysis revealed extensive nucleotide diversity mostly in the intragenic regions. The actA gene of 1/2a and 4b meat isolates and the hly gene of the 4b strawberry isolates exhibited the higher diversity; limited diversity was observed in prfA and plcA genes of the 4b isolates and mpl gene of the 1/2a isolates. Phylogenetic analysis of the complete island resulted in two major clusters that were consistent with serotype assignment of the isolates. Moreover, effective discrimination between serotypes was obtained by plcA, plcB, mpl, actA and the intergenic regions plcA-prfA and plcA-hly. In all cases but plcB and plcA-prfA 4b isolates were also differentiated according to their source of isolation as well. Selection analysis revealed that the island consisted of randomly evolving DNA with the exception of prfA gene of 1/2a isolates and actA gene of 4b meat isolates for which purifying selection or population expansion was indicated. Finally, no statistically significant evidence for recombination has been observed.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
9
|
Gupta V, Chaudhary N, Aggarwal S, Adlakha N, Gulati P, Bhatnagar R. Functional analysis of BAS2108-2109 two component system: Evidence for protease regulation in Bacillus anthracis. Int J Biochem Cell Biol 2017; 89:71-84. [PMID: 28602714 DOI: 10.1016/j.biocel.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bacillus anthracis (BA) is a major bioterrorism concern which has evolved complex regulatory mechanisms for its virulence factors. Secreted proteases play an imperative role in the pathogenesis of BA, however their regulation remains elusive. Two component systems (TCS) are often employed by bacteria to sense and adapt to the environmental perturbations. In several pathogens, TCS are commonly associated with the regulation of virulence factors including proteases. The genome of BA encodes 41 TCS pairs, however, the role of any TCS in regulation of its proteases is not known. PRINCIPAL FINDINGS The study established BAS2108-2109 as a prototypical TCS where BAS2108 functions as a histidine kinase and BAS2109 as the response regulator. The expression of BAS2109 was found to be elevated under host simulated conditions and in pellicle forming cells. Electrophoretic mobility shift assay (EMSA) and lacZ reporter assay revealed positive autoregulation of the BAS2108-2109 operon by BAS2109. Collective analysis of ANS assay and EMSA demonstrated Lys167, Thr179 and Thr182 residues are crucial for the DNA binding activity of BAS2109. EMSA analysis further highlighted BAS2109 as the transcriptional regulator for different genes of BA, particularly proteases. Upregulation of proteases in BA overexpressing BAS2109 further strengthen its role in protease regulation. SIGNIFICANCE This is the first report to identify a TCS pair for its role in the regulation of proteases of BA. Importance of proteases in the pathogenesis of BA is well documented, therefore, studying the regulatory networks governing their expression will help in identification of new drug targets.
Collapse
Affiliation(s)
- Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India; Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neha Chaudhary
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Somya Aggarwal
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Nidhi Adlakha
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India.
| |
Collapse
|
10
|
Hadjilouka A, Molfeta C, Panagiotopoulou O, Paramithiotis S, Mataragas M, Drosinos EH. Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30 °C. Food Microbiol 2016; 55:7-15. [DOI: 10.1016/j.fm.2015.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
11
|
Huang Q, Gershenson A, Roberts MF. Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:697-705. [PMID: 26976751 DOI: 10.1016/j.bbapap.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Qiongying Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States.
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
12
|
Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. J Proteomics 2015; 117:95-105. [DOI: 10.1016/j.jprot.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
|
13
|
|
14
|
Forster BM, Bitar AP, Marquis H. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes. MICROBIOLOGY-SGM 2013; 160:142-148. [PMID: 24140648 DOI: 10.1099/mic.0.071779-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.
Collapse
Affiliation(s)
- Brian M Forster
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Alan Pavinski Bitar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hélène Marquis
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Milillo SR, Friedly EC, Saldivar JC, Muthaiyan A, O'bryan C, Crandall PG, Johnson MG, Ricke SC. A Review of the Ecology, Genomics, and Stress Response ofListeria innocuaandListeria monocytogenes. Crit Rev Food Sci Nutr 2012; 52:712-25. [DOI: 10.1080/10408398.2010.507909] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Differentiation of propeptide residues regulating the compartmentalization, maturation and activity of the broad-range phospholipase C of Listeria monocytogenes. Biochem J 2011; 432:557-63. [PMID: 20879990 DOI: 10.1042/bj20100557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intracellular bacterial pathogen Listeria monocytogenes secretes a broad-range phospholipase C enzyme called PC-PLC (phosphatidylcholine phospholipase C) whose compartmentalization and enzymatic activity is regulated by a 24-amino-acid propeptide (Cys28-Ser51). During intracytosolic multiplication, bacteria accumulate the proform of PC-PLC at their membrane-cell-wall interface, whereas during cell-to-cell spread vacuolar acidification leads to maturation and rapid translocation of PC-PLC across the cell wall in a manner that is dependent on Mpl, the metalloprotease of Listeria. In the present study, we generated a series of propeptide mutants to determine the minimal requirement to prevent PC-PLC enzymatic activity and to identify residues regulating compartmentalization and maturation. We found that a single residue at position P1 (Ser51) of the cleavage site is sufficient to prevent enzymatic activity, which is consistent with P1' (Trp52) being located within the active-site pocket. We observed that mutants with deletions at the N-terminus, but not the C-terminus, of the propeptide are translocated across the cell wall more effectively than wild-type PC-PLC at a physiological pH, and that individual amino acid residues within the N-terminus influence Mpl-mediated maturation of PC-PLC at acidic pH. However, deletion of more than 75% of the propeptide was required to completely prevent Mpl-mediated maturation of PC-PLC. These results indicate that the N-terminus of the propeptide regulates PC-PLC compartmentalization and that specific residues within the N-terminus influence the ability of Mpl to mediate PC-PLC maturation, although a six-residue propeptide is sufficient for Mpl to mediate PC-PLC maturation.
Collapse
|
17
|
Listeria monocytogenes PrsA2 is required for virulence factor secretion and bacterial viability within the host cell cytosol. Infect Immun 2010; 78:4944-57. [PMID: 20823208 DOI: 10.1128/iai.00532-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of establishing its replication niche within the cytosol of infected host cells, the facultative intracellular bacterial pathogen Listeria monocytogenes must efficiently regulate the secretion and activity of multiple virulence factors. L. monocytogenes encodes two predicted posttranslocation secretion chaperones, PrsA1 and PrsA2, and evidence suggests that PrsA2 has been specifically adapted for bacterial pathogenesis. PrsA-like chaperones have been identified in a number of Gram-positive bacteria, where they are reported to function at the bacterial membrane-cell wall interface to assist in the folding of proteins translocated across the membrane; in some cases, these proteins have been found to be essential for bacterial viability. In this study, the contributions of PrsA2 and PrsA1 to L. monocytogenes growth and protein secretion were investigated in vitro and in vivo. Neither PrsA2 nor PrsA1 was found to be essential for L. monocytogenes growth in broth culture; however, optimal bacterial viability was found to be dependent upon PrsA2 for L. monocytogenes located within the cytosol of host cells. Proteomic analyses of prsA2 mutant strains in the presence of a mutationally activated allele of the virulence regulator PrfA revealed a critical requirement for PrsA2 activity under conditions of PrfA activation, an event which normally takes place within the host cell cytosol. Despite a high degree of amino acid similarity, no detectable degree of functional overlap was observed between PrsA2 and PrsA1. Our results indicate a critical requirement for PrsA2 under conditions relevant to host cell infection.
Collapse
|
18
|
The propeptide of the metalloprotease of Listeria monocytogenes controls compartmentalization of the zymogen during intracellular infection. J Bacteriol 2009; 191:3594-603. [PMID: 19346305 DOI: 10.1128/jb.01168-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral to the virulence of the intracellular bacterial pathogen Listeria monocytogenes is its metalloprotease (Mpl). Mpl regulates the activity and compartmentalization of the bacterial broad-range phospholipase C (PC-PLC). Mpl is secreted as a proprotein that undergoes intramolecular autocatalysis to release its catalytic domain. In related proteases, the propeptide serves as a folding catalyst and can act either in cis or in trans. Propeptides can also influence protein compartmentalization and intracellular trafficking or decrease folding kinetics. In this study, we aimed to determine the role of the Mpl propeptide by monitoring the behavior of Mpl synthesized in the absence of its propeptide (MplDeltapro) and of two Mpl single-site mutants with unstable propeptides: Mpl(H75V) and Mpl(H95L). We observed that all three Mpl mutants mediate PC-PLC activation when bacteria are grown on semisolid medium, but to a lesser extent than wild-type Mpl, indicating that, although not essential, the propeptide enhances the production of active Mpl. However, the mutant proteins were not functional in infected cells, as determined by monitoring PC-PLC maturation and compartmentalization. This defect could not be rescued by providing the propeptide in trans to the mplDeltapro mutant. We tested the compartmentalization of Mpl during intracellular infection and observed that the mutant Mpl species were aberrantly secreted in the cytosol of infected cells. These data indicated that the propeptide of Mpl serves to maintain bacterium-associated Mpl and that this localization is essential to the function of Mpl during intracellular infection.
Collapse
|
19
|
Serrano-Rubio LE, Tenorio-Gutiérrez V, Suárez-Güemes F, Reyes-Cortés R, Rodríguez-Mendiola M, Arias-Castro C, Godínez-Vargas D, de la Garza M. Identification of Actinobacillus pleuropneumoniae biovars 1 and 2 in pigs using a PCR assay. Mol Cell Probes 2008; 22:305-12. [DOI: 10.1016/j.mcp.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/14/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
20
|
Dussurget O. Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:1-38. [DOI: 10.1016/s1937-6448(08)01401-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Freitag NE. From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression. Future Microbiol 2007; 1:89-101. [PMID: 17661688 DOI: 10.2217/17460913.1.1.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental pathogens are organisms that normally spend a substantial part of their lifecycle outside of human hosts, but when introduced into humans are capable of causing disease. Such organisms are often able to transition between disparate environments ranging from the soil to the cytosol of host cells. The food-borne bacterial pathogen Listeria monocytogenes serves as a model system for understanding how an environmental organism makes the transition into mammalian hosts. A transcriptional regulatory protein known as PrfA appears to serve as a critical switch, enabling L. monocytogenes to transition from the outside environment to life within the host cell cytosol. PrfA is required for the expression of many L. monocytogenes gene products associated with virulence, and multiple mechanisms serve to regulate the expression and activity of PrfA. Increasing evidence suggests that specific environmental stresses help prime L. monocytogenes for life within the host, and cross-talk between the stress response regulator sigma-B and PrfA may mediate the transition from outside environment to cytosol. Once within the host cytosol, multiple changes in bacterial metabolism and gene expression help to complete the transformation of L. monocytogenes from soil dweller to intracellular pathogen.
Collapse
Affiliation(s)
- Nancy E Freitag
- University of Washington, Seattle Biomedical Research Institute and the Department of Pathobiology, WA 98109-5219, USA.
| |
Collapse
|
22
|
Korbsrisate S, Tomaras AP, Damnin S, Ckumdee J, Srinon V, Lengwehasatit I, Vasil ML, Suparak S. Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. MICROBIOLOGY (READING, ENGLAND) 2007; 153:1907-1915. [PMID: 17526847 DOI: 10.1099/mic.0.2006/003004-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia pseudomallei is a serious bacterial pathogen that can cause a lethal infection in humans known as melioidosis. In this study two of its phospholipase C (PLC) enzymes (Plc-1 and Plc-2) were characterized. Starting with a virulent strain, two single mutants were constructed, each with one plc gene inactivated, and one double mutant with both plc genes inactivated. The single plc mutants exhibited decreased extracellular PLC activity in comparison to the wild-type strain, thereby demonstrating that the two genes encoded functional extracellular PLCs. Growth comparisons between the wild-type and PLC mutants in egg-yolk-supplemented medium indicated that both PLCs contributed to egg-yolk phospholipid utilization. Both PLCs hydrolysed phosphatidylcholine and sphingomyelin but neither was haemolytic for human erythrocytes. Experimental infections of eukaryotic cells demonstrated that Plc-1 itself had no effect on plaque-forming efficiency but it had an additive effect on increasing the efficiency of Plc-2 to form plaques. Only Plc-2 had a significant role in host cell cytotoxicity. In contrast, neither Plc-1 nor Plc-2 appeared to play any role in multinucleated giant cell (MNGC) formation or induction of apoptotic death in the cells studied. These data suggested that PLCs contribute, at least in part, to B. pseudomallei virulence and support the view that Plc-1 and Plc-2 are not redundant virulence factors.
Collapse
Affiliation(s)
- Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Andrew P Tomaras
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center Aurora, CO 80045, USA
| | - Suwat Damnin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jutturong Ckumdee
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Michael L Vasil
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center Aurora, CO 80045, USA
| | - Supaporn Suparak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
23
|
Abstract
Human listeriosis is a potentially fatal foodborne infection caused by Listeria monocytogenes, an opportunistic psychrophile bacterium that is widespread in the environment. It has only recently emerged as a significant cause of human infection in industrialized countries, owing to appearance of a vulnerable population of immunocompromised individuals, and the concomitant development of large-scale agro-industrial plants and refrigerated food. Here we review the main clinical features of human listeriosis and highlight specificities and similarities with animal listeriosis in diverse species. Finally, we present some of the critical determinants for the choice of an appropriate animal model to study human listeriosis.
Collapse
Affiliation(s)
- Marc Lecuit
- Avenir Group INSERM U604 Microbial Interactions with Host Barriers, Bacteria Cell Interactions Unit, Department of Cell Biology and Infection, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
24
|
Yeung PSM, Na Y, Kreuder AJ, Marquis H. Compartmentalization of the broad-range phospholipase C activity to the spreading vacuole is critical for Listeria monocytogenes virulence. Infect Immun 2006; 75:44-51. [PMID: 17060464 PMCID: PMC1828429 DOI: 10.1128/iai.01001-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell by using an actin-based mechanism of motility. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from vacuoles formed upon cell-to-cell spread. PC-PLC is made as an inactive proenzyme whose activation requires cleavage of an N-terminal propeptide. During infection, PC-PLC is activated specifically in acidified vacuoles. To assess the importance of compartmentalizing PC-PLC activity during infection, we created a mutant that makes constitutively active PC-PLC (the plcBDelta pro mutant). Results from intracellular growth and cell-to-cell spread assays showed that the plcBDelta pro mutant was sensitive to gentamicin, suggesting that unregulated PC-PLC activity causes damage to host cell membranes. This was confirmed by the observation of a twofold increase in staining of live infected cells by a non-membrane-permeant DNA fluorescent dye. However, membrane damage was not sufficient to cause cell lysis and was dependent on bacterial cell-to-cell spread, suggesting that damage was localized to bacterium-containing filopodia. Using an in vivo competitive infection assay, we observed that the plcBDelta pro mutant was outcompeted up to 200-fold by the wild-type strain in BALB/c mice. Virulence attenuation was greater when mice were infected orally than when they were infected intravenously, presumably because the plcBDelta pro mutant was initially outcompeted in the intestines, reducing the number of mutant bacteria reaching the liver and spleen. Together, these results emphasize the importance for L. monocytogenes virulence of compartmentalizing the activity of PC-PLC during infection.
Collapse
Affiliation(s)
- P S Marie Yeung
- Department of Microbiology and Immunology, Cornell University, VMC C5-169, Ithaca, NY 14853-6401, USA
| | | | | | | |
Collapse
|
25
|
Virna S, Deckert M, Lütjen S, Soltek S, Foulds KE, Shen H, Körner H, Sedgwick JD, Schlüter D. TNF Is Important for Pathogen Control and Limits Brain Damage in Murine Cerebral Listeriosis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3972-82. [PMID: 16951360 DOI: 10.4049/jimmunol.177.6.3972] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral listeriosis is a life-threatening disease. However, little is known about the bacterial virulence factors responsible for the severe course of disease and the factors of the immune system contributing to the control of Listeria monocytogenes (LM) or even to the damage of the brain. To analyze the importance of the actA gene of LM, which mediates cell-to-cell spread of intracellular LM, the function of TNF in murine cerebral listeriosis was studied. C57BL/6 mice survived an intracerebral (i.c.) infection with actA-deficient LM, but succumbed to infection with wild-type (WT) LM. Upon infection with actA-deficient LM, macrophages and microglial cells rapidly, and later LM-specific CD4 and CD8 T cells, produced TNF. In contrast to WT mice, TNF-deficient animals succumbed to the infection within 4 days due to failure of control of LM. Histology identified a more severe meningoencephalitis, brain edema, and neuronal damage, but a reduced inducible NO synthase expression in TNF-deficient mice. Reciprocal bone marrow chimeras between WT and TNF-deficient mice revealed that hematogenously derived TNF was essential for survival, whereas TNF produced by brain-resident cells was less important. Death of TNF-deficient mice could be prevented by LM-specific T cells induced by an active immunization before i.c. infection. However, brain pathology and inflammation of immunized TNF-deficient mice were still more severe. In conclusion, these findings identify a crucial role of TNF for the i.c. control of LM and survival of cerebral listeriosis, whereas TNF was not responsible for the destruction of brain tissue.
Collapse
Affiliation(s)
- Simona Virna
- Institut für Medizinische Mikrobiologie und Hygiene, Fakultät für klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yeung PSM, Zagorski N, Marquis H. The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C. J Bacteriol 2005; 187:2601-8. [PMID: 15805506 PMCID: PMC1070396 DOI: 10.1128/jb.187.8.2601-2608.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a gram-positive bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from secondary vacuoles. PC-PLC requires cleavage of an N-terminal propeptide for activation, and Mpl, a metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. Previously, we showed that cell wall translocation of PC-PLC is inefficient, resulting in accumulation of PC-PLC at the membrane-cell wall interface. In infected cells, rapid cell wall translocation of PC-PLC is triggered by a decrease in pH and correlates with cleavage of the propeptide in an Mpl-dependent manner. To address the role of the propeptide and of Mpl in cell wall translocation of PC-PLC, we generated a cleavage site mutant and a propeptide deletion mutant. The intracellular behavior of these mutants was assessed in pulse-chase experiments. We observed efficient translocation of the proform of the PC-PLC cleavage site mutant in a manner that was pH sensitive and Mpl dependent. However, the propeptide deletion mutant was efficiently translocated into host cells independent of Mpl and pH. Overall, these results suggest that Mpl regulates PC-PLC translocation across the bacterial cell wall in a manner that is dependent on the presence of the propeptide but independent of propeptide cleavage. In addition, similarly to Mpl-mediated cleavage of PC-PLC propeptide, Mpl-mediated translocation of PC-PLC across the bacterial cell wall is pH sensitive.
Collapse
Affiliation(s)
- P S Marie Yeung
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853-4601, USA
| | | | | |
Collapse
|
27
|
Drevets DA, Leenen PJM, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 2004; 17:323-47. [PMID: 15084504 PMCID: PMC387409 DOI: 10.1128/cmr.17.2.323-347.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | |
Collapse
|
28
|
Stephan R, Schumacher S, Zychowska MA. The VIT® technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol 2003; 89:287-90. [PMID: 14623395 DOI: 10.1016/s0168-1605(03)00307-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Detection of Listeria monocytogenes is generally performed in a two-step cultural enrichment process and takes on average 1 week until the biochemical identification of a L. monocytogenes suspicious colony is completed. However, food processing companies depend increasingly on test methods, which attempt to generate results comparable to standard methods but in reduced time-frame and which allow to release produced batches dependent on such results. In the present study, the vermicon identification technology (VIT), a rapid commercial test system using fluorescently labelled gene probes, was compared to a cultural standard method. In total, 298 naturally contaminated samples were analysed. The sensitivity and the specificity of the VIT system were 100% for the detection of L. monocytogenes and 97.1% and 100%, respectively, for the detection of the genus Listeria.
Collapse
Affiliation(s)
- Roger Stephan
- Institute for Food Safety and Hygiene, Faculty of Veterinary Medicine, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
29
|
Gründling A, Gonzalez MD, Higgins DE. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol 2003; 185:6295-307. [PMID: 14563864 PMCID: PMC219411 DOI: 10.1128/jb.185.21.6295-6307.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.
Collapse
Affiliation(s)
- Angelika Gründling
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115-6092, USA
| | | | | |
Collapse
|
30
|
Snyder A, Marquis H. Restricted translocation across the cell wall regulates secretion of the broad-range phospholipase C of Listeria monocytogenes. J Bacteriol 2003; 185:5953-8. [PMID: 14526005 PMCID: PMC225021 DOI: 10.1128/jb.185.20.5953-5958.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The virulence of Listeria monocytogenes is directly related to its ability to spread from cell to cell without leaving the intracellular milieu. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. Among the bacterial factors involved in escape from these vacuoles is a secreted broad-range phospholipase C (PC-PLC), the activation of which requires processing of an N-terminal prodomain. Mpl, a secreted metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. We previously showed that, during intracellular growth, bacteria maintain a pool of PC-PLC that is not accessible to antibodies and that is rapidly released in its active form in response to a decrease in pH. pH-regulated release of active PC-PLC is Mpl dependent. To further characterize the mechanism regulating secretion of PC-PLC, the bacterial localization of PC-PLC and Mpl was investigated. Both proteins were detected in the bacterial supernatant and lysate with no apparent changes in molecular weight. Extraction of bacteria-associated PC-PLC and Mpl required cell wall hydrolysis, but there was no indication that either protein was covalently bound to the bacterial cell wall. Results from pulse-chase experiments performed with infected macrophages indicated that the rate of synthesis of PC-PLC exceeded the rate of translocation across the bacterial cell wall and confirmed that the pool of PC-PLC associated with bacteria was efficiently activated and secreted upon acidification of the host cell cytosol. These data suggest that bacterially associated PC-PLC and Mpl localize at the cell wall-membrane interface and that translocation of PC-PLC across the bacterial cell wall is rate limiting, resulting in the formation of a bacterially associated pool of PC-PLC that would readily be accessible for activation and release into nascent secondary vacuoles.
Collapse
Affiliation(s)
- Aleksandra Snyder
- Department of Microbiology, University of Colorado Health Sciences Center, School of Medicine, Denver, Colorado 80262, USA
| | | |
Collapse
|
31
|
Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni MR. The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 2003; 3:14. [PMID: 12841855 PMCID: PMC166150 DOI: 10.1186/1471-2180-3-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 07/03/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae possesses large zinc metalloproteinases on its surface. To analyse the importance in virulence of three of these metalloproteinases, intranasal challenge of MF1 outbred mice was carried out using a range of infecting doses of wild type and knock-out pneumococcal mutant strains, in order to compare mice survival. RESULTS Observation of survival percentages over time and detection of LD50s of knock out mutants in the proteinase genes in comparison to the type 4 TIGR4 wild type strain revealed two major aspects: i) Iga and ZmpB, present in all strains of S. pneumoniae, strongly contribute to virulence in mice; (ii) ZmpC, only present in about 25% of pneumococcal strains, has a lower influence on virulence in mice. CONCLUSIONS These data suggest Iga, ZmpB and ZmpC as candidate surface proteins responsible for pneumococcal infection and potentially involved in distinct stages of pneumococcal disease.
Collapse
Affiliation(s)
- Damiana Chiavolini
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Guido Memmi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Tiziana Maggi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Francesco Iannelli
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Marco R Oggioni
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| |
Collapse
|
32
|
Bowen DJ, Rocheleau TA, Grutzmacher CK, Meslet L, Valens M, Marble D, Dowling A, Ffrench-Constant R, Blight MA. Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1581-1591. [PMID: 12777498 DOI: 10.1099/mic.0.26171-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteases play a key role in the interaction between pathogens and their hosts. The bacterial entomopathogen Photorhabdus lives in symbiosis with nematodes that invade insects. Following entry into the insect, the bacteria are released from the nematode gut into the open blood system of the insect. Here they secrete factors which kill the host and also convert the host tissues into food for the replicating bacteria and nematodes. One of the secreted proteins is PrtA, which is shown here to be a repeats-in-toxin (RTX) alkaline zinc metalloprotease. PrtA has high affinity for artificial substrates such as casein and gelatin and can be inhibited by zinc metalloprotease inhibitors. The metalloprotease also shows a calcium- and temperature-dependent autolysis. The prtA gene carries the characteristic RTX repeated motifs and predicts high similarity to proteases from Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. The prtA gene resides in a locus encoding both the protease ABC transporter (prtBCD) and an intervening ORF encoding a protease inhibitor (inh). PrtA activity is detectable 24 h after artificial bacterial infection of an insect, suggesting that the protease may play a key role in degrading insect tissues rather than in overcoming the insect immune system. Purified PrtA also shows cytotoxicity to mammalian cell cultures, supporting its proposed role in bioconversion of the insect cadaver into food for bacterial and nematode development.
Collapse
Affiliation(s)
- David J Bowen
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | | | | | - Laurence Meslet
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| | - Michelle Valens
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| | - Daniel Marble
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Andrea Dowling
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Mark A Blight
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| |
Collapse
|
33
|
Valens M, Broutelle AC, Lefebvre M, Blight MA. A zinc metalloprotease inhibitor, Inh, from the insect pathogen Photorhabdus luminescens. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2427-2437. [PMID: 12177336 DOI: 10.1099/00221287-148-8-2427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The entomopathogen Photorhabdus luminescens secretes many proteins during the late stages of insect larvae infection and during in vitro laboratory culture. The authors have previously characterized and purified a 55 kDa zinc metalloprotease, PrtA, from culture supernatants of P. luminescens. PrtA is secreted via a classical type I secretory pathway and is encoded within the operon prtA-inh-prtBCD. The 405 bp inh gene encodes a 14.8 kDa pre-protein that is translocated to the periplasm by the classical signal-peptide-dependent sec pathway, yielding the mature 11.9 kDa inhibitor Inh. Inh is a specific inhibitor of the protease PrtA. This study describes the purification of Inh and the initial characterization of its in vitro protease inhibition properties.
Collapse
Affiliation(s)
- Michèle Valens
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Anne-Cécile Broutelle
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Mélanie Lefebvre
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Mark A Blight
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| |
Collapse
|
34
|
Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2002; 45:203-17. [PMID: 12100560 DOI: 10.1046/j.1365-2958.2002.03009.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipases C play a role in the pathogenesis of several bacteria. Mycobacterium tuberculosis, the causative agent of tuberculosis, possesses four genes encoding putative phospholipases C, plcA, plcB, plcC and plcD. However, the contribution of these genes to virulence is unknown. We constructed four single mutants of M. tuberculosis each inactivated in one of the plc genes, a triple plcABC mutant and a quadruple plcABCD mutant. The mutants all exhibited a lower phospholipase C activity than the wild-type parent strain, demonstrating that the four plc genes encode a functional phospholipase C in M. tuberculosis. Functional complementation of the Delta plcABC triple mutant with the individual plcA, plcB and plcC genes restored in each case about 20% of the total Plc activity detected in the parental strain, suggesting that the three enzymes contribute equally to the overall Plc activity of M. tuberculosis. RT-PCR analysis of the plc genes transcripts showed that the expression of these genes is strongly upregulated during the first 24 h of macrophage infection. Moreover, the growth kinetics of the triple and quadruple mutants in a mouse model of infection revealed that both mutants are attenuated in the late phase of the infection emphasizing the importance of phospholipases C in the virulence of the tubercle bacillus.
Collapse
Affiliation(s)
- Catherine Raynaud
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kayal S, Lilienbaum A, Join-Lambert O, Li X, Israël A, Berche P. Listeriolysin O secreted by Listeria monocytogenes induces NF-kappaB signalling by activating the IkappaB kinase complex. Mol Microbiol 2002; 44:1407-19. [PMID: 12028384 DOI: 10.1046/j.1365-2958.2002.02973.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeriolysin O (LLO) is a pore-forming cytolysin secreted by the pathogen Listeria monocytogenes and is required for its intracellular survival. We recently demonstrated that in endothelial cells, LLO activates the NF-kappaB signalling pathway. In this work, we studied the LLO-induced molecular cascade of NF-kappaB activation with a cellular model extensively used to analyse the signalling pathway of NF-kappaB activation, i.e. the human embryonic kidney HEK-293 cell line and its derivatives (transfectants or mutants). When the stably transfected derivative HEK-293 cells expressing IL-1RI were exposed to LLO, a strong NF-kappaB activation was detected, contrasting with other cell lines (HEK-293 wild type, HEK-293.T and COS) expressing a very low level of IL-1RI. Although a delayed kinetics of LLO-dependent NF-kappaB activation suggests an autocrine or paracrine IL-1-dependent pathway, we found that LLO-dependent NF-kappaB activation did not require the IL-1 protein synthesis nor the interaction with the IL-1RI specific receptor. Herein, we demonstrated that LLO-dependent NF-kappaB activation requires the activation of the IkappaB kinase beta (IKKbeta) subunit of IKK complex to phosphorylate and degrade cytoplasmic IkappaBalpha, a natural inhibitor of NF-kappaB. The activation induced by LLO does not require the adapters MyD88 and IL-1R-associated kinase (IRAK). We suggested that LLO induces a distinct signalling pathway from that of IL-1 and its receptor.
Collapse
Affiliation(s)
- Samer Kayal
- Laboratoire de Microbiologie, INSERM U-411, Faculté de Médecine Necker, 75730 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
36
|
Wilson RL, Tvinnereim AR, Jones BD, Harty JT. Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect Immun 2001; 69:5016-24. [PMID: 11447181 PMCID: PMC98595 DOI: 10.1128/iai.69.8.5016-5024.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a gram-positive, intracellular, food-borne pathogen capable of causing severe infections in immunocompromised or pregnant individuals, as well as numerous animal species. Genetic analysis of Listeria pathogenesis has identified several genes which are crucial for virulence. The transcription of most of these genes has been shown to be induced upon entry of Listeria into the host cell. To identify additional genes that are induced in vivo and may be required for L. monocytogenes pathogenesis, a fluorescence-activated cell-sorting technique was initiated. Random fragments of the L. monocytogenes chromosome were cloned into a plasmid carrying a promoterless green fluorescent protein (GFP) gene, and the plasmids were transformed into the L. monocytogenes actA mutant DP-L1942. Fluorescence-activated cell sorting (FACS) was used to isolate L. monocytogenes clones that exhibited increased GFP expression within macrophage-like J774 cells but had relatively low levels of GFP expression when the bacteria were extracellular. Using this strategy, several genes were identified, including actA, that exhibited such an expression profile. In-frame deletions of two of these genes, one encoding the putative L. monocytogenes uracil DNA glycosylase (ung) and one encoding a protein with homology to the Bacillus subtilis YhdP hemolysin-like protein, were constructed and introduced into the chromosome of wild-type L. monocytogenes 10403s. The L. monocytogenes 10403s ung deletion mutant was not attenuated for virulence in mice, while the yhdP mutant exhibited a three- to sevenfold reduction in virulence.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
37
|
Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14:584-640. [PMID: 11432815 PMCID: PMC88991 DOI: 10.1128/cmr.14.3.584-640.2001] [Citation(s) in RCA: 1519] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal individuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.
Collapse
Affiliation(s)
- J A Vázquez-Boland
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Marquis H, Hager EJ. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol Microbiol 2000; 35:289-98. [PMID: 10652090 PMCID: PMC1763970 DOI: 10.1046/j.1365-2958.2000.01708.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Listeria monocytogenes grows in the cytosol of mammalian cells and spreads from cell to cell without exiting the intracellular milieu. During cell-cell spread, bacteria become transiently entrapped in double-membrane vacuoles. Escape from these vacuoles is mediated in part by a bacterial phospholipase C (PC-PLC), whose activation requires cleavage of an N-terminal peptide. PC-PLC activation occurs in the acidified vacuolar environment. In this study, the pH-dependent mechanism of PC-PLC activation was investigated by manipulating the intracellular pH of the host. PC-PLC secreted into infected cells was immunoprecipitated, and both forms of the protein were identified by SDS-PAGE fluorography. PC-PLC activation occurred at pH 7.0 and lower, but not at pH 7.3. Total amounts of PC-PLC secreted into infected cells increased several-fold over controls within 5 min of a decrease in intracellular pH, and the active form of PC-PLC was the most abundant species detected. Bacterial release of active PC-PLC was dependent on Mpl, a bacterial metalloprotease that processes the proform (proPC-PLC), and did not require de novo protein synthesis. The amount of proPC-PLC released in response to a decrease in pH was the same in wild-type and Mpl-minus-infected cells. Immunofluorescence detection of PC-PLC in infected cells was performed. When fixed and permeabilized infected cells were treated with a bacterial cell wall hydrolase, over 97% of wild-type and Mpl-minus bacteria stained positively for PC-PLC, in contrast to less than 5% in untreated cells. These results indicate that intracellular bacteria carry pools of proPC-PLC. Upon cell-cell spread, a decrease in vacuolar pH triggers Mpl activation of proPC-PLC, resulting in bacterial release of active PC-PLC.
Collapse
Affiliation(s)
- H Marquis
- Department of Microbiology, University of Colorado Health Sciences Center, School of Medicine Box B-175, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
39
|
Coffey A, van den Burg B, Veltman R, Abee T. Characteristics of the biologically active 35-kDa metalloprotease virulence factor from Listeria monocytogenes. J Appl Microbiol 2000; 88:132-41. [PMID: 10735252 DOI: 10.1046/j.1365-2672.2000.00941.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes, a facultative intracellular pathogen, synthesizes an extracellular protease which is responsible for the maturation of phosphatidylcholine phospholipase C (lecithinase), a virulence factor involved in cell-to-cell spread. This work describes the environmental parameters necessary for increased production of mature, 35-kDa active protease in strains of L. monocytogenes, and its detection using polyclonal antibodies raised against Bacillus subtilis neutral protease. High performance liquid affinity chromatography was exploited to isolate the biologically active form of the mature protease, which was then subjected to biochemical characterization using casein as a substrate. The protease is a zinc-dependent metalloprotease which degrades casein over a wide range of temperatures and pH values. It can also degrade actin, the most abundant protein in many eukaryotic cells. The Listeria protease was shown to exhibit a high thermal stability and a relatively narrow substrate specificity. A three-dimensional model built on the basis of the homology with thermolysin was used to understand the structural basis of these characteristics.
Collapse
Affiliation(s)
- A Coffey
- Laboratory of Food Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
40
|
Kayal S, Lilienbaum A, Poyart C, Memet S, Israel A, Berche P. Listeriolysin O-dependent activation of endothelial cells during infection with Listeria monocytogenes: activation of NF-kappa B and upregulation of adhesion molecules and chemokines. Mol Microbiol 1999; 31:1709-22. [PMID: 10209744 DOI: 10.1046/j.1365-2958.1999.01305.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The facultative intracellular bacterium Listeria monocytogenes is an invasive pathogen that crosses the vascular endothelium and disseminates to the placenta and the central nervous system. Its interaction with endothelial cells is crucial for the pathogenesis of listeriosis. By infecting in vitro human umbilical vein endothelial cells (HUVEC) with L. monocytogenes, we found that wild-type bacteria induced the expression of the adhesion molecules (ICAM-1 and E-selectin), chemokine secretion (IL-8 and monocyte chemotactic protein-1) and NF-kappa B nuclear translocation. The activation of HUVEC required viable bacteria and was abolished in prfA-deficient mutants of L. monocytogenes, suggesting that virulence genes are associated with endothelial cell activation. Using a genetic approach with mutants of virulence genes, we found that listeriolysin O (LLO)-deficient mutants inactivated in the hly gene did not induce HUVEC activation, as opposed to mutants inactivated in the other virulence genes. Adhesion molecule expression, chemokine secretion and NF-kappa B activation were fully restored by a strain of Listeria innocua transformed with the hly gene encoding LLO. The relevance in vivo of endothelial cell activation for listerial pathogenesis was investigated in transgenic mice carrying an NF-kappa B-responsive lacZ reporter gene. NF-kappa B activation was visualized by a strong lacZ expression in endothelial cells of capillaries of mice infected with a virulent haemolytic strain, but was not seen in those infected with a non-haemolytic isogenic mutant. Direct evidence that LLO is involved in NF-kappa B activation in transgenic mice was provided by injecting intravenously purified LLO, thus inducing stimulation of NF-kappa B in endothelial cells of blood capillaries. Our results demonstrate that functional listeriolysin O secreted by bacteria contributes as a potent inflammatory stimulus to inducing endothelial cell activation during the infectious process.
Collapse
Affiliation(s)
- S Kayal
- Laboratoire de Microbiologie, INSERM U-411, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Tanabe Y, Xiong H, Nomura T, Arakawa M, Mitsuyama M. Induction of protective T cells against Listeria monocytogenes in mice by immunization with a listeriolysin O-negative avirulent strain of bacteria and liposome-encapsulated listeriolysin O. Infect Immun 1999; 67:568-75. [PMID: 9916060 PMCID: PMC96356 DOI: 10.1128/iai.67.2.568-575.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Only listeriolysin O (LLO)-producing strains of Listeria monocytogenes generate protective immunity in mice. Based on the findings that endogenous gamma interferon (IFN-gamma) production was induced only by such strains and that purified LLO could induce IFN-gamma from NK cells, we have postulated that LLO may play a pivotal role in the induction of Th1-type protective T cells, which are highly dependent on IFN-gamma. In this study, mice were immunized with L. monocytogenes ATCC 15313, an LLO-nonproducing avirulent strain, along with LLO encapsulated in liposome (LLO-liposome). LLO-liposome was highly potent in the induction of various cytokines, including IFN-gamma. Immunization of mice with either LLO-liposome or the viable strain ATCC 15313 alone did not induce protection against challenge infection. In contrast, the combination of LLO-nonproducing bacteria plus LLO-liposome induced a significant level of protective immunity mediated mainly by Th1-type cells capable of producing a large amount of IFN-gamma in an antigen-specific manner. The protection afforded by the combination was not dependent on LLO-specific cytotoxic T cells. These results support the idea that the inability of an LLO-nonproducing avirulent strain or killed bacteria to induce the generation of protective T cells is due not to the lack of a central T-cell epitope(s) but to the lack of ability to induce the production of endogenous cytokine during the early stage of immunization; the results also suggest that an appropriate use of LLO at least in an animal model may be effective in the induction of antigen-specific Th1-dependent protective immunity to various kinds of intracellular parasitic bacteria.
Collapse
Affiliation(s)
- Y Tanabe
- Departments of Bacteriology, Niigata 951-8510, and Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
42
|
Schlüter D, Domann E, Buck C, Hain T, Hof H, Chakraborty T, Deckert-Schlüter M. Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect Immun 1998; 66:5930-8. [PMID: 9826375 PMCID: PMC108751 DOI: 10.1128/iai.66.12.5930-5938.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1998] [Accepted: 09/25/1998] [Indexed: 11/20/2022] Open
Abstract
Meningoencephalitis is a serious and often fatal complication of Listeria monocytogenes infection. The aim of the present study was to analyze the role of internalin A (InlA) and B, which are involved in the invasion of L. monocytogenes into cultivated host tissue cells, and that of phosphatidylcholine-specific phospholipase C (PlcB), which mainly promotes the direct cell-to-cell spread of L. monocytogenes, in murine cerebral listeriosis by use of an InlA/B (DeltainlAB2)- and a PlcB (DeltaplcB2)-deficient isogenic deletion mutant strain and the wild-type (WT) L. monocytogenes EGD. Listeria strains were directly applied to the brain, a technique which has been employed previously to study the pathogenesis of cerebral listeriosis (D. Schlüter, S. B. Oprisiu, S. Chahoud, D. Weiner, O. D. Wiestler, H. Hof, and M. Deckert-Schlüter, Eur. J. Immunol. 25:2384-2391, 1995). We demonstrated that PlcB, but not InlA or InlB, is an important virulence factor in cerebral listeriosis. Nonimmunized mice infected intracerebrally with the DeltaplcB2 strain survived significantly longer and had a reduced intracerebral bacterial load compared to mice infected with the DeltainlAB2 strain or WT bacteria. In addition, immunization with the WT prior to intracerebral infection significantly increased the survival rate of mice challenged intracerebrally with the DeltaplcB2 strain compared to that of mice infected with the WT or DeltainlAB2 strain. Histopathology revealed that the major difference between the various experimental groups was a significantly delayed intracerebral spread of the DeltaplcB2 mutant strain, indicating that cell-to-cell spread is an important pathogenic feature of cerebral listeriosis. Interestingly, irrespective of the Listeria mutant used, the apoptosis of hippocampal and cerebellar neurons and an internal hydrocephalus developed in surviving mice, indicating that these complications are not dependent on the virulence factors InlA/B and PlcB. In conclusion, this study points to PlcB as a virulence factor important for the intracerebral pathogenesis of murine L. monocytogenes meningoencephalitis.
Collapse
Affiliation(s)
- D Schlüter
- Institut für Medizinische Mikrobiologie und Hygiene, Universit atsklinikum Mannheim, Universität Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zückert WR, Marquis H, Goldfine H. Modulation of enzymatic activity and biological function of Listeria monocytogenes broad-range phospholipase C by amino acid substitutions and by replacement with the Bacillus cereus ortholog. Infect Immun 1998; 66:4823-31. [PMID: 9746585 PMCID: PMC108596 DOI: 10.1128/iai.66.10.4823-4831.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted broad-range phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC) of Listeria monocytogenes plays a role in the bacterium's ability to escape from phagosomes and spread from cell to cell. Based on comparisons with two orthologs, Clostridium perfringens alpha-toxin and Bacillus cereus PLC (PLCBc), we generated PC-PLC mutants with altered enzymatic activities and substrate specificities and analyzed them for biological function in tissue culture and mouse models of infection. Two of the conserved active-site zinc-coordinating histidines were confirmed by single amino acid substitutions H69G and H118G, which resulted in proteins inactive in broth culture and unstable intracellularly. Substitutions D4E and H56Y remodeled the PC-PLC active site to more closely resemble the PLCBc active site, while a gene replacement resulted in L. monocytogenes secreting PLCBc. All of these mutants yielded similar amounts of active enzyme as wild-type PC-PLC both in broth culture and intracellularly. D4E increased activity on and specificity for PC, while H56Y and D4E H56Y showed higher activity on both PC and sphingomyelin, with reduced specificity for PC. As expected, PLCBc expressed by L. monocytogenes was highly specific for PC. During early intracellular growth in human epithelial cells, the D4E mutant and the PLCBc-expressing strain performed significantly better than the wild type, while the H56Y and D4E H56Y mutants showed a significant defect. In assays for cell-to-cell spread, the H56Y and D4E mutants had close to wild-type characteristics, while the spreading efficiency of PLCBc was significantly lower. These studies emphasize the species-specific features of PC-PLC important for growth in mammalian cells.
Collapse
Affiliation(s)
- W R Zückert
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Xiong H, Tanabe Y, Ohya S, Mitsuyama M. Administration of killed bacteria together with listeriolysin O induces protective immunity against Listeria monocytogenes in mice. Immunology 1998; 94:14-21. [PMID: 9708181 PMCID: PMC1364325 DOI: 10.1046/j.1365-2567.1998.00477.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is known that only listeriolysin O (LLO)-producing Listeria monocytogenes strains are able to induce protective immunity, but the underlining relationship between LLO produced by virulent strains and generation of protective immunity in the infected host remains poorly understood. In the present study, it was found that LLO gene expression was only detected in the mice infected with virulent strain which was able to induce protective immunity, while non-virulent strains or killed bacteria were not able to generate protective immunity. When mice were immunized with LLO plus killed bacteria in the presence of incomplete Freund's adjuvant, the protective immunity was partially generated, and adoptive transfer experiment confirmed that this protection was antigen specific. Reverse-transcription polymerase chain reaction revealed that LLO plus killed bacteria induced the expression of interferon-gamma (IFN-gamma) and interleukin-12 (IL-12). Our results also showed CD4+ T cells were the principal cells constituting protective immunity. Taken together, it may be concluded that LLO produced from virulent strains of L. monocytogenes was essential for the generation of protective immunity, and that LLO plus killed bacteria induced IFN-gamma and IL-12 expression which resulted in the generation of protective immunity.
Collapse
Affiliation(s)
- H Xiong
- Department of Bacteriology, Niigata University School of Medicine, Japan
| | | | | | | |
Collapse
|
45
|
Verheul A, Rombouts FM, Abee T. Utilization of oligopeptides by Listeria monocytogenes Scott A. Appl Environ Microbiol 1998; 64:1059-65. [PMID: 9501445 PMCID: PMC106367 DOI: 10.1128/aem.64.3.1059-1065.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1997] [Accepted: 12/10/1997] [Indexed: 02/06/2023] Open
Abstract
For effective utilization of peptides, Listeria monocytogenes possesses two different peptide transport systems. The first one is the previously described proton motive force (PMF)-driven di- and tripeptide transport system (A. Verheul, A. Hagting, M.-R. Amezaga, I. R. Booth, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol, 61:226-233, 1995). The present results reveal that L. monocytogenes possesses an oligopeptide transport system, presumably requiring ATP rather than the PMF as the driving force for translocation. Experiments to determine growth in a defined medium containing peptides of various lengths suggested that the oligopeptide permease transports peptides of up to 8 amino acid residues. Peptidase activities towards several oligopeptides were demonstrated in cell extract from L. monocytogenes, which indicates that upon internalization, the oligopeptides are hydrolyzed to serve as sources of amino acids for growth. The peptide transporters of the nonproteolytic L. monocytogenes might play an important role in foods that harbor indigenous proteinases and/or proteolytic microorganisms, since Pseudomonas fragi as well as Bacillus cereus was found to enhance the growth of L. monocytogenes to a large extent in a medium in which the milk protein casein was the sole source of nitrogen. In addition, growth stimulation was elicited in this medium when casein was hydrolyzed by using purified protease from Bacillus licheniformis. The possible contribution of the oligopeptide transport system in the establishment of high numbers of L. monocytogenes cells in fermented milk products is discussed.
Collapse
Affiliation(s)
- A Verheul
- Department of Food Science, Agricultural University Wageningen, The Netherlands
| | | | | |
Collapse
|
46
|
Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:389-409. [PMID: 9391752 DOI: 10.1177/10454411970080040301] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial invasion of epithelial cells is associated with the initiation of infection by many bacteria. To carry out this action, bacteria have developed remarkable processes and mechanisms that co-opt host cell function and stimulate their own uptake and adaptation to the environment of the host cell. Two general types of invasion processes have been observed. In one type, the pathogens (e.g., Salmonella and Yersinia spp.) remain in the vacuole in which they are internalized and replicate within the vacuole. In the other type, the organism (e.g., Actinobacillus actinomycetemcomitans, Shigella flexneri, and Listeria monocytogenes) is able to escape from the vacuole, replicate in the host cell cytoplasm, and spread to adjacent host cells. The much-studied enteropathogenic bacteria usurp primarily host cell microfilaments for entry. Those organisms which can escape from the vacuole do so by means of hemolytic factors and C type phospholipases. The cell-to-cell spread of these organisms is mediated by microfilaments. The investigation of invasion by periodontopathogens is in its infancy in comparison with that of the enteric pathogens. However, studies to date on two invasive periodontopathogens. A actinomycetemcomitans and Porphyromonas (Bacteroides) gingivalis, reveal that these bacteria have developed invasion strategies and mechanisms similar to those of the enteropathogens. Entry of A. actinomycetemcomitans is mediated by microfilaments, whereas entry of P. gingivalis is mediated by both microfilaments and microtubules. A. actinomycetemcomitans, like Shigella and Listeria, can escape from the vacuole and spread to adjacent cells. However, the spread of A. actinomycetemcomitans is linked to host cell microtubules, not microfilaments. The paradigms presented establish that bacteria which cause chronic infections, such as periodontitis, and bacteria which cause acute diseases, such as dysentery, have developed similar invasion strategies.
Collapse
Affiliation(s)
- D H Meyer
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
47
|
Hauf N, Goebel W, Fiedler F, Sokolovic Z, Kuhn M. Listeria monocytogenes infection of P388D1 macrophages results in a biphasic NF-kappaB (RelA/p50) activation induced by lipoteichoic acid and bacterial phospholipases and mediated by IkappaBalpha and IkappaBbeta degradation. Proc Natl Acad Sci U S A 1997; 94:9394-9. [PMID: 9256493 PMCID: PMC23201 DOI: 10.1073/pnas.94.17.9394] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As previously reported, Listeria monocytogenes infection of P388D1 macrophages results in a rapid induction of NF-kappaB DNA-binding activity. Here we show that this induction of NF-kappaB activity occurs in a biphasic mode: first, a transient, IkappaBalpha degradation-dependent phase of activity, also induced by the nonvirulent species Listeria innocua, which is mediated by binding of the bacteria to the macrophage, or by adding Listeria-derived lipoteichoic acid to the macrophage; the second persistent phase of activation is only markedly induced when the bacteria enter the cytoplasm of the host cell and express the virulence genes plcA and plcB, encoding two phospholipases. We suggest that products of the enzymatic activity of phospholipases directly interfere with host cell signal transduction pathways, thus leading to persistent NF-kappaB activation via persistent IkappaBbeta degradation.
Collapse
Affiliation(s)
- N Hauf
- Theodor Boveri Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Marquis H, Goldfine H, Portnoy DA. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol 1997; 137:1381-92. [PMID: 9182669 PMCID: PMC2132530 DOI: 10.1083/jcb.137.6.1381] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/1997] [Revised: 03/17/1997] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes metalloprotease (Mpl). Analysis of PI-PLC, PC-PLC, and Mpl single and double mutants revealed that Mpl also plays a role in the spread of an infection, but suggested that proPC-PLC has an Mpl-independent activation pathway. Using biochemical and microscopic approaches, we describe three intracellular proteolytic pathways regulating PCPLC activity. Initially, proPC-PLC secreted in the cytosol of infected cells was rapidly degraded in a proteasome-dependent manner. Later during infection, PCPLC colocalized with bacteria in lysosome-associated membrane protein 1-positive vacuoles. Activation of proPC-PLC in vacuoles was mediated by Mpl and an Mpl-independent pathway, the latter being sensitive to inhibitors of cysteine proteases. Lastly, proPC-PLC activation by either pathway was sensitive to bafilomycin A1, a specific inhibitor of vacuolar ATPase, suggesting that activation was dependent on acidification of the vacuolar compartment. These results are consistent with a model in which proPC-PLC activation is compartment specific and controlled by a combination of bacterial and host factors.
Collapse
Affiliation(s)
- H Marquis
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
49
|
Abstract
Listeria monocytogenes is one of the leading foodborne pathogens and has been implicated in numerous outbreaks in the last 2 decades. Immunocompromised populations are usually the most susceptible to Listeria infections. Although the pathogenic mechanism is a complex process, significant progress has been made in unravelling the mechanism in recent years. It is now clear that numerous extracellular and cell-associated proteins, such as internalin, listeriolysin, actin polymerization protein, phospholipase, metalloprotease, and possibly p60 proteins, are essential for L. monocytogenes entry into mammalian cells, survival inside the phagosome, escape into the cytoplasm, and cell-to-cell spread. Other proteins may be responsible for growth and physiology or to maintain the structural integrity of the bacteria. Monoclonal and polyclonal antibodies have been developed against many of those antigens or their synthetic derivatives that have helped greatly to determine the structure and function of these antigens. The antibodies were also used for the diagnosis and detection, immunocytochemical staining, and serotyping of Listeria. Humoral immune response to live L. monocytogenes cells was examined in naturally or experimentally infected hosts. Studies revealed that only extracellular antigens induced the humoral response, whereas cell-associated antigens had apparently no response. It is speculated that during the occasional bacteremic phase, L. monocytogenes releases extracellular antigens that are then processed by the immune system for antibody production. As L. monocytogenes is an intracellular pathogen, the cell-associated antigens are not persistent in the blood circulation and thus fail to stimulate the humoral immune response.
Collapse
Affiliation(s)
- A K Bhunia
- Department of Food Science and Animal Industries, Alabama A&M University, Huntsville 35762, USA
| |
Collapse
|
50
|
Abstract
Following the initial isolation and description in 1926 Listeria monocytogenes has been shown to be of world-wide prevalence and is associated with serious disease in a wide variety of animals, including man. Our knowledge of this bacterial pathogen and the various forms of listeriosis that it causes has until recently been extremely limited, but recent advances in taxonomy, isolation methods, bacterial typing, molecular biology and cell biology have extended our knowledge. It is an exquisitely adaptable environmental bacterium capable of existing both as an animal pathogen and plant saprophyte with a powerful array of regulated virulence factors. Most cases of listeriosis arise from the ingestion of contaminated food and in the UK the disease is particularly common in ruminants fed on silage. Although a number of forms of listeriosis are easily recognized, such as encephalitis, abortion and septicaemia, the epidemiological aspects and pathogenesis of infection in ruminants remain poorly understood. The invasion of peripheral nerve cells and rapid entry into the brain is postulated as a unique characteristic of its virulence, but relevant and practical disease models are still required to investigate this phenomenon. This review offers an up to date introduction to the organism with a description of virulence determinants, typing systems and a detailed account of listeriosis in animals. Experimental and field papers are reviewed and further sections deal with the diagnosis, treatment and control of listeriosis in animals. A final part gives an overview of listeriosis in man.
Collapse
Affiliation(s)
- J C Low
- SACVS Edinburgh, Midlothian, Scotland, UK
| | | |
Collapse
|