1
|
Mizrahi A, Péan de Ponfilly G, Sapa D, Suau A, Mangin I, Baliarda A, Hoys S, Pilmis B, Lambert S, Brosse A, Le Monnier A. A Mouse Model of Mild Clostridioides difficile Infection for the Characterization of Natural Immune Responses. Microorganisms 2024; 12:1933. [PMID: 39458243 PMCID: PMC11509167 DOI: 10.3390/microorganisms12101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: We describe a model of primary mild-Clostridioides difficile infection (CDI) in a naïve host, including gut microbiota analysis, weight loss, mortality, length of colonization. This model was used in order to describe the kinetics of humoral (IgG, IgM) and mucosal (IgA) immune responses against toxins (TcdA/TcdB) and surface proteins (SlpA/FliC). (2) Methods: A total of 105 CFU vegetative forms of C. difficile 630Δerm were used for challenge by oral administration after dysbiosis, induced by a cocktail of antibiotics. Gut microbiota dysbiosis was confirmed and described by 16S rDNA sequencing. We sacrificed C57Bl/6 mice after different stages of infection (day 6, 2, 7, 14, 21, 28, and 56) to evaluate IgM, IgG against TcdA, TcdB, SlpA, FliC in blood samples, and IgA in the cecal contents collected. (3) Results: In our model, we observed a reproducible gut microbiota dysbiosis, allowing for C. difficile digestive colonization. CDI was objectivized by a mean weight loss of 13.1% and associated with a low mortality rate of 15.7% of mice. We observed an increase in IgM anti-toxins as early as D7 after challenge. IgG increased since D21, and IgA anti-toxins were secreted in cecal contents. Unexpectedly, neither anti-SlpA nor anti-FliC IgG or IgA were observed in our model. (4) Conclusions: In our model, we induced a gut microbiota dysbiosis, allowing a mild CDI to spontaneously resolve, with a digestive clearance observed since D14. After this primary CDI, we can study the development of specific immune responses in blood and cecal contents.
Collapse
Affiliation(s)
- Assaf Mizrahi
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Gauthier Péan de Ponfilly
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Diane Sapa
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Antonia Suau
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Irène Mangin
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Aurélie Baliarda
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sandra Hoys
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Benoît Pilmis
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sylvie Lambert
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Anaïs Brosse
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Alban Le Monnier
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| |
Collapse
|
2
|
Aminzadeh A, Hilgers L, Paul Platenburg P, Riou M, Perrot N, Rossignol C, Cauty A, Barc C, Jørgensen R. Immunogenicity and safety in rabbits of a Clostridioides difficile vaccine combining novel toxoids and a novel adjuvant. Vaccine 2024; 42:1582-1592. [PMID: 38336558 DOI: 10.1016/j.vaccine.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark
| | - Luuk Hilgers
- LiteVax BV, Akkersestraat 50, 4061BJ Ophemert, the Netherlands
| | | | - Mickaël Riou
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Noémie Perrot
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Christelle Rossignol
- INRAE-Université de Tours, UMR-1282 Infectiologie et Santé publique (ISP), équipe IMI, Centre Val de Loire, 37380 Nouzilly, France
| | - Axel Cauty
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Céline Barc
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - René Jørgensen
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Alam MZ, Markantonis JE, Fallon JT. Host Immune Responses to Clostridioides difficile Infection and Potential Novel Therapeutic Approaches. Trop Med Infect Dis 2023; 8:506. [PMID: 38133438 PMCID: PMC10747268 DOI: 10.3390/tropicalmed8120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a leading nosocomial infection, posing a substantial public health challenge within the United States and globally. CDI typically occurs in hospitalized elderly patients who have been administered antibiotics; however, there has been a rise in the occurrence of CDI in the community among young adults who have not been exposed to antibiotics. C. difficile releases toxins, which damage large intestinal epithelium, leading to toxic megacolon, sepsis, and even death. Unfortunately, existing antibiotic therapies do not always prevent these consequences, with up to one-third of treated patients experiencing a recurrence of the infection. Host factors play a crucial role in the pathogenesis of CDI, and accumulating evidence shows that modulation of host immune responses may potentially alter the disease outcome. In this review, we provide an overview of our current knowledge regarding the role of innate and adaptive immune responses on CDI outcomes. Moreover, we present a summary of non-antibiotic microbiome-based therapies that can effectively influence host immune responses, along with immunization strategies that are intended to tackle both the treatment and prevention of CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | | | | |
Collapse
|
5
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
6
|
Towards Development of a Non-Toxigenic Clostridioides difficile Oral Spore Vaccine against Toxigenic C. difficile. Pharmaceutics 2022; 14:pharmaceutics14051086. [PMID: 35631671 PMCID: PMC9146386 DOI: 10.3390/pharmaceutics14051086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile is an opportunistic gut pathogen which causes severe colitis, leading to significant morbidity and mortality due to its toxins, TcdA and TcdB. Two intra-muscular toxoid vaccines entered Phase III trials and strongly induced toxin-neutralising antibodies systemically but failed to provide local protection in the colon from primary C. difficile infection (CDI). Alternatively, by immunising orally, the ileum (main immune inductive site) can be directly targeted to confer protection in the large intestine. The gut commensal, non-toxigenic C. difficile (NTCD) was previously tested in animal models as an oral vaccine for natural delivery of an engineered toxin chimera to the small intestine and successfully induced toxin-neutralising antibodies. We investigated whether NTCD could be further exploited to induce antibodies that block the adherence of C. difficile to epithelial cells to target the first stage of pathogenesis. In NTCD strain T7, the colonisation factor, CD0873, and a domain of TcdB were overexpressed. Following oral immunisation of hamsters with spores of recombinant strain, T7-0873 or T7-TcdB, intestinal and systemic responses were investigated. Vaccination with T7-0873 successfully induced intestinal antibodies that significantly reduced adhesion of toxigenic C. difficile to Caco-2 cells, and these responses were mirrored in sera. Additional engineering of NTCD is now warranted to further develop this vaccine.
Collapse
|
7
|
Aminzadeh A, Larsen CE, Boesen T, Jørgensen R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep 2022; 23:e53597. [PMID: 34817920 PMCID: PMC8728606 DOI: 10.15252/embr.202153597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Christian Engelbrecht Larsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - René Jørgensen
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
- Department of Science and EnvironmentUniversity of RoskildeRoskildeDenmark
| |
Collapse
|
8
|
Ramos-Martínez A, Serrano-Martínez F, Pintos I, Valencia-Alijo Á, Gutiérrez-Rojas Á, Cítores MJ, Ortiz-Balbuena J, Royuela A, Martínez-Ruiz R, Sánchez-Romero I, Asensio Á, Múñez E, Plaza A. Effective definition of low humoral response to Clostridioides difficile infection. Anaerobe 2021; 72:102475. [PMID: 34752901 DOI: 10.1016/j.anaerobe.2021.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Determination of the humoral response to Clostridioides difficile (CD) toxins could be of great value in the management of patients with CD infection (CDI). METHODS A prospective study was conducted on the clinical characteristics and humoral response in patients with CDI. Determination of ELISA IgG CD anti-toxin B (tgcBiomics, Germany) was performed. The following dilutions were planned for each patient, 1:100, 1: 200, 1: 400, 1: 800: 1: 1600. A significant concentration of antibody was considered to be present in each dilution if an optical density 0.2 units higher than the negative control of the technique was evident. RESULTS Eighty-five patients were included during the study period, November 2018-February 2020. The median age was 73 years (interquartile range: 62.5-85 years), with female predominance (45 patients, 52.9%). Thirty-nine patients (45.9%) had a severe infection. Seven patients (8.2%) had suffered an episode of CDI in the previous three months. Seventeen patients (20%) had one or more recurrent episodes during the three-month follow-up: No patient died during admission or required surgery for severe-complicated infection. The incidence of recurrence in patients with no antibody detected at 1:400 dilution was 25.4% (16 patients) while it was 4.3% (one patient) in patients with antibody present at that dilution (p = 0.03). Liver cirrhosis was associated with higher humoral response against CD. CONCLUSIONS Antibodies IgG CD anti-toxin B detection at a dilution of 1:400, using a B ELISA technique, effectively identified patients at increased risk of recurrence. This information could help assist in the management of patients.
Collapse
Affiliation(s)
- Antonio Ramos-Martínez
- Unidad de Enfermedades Infecciosas. Departamento de Medicina Interna, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana (IDIPHSA), Universidad Autónoma de Madrid, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Francisco Serrano-Martínez
- Departamento de Inmunología, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Ilduara Pintos
- Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Ángela Valencia-Alijo
- Unidad de Enfermedades Infecciosas, Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Ángela Gutiérrez-Rojas
- Unidad de Enfermedades Infecciosas, Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - María Jesús Cítores
- Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Jorge Ortiz-Balbuena
- Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Ana Royuela
- Biostatistics Unit, Puerta de Hierro Biomedical Research Institute (IDIPHISA), CIBERESP, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Rocío Martínez-Ruiz
- Departamento de Microbiología, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Isabel Sánchez-Romero
- Departamento de Microbiología, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Ángel Asensio
- Departamento de Medicina Preventiva, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Elena Múñez
- Unidad de Enfermedades Infecciosas, Departamento de Medicina Interna, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| | - Aresio Plaza
- Departamento de Inmunología, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 2, 2822, Majadahonda, Madrid, Spain.
| |
Collapse
|
9
|
The murine neonatal Fc receptor is required for transport of immunization-induced C. difficile-specific IgG to the gut and protection against disease but does not affect disease susceptibility. Infect Immun 2021; 89:e0027421. [PMID: 34097471 DOI: 10.1128/iai.00274-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathology associated with C. difficile disease is caused in large part by TcdB, an intracellular bacterial toxin that inactivates small GTPases. Despite C. difficile causing an enteric disease, anti-toxin IgG is a clear correlate of protection against infection-associated pathology. Immunization with TcdB-based immunogens or passive transfer of monoclonal antibodies specific for the TcdB carboxy-terminal domain (CTD) confers protection following C. difficile infection. Whether the mechanism by which circulating IgG is delivered to the gut depends on specific receptor-mediated transport or is solely reflective of infection-induced damage to the gut remains unclear. Herein, we tested the hypothesis that neonatal Fc receptor (FcRn) is required for delivery of systemic TcdB-specific IgG to the gut and protection against C. difficile-associated pathology. FcRn-expressing mice and FcRn-deficient littermates were immunized subcutaneously with Alhydrogel adjuvant-adsorbed CTD before challenge with live C. difficile spores. FcRn was required for delivery of systemic TcdB-specific IgG to the gut, and for vaccine-induced protection against C. difficile associated disease. The lack of FcRn expression had minimal effects on composition of the gut microbiome and did not affect susceptibility to C. difficile infection in non-immunized mice. In further experiments intraperitoneal injection FcRn-deficient mice with immune sera led to transport of protective IgG to the gut independently of infection confirming a reported method of bypassing the FcRn. Our results reveal an FcRn-dependent mechanism by which systemic immunization-induced IgG protects the gut during enteric C. difficile infection. These findings may be beneficial for targeting of C. difficile -specific IgG to the gut.
Collapse
|
10
|
Sehgal K, Khanna S. Immune response against Clostridioides difficile and translation to therapy. Therap Adv Gastroenterol 2021; 14:17562848211014817. [PMID: 33995585 PMCID: PMC8111532 DOI: 10.1177/17562848211014817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of Clostridioides difficile infection (CDI) has largely been attributed to the action of two major toxins - A and B. An enhanced systemic humoral immune response against these toxins has been shown to be protective against recurrent CDI. Over the years, fully human monoclonal antibodies against both of these toxins have been developed in an attempt to counter the increasing incidence of recurrent CDI. Clinical trials conducted to evaluate the efficacy of anti-toxin A monoclonal antibody, actoxumab, and anti-toxin B monoclonal antibody, bezlotoxumab, demonstrated that bezlotoxumab substantially lowered the rate of recurrent infection, while actoxumab did not. A significant therapeutic benefit was appreciated in patients with at least one high-risk factor for recurrence, including, age ⩾65 years, immunocompromised state, prior CDI and severe CDI. In light of toxins A and B being immunogenic, vaccine trials are underway with the aim to prevent primary infection.
Collapse
Affiliation(s)
- Kanika Sehgal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Kelly CP, Poxton IR, Shen J, Wilcox MH, Gerding DN, Zhao X, Laterza OF, Railkar R, Guris D, Dorr MB. Effect of Endogenous Clostridioides difficile Toxin Antibodies on Recurrence of C. difficile Infection. Clin Infect Dis 2021; 71:81-86. [PMID: 31628838 DOI: 10.1093/cid/ciz809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endogenous antibodies (eAbs) against Clostridioides (Clostridium) difficile toxins may protect against recurrence of C. difficile infection (rCDI). This hypothesis was tested using placebo group data from MODIFY (Monoclonal Antibodies for C. difficile Therapy) I and II (NCT01241552 and NCT01513239, respectively), global, randomized phase 3 trials that assessed the efficacy and safety of the antitoxin monoclonal antibodies bezlotoxumab and actoxumab in participants receiving antibiotic therapy for CDI. METHODS A placebo infusion (normal saline) was administered on study day 1. Serum samples were collected on day 1, week 4, and week 12, and eAb-A and eAb-B titers were measured by 2 validated electrochemiluminescence immunoassays. Rates of initial clinical cure and rCDI were summarized by eAb titer category (low, medium, high) at each time point. RESULTS Serum eAb titers were available from a total of 773 participants. The proportion of participants with high eAb-A and eAb-B titers increased over time. Rates of initial clinical cure were similar across eAb titer categories. There was no correlation between eAb-A titers and rCDI rate at any time point. However, there was a negative correlation between rCDI and eAb-B titer on day 1 and week 4. rCDI occurred in 22% of participants with high eAb-B titers at baseline compared with 35% with low or medium titers (P = .015). CONCLUSIONS Higher eAb titers against toxin B, but not toxin A, were associated with protection against rCDI. These data are consistent with the observed efficacy of bezlotoxumab, and lack of efficacy of actoxumab, in the MODIFY trials. CLINICAL TRIALS REGISTRATION NCT01241552 and NCT01513239.
Collapse
Affiliation(s)
- Ciarán P Kelly
- Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ian R Poxton
- University of Edinburgh, Edinburgh, United Kingdom
| | | | - Mark H Wilcox
- Leeds Teaching Hospitals and University of Leeds, United Kingdom
| | - Dale N Gerding
- Loyola University Chicago Stritch School of Medicine, Maywood.,Edward Hines Jr Veterans Affairs Hospital, Hines, Illinois
| | | | | | | | | | | |
Collapse
|
12
|
Gilbert J, Leslie J, Putler R, Weiner S, Standke A, Penkevich A, Keidan M, Young VB, Rao K. Anti-toxin antibody is not associated with recurrent Clostridium difficile infection. Anaerobe 2021; 67:102299. [PMID: 33227427 PMCID: PMC8094835 DOI: 10.1016/j.anaerobe.2020.102299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infection (CDI) recurs in ∼20% of patients. Prior studies indicated that antibody responses directed against the C. difficile toxins A and B were potentially associated with lower risk of recurrent CDI. Here we tested the hypothesis that circulating anti-toxin IgG antibody levels associate with reduced risk of recurrent CDI. A cohort study with prospective enrollment and retrospective data abstraction examined antibody levels in 275 adult patients at the University of Michigan with CDI. We developed an enzyme linked immunosorbent assay to detect IgG antibodies against toxin A and toxin B in sera obtained at the time of diagnosis. Logistic regression examined the relationship between antibody levels and recurrence, and sensitivity tests evaluated for follow-up and survivor biases, history of CDI, and PCR ribotype. Follow-up data were available for 174 subjects, of whom 36 (20.7%) had recurrence. Comparing antibody levels vs. recurrence and CDI history, anti-toxin A levels were similar, while anti-toxin B levels had a greater range of values. In unadjusted analysis, detection of anti-toxin A antibodies, but not anti-toxin B antibodies, associated with an increased risk of recurrence (OR 2.71 [1.06, 8.37], P = .053). Adjusting for confounders weakened this association. The results were the same in sensitivity analyses. We observed a borderline increased risk of recurrence in patients positive for anti-toxin A antibodies, and sensitivity analyses showed this was not simply a reflection of prior exposure status. Future studies are needed to assess how neutralizing antibody or levels after treatment associate with recurrence.
Collapse
Affiliation(s)
| | | | - Rose Putler
- Department of Microbiology and Immunology, USA
| | - Shayna Weiner
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Standke
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Aline Penkevich
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Micah Keidan
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Krishna Rao
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Na’amnih W, Carmeli Y, Asato V, Goren S, Adler A, Cohen D, Muhsen K. Enhanced Humoral Immune Responses against Toxin A and B of Clostridium difficile is Associated with a Milder Disease Manifestation. J Clin Med 2020; 9:jcm9103241. [PMID: 33050453 PMCID: PMC7601293 DOI: 10.3390/jcm9103241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
The role of the humoral immune response to Clostridium difficile in modulating the severity of C. difficile infection (CDI) is unclear. We compared the levels of serum immunoglobulin G (IgG) and immunoglobulin A (IgA) against toxin A (TcdA) and toxin B (TcdB) of C. difficile between CDI and control patients and according to disease severity. The levels of IgG and IgA antibodies against TcdA and TcdB were measured in sera from patients with CDI (n = 50; 19 had severe CDI) and control patients (n = 52), using ELISA. Patients with CDI had higher levels of IgG antibodies against TcdA and TcdB than controls (p = 0.001 and p = 0.04, respectively). Higher IgG levels against TcdA and TcdB were found in patients with mild vs. severe CDI 7-14 days after the diagnosis (p = 0.004 and 0.036, respectively). A factor analysis included both IgA and IgG levels against both toxins into one composite variable, which was of higher values in patients with mild vs. severe CDI (p = 0.026). In conclusion, the systemic humoral immune responses against TcdA and TcdB might modulate the severity of CDI. These preliminary findings provide a basis for future large-scale studies and support the development and evaluation of active and passive immunotherapies for CDI management.
Collapse
Affiliation(s)
- Wasef Na’amnih
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Department of Geriatric Rehabilitation, Tel-Aviv Sourasky medical Center, Tel Aviv 6423906, Israel
- Correspondence: (W.N.); (K.M.); Tel.: +972-3-6405945 (W.N.); Fax: +972-3-6409868 (W.N.)
| | - Yehuda Carmeli
- Division of Epidemiology, and the National Institute for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Valeria Asato
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Amos Adler
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky medical Center, Tel Aviv 6423906, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Correspondence: (W.N.); (K.M.); Tel.: +972-3-6405945 (W.N.); Fax: +972-3-6409868 (W.N.)
| |
Collapse
|
14
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
Pacyga K, Razim A, Martirosian G, Aptekorz M, Szuba A, Gamian A, Myc A, Górska S. The Bioinformatic and In Vitro Studies of Clostridioides Difficile Aminopeptidase M24 Revealed the Immunoreactive KKGIK Peptide. Cells 2020; 9:cells9051146. [PMID: 32392707 PMCID: PMC7291276 DOI: 10.3390/cells9051146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive pathogen responsible for CD-associated disease (CDAD), which is characterized by symptoms ranging from mild diarrhea to pseudomembranous colitis. This work is an attempt to respond to the need of novel methods for CD infection (CDI) prevention, since the number of CDI cases is still rising. A bioinformatics approach was applied to design twenty-one peptides consisting of in silico predicted linear B-cell and T-cell epitopes of aminopeptidase M24 from CD. These peptides were mapped for epitopes exploiting PEPSCAN procedure and using sera obtained from CD infected patients, umbilical cord blood, and healthy volunteers. Two new CD epitopes, 131KKGIK135 and 184KGTSTHVIT192, were identified and characterized. Immunoreactivity of the synthetic biotinylated 131KKGIK135 epitope was significantly higher compared to 184KGTSTHVIT192 epitope in Enzyme-Linked Immunosorbent Assay (ELISA) with umbilical cord blood and CDI patients' sera. Hereafter, the conjugate of bovine serum albumin and epitope 131KKGIK135 was evaluated in vitro on lung epithelial cell line. In vitro, a significant induction of IL-6 by conjugate was observed, thereby we postulate that this new 131KKGIK135 epitope possesses immunostimulating properties suggesting possibility of its use in a vaccine against Clostridioides difficile.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Andrzej Szuba
- Division of Angiology, Wroclaw Medical University, 51-618 Wroclaw, Poland;
- Department of Internal Medicine, 4th Military Hospital in Wroclaw, 50-981 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5648, USA
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| |
Collapse
|
17
|
Amadou Amani S, Lang ML. Bacteria That Cause Enteric Diseases Stimulate Distinct Humoral Immune Responses. Front Immunol 2020; 11:565648. [PMID: 33042146 PMCID: PMC7524877 DOI: 10.3389/fimmu.2020.565648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial enteric pathogens individually and collectively represent a serious global health burden. Humoral immune responses following natural or experimentally-induced infections are broadly appreciated to contribute to pathogen clearance and prevention of disease recurrence. Herein, we have compared observations on humoral immune mechanisms following infection with Citrobacter rodentium, the model for enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica species, and Clostridioides difficile. A comparison of what is known about the humoral immune responses to these pathogens reveals considerable variance in specific features of humoral immunity including establishment of high affinity, IgG class-switched memory B cell and long-lived plasma cell compartments. This article suggests that such variance could be contributory to persistent and recurrent disease.
Collapse
|
18
|
Adamson PJ, Wang JJ, Anosova NG, Colella AD, Chataway TK, Kleanthous H, Gordon TP, Gordon DL. Proteomic profiling of precipitated Clostridioides difficile toxin A and B antibodies. Vaccine 2019; 38:2077-2087. [PMID: 31718902 DOI: 10.1016/j.vaccine.2019.10.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Clostridioides difficile infection is the leading cause of nosocomial diarrhoea globally. Immune responses to toxins produced by C. difficile are important in disease progression and outcome. Here, we analysed the anti-toxin A and anti-toxin B serum antibody proteomes following natural infection or vaccination with a C. difficile toxoid A/toxoid B vaccine using a modified miniaturised proteomic approach based on de novo mass spectrometric sequencing. Analysis of immunoglobulin variable region (IgV) subfamily expression in immunoprecipitated toxin A and toxin B antibodies from four and seven participants of a vaccine trial, respectively, revealed a polyclonal proteome with restricted IGHV, IGKV and IGLV subfamily usage. No dominant IGHV subfamily was observed in the toxin A response, however the dominant anti-toxin B heavy (H)-chain was encoded by IGHV3-23. Light (L)-chain usage was convergent for both anti-toxin A and anti-toxin B proteomes with IGKV3-11, 3-15, 3-20 and 4-1 shared among all subjects in both cohorts. Peptide mapping of common IgV families showed extensive public and private amino acid substitutions. The cohort responses to toxin A and toxin B showed limited similarity in shared IGHV subfamilies. L-chain subfamily usage was more similar in the anti-toxin A and anti-toxin B responses, however the mutational signatures for each subfamily were toxin-dependent. Samples taken both post vaccination (n = 5) or at baseline, indicating previous exposure (n = 2), showed similar anti-toxin B IgV subfamily usage and mutational profiles. In summary, this study provides the first sequence-based proteomic analysis of the antibody response to the major disease-mediating toxins of C. difficile, toxin A and toxin B, and demonstrates that despite the potential for extreme diversity, the immunoglobulin repertoire can raise convergent responses to specific pathogens whether through natural infection or following vaccination.
Collapse
Affiliation(s)
- Penelope J Adamson
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | - Alex D Colella
- Flinders Proteomic Facility, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Timothy K Chataway
- Flinders Proteomic Facility, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| |
Collapse
|
19
|
Cimolai N. Are Clostridium difficile toxins nephrotoxic? Med Hypotheses 2019; 126:4-8. [PMID: 31010497 DOI: 10.1016/j.mehy.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
Clostridium difficile-associated disease (CDAD) occurs along a spectrum from simple uncomplicated enteritis to a multi-system disease which may include nephropathy. Pathology is attributed to bacterial toxins, but it is unclear if the latter are directly nephrotoxic. Anecdotes of renal disease from human biopsy findings suggest a variation of histopathologies, but data are relatively limited. Acute renal failure does occur in patients with advanced morbidity. CDAD can complicate chronic renal failure. Kidney tissue culture cytotoxicity has long been known. Kidney function alterations among animal models or diseased humans are relatively uncommon in mild to moderate enteritis. Rare findings of toxinemia are reported. Some have proposed that renal dysfunction arises more from pre-renal compromises. Direct toxin studies on whole kidney are sparse. The role of direct toxin-associated renal disease is worthy of further investigation given the current impetus towards the development of protective and therapeutic passive and active immunity. Hypotheses of toxin-direct or pre-renal toxin compromise of renal function prevail.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H3V4, Canada.
| |
Collapse
|
20
|
Azrad M, Hamo Z, Tkhawkho L, Peretz A. Elevated serum immunoglobulin A levels in patients with Clostridium difficile infection are associated with mortality. Pathog Dis 2018; 76:5075583. [PMID: 30124816 DOI: 10.1093/femspd/fty066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023] Open
Abstract
The current research investigated immunoglobulin A levels in serum of patients with Clostridium difficile infection. Our main aim was to test whether immunoglobulin A (IgA) levels at the early stage of infection can predict disease severity of C. difficile infection. Fifty-four patients were enrolled in the study. Stool samples were collected and analyzed by PCR for detection of C. difficile. IgA levels were measured in serum samples that were collected from each patient immediately after receiving a positive PCR result. Additionally, data concerning epidemiologic and clinical characteristics of the patients was retrospectively collected from the medical records. Serum IgA levels were not associated with the severity of C. difficile infection. However, a positive correlation between IgA levels and mortality during hospitalization was found. Additionally, IgA levels correlated with C-reactive protein and white blood cell levels. Although we did not find a correlation between IgA levels and C. difficile infection severity, we could associate IgA levels with the severity of general immune response and to complications of the infection, i.e. mortality. We think that this could represent a compensatory mechanism to the damage caused by C. difficile. Considering serum IgA anti-inflammatory functions, it is possible the increase in IgA levels aimed to suppress the more intense inflammatory response in patients who died during hospitalization.
Collapse
Affiliation(s)
- Maya Azrad
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Zohar Hamo
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Linda Tkhawkho
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
21
|
Förster B, Chung PK, Crobach MJT, Kuijper EJ. Application of Antibody-Mediated Therapy for Treatment and Prevention of Clostridium difficile Infection. Front Microbiol 2018; 9:1382. [PMID: 29988597 PMCID: PMC6027166 DOI: 10.3389/fmicb.2018.01382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile causes antibiotic- and healthcare-associated diarrhea, which is characterized by a high mortality rate (5–15%) and high recurrence rate of 20% or more. Therapeutic alternatives to antibiotics are urgently needed to improve the overall cure rate. Among these, therapeutic antibodies have shown promising results in clinical studies. Herein, the authors review current monoclonal and polyclonal anti- C. difficile antibodies that have entered the clinical development stage, either for systemic administration or by the oral route. The antibodies can be applied as monotherapy or in combination with standard-of-care to treat an infection with C. difficile or to protect from a recurrence. Bezlotoxumab is the first antibody for secondary prevention of recurrence of C. difficile infection approved by the regulatory agencies in US and Europe. The human monoclonal antibody is administered systemically to patients receiving oral standard-of–care antibiotics. Other antibodies are currently in the clinical pipeline, and some are intended for oral use. They show a good safety profile, high efficacy and low production costs, and can be considered promising therapies of the future. The most promising orally administered drug candidate is a bovine antibody from hyperimmune colostral milk, which is in an advanced clinical development stage. Which antibody will enter the market is dependent on its bioavailability at the site of infection as well as its activity against C. difficile toxins, protection against colonization and possible action on spore formation. The antibody must demonstrate a clear benefit in comparison with other available treatment options to be considered for use by clinicians.
Collapse
Affiliation(s)
- Beatrix Förster
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Pui Khi Chung
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Monique J T Crobach
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Péchiné S, Bruxelle JF, Janoir C, Collignon A. Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Front Microbiol 2018; 9:1009. [PMID: 29875742 PMCID: PMC5974105 DOI: 10.3389/fmicb.2018.01009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
New therapies are needed to prevent and treat Clostridium difficile infection and to limit the rise in antibiotic resistance. Besides toxins, several surface components have been characterized as colonization factors and have been shown as immunogenic. This review will focus on passive and active immunization strategies targeting C. difficile surface components to combat C. difficile. Concerning passive immunization, the first strategies used antisera raised against the entire bacterium to prevent infection in the hamster model. Then, surface components such as the flagellin and the S-layer proteins were used for immunization and the passive transfer of antibodies was protective in animal models. Passive immunotherapy with polyvalent immunoglobulins was used in humans and bovine immunoglobulin concentrates were evaluated in clinical trials. Concerning active immunization, vaccine assays targeting surface components were tested mainly in animal models, mouse models of colonization and hamster models of infection. Bacterial extracts, spore proteins and surface components of vegetative cells such as cell wall proteins, flagellar proteins, and polysaccharides were used as vaccine targets. Vaccine assays were performed by parenteral and mucosal routes of immunization. Both gave promising results and pave the way to development of new vaccines.
Collapse
Affiliation(s)
- Séverine Péchiné
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean F Bruxelle
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Claire Janoir
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Collignon
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
23
|
Rees WD, Steiner TS. Adaptive immune response toClostridium difficileinfection: A perspective for prevention and therapy. Eur J Immunol 2018; 48:398-406. [DOI: 10.1002/eji.201747295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- William D. Rees
- Department of Medicine; University of British Columbia; Vancouver BC Canada
| | | |
Collapse
|
24
|
Petrosillo N. Tackling the recurrence of Clostridium difficile infection. Med Mal Infect 2018; 48:18-22. [PMID: 29336928 DOI: 10.1016/j.medmal.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
The pathogenesis of recurrent Clostridium difficile infection (CDI) is still poorly understood. The risk of recurrence is approximately 20% after an initial CDI episode and dramatically increases with subsequent CDI recurrences. Several factors may play a role in recurrent CDI (rCDI), including conditions influencing germination, metabolic pathways that influence toxin production of C. difficile, and the microbiota composition offering protection against colonization and disease caused by C. difficile. Paradoxically, the currently recommended treatment for acute symptomatic CDI, i.e. metronidazole or vancomycin, can cause modification of the intestinal flora. Indeed, administration of anti-CDI antibiotics leads to suppression of C. difficile, along with collateral damage of the protective intestinal microbiota and opening of a "window of vulnerability" for recurrence. Host factors also have a prominent role, including innate and acquired humoral immunity, i.e. passive antibodies administration or active vaccination as a prevention strategy. They play a crucial role in the protection against severe and recurrent CDI. The assessment of risk factors of recurrence and modeling prediction scores could help in preventing the troublesome experience of CDI recurrence. Six studies have methodologically assessed prediction scores for rCDI. However, the definition of recurrence was heterogeneous, external validation was often not performed, and immunological factors were often not considered. There is a need for further studies on the pathophysiology of recurrence to design models for prediction that are sound and applicable in clinical practice.
Collapse
Affiliation(s)
- N Petrosillo
- Clinical and Research Department for Infectious Diseases, National Institute for Infectious Diseases L. Spallanzani, Via Portuense 292, 00149 Rome, Italy.
| |
Collapse
|
25
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
26
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Couture-Cossette A, Carignan A, Ilangumaran S, Valiquette L. Bezlotoxumab for the prevention of Clostridium difficile recurrence. Expert Opin Biol Ther 2017; 17:1439-1445. [PMID: 28805081 DOI: 10.1080/14712598.2017.1363886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clostridium difficile infection is a major economic and clinical burden, due to its high frequency of recurrence. Currently recommended treatments are not efficient for prevention and may contribute to the risk of recurrent infection. In recent years, research has focused on strategies to lessen this risk. Bezlotoxumab is a monoclonal antibody that prevents recurrences of C. difficile infection through the antagonism of toxin B. Areas covered: In this review, the authors discuss the burden of C. difficile infection and its recurrences, the mechanisms underlying the recurrences, and current C. difficile treatments. They subsequently analyze the strategic therapeutic rationale for bezlotoxumab use, as well as the supporting clinical evidence. Expert opinion: Bezlotoxumab is an attractive solution for reducing the unacceptable level of recurrence that occurs with the currently recommended C. difficile treatments and other alternative therapies under consideration. Even though bezlotoxumab has not been tested in large-scale trials exclusively in cases of already established recurrent C.difficile infection (rCDI), it has an advantage over current treatments in that it does not interfere with the patient's gut flora while directly neutralizing the key virulence factor. Although cost remains an important factor against its widespread use, simpler administration, fewer side-effects, and better social acceptability justify its consideration for treating rCDI.
Collapse
Affiliation(s)
- Antoine Couture-Cossette
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| | - Alex Carignan
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| | - Subburaj Ilangumaran
- b Department of Pediatrics, Immunology Division , Université de Sherbrooke , Québec , Canada
| | - Louis Valiquette
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| |
Collapse
|
28
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
29
|
Potocki W, Negri A, Peszyńska-Sularz G, Hinc K, Obuchowski M, Iwanicki A. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb Cell Fact 2017; 16:151. [PMID: 28899372 PMCID: PMC5596941 DOI: 10.1186/s12934-017-0765-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bacillus subtilis spores can be used for presentation of heterologous proteins. Two main approaches have been developed, the recombinant one, requiring modification of bacterial genome to express a protein of interest as a fusion with spore-coat protein, and non-recombinant, based on the adsorption of a heterologous protein onto the spore. So far only single proteins have been displayed on the spore surface. RESULTS We have used a combined approach to adsorb and display FliD protein of Clostridium difficile on the surface of recombinant IL-2-presenting spores. Such spores presented FliD protein with efficiency comparable to FliD-adsorbed spores produced by wild-type 168 strain and elicited FliD-specific immune response in intranasally immunized mice. CONCLUSIONS Our results indicate that such dual display technology may be useful in creation of spores simultaneously presenting adjuvant and antigen molecules. Regarding the characteristics of elicited immune response it seems plausible that such recombinant IL-2-presenting spores with adsorbed FliD protein might be an interesting candidate for vaccine against infections with Clostridium difficile.
Collapse
Affiliation(s)
- Wojciech Potocki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
| | - Alessandro Negri
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland.,Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Iwanicki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
30
|
Liu YW, Chen YH, Chen JW, Tsai PJ, Huang IH. Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model. Front Microbiol 2017; 8:1411. [PMID: 28790999 PMCID: PMC5525027 DOI: 10.3389/fmicb.2017.01411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is considered to be one of the major cause of infectious diarrhea in healthcare systems worldwide. Symptoms of C. difficile infection are caused largely by the production of two cytotoxins: toxin A (TcdA) and toxin B (TcdB). Vaccine development is considered desirable as it would decrease the mounting medical costs and mortality associated with C. difficile infections. Biodegradable nanoparticles composed of poly-γ-glutamic acid (γ-PGA) and chitosan have proven to be a safe and effective antigen delivery system for many viral vaccines. However, few studies have used this efficient antigen carrier for bacterial vaccine development. In this study, we eliminated the toxin activity domain of toxin B by constructing a recombinant protein rTcdB consists of residues 1852-2363 of TcdB receptor binding domain. The rTcdB was encapsulated in nanoparticles composed of γ-PGA and chitosan. Three rounds of intraperitoneal vaccination led to high anti-TcdB antibody responses and afforded mice full protection mice from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulated NPs elicited a longer-lasting antibody titers than antigen with the conventional adjuvant, aluminum hydroxide. Significant reductions in the level of proinflammatory cytokines and chemokines were observed in vaccinated mouse. These results suggested that polymeric nanocomplex-based vaccine design can be useful in developing vaccine against C. difficile infections.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yu-Hung Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
31
|
Villafuerte Gálvez JA, Kelly CP. Bezlotoxumab: anti-toxin B monoclonal antibody to prevent recurrence of Clostridium difficile infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28636484 DOI: 10.1080/17474124.2017.1344551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) is the most common nosocomial infection in the U.S. 25% of CDI patients go on to develop recurrent CDI (rCDI) following current standard of care (SOC) therapy, leading to morbidity, mortality and economic loss. The first passive immunotherapy drug targeting C.difficile toxin B (bezlotoxumab) has been approved recently by the FDA and EMA for prevention of rCDI. Areas covered: A body of key studies was selected and reviewed by the authors. The unmet needs in CDI care were ascertained with emphasis in rCDI, including the epidemiology, pathophysiology and current management. The current knowledge about the immune response to C. difficile toxins and how this knowledge led to the development and the clinical use of bezlotoxumab is described. Current and potential future competitors to the drug were examined. Expert commentary: A single 10 mg/kg intravenous infusion of bezlotoxumab has been shown to decrease rCDI by ~40% (absolute reduction ~10%) in patients being treated for primary CDI or rCDI with SOC antibiotics. Targeting C.difficile toxins by passive immunotherapy is a novel mechanism for prevention of C.difficile infection. Bezlotoxumab will be a valuable adjunctive therapy to reduce the burden of CDI.
Collapse
Affiliation(s)
- Javier A Villafuerte Gálvez
- a Department of Medicine , Harvard Medical School , Boston , MA
- b Department of Medicine - Division of Hematology and Oncology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Ciarán P Kelly
- a Department of Medicine , Harvard Medical School , Boston , MA
- c Department of Medicine - Division of Gastroenterology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| |
Collapse
|
32
|
Péchiné S, Janoir C, Collignon A. Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 2017; 17:415-427. [PMID: 28274145 DOI: 10.1080/14712598.2017.1300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.
Collapse
Affiliation(s)
- Séverine Péchiné
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Claire Janoir
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Anne Collignon
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| |
Collapse
|
33
|
Buonomo EL, Petri WA. The microbiota and immune response during Clostridium difficile infection. Anaerobe 2016; 41:79-84. [PMID: 27212111 PMCID: PMC5050085 DOI: 10.1016/j.anaerobe.2016.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Clostridium difficile is a gram-positive, spore forming anaerobe that infects the gut when the normal microbiota has been disrupted. C. difficile infection (CDI) is the most common cause of hospital acquired infection in the United States, and the leading cause of death due to gastroenteritis. Patients suffering from CDI have varying symptoms which range from mild diarrhea to pseudomembranous colitis and death. The involvement of the immune response to influence disease severity is just beginning to be investigated. There is evidence that the immune response can facilitate either protective or pathogenic phenotypes, suggesting it plays a multifaceted role during CDI. In addition to the immune response, the microbiota is pivotal in dictating the pathogenesis to CDI. A healthy microbiota effectively inhibits infection by restricting the ability of C. difficile to expand in the colon. Thus, understanding which immune mediators and components of the microbiota play beneficial roles during CDI will be important to future therapeutic developments. This review outlines how the microbiota can modulate specific immune mediators, such as IL-23 and others, to influence disease outcome.
Collapse
Affiliation(s)
- Erica L Buonomo
- Department of Microbiology, Immunology and Cancer, University of Virginia Charlottesville, VA, 22908, USA.
| | - William A Petri
- Department of Microbiology, Immunology and Cancer, University of Virginia Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia, USA; Department of Pathology, University of Virginia, USA.
| |
Collapse
|
34
|
Péchiné S, Collignon A. Immune responses induced by Clostridium difficile. Anaerobe 2016; 41:68-78. [PMID: 27108093 DOI: 10.1016/j.anaerobe.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
The spectrum of Clostridium difficile infections is highly variable, ranging from asymptomatic carriage to fatal colitis depending on the strain virulence and on the host, its gut microbiota and its immune response. After disruption of the gut microbiota, C. difficile pathogenesis can be divided into three steps: 1) contamination by spores and their germination; 2) multiplication of vegetative cells and intestinal colonization using colonization factors; 3) production of the toxins TcdA and TcdB, and for some strains, the binary toxin, which are responsible for the clinical signs. Three lines of defense counteract C. difficile. The first line is the epithelial barrier, which is breached by the toxins. Then, a rapid innate immune response follows, which forms the second line of defense. It provides very quick defense reactions against C. difficile but is non-specific and does not confer memory. C. difficile and its virulence factors, the toxins and colonization factors, induce a highly pro-inflammatory response, which can be either beneficial or harmful, but triggers the adaptive immunity as the third line of defense required to control the infectious process. Adaptive immunity provides a highly specific immune response against C. difficile with memory and long lasting immunity. The innate and adaptive immune responses against the toxins and surface components are analyzed as well as their role in disease susceptibility, severity and recurrences.
Collapse
Affiliation(s)
- Séverine Péchiné
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anne Collignon
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
35
|
Razik R, Rumman A, Bahreini Z, McGeer A, Nguyen GC. Recurrence of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease: The RECIDIVISM Study. Am J Gastroenterol 2016; 111:1141-6. [PMID: 27215924 DOI: 10.1038/ajg.2016.187] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/02/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recurrent Clostridium difficile infection (rCDI) contributes to a significant burden of disease in patients with inflammatory bowel disease (IBD). In this study, we seek to identify risk factors for rCDI in a population of IBD patients at the Mount Sinai Hospital IBD Centre. METHODS In this retrospective cohort study, IBD patients with rCDI diagnosed between 2010 and 2013 were identified and compared with IBD patients with single-episode CDI. Multivariate regression was used to identify predictors of rCDI in IBD. Outcome analysis was performed for hospitalizations due to CDI, colectomy, and CDI-attributable mortality. RESULTS A total of 503 patients were included, 110 (22%) of whom had IBD (49% CD, 51% ulcerative colitis). Recurrent CDI occurred in 32% of IBD patients compared with 24% of non-IBD patients (P<0.01). IBD patients with rCDI were more likely than those without rCDI to report recent antibiotic therapy (42.9 vs. 30.7%, P<0.01), 5-aminosalicylic acid (5-ASA) use (51.5 vs. 30.7%, P<0.001), steroid use (51.4 vs. 33.3%, P<0.001), and biologic therapy (48.6 vs. 40.0%, P<0.01). Infliximab (34.3 vs. 17.3%, P<0.01) but not adalimumab was associated with more rCDI events. Using a Cox model of predictors of rCDI in IBD, significant predictors included non-ileal Crohn's disease (hazard ratio (HR) 2.85, 95% confidence interval (CI) 1.30-6.30) and the use of 5-ASA (HR 2.15, 95% CI 1.11-4.18). CONCLUSIONS Compared with the general population, IBD patients are 33% more likely to experience rCDI. Within the IBD cohort, exposure to certain drug classes (antibiotics, 5-ASA, steroids, certain biologics) and non-ileal Crohn's disease were found to be the predictors of rCDI.
Collapse
Affiliation(s)
- Roshan Razik
- Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Amir Rumman
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zoya Bahreini
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey C Nguyen
- Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Gupta SB, Mehta V, Dubberke ER, Zhao X, Dorr MB, Guris D, Molrine D, Leney M, Miller M, Dupin M, Mast TC. Antibodies to Toxin B Are Protective Against Clostridium difficile Infection Recurrence. Clin Infect Dis 2016; 63:730-734. [PMID: 27365387 DOI: 10.1093/cid/ciw364] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/07/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although newer studies have evaluated risk factors for recurrent Clostridium difficile infection (CDI), the vast majority did not measure important biomarkers such as endogenous anti-toxin A and anti-toxin B antibody levels. METHODS Data from the placebo group of a phase 2 trial testing monoclonal antibodies to C. difficile toxins A and B for preventing CDI recurrence (rCDI) were analyzed to assess risk factors associated with rCDI. Patients with symptomatic CDI taking metronidazole or vancomycin were enrolled. The primary outcome was rCDI within 84 days of treatment start. Univariate and multivariate logistic regression was used to examine associations between potential risk factors and rCDI. At baseline, demographic and clinical characteristics were recorded; endogenous antibody levels were assessed using 2 enzyme-linked immunosorbent assays. RESULTS A predictor of recurrence was age ≥65 years, and an antibody-mediated immune response to toxin B appears to be protective against rCDI. CONCLUSIONS Our findings demonstrate the importance of clinical as well as immunological risk factors in rCDI and provide more robust evidence for the protective effects of antibody to toxin B in the prevention of rCDI. CLINICAL TRIALS REGISTRATION NCT00350298.
Collapse
Affiliation(s)
| | - Vinay Mehta
- Pharmacoepidemiology, Merck & Co, Inc, Kenilworth, New Jersey
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri
| | | | - Mary Beth Dorr
- Clinical Research, Merck & Co, Inc, Kenilworth, New Jersey
| | - Dalya Guris
- Clinical Research, Merck & Co, Inc, Kenilworth, New Jersey
| | - Deborah Molrine
- Department of Pediatrics, University of Massachusetts Medical School, Worcester.,MassBiologics, Boston
| | - Mark Leney
- MassBiologics, Boston.,Department of Medicine, University of Massachusetts Medical School, Worcester
| | | | - Marilyne Dupin
- Medical Diagnostics Discovery Department, bioMérieux, Marcy L'Etoile, France
| | | |
Collapse
|
37
|
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016; 8:134. [PMID: 27153087 PMCID: PMC4885049 DOI: 10.3390/toxins8050134] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.
Collapse
Affiliation(s)
- Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome 00154, Italy.
| | - Steven Siarakas
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Sydney 2139, Australia.
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | | |
Collapse
|
38
|
Abstract
BACKGROUND Clostridium difficile infection (CDI) affects patients with inflammatory bowel disease (IBD). The aim of this study was to compare humoral response to C. difficile toxins in IBD patients and control outpatients. METHODS We prospectively followed adult IBD patients and control subjects with serum and stool samples obtained at enrollment and during periods of CDI and tested by PCR. Semiquantitative serum levels of IgM, IgG, and IgA to C. difficile toxins A and B were measured. RESULTS Overall, 119 stool and 117 serum samples were obtained from 150 subjects. Different levels of IgA to toxin A (P = 0.0016) and toxin B (P = 0.0468) were noted between different IBD groups. Toxin A IgA levels were higher in the Crohn's disease group (P = 0.0321) and ileal pouch anal anastomosis (IPAA) group (P = 0.001) compared with the ulcerative colitis (UC) group, and toxin B IgA levels were higher in the IPAA group compared with the UC group (P = 0.0309). There were lower levels of toxin A IgA in IBD patients compared with those in subjects without new CDI (P = 0.0488) and higher levels in IBD patients with compared with those in subjects without CDI history before enrollment (P = 0.016). There were nonsignificant lower toxin A IgG levels in IBD patients compared with those in subjects without prior CDI (P = 0.095) and higher levels in control subjects with a history of CDI compared with IBD patients with prior CDI (P = 0.049). CONCLUSIONS Patients with UC have lower IgA levels to C. difficile toxins compared with those with Crohn's disease and those after IPAA. Patients with IBD with prior CDI failed to demonstrate any increase in antitoxin IgG. Our findings suggest that IBD patients may benefit from immunization strategies targeting C. difficile toxins.
Collapse
|
39
|
Sheldon E, Kitchin N, Peng Y, Eiden J, Gruber W, Johnson E, Jansen KU, Pride MW, Pedneault L. A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 2016; 34:2082-91. [DOI: 10.1016/j.vaccine.2016.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
|
40
|
Sensitive assays enable detection of serum IgG antibodies against Clostridium difficile toxin A and toxin B in healthy subjects and patients with Clostridium difficile infection. Bioanalysis 2016; 8:611-23. [PMID: 26964649 DOI: 10.4155/bio-2015-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pathogenic Clostridium difficile produces two proinflammatory exotoxins, toxin A and toxin B. Low level of serum antitoxin IgG antibodies is a risk factor for the development of primary and recurrent C. difficile infection (CDI). RESULTS We developed and validated two sensitive, titer-based electrochemiluminescence assays for the detection of serum antibody levels against C. difficile toxins A and B. These assays demonstrated excellent precision. The sensitivity of the assays allowed the detection of antitoxin A and antitoxin B IgG antibodies in all tested serum samples during assay validation. CONCLUSION The validated titer-based assays enable assessment of antitoxin A and antitoxin B IgG antibodies as potential biomarkers to identify patients with CDI at increased risk for CDI recurrence.
Collapse
|
41
|
Devera TS, Lang GA, Lanis JM, Rampuria P, Gilmore CL, James JA, Ballard JD, Lang ML. Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infect Immun 2016; 84:194-204. [PMID: 26502913 PMCID: PMC4693989 DOI: 10.1128/iai.00011-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Secreted toxin B (TcdB) substantially contributes to the pathology observed during Clostridium difficile infection. To be successfully incorporated into a vaccine, TcdB-based immunogens must stimulate the production of neutralizing antibody (Ab)-encoding memory B cells (Bmem cells). Despite numerous investigations, a clear analysis of Bmem cellular responses following vaccination against TcdB is lacking. B6 mice were therefore used to test the ability of a nontoxigenic C-terminal domain (CTD) fragment of TcdB to induce Bmem cells that encode TcdB-neutralizing antibody. CTD was produced from the historical VPI 10463 strain (CTD1) and from the hypervirulent strain NAP1/BI/027 (CTD2). It was then demonstrated that CTD1 induced strong recall IgG antibody titers, and this led to the development of functional Bmem cells that could be adoptively transferred to naive recipients. Bmem cell-driven neutralizing Ab responses conferred protection against lethal challenge with TcdB1. Further experiments revealed that an experimental adjuvant (Imject) and a clinical adjuvant (Alhydrogel) were compatible with Bmem cell induction. Reactivity of human Bmem cells to CTD1 was also evident in human peripheral blood mononuclear cells (PBMCs), suggesting that CTD1 could be a good vaccine immunogen. However, CTD2 induced strong Bmem cell-driven antibody titers, and the CTD2 antibody was neutralizing in vitro, but its protection against lethal challenge with TcdB2 was limited to delaying time to death. Therefore, CTD from different C. difficile strains may be a good immunogen for stimulating B cell memory that encodes in vitro neutralizing Ab but may be limited by variable protection against intoxication in vivo.
Collapse
Affiliation(s)
- T Scott Devera
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordi M Lanis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Pragya Rampuria
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Casey L Gilmore
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA Oklahoma Clinical and Translational Science Institute, Oklahoma City, Oklahoma, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
42
|
Furuya-Kanamori L, Marquess J, Yakob L, Riley TV, Paterson DL, Foster NF, Huber CA, Clements ACA. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis 2015; 15:516. [PMID: 26573915 PMCID: PMC4647607 DOI: 10.1186/s12879-015-1258-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/31/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The epidemiology of Clostridium difficile infection (CDI) has changed over the past decades with the emergence of highly virulent strains. The role of asymptomatic C. difficile colonization as part of the clinical spectrum of CDI is complex because many risk factors are common to both disease and asymptomatic states. In this article, we review the role of asymptomatic C. difficile colonization in the progression to symptomatic CDI, describe the epidemiology of asymptomatic C. difficile colonization, assess the effectiveness of screening and intensive infection control practices for patients at risk of asymptomatic C. difficile colonization, and discuss the implications for clinical practice. METHODS A narrative review was performed in PubMed for articles published from January 1980 to February 2015 using search terms 'Clostridium difficile' and 'colonization' or 'colonisation' or 'carriage'. RESULTS There is no clear definition for asymptomatic CDI and the terms carriage and colonization are often used interchangeably. The prevalence of asymptomatic C. difficile colonization varies depending on a number of host, pathogen, and environmental factors; current estimates of asymptomatic colonization may be underestimated as stool culture is not practical in a clinical setting. CONCLUSIONS Asymptomatic C. difficile colonization presents challenging concepts in the overall picture of this disease and its management. Individuals who are colonized by the organism may acquire protection from progression to disease, however they also have the potential to contribute to transmission in healthcare settings.
Collapse
Affiliation(s)
- Luis Furuya-Kanamori
- Research School of Population Health, The Australian National University, Building 62 Mills Road, Canberra, ACT 2601, Australia.
| | - John Marquess
- School of Population Health, The University of Queensland, Herston, QLD, Australia.
- Queensland Department of Health, Communicable Diseases Unit, Herston, QLD, Australia.
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Thomas V Riley
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA, Australia.
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.
| | - Niki F Foster
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
| | - Charlotte A Huber
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.
| | - Archie C A Clements
- Research School of Population Health, The Australian National University, Building 62 Mills Road, Canberra, ACT 2601, Australia.
| |
Collapse
|
43
|
Zhao S, Ghose-Paul C, Zhang K, Tzipori S, Sun X. Immune-based treatment and prevention of Clostridium difficile infection. Hum Vaccin Immunother 2015; 10:3522-30. [PMID: 25668664 DOI: 10.4161/21645515.2014.980193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clostridium difficile (C. difficile) causes over 500,000 infections per year in the US, with an estimated 15,000 deaths and an estimated cost of $1-3 billion. Moreover, a continual rise in the incidence of severe C. difficile infection (CDI) has been observed worldwide. Currently, standard treatment for CDI is the administration of antibiotics. While effective, these treatments do not prevent and may contribute to a disease recurrence rate of 15-35%. Prevention of recurrence is one of the most challenging aspects in the field. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of C. difficilenow permits the development of immune-based therapies. Antibodies specific for C. difficile toxins have been shown to effectively treat CDI and prevent disease relapse in animal models and in humans. Vaccination has been recognized as the most cost-effective treatment/prevention for CDI. This review will summarize CDI transmission, epidemiology, major virulent factors and highlights the rational and the development of immune-based approaches against this remerging threat.
Collapse
Key Words
- AAD, antibiotic-associated diarrhea
- CDI, Clostridium difficile infection
- CPD, cysteine proteinase domain
- GTD, glucosyltransferase domain
- HuMabs, human monoclonal antibodies
- IVIG, intravenous immunoglobulin
- RBD, receptor binding domain
- SLP, surface-layer protein
- TMD, transmembrane domain
- bacterial toxins
- clostridium difficile infection (CDI)
- immunotherapy
- mAb, monoclonal antibody
- monoclonal antibody
- vaccine
Collapse
Affiliation(s)
- Song Zhao
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | |
Collapse
|
44
|
Negm OH, Hamed MR, Dilnot EM, Shone CC, Marszalowska I, Lynch M, Loscher CE, Edwards LJ, Tighe PJ, Wilcox MH, Monaghan TM. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1033-9. [PMID: 26178385 PMCID: PMC4550668 DOI: 10.1128/cvi.00190-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost.
Collapse
Affiliation(s)
- Ola H Negm
- Immunology, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R Hamed
- Immunology, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elizabeth M Dilnot
- Immunology, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Mark Lynch
- Immunomodulation Research Group, Dublin City University, Dublin, Ireland
| | | | - Laura J Edwards
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patrick J Tighe
- Immunology, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mark H Wilcox
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Tanya M Monaghan
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham, United Kingdom
| |
Collapse
|
45
|
Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP. Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe 2015; 34:59-73. [PMID: 25930686 PMCID: PMC4492812 DOI: 10.1016/j.anaerobe.2015.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies.
Collapse
Affiliation(s)
- Kelsey Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Roger V Araujo-Castillo
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Thimmaiah G Theethira
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Carolyn D Alonso
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
46
|
Abstract
Colonization with toxigenic Clostridium difficile may be associated with a wide spectrum of clinical presentation ranging from asymptomatic carriage to mild diarrhea to life-threatening colitis. Over the last 15 years, there has been a marked increase in the incidence of C. difficile infection, which predominantly affects elderly patients on antibiotics. More recently, there has been significant interest in the association between inflammatory bowel disease (IBD) and C. difficile infection. This review article discusses in some detail current knowledge of the mechanisms by which C. difficile toxins may mediate mucosal inflammation, together with the role of cell wall components of the microorganism in disease pathogenesis. Innate and adaptive host responses to C. difficile toxins and other components are described and include consideration of the potential role of known mucosal changes in IBD that may lead to an enhanced inflammatory response in the presence of C. difficile infection. Recent studies, which have characterized resident microbiota that may mediate protection against colonization by C. difficile, including their mechanisms of action, are also discussed. This includes the role of bile acids and 7α-dehydroxylase-expressing bacteria, such as Clostridium scindens. Recent studies suggest a higher carriage rate of C. difficile in patients with IBD. It is anticipated that future studies will determine the role of dysbiosis in IBD in predisposing to colonization with C. difficile.
Collapse
|
47
|
Jain T, Croswell C, Urday-Cornejo V, Awali R, Cutright J, Salimnia H, Reddy Banavasi HV, Liubakka A, Lephart P, Chopra T, Revankar SG, Chandrasekar P, Alangaden G. Clostridium Difficile Colonization in Hematopoietic Stem Cell Transplant Recipients: A Prospective Study of the Epidemiology and Outcomes Involving Toxigenic and Nontoxigenic Strains. Biol Blood Marrow Transplant 2015. [PMID: 26211988 DOI: 10.1016/j.bbmt.2015.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clostridium difficile is a leading cause of infectious diarrhea in hematopoietic stem cell transplant (HSCT) recipients. Asymptomatic colonization of the gastrointestinal tract occurs before development of C. difficile infection (CDI). This prospective study examines the rates, risk factors, and outcomes of colonization with toxigenic and nontoxigenic strains of C. difficile in HSCT patients. This 18-month study was conducted in the HSCT unit at the Karmanos Cancer Center and Wayne State University in Detroit. Stool samples from the patients who consented for the study were taken at admission and weekly until discharge. Anaerobic culture for C. difficile and identification of toxigenic strains by PCR were performed on the stool samples. Demographic information and clinical and laboratory data were collected. Of the 150 patients included in the study, 29% were colonized with C. difficile at admission; 12% with a toxigenic strain and 17% with a nontoxigenic strain. Over a 90-day follow-up, 12 of 44 (26%) patients colonized with any C. difficile strain at admission developed CDI compared with 13 of 106 (12%) of patients not colonized (odds ratio [OR], 2.70; 95% confidence interval [95% CI], 1.11 to 6.48; P = .025). Eleven of 18 (61%) patients colonized with the toxigenic strain and 1 of 26 (4%) of those colonized with nontoxigenic strain developed CDI (OR, 39.30; 95% CI, 4.30 to 359.0; P < .001) at a median of 12 days. On univariate and multivariate analyses, none of the traditional factors associated with high risk for C. difficile colonization or CDI were found to be significant. Recurrent CDI occurred in 28% of cases. Asymptomatic colonization with C. difficile at admission was high in our HSCT population. Colonization with toxigenic C. difficile was predictive of CDI, whereas colonization with a nontoxigenic C. difficile appeared protective. These findings may have implications for infection control strategies and for novel approaches for the prevention and preemptive treatment of CDI in the HSCT patient population.
Collapse
Affiliation(s)
- Tania Jain
- Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | | | - Varinia Urday-Cornejo
- Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Reda Awali
- Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Jessica Cutright
- Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Hossein Salimnia
- Wayne State University School of Medicine, Detroit, Michigan; Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Harsha Vardhan Reddy Banavasi
- Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Alyssa Liubakka
- Wayne State University School of Medicine, Detroit, Michigan
| | - Paul Lephart
- Detroit Medical center University Laboratories, Detroit, Michigan
| | - Teena Chopra
- Wayne State University School of Medicine, Detroit, Michigan; Karmanos Cancer Center, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Sanjay G Revankar
- Wayne State University School of Medicine, Detroit, Michigan; Karmanos Cancer Center, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - Pranatharthi Chandrasekar
- Wayne State University School of Medicine, Detroit, Michigan; Karmanos Cancer Center, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan
| | - George Alangaden
- Wayne State University School of Medicine, Detroit, Michigan; Karmanos Cancer Center, Detroit, Michigan; Henry Ford Hospital, Detroit, Michigan; Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
48
|
Di Bella S, Friedrich AW, García-Almodóvar E, Gallone MS, Taglietti F, Topino S, Galati V, Johnson E, D'Arezzo S, Petrosillo N. Clostridium difficile infection among hospitalized HIV-infected individuals: epidemiology and risk factors: results from a case-control study (2002-2013). BMC Infect Dis 2015; 15:194. [PMID: 25899507 PMCID: PMC4408587 DOI: 10.1186/s12879-015-0932-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV infection is a risk factor for Clostridium difficile infection (CDI) yet the immune deficiency predisposing to CDI is not well understood, despite an increasing incidence of CDI among such individuals. We aimed to estimate the incidence and to evaluate the risk factors of CDI among an HIV cohort in Italy. METHODS We conducted a retrospective case-control (1:2) study. Clinical records of HIV inpatients admitted to the National Institute for Infectious Disease "L. Spallanzani", Rome, were reviewed (2002-2013). CASES HIV inpatients with HO-HCFA CDI, and controls: HIV inpatients without CDI, were matched by gender and age. Logistic regression was used to identify risk factors associated with CDI. RESULTS We found 79 CDI episodes (5.1 per 1000 HIV hospital admissions, 3.4 per 10000 HIV patient-days). The mean age of cases was 46 years. At univariate analysis factors associated with CDI included: antimycobacterial drug exposure, treatment for Pneumocystis pneumonia, acid suppressant exposure, previous hospitalization, antibiotic exposure, low CD4 cell count, high Charlson score, low creatinine, low albumin and low gammaglobulin level. Using multivariate analysis, lower gammaglobulin level and low serum albumin at admission were independently associated with CDI among HIV-infected patients. CONCLUSIONS Low gammaglobulin and low albumin levels at admission are associated with an increased risk of developing CDI. A deficiency in humoral immunity appears to play a major role in the development of CDI. The potential protective role of albumin warrants further investigation.
Collapse
Affiliation(s)
- Stefano Di Bella
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Control, University Medical Centre, Groeningen, The Netherlands.
| | | | - Maria Serena Gallone
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy.
| | - Fabrizio Taglietti
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| | - Simone Topino
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| | - Vincenzo Galati
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| | | | - Silvia D'Arezzo
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| | - Nicola Petrosillo
- National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, 00149, Rome, Italy.
| |
Collapse
|
49
|
Abstract
Clostridium difficile is a spore-forming anaerobic gram-positive organism that is the leading cause of antibiotic-associated nosocomial infectious diarrhea in the Western world. This article describes the evolving epidemiology of C difficile infection (CDI) in the twenty-first century, evaluates the importance of vaccines against the disease, and defines the roles of both innate and adaptive host immune responses in CDI. The effects of passive immunotherapy and active vaccination against CDI in both humans and animals are also discussed.
Collapse
Affiliation(s)
- Chandrabali Ghose
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY 10016, USA.
| | - Ciarán P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
50
|
Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect Immun 2014; 83:822-31. [PMID: 25486992 DOI: 10.1128/iai.02897-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) represents the most prevalent cause of antibiotic-associated gastrointestinal infections in health care facilities in the developed world. Disease symptoms are caused by the two homologous exotoxins, TcdA and TcdB. Standard therapy for CDI involves administration of antibiotics that are associated with a high rate of disease recurrence, highlighting the need for novel treatment paradigms that target the toxins rather than the organism itself. A combination of human monoclonal antibodies, actoxumab and bezlotoxumab, directed against TcdA and TcdB, respectively, has been shown to decrease the rate of recurrence in patients treated with standard-of-care antibiotics. However, the exact mechanism of antibody-mediated protection is poorly understood. In this study, we show that the antitoxin antibodies are protective in multiple murine models of CDI, including systemic and local (gut) toxin challenge models, as well as primary and recurrent models of infection in mice. Systemically administered actoxumab-bezlotoxumab prevents both the damage to the gut wall and the inflammatory response, which are associated with C. difficile in these models, including in mice challenged with a strain of the hypervirulent ribotype 027. Furthermore, mutant antibodies (N297Q) that do not bind to Fcγ receptors provide a level of protection similar to that of wild-type antibodies, demonstrating that the mechanism of protection is through direct neutralization of the toxins and does not involve host effector functions. These data provide a mechanistic basis for the prevention of recurrent disease observed in CDI patients in clinical trials.
Collapse
|