1
|
Kaleska B, Sluyter R, Chen Z, Mansfield KJ. Effect of pro-inflammatory cytokines on urothelial cell adenosine triphosphate release and breakdown. Bladder (San Franc) 2024; 11:e21200006. [PMID: 39539471 PMCID: PMC11555206 DOI: 10.14440/bladder.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives Urinary symptoms of urgency, frequency, and pain are thought to be the result of inflammation in several bladder pathologies although the cause of these symptoms remains uncertain. Extracellular adenosine triphosphate (ATP) released from the bladder urothelium during normal bladder stretch is believed to bind to purinergic receptors on afferent nerves to signal bladder sensation. This study examined pro-inflammatory cytokines in the urine of women with detrusor overactivity (DO) with or without urinary tract infection (UTI) compared to controls and then determined the effect of pro-inflammatory cytokines on ATP signaling (release and breakdown) from the urothelium. Methods The urinary concentrations of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were determined in women with DO with or without UTI compared to female controls. The effect of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-1β) on control and hypotonic-induced ATP release using human UROtsa urothelial cells was examined, as was the effect of these cytokines on nucleotide (ATP, adenosine diphosphate and adenosine monophosphate) breakdown. Results Urinary concentrations of IFN-γ, TNF-α, and IL-1β were increased in women with DO and UTI. Pre-treatment of urothelial cells with individual cytokines stimulated a decrease rather than an increase in ATP release whereas pre-treatment with a cocktail of all three cytokines stimulated a small but significant increase in hypotonic-induced ATP release. Pre-treatment of urothelial cells with cytokines significantly enhanced nucleotide breakdown. Conclusion Using a simple cell culture model we have demonstrated that the response of the urothelium to pro-inflammatory cytokines is complex, affecting both release and breakdown of ATP.
Collapse
Affiliation(s)
- Belinda Kaleska
- Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Kogarah, NSW 2522, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Faustino M, Silva S, Costa EM, Pereira AM, Pereira JO, Oliveira AS, Ferreira CMH, Pereira CF, Durão J, Pintado ME, Carvalho AP. Effect of Mannan Oligosaccharides Extracts in Uropathogenic Escherichia coli Adhesion in Human Bladder Cells. Pathogens 2023; 12:885. [PMID: 37513732 PMCID: PMC10384913 DOI: 10.3390/pathogens12070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Margarida Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Sofia Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carlos M H Ferreira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
3
|
Horváth A, Pandur E, Sipos K, Micalizzi G, Mondello L, Böszörményi A, Birinyi P, Horváth G. Anti-inflammatory effects of lavender and eucalyptus essential oils on the in vitro cell culture model of bladder pain syndrome using T24 cells. BMC Complement Med Ther 2022; 22:119. [PMID: 35490236 PMCID: PMC9055718 DOI: 10.1186/s12906-022-03604-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Interstitial cystitis (IC) has a chronic chemical irritation and inflammation of non-bacterial origin in the bladder wall leading to various severe symptoms. There is evidence that chronic inflammation is significantly associated with abnormal urothelial barrier function, epithelial dysfunction. This is the underlying cause of urothelial apoptosis and sterile inflammation. METHOD The anti-inflammatory effects of lavender and eucalyptus essential oils (EOs) and their main components (linalool and eucalyptol) were investigated in the T24 human bladder epithelial cell line on TNFα stimulated inflammation, at 3 types of treatment schedule. The mRNA of pro-inflammatory cytokines (IL-1β, IL-6, IL-8) were measured by Real Time PCR. Human IL-8 ELISA measurement was performed as well at 3 types of treatment schedule. The effects of lavender and eucalyptus EOs and their main components were compared to the response to NFκB inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile). RESULT There is no significant difference statistically, but measurements show that lavender EOs are more effective than eucalyptus EO. Long time treatment (24 h) of both lavender EO and linalool showed higher effect in decreasing pro-inflammatory cytokine mRNA expression than ACHP inhibitor following TNFα pre-treatment. Moreover, both lavender EOs were found to be significantly more effective in decreasing IL-8 secretion of T24 cells after TNFα pre-treatment compared to the ACHP NFκB-inhibitor. CONCLUSION The lavender EOs may be suitable for use as an adjunct to intravesical therapy of IC. Their anti-inflammatory effect could well complement glycosaminoglycan-regenerative therapy in the urinary bladder after appropriate pharmaceutical formulation.
Collapse
Affiliation(s)
- Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Péter Birinyi
- Mikszáth Pharmacy, H-1088, Mikszát Kálmán tér 4, Budapest, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
4
|
Gill K, Horsley H, Swamy S, Khasriya R, Malone-Lee J. A prospective observational study of urinary cytokines and inflammatory response in patients with Overactive Bladder Syndrome. BMC Urol 2021; 21:39. [PMID: 33740940 PMCID: PMC7980577 DOI: 10.1186/s12894-021-00809-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Contemporary studies have discredited the methods used to exclude urinary tract infection (UTI) when treating overactive bladder (OAB). Thus we must revisit the OAB phenotype to check that UTI has not been overlooked. AIMS To examine the differences in urinary cytokines IL6 and lactoferrin in OAB patients compared to controls, with references to microscopy of urine and enhanced quantitative urine culture. METHODS A blinded, prospective cohort study with normal controls using six repeated measures, achieved two-monthly, over 12 months. RESULTS The differences between patients and controls in urine IL6 (F = 49.0, p < .001) and lactoferrin (F = 228.5, p < .001) were significant and of a magnitude to have clinical implications. These differences were for lactoferrin correlated to symptoms (9.3, p = .003); for both to pyuria (IL6 F = 66.2, p < .001, Lactoferrin F = 73.9, p < .001); and for IL6 microbial abundance (F = 5.1, p = .024). The pathological markers had been missed by urinary dipsticks and routine MSU culture. CONCLUSION The OAB phenotype may encompass patients with UTI that is being overlooked because of the failure of standard screening methods.
Collapse
Affiliation(s)
- Kiren Gill
- Women’s Health, Whittington Health NHS Trust, Magdala Avenue, London, N19 5FN UK
| | - Harry Horsley
- Bladder Infection and Immunity Group (BIIG), Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, Rowland Hill Street, London, NW3 2PF UK
| | - Sheela Swamy
- Women’s Health, St Thomas’ Hospital, Westminster Bridge Road, London, SE1 7EH UK
| | - Rajvinder Khasriya
- Women’s Health, Whittington Health NHS Trust, Magdala Avenue, London, N19 5FN UK
| | - James Malone-Lee
- Bladder Infection and Immunity Group (BIIG), Department of Renal Medicine, Division of Medicine, University College London, 10 Harley Street, London, W1G 9PF UK
| |
Collapse
|
5
|
Pirdel L, Pirdel M. A Differential Immune Modulating Role of Vitamin D in Urinary Tract Infection. Immunol Invest 2020; 51:531-545. [PMID: 33353437 DOI: 10.1080/08820139.2020.1845723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D is known as an important modulator of numerous immune functions. We aimed to investigate the association of 25-hydroxyvitamin D [25(OH)D] with several humoral mediators of the immune system in the patients with urinary tract infection (UTI) caused by uropathogenic E. coli (UPEC). Serum levels of 25(OH)D, cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-6, IL-10, IL-17A, tumor necrosis factor transforming growth factor (TNF)-α, and tumor growth factor (TGF)-β), immunoglobulin (Ig) isotypes (IgG, IgM, and IgM), complement proteins (C3 and C4) with hemolytic activities (CH50 and AP50), and nitric oxide (NO) were evaluated in 65 patients, compared to 45 age- and sex-matched healthy controls. An insignificant decrease in 25(OH)D levels was observed in patients, compared to controls. In the patient group, elevated levels of IFN-γ, IL-17A, and IL-10 had a significant association with the serum levels of 25(OH)D, while the levels of TGF-β, IL-6, and TNF-α showed an insignificant association. The levels of IgG, C3, and NO also displayed such a statistically significant association with serum 25(OH)D levels. The AP50 levels which had significant difference were found to be not associated with serum 25(OH)D levels. Vitamin D might mediate a link between the innate and adaptive immune responses via the induction of Th1/Th17 polarization of cytokine responses and isotype regulation of antibody production, along with the maintenance of the capacity of the alternative complement pathway, in response to a UPEC infection. However, further studies are needed to validate the defined nature of the host immune response.
Collapse
Affiliation(s)
- Leila Pirdel
- Department of Medicine, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Manijeh Pirdel
- Department of Midwifery, Astara Branch, Islamic Azad University, Astara, Iran
| |
Collapse
|
6
|
Ching CB, Gupta S, Li B, Cortado H, Mayne N, Jackson AR, McHugh KM, Becknell B. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int 2018; 93:1320-1329. [PMID: 29475562 DOI: 10.1016/j.kint.2017.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 01/03/2023]
Abstract
The signaling networks regulating antimicrobial activity during urinary tract infection (UTI) are incompletely understood. Interleukin-6 (IL-6) levels increase with UTI severity, but the specific contributions of IL-6 to host immunity against bacterial uropathogens are unknown. To clarify this we tested whether IL-6 activates the Stat3 transcription factor, to drive a program of antimicrobial peptide gene expression in infected urothelium during UTI. Transurethral inoculation of uropathogenic Escherichia coli led to IL-6 secretion, urothelial Stat3 phosphorylation, and activation of antimicrobial peptide transcription, in a Toll-like receptor 4-dependent manner in a murine model of cystitis. Recombinant IL-6 elicited Stat3 phosphorylation in primary urothelial cells in vitro, and systemic IL-6 administration promoted urothelial Stat3 phosphorylation and antimicrobial peptide expression in vivo. IL-6 deficiency led to decreased urothelial Stat3 phosphorylation and antimicrobial peptide mRNA expression following UTI, a finding mirrored by conditional Stat3 deletion. Deficiency in IL-6 or Stat3 was associated with increased formation of intracellular bacterial communities, and exogenous IL-6 reversed this phenotype in IL-6 knockout mice. Moreover, chronic IL-6 depletion led to increased renal bacterial burden and severe pyelonephritis in C3H/HeOuJ mice. Thus, IL-6/Stat3 signaling drives a transcriptional program of antimicrobial gene expression in infected urothelium, with key roles in limiting epithelial invasion and ascending infection.
Collapse
Affiliation(s)
- Christina B Ching
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Department of Surgery, Division of Pediatric Urology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sudipti Gupta
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Birong Li
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Hanna Cortado
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Nicholas Mayne
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Ashley R Jackson
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Kirk M McHugh
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Department of Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brian Becknell
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Nephrology Section, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Hussein A, Askar E, Badawy A, Saad K, Zahran A, Elderwy AA. Impact of cytokine genetic polymorphisms on the risk of renal parenchymal infection in children. J Pediatr Urol 2017; 13:593.e1-593.e10. [PMID: 28716390 DOI: 10.1016/j.jpurol.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pyelonephritis is associated with renal scarring in up to 30% of patients. Renal scarring may cause significant long-term morbidity. The pathogenesis of acute pyelonephritis remains unclear, although it involves interaction among uroepithelium, the immune system cells, and the locally produced cytokines. That some UTI-prone children develop acute pyelonephritis, and eventually renal parenchymal scarring, suggests a genetic role. Interleukin-6, interleukin-8, chemokine receptor-1 (CXCR1), and tumor necrosis factor-alpha (TNFα), the key regulators of the host immune responses, are proteins whose secretion is controlled by genes. We postulated that functional polymorphic variants of their genes might have a role in APN susceptibility. OBJECTIVES We sought to investigate a possible association of the common functional polymorphisms in genes encoding IL-6, IL-8, CXCR1, and TNFα with the risk of APN in children. METHODS Urine culture was used to diagnose 300 children with UTI, of mean age of 51.31 ± 37.4 months (2-180 months). 99Tc-DMSA scans diagnosed 86 children with APN. Follow-up scans identified new renal scars in 18 children. Six functional single-nucleotide polymorphisms (SNPs) in genes encoding IL-6, IL-8, CXCR1, and TNFα were genotyped in all subjects (IL-6 rs1800795 (-174G/C), IL-6 rs1800796 (-572G/C), IL-8 rs2227306 (781C/T), IL8 rs4073 (-251A/T), CXCR1 rs2234671 (2607G/C), and TNFα rs1800629 (-308G/A)). RESULTS TT genotype of IL-8 -251A/T polymorphism was significantly higher in APN patients (26.7%) than those with lower UTI (11.7%, p = 0.01) and control individuals (12.2%, p = 0.002). T allele was significantly more common in APN than in lower UTI (p = 0.025) and was significantly more common in APN (46%) than in the controls (p = 0.001). Similarly, TT genotype of IL-8 781C/T polymorphism was significantly more common in APN patients (31.4%) than those with lower UTI (17.3%, p = 0.003) and the controls (14.3%, p = 0.001). T allele was significantly more common in APN (55%) than lower UTI (40%, p = 0.005) and controls (37%, p = 0.001). However, IL-8 -251A/T and +781C/T SNPs did not qualify as an independent risk for parenchymal infection (OR 1.9, 95% CI 0.68-2.6, p = 0.13 and OR 2.3, 95% CI 0.89-3.7, p = 0.091, respectively). Lower UTI did not differ from the controls. The frequency of the genotypes and alleles of IL-6, CXCR1, and TNFα SNPs did not differ significantly among the different groups of the study. CONCLUSION IL-8 -251A/T and +781C/T SNPs are associated with susceptibility to renal parenchymal infection in children and could be implicated in APN risk. However, none of these variants could clearly and independently predict this risk.
Collapse
Affiliation(s)
- Almontaser Hussein
- Pediatric Nephrology, Children's Hospital, Assiut University, Egypt; Genetic Unit, Children's Hospital, Assiut University, Egypt.
| | - Eman Askar
- Children's Hospital, Assiut University, Egypt
| | - Ahlam Badawy
- Pediatric Nephrology, Children's Hospital, Assiut University, Egypt
| | - Khaled Saad
- Children's Hospital, Assiut University, Egypt
| | - Asmaa Zahran
- Clinical Pathology, SECI, Assiut University, Egypt
| | | |
Collapse
|
8
|
Ren X, Gelinas AD, von Carlowitz I, Janjic N, Pyle AM. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat Commun 2017; 8:810. [PMID: 28993621 PMCID: PMC5634487 DOI: 10.1038/s41467-017-00864-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/01/2017] [Indexed: 01/07/2023] Open
Abstract
IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics. The cytokine interleukin 1α (IL-1α) plays an important role in inflammatory processes. Here the authors use SELEX to generate a modified DNA aptamer which specifically binds IL-1α, present the structure of the IL-1α/aptamer complex and show that this aptamer inhibits the IL-1α signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, 06511, USA
| | - Amy D Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO, 80301, USA
| | | | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO, 80301, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
9
|
Uwaezuoke SN. Urinary Tract Infection in Children: Diagnostic and Prognostic Utility of Biomarkers. JOURNAL OF COMPREHENSIVE PEDIATRICS 2017; In Press. [DOI: 10.5812/compreped.59248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
|
10
|
García-Cuesta EM, López-Cobo S, Álvarez-Maestro M, Esteso G, Romera-Cárdenas G, Rey M, Cassady-Cain RL, Linares A, Valés-Gómez A, Reyburn HT, Martínez-Piñeiro L, Valés-Gómez M. NKG2D is a Key Receptor for Recognition of Bladder Cancer Cells by IL-2-Activated NK Cells and BCG Promotes NK Cell Activation. Front Immunol 2015; 6:284. [PMID: 26106390 PMCID: PMC4459093 DOI: 10.3389/fimmu.2015.00284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/18/2015] [Indexed: 12/05/2022] Open
Abstract
Intravesical instillation of bacillus Calmette–Guérin (BCG) is used to treat superficial bladder cancer, either papillary tumors (after transurethral resection) or high-grade flat carcinomas (carcinoma in situ), reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, natural killer (NK), and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient.
Collapse
Affiliation(s)
- Eva María García-Cuesta
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Sheila López-Cobo
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Gema Romera-Cárdenas
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Mercedes Rey
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Ana Linares
- Urology Unit, Infanta Sofía Hospital , Madrid , Spain
| | | | - Hugh Thomson Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
11
|
Carey AJ, Tan CK, Ipe DS, Sullivan MJ, Cripps AW, Schembri MA, Ulett GC. Urinary tract infection of mice to model human disease: Practicalities, implications and limitations. Crit Rev Microbiol 2015; 42:780-99. [PMID: 26006172 DOI: 10.3109/1040841x.2015.1028885] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host-pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis.
Collapse
Affiliation(s)
- Alison J Carey
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Chee K Tan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Deepak S Ipe
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Matthew J Sullivan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Allan W Cripps
- b Menzies Health Institute Queensland, Griffith University , Gold Coast , Australia , and
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| |
Collapse
|
12
|
Subinhibitory antibiotic therapy alters recurrent urinary tract infection pathogenesis through modulation of bacterial virulence and host immunity. mBio 2015; 6:mBio.00356-15. [PMID: 25827417 PMCID: PMC4453531 DOI: 10.1128/mbio.00356-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associated with antibiotic therapy when dosing strategies fall below subtherapeutic levels.
Collapse
|
13
|
Effect of ceftriaxone on the outcome of murine pyelonephritis caused by extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2014; 58:7102-11. [PMID: 25224003 DOI: 10.1128/aac.03974-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTIs) due to extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae in children are becoming more frequent, and they are commonly treated initially with a second- or third-generation cephalosporin. We developed a murine model of ascending UTI caused by ESBL-producing Escherichia coli. Using this model, we investigated the renal bacterial burden, interleukin-6 (IL-6) expression, and histopathological alterations caused by ESBL- and non-ESBL-producing bacteria after 1, 2, or 6 days with or without ceftriaxone therapy. The renal bacterial burden, IL-6 concentration, and histological inflammatory lesions were not significantly different between mice infected with ESBL- and non-ESBL-producing bacteria without treatment at any of the time points examined. Following ceftriaxone administration, the bacterial burden was eliminated in the kidneys of mice infected with ESBL- and non-ESBL-producing bacteria on the 6th postinfection day. The histological analysis demonstrated that among mice treated with ceftriaxone, those infected with ESBL-producing bacteria had more profound renal alterations than those infected with non-ESBL-producing bacteria on the 6th day (P < 0.001). In comparison, microbiological outcomes did not differ significantly between mice infected with ESBL- and non-ESBL-producing bacteria at any of the time points examined. The effectiveness of ceftriaxone in mice with UTIs due to ESBL-producing E. coli may have therapeutic implications; it is, however, hampered by limited activity on the histopathological lesions, a finding that needs further investigation.
Collapse
|
14
|
Abstract
This review focussed on the cytokine responses to urinary tract infections. Colonization of the human urinary tract with E. coli activates the intermittant secretion of IL-6 and IL-8 into urine. In contrast, local bacterial challenge did not give rise to detectable serum IL-6 or IL-8 levels. IL-6 is detected in the urine at the time of diagnosis in most patients with natural urinary tract infections; however, IL-6 was only detected in the serum of symptomatic patients. These observations suggested that the cytokine response during UTI can have local and systemic components. Epithelial cells have been examined as a likely source of the local cytokines produced in response to UTI. The profile of cytokines produced by uroepithelial cells in response to E. coli is similar to that secreted during UTI (IL-6 and IL-8, but no IL-1 or TNF). Adhering bacteria and isolated P fimbriae stimulate higher levels of IL-6 production in cells that express the globoseries of glycolipids such as kidney epithelial cells. Uroepithelial cells also respond to stimulation by cytokines; IL-1alpha and TNFalpha induce the secretion of IL-6 and IL-8 and the upregulation of mRNAs for IL-1alpha, IL-1beta, IL-6 and IL-8. This cytokine profile is similar to that detected after bacterial stimulation; however, the magnitude and kinetics of the epithelial cell cytokine responses differed between the stimulants. Interleukin-4 induced epithelial cell IL-6 and IL-8 production; gamma-interferon only induced IL-6 production. This suggests that epithelial cells produce primary and secondary cytokine responses, and can function in mucosal cytokine networks with a variety of cells. Cytokines are mediators of immune functions and inflammation and it is likely that the local cytokine production influences both the induction of symptoms as well as the eventual outcome of the infection. Examination of local cytokine levels during UTI may prove to be a useful diagnostic tool; however, this possibility requires further evaluation.
Collapse
|
15
|
Ping SY, Wu CL, Yu DS. Sunitinib can enhance BCG mediated cytotoxicity to transitional cell carcinoma through apoptosis pathway. Urol Oncol 2012; 30:652-9. [DOI: 10.1016/j.urolonc.2010.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
|
16
|
Demirel I, Säve S, Kruse R, Persson K. Expression of suppressor of cytokine signalling 3 (SOCS3) in human bladder epithelial cells infected with uropathogenic Escherichia coli. APMIS 2012; 121:158-67. [PMID: 23030674 DOI: 10.1111/j.1600-0463.2012.02951.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/27/2012] [Indexed: 11/29/2022]
Abstract
Suppressor of cytokine signalling (SOCS) proteins inhibit pro-inflammatory signalling mediated by Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathways. To evade the immune response some pathogens appear to modify the host SOCS proteins. Uropathogenic Escherichia coli (UPEC) are able to subvert the host response evoked by bladder epithelial cells, but the mechanisms are not fully understood. The objective of this study was to investigate whether UPEC can modify the host SOCS and STAT3 response. Real time RT-PCR studies demonstrated an increased SOCS1 and SOCS3 expression in the isolated human bladder epithelial cell lines (RT-4 and 5637) in response to cytokines. UPEC strain IA2 increased SOCS3, but not SOCS1, mRNA levels with a peak at 6 h after infection. The increase of SOCS3 was confirmed at the protein level by Western blotting. The UPEC strain IA2 caused a time-dependent decrease in the phosphorylation of STAT3. This study demonstrates that UPEC are able to affect SOCS3 and STAT3 signalling in human uroepithelial cells. The finding that UPEC are able to induce mediators involved in suppression of host cytokine signalling may help to elucidate how UPEC may circumvent the host response during urinary tract infection.
Collapse
Affiliation(s)
- Isak Demirel
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Sweden.
| | | | | | | |
Collapse
|
17
|
Palaniyandi S, Mitra A, Herren CD, Lockatell CV, Johnson DE, Zhu X, Mukhopadhyay S. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073. PLoS One 2012; 7:e31348. [PMID: 22363626 PMCID: PMC3283629 DOI: 10.1371/journal.pone.0031348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.
Collapse
Affiliation(s)
- Senthilkumar Palaniyandi
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Arindam Mitra
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Christopher D. Herren
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - C. Virginia Lockatell
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David E. Johnson
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Veterans Affairs, Baltimore, Maryland, United States of America
| | - Xiaoping Zhu
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Suman Mukhopadhyay
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wood MW, Nordone SK, Vaden SL, Breitschwerdt EB. Assessment of urine solute and matrix effects on the performance of an enzyme-linked immunosorbent assay for measurement of interleukin-6 in dog urine. J Vet Diagn Invest 2011; 23:316-20. [PMID: 21398454 DOI: 10.1177/104063871102300219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Measurement of cytokine concentrations within body fluids is a means of recognizing subclinical and/or unresolved, infectious and inflammatory states in patients. In the urinary tract, such information may be useful for identifying patients with pyelonephritis, asymptomatic bacteriuria, recurrent infections, and cystitis. One such cytokine, interleukin-6 (IL-6), is recognized as a primary cytokine that is produced following exposure of the urothelium to bacterial virulence factors. Complicating reliable testing for this and other cytokines is the nature of urine itself. Urine varies widely in its composition as indicated by the range of pH and urine specific gravity (USG) observed in healthy patients. An additional variable is the protein and carbohydrate matrix capable of hindering immunologic testing modalities, such as enzyme-linked immunosorbent assays (ELISAs). The purpose of the current study was to examine the role of urine pH, USG, and matrix while optimizing a canine-specific chemiluminescent ELISA for the measurement of IL-6 in the urine of dogs. Urine spiked with IL-6 obtained maximal IL-6 quantitative recoveries of only 55 ± 10% (mean ± 1 standard deviation) when an ELISA optimized for cell culture supernatants was used. The urine matrix and variations in USG were determined to by contributing to this poor IL-6 recovery. Using specific matrix inhibitors and optimal dilutions improved the IL-6 quantitative recovery to 91 ± 5%. Urine pH (5.5-9.5) had no effect. The current work underscores the importance of critically optimizing testing modalities for biomarkers, particularly if they are immunologic in origin.
Collapse
Affiliation(s)
- Michael W Wood
- College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | | | |
Collapse
|
19
|
Polgárová K, Lüthje P, Cerami A, Brauner A. The erythropoietin analogue ARA290 modulates the innate immune response and reduces Escherichia coli invasion into urothelial cells. ACTA ACUST UNITED AC 2011; 62:190-6. [PMID: 21410562 DOI: 10.1111/j.1574-695x.2011.00801.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Urinary tract infections (UTI) are one of the most common infectious diseases worldwide. The majority is caused by uropathogenic Escherichia coli. Emerging resistances against conventional antimicrobial therapy requires novel treatment strategies. Beside its role in erythropoiesis, erythropoietin has been recognized to exert tissue-protective and immunomodulatory properties. Here, we investigated the nonerythropoietic erythropoietin analogue ARA290 for potential properties to modulate uroepithelial infection by E. coli in a cell culture model. Expression of the erythropoietin receptor was increased by bacterial stimuli and further enhanced by ARA290 in bladder epithelial cell lines and primary cells as well as in the monocytic cell line THP-1. Stimulation with ARA290 promoted an immune response, inducing a strong initial, but temporarily limited interleukin-8 induction. Moreover, the invasion of bladder epithelial cells by E. coli was significantly reduced in cells costimulated with ARA290. Our results indicate that the erythropoietin analogue ARA290 might be a candidate for the development of novel treatment strategies against UTI, by boosting an early immune response and reducing bacterial invasion as a putative source for recurrent infections.
Collapse
Affiliation(s)
- Kamila Polgárová
- Department of Microbiology, Tumor and Cell biology, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Autocrine effects of interleukin-6 mediate acute-phase proinflammatory and tissue-reparative transcriptional responses of canine bladder mucosa. Infect Immun 2010; 79:708-15. [PMID: 21115724 DOI: 10.1128/iai.01102-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During early urinary tract infection (UTI) the interplay between invading bacteria and the urothelium elicits a mucosal response aimed at clearing infection. Unfortunately, the resultant inflammation and associated local tissue injury are responsible for patient symptoms. Interleukin-6 (IL-6), a cytokine released during acute UTI, has both pro- and anti-inflammatory effects on other body systems. Within the urothelium, the IL-6 native-tissue origin, the target cell type(s), and ultimate effect of the cytokine on target cells are largely unknown. In the present study we modeled the UTI IL-6 response ex vivo using canine bladder mucosa mounted in Ussing chambers to determine the inflammatory and reparative role of IL-6. We demonstrated that uropathogenic Escherichia coli infection stimulates the synthesis of IL-6 by all urothelial cell layers, with the urothelial cells alone representing the only site of unequivocal IL-6 receptor expression. Autocrine effects of IL-6 were supported by the activation of urothelial STAT3 signaling and SOCS3 expression. Using exogenous IL-6, a microarray approach, and quantitative reverse transcriptase PCR (q-RT-PCR), 5 target genes (tumor necrosis factor alpha, interleukin-1β, matrix metallopeptidase 2, heparan sulfate d-glucosaminyl 3-O-sulfotransferase 3A1, and hyaluronan synthase 2) that have direct or indirect roles in promoting a proinflammatory state were identified. Two of these genes, heparan sulfate d-glucosaminyl 3-O-sulfotransferase 3A1 and hyaluronan synthase 2, are also potentially important mediators of wound repair via the production of glycosaminoglycan components. These findings suggest that IL-6 secretion during acute UTI may serve a dual biological role by initiating the inflammatory response while also repairing urothelial defenses.
Collapse
|
21
|
Spasojević-Dimitrijeva B, Zivković M, Stanković A, Stojković L, Kostić M. The IL-6 -174G/C polymorphism and renal scarring in children with first acute pyelonephritis. Pediatr Nephrol 2010; 25:2099-106. [PMID: 20632037 DOI: 10.1007/s00467-010-1587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
Urinary tract infections (UTI) are common in infants and children and may result in serious complications, such as renal scarring, hypertension, and renal failure. Identification of the new markers in relation to acute pyelonephritis (APN) and its treatment is essential for designing interventions that would minimize tissue damage. This prospective study investigated the first UTI infection in 71 children (age range: 1-24 months) in respect to interleukin-6 (IL-6) -174G/C polymorphism and renal scarring. The patients were divided into an APN group and a lower UTI group according to dimercaptosuccinic acid (DMSA). The IL-6 -174G/C genotypes were determined by tetra-primer ARMSPCR. Serum IL-6 was significantly higher in the APN group than in the group with lower UTI (p<0.05). In both groups, the -174G/C genotype and allele frequencies did not differ significantly from the control group. The highest white blood cell (WBC) count was observed in the CC genotype (p<0.05). A non-significant trend toward higher serum IL-6 was observed in children with CC genotype. On follow-up DMSA imaging performed 6 months later, renal scarring was detected in 36.9% of APN children. We did not find the significant association of IL-6 -174G/C polymorphism with APN and/or postinfectious renal scarring. These results indicate that serum IL-6 concentrations were significantly higher in children with APN than in patients with lower UTI.
Collapse
|
22
|
Abstract
The urinary tract is a common site of bacterial infections; nearly half of all women experience at least one urinary tract infection (UTI) during their lifetime. These infections are classified based on the condition of the host. Uncomplicated infections affect otherwise healthy individuals and are most commonly caused by uropathogenic Escherichia coli, whereas complicated infections affect patients with underlying difficulties, such as a urinary tract abnormality or catheterization, and are commonly caused by species such as Proteus mirabilis. Virulence and fitness factors produced by both pathogens include fimbriae, toxins, flagella, iron acquisition systems, and proteins that function in immune evasion. Additional factors that contribute to infection include the formation of intracellular bacterial communities by E. coli and the production of urease by P. mirabilis, which can result in urinary stone formation. Innate immune responses are induced or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils. The adaptive immune response to UTI is less well understood. Host factors TLR4 and CXCR1 are implicated in disease outcome and susceptibility, respectively. Low levels of TLR4 are associated with asymptomatic bacteriuria while low levels of CXCR1 are associated with increased incidence of acute pyelonephritis. Current research is focused on the identification of additional virulence factors and therapeutic or prophylactic targets that might be used in the generation of vaccines against both uropathogens.
Collapse
|
23
|
Sivick KE, Mobley HLT. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78:568-85. [PMID: 19917708 PMCID: PMC2812207 DOI: 10.1128/iai.01000-09] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden-a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses-from pattern receptor recognition to recruitment of phagocytic cells-that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity.
Collapse
Affiliation(s)
- Kelsey E. Sivick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
24
|
Martinez RCR, Seney SL, Summers KL, Nomizo A, De Martinis ECP, Reid G. Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol 2009; 53:487-95. [PMID: 19703242 DOI: 10.1111/j.1348-0421.2009.00154.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vulvovaginal candidiasis, a high prevailing infection worldwide, is mainly caused by Candida albicans. Probiotic Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 have been previously shown to be useful as adjuvants in the treatment of women with VVC. In order to demonstrate and better understand the anti-Candida activity of the probiotic microorganisms in an in vitro model simulating vaginal candidiasis, a human vaginal epithelial cell line (VK2/E6E7) was infected with C.albicans 3153a and then challenged with probiotic L. rhamnosus GR-1 and/or L. reuteri RC-14 or their respective CFS (alone or in combination). At each time point (0, 6, 12 and 24 hr), numbers of yeast, lactobacilli and viable VK2/E6E7 cells were determined and, at 0, 6 and 12 hr, the supernatants were measured for cytokine levels. We found that C. albicans induced a significant increase in IL-1alpha and IL-8 production by VK2/E6E7 cells. After lactobacilli challenge, epithelial cells did not alter IL-6, IL-1alpha, RANTES and VEGF levels. However, CFS from the probiotic microorganisms up-regulated IL-8 and IP-10 levels secreted by VK2/E6E7 cells infected with C. albicans. At 24 hr of co-incubation, L. reuteri RC-14 alone and in combination with L. rhamnosus GR-1 decreased the yeast population recoverable from the cells. In conclusion, L. reuteri RC-14 alone and together with L. rhamnosus GR-1 have the potential to inhibit the yeast growth and their CFS may up-regulate IL-8 and IP-10 secretion by VK2/E6E7 cells, which could possibly have played an important role in helping to clear VVC in vivo.
Collapse
Affiliation(s)
- Rafael C R Martinez
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Avenida do Café s/n, Campus of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
26
|
Barford JMT, Coates ARM. The pathogenesis of catheter-associated urinary tract infection. J Infect Prev 2009. [DOI: 10.1177/1757177408098265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) remains one of the most common types of hospital-acquired infections. Further progress in the prevention of CAUTI requires a better understanding of its pathogenesis. Bacteria may enter the bladder through contamination of the tip during insertion with the flora of the distal urethra or from bacteria ascending the outside or the inside of the catheter. Residual urine in the bladder of catheterised patients increases the risk of bacteriuria. During the process of infection, bacteria need first to adhere to the epithelial cells of the urinary tract and/or the surface of the catheter. They will then develop into biofilms on the catheter surface and are resistant to the immune system and antibiotics. Catheters by themselves may cause immediate physical damage to the bladder epithelium; they may be toxic and also cause inflammation. Bacteria can also damage the epithelium and cause inflammation and the combination of both may be synergistic in producing symptoms in the patient. Most episodes of catheter-associated bacteriuria are asymptomatic but it is not known why some patients are symptomatic and others are not. Further research into the pathogenesis of CAUTI needs to be carried out. A suggestion for the prevention of CAUTI is the use of catheters with an additional eye-hole beneath the balloon to prevent residual urine in the bladder or to remove the tip and balloon altogether, with the additional benefit of having no tip to cause damage or inflammation to the bladder epithelium.
Collapse
Affiliation(s)
- JMT Barford
- Medical Microbiology, Centre for Infection, Division of Cellular and Molecular Medicine, St George's, University of London,
| | - ARM Coates
- Medical Microbiology, Centre for Infection, Division of Cellular and Molecular Medicine, St George's, University of London,
| |
Collapse
|
27
|
Roelofs JJ, Teske GJ, Bonta PI, de Vries CJ, Meijers JC, Weening JJ, van der Poll T, Florquin S. Plasminogen activator inhibitor-1 regulates neutrophil influx during acute pyelonephritis. Kidney Int 2009; 75:52-9. [DOI: 10.1038/ki.2008.454] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Ingersoll MA, Kline KA, Nielsen HV, Hultgren SJ. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol 2008; 10:2568-78. [PMID: 18754853 PMCID: PMC3036167 DOI: 10.1111/j.1462-5822.2008.01230.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), the causative agent of approximately 85% of urinary tract infections (UTI), is a major health concern primarily affecting women. During infection, neutrophils infiltrate the bladder, but the mechanism of recruitment is not well understood. Here, we investigated the role of UPEC-induced cytokine production in neutrophil recruitment and UTI progression. We first examined the kinetics of cytokine expression during UPEC infection of the bladder, and their contribution to neutrophil recruitment. We found that UPEC infection induces expression of several pro-inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF, CSF-3), not previously known to be involved in the host response to UTI. G-CSF induces neutrophil emigration from the bone marrow; these cells are thought to be critical for bacterial clearance during infection. Upon neutralization of G-CSF during UPEC infection, we found fewer circulating neutrophils, decreased neutrophil infiltration into the bladder and, paradoxically, a decreased bacterial burden in the bladder. However, depletion of G-CSF resulted in a corresponding increase in macrophage-activating cytokines, such as monocyte chemotactic protein-1 (MCP-1, CCL-2) and Il-1beta, which may be key in host response to UPEC infection, potentially resolving the paradoxical decreased bacterial burden. Thus, G-CSF acts in a previously unrecognized role to modulate the host inflammatory response during UPEC infection.
Collapse
Affiliation(s)
| | - Kimberly A. Kline
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Hailyn V. Nielsen
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
29
|
Weichhart T, Haidinger M, Hörl WH, Säemann MD. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 2008; 38 Suppl 2:29-38. [PMID: 18826479 DOI: 10.1111/j.1365-2362.2008.02006.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mucosal tissues such as the gastrointestinal tract are typically exposed to a tremendous number of microorganisms and many of them are potentially dangerous to the host. In contrast, the urogenital tract is rather infrequently colonized with bacterial organisms and also devoid of physical barriers as a multi-layered mucus or ciliated epithelia, thereby necessitating separate host defence mechanisms. Recurrent urinary tract infection (UTI) represents the successful case of microbial host evasion and poses a major medical and economic health problem. During recent years considerable advances have been made in our understanding of the mechanisms underlying the immune homeostasis of the urogenital tract. Hence, the system of pathogen-recognition receptors including the Toll-like receptors (TLRs) is able to sense danger signalling and thus activate the host immune system of the genitourinary tract. Additionally, various soluble antimicrobial molecules including iron-sequestering proteins, defensins, cathelicidin and Tamm-Horsfall protein (THP), as well as their role for the prevention of UTI by modulating innate and adaptive immunity, have been more clearly defined. Furthermore, signalling mediators like cyclic adenosine monophosphate (cAMP) or the circulatory hormone vasopressin were shown to be involved in the defence of uropathogenic microbes and maintenance of mucosal integrity. Beyond this, specific receptors e.g. CD46 or beta1/beta 3-integrins, have been elucidated that are hijacked by uropathogenic E. coli to enable invasion and survival within the urogenital system paving the way for chronic forms of urinary tract infection. Collectively, the majority of these findings offer novel avenues for basic and translational research implying effective therapies against the diverse forms of acute and chronic UTI.
Collapse
Affiliation(s)
- T Weichhart
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Simons MP, O’Donnell MA, Griffith TS. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol 2008; 26:341-5. [PMID: 18593617 PMCID: PMC2493065 DOI: 10.1016/j.urolonc.2007.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/01/2007] [Accepted: 11/08/2007] [Indexed: 01/05/2023]
Abstract
Bladder cancer accounts for approximately 13,000 deaths annually, and >60,000 new cases will appear this year, making it the fourth and tenth most common cancer among men and women, respectively. The majority of the newly diagnosed cases will be diagnosed prior to muscle invasion, and are thus potentially completely curable. Unfortunately, >20% of patients initially diagnosed with non-muscle invasive bladder cancer will eventually die of their disease despite local endoscopic surgery. Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used for the treatment of bladder cancer since 1976, and continues to be at the forefront of therapeutic options for this malignancy. Despite its success and worldwide acceptance, the antitumor effector mechanisms remain elusive. BCG therapy induces a massive local immune response characterized by the expression of multiple cytokines in the urine and bladder tissue, and the influx of granulocytes and mononuclear cells into the bladder wall. Findings from our laboratory have demonstrated that tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is induced by BCG treatment, and TRAIL was expressed on polymorphonuclear neutrophils (PMN) in the urine obtained from patients after intravesical BCG instillation. Subsequently, we have determined that BCG and components of the mycobacterial cell wall can directly stimulate the release of soluble TRAIL from PMN through toll-like receptor-2 (TLR2) recognition that is augmented by interferon (IFN). Based on our work and that of others implicating the need for T helper type 1 (Th-1) cytokine responses to BCG therapy for therapeutic results, we propose that TRAIL is released by PMN migrating to the bladder in response to BCG treatment. In addition, IFN acts to augment and prolong the amount of TRAIL released by PMN, resulting in an effective therapeutic outcome.
Collapse
Affiliation(s)
- Mark P. Simons
- Department of Urology, University of Iowa, Iowa City, IA
| | | | - Thomas S. Griffith
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
31
|
Svensson L, Mohlin C, Persson K. Upregulation of heme oxygenase-1 as a host mechanism for protection against nitric oxide-induced damage in human renal epithelial cells. Urology 2008; 73:1150-5. [PMID: 18485456 DOI: 10.1016/j.urology.2008.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/29/2008] [Accepted: 02/14/2008] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To examine whether urinary tract infection-associated stimuli could regulate heme oxygenase-1 (HO-1) expression and to asses the significance of HO-1 in protecting urinary tract epithelial cells against nitric oxide (NO)-induced damage. METHODS Heme oxygenase-1 expression was investigated in the human renal epithelial cell line A498 in response to the uropathogenic Escherichia coli (UPEC) strain IA2, the NO-donor DETA/NONOate (DETA/NO), and proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma) using reverse transcriptase polymerase chain reaction and Western blot analysis. Cell viability was examined by the trypan blue exclusion test and light microscopy. RESULTS The HO-1 inducer hemin and DETA/NO increased HO-1 expression in A498 cells, and glutathione depletion further increased HO-1 expression in response to DETA/NO and hemin. Stimulation with a UPEC strain or cytokines did not upregulate HO-1 expression. The cytokines induced inducible NO synthase expression and caused an increase in nitrite production. Hemin significantly decreased cytokine-induced NO production (P <0.001). DETA/NO decreased the cell viability by approximately 75%, but hemin was able to attenuate DETA/NO-induced cell damage. CONCLUSIONS The expression of HO-1 increased in human renal epithelial cells in response to NO, and the expression was further enhanced in glutathione-depleted cells. The bacteria per se or proinflammatory cytokines were not able to upregulate HO-1. Heme oxygenase-1 protects the cells against NO by feedback inhibition of NO production and by decreasing cell damage.
Collapse
Affiliation(s)
- Lovisa Svensson
- School of Pure and Applied Natural Science, University of Kalmar, Kalmar, Sweden
| | | | | |
Collapse
|
32
|
Hilbert DW, Pascal KE, Libby EK, Mordechai E, Adelson ME, Trama JP. Uropathogenic Escherichia coli dominantly suppress the innate immune response of bladder epithelial cells by a lipopolysaccharide- and Toll-like receptor 4-independent pathway. Microbes Infect 2007; 10:114-21. [PMID: 18248759 DOI: 10.1016/j.micinf.2007.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/03/2007] [Accepted: 10/18/2007] [Indexed: 11/27/2022]
Abstract
Urinary tract infections are a major source of morbidity among women, with the majority caused by uropathogenic Escherichia coli. Our objective was to test if uropathogenic E. coli suppress the innate immune response of bladder epithelial cells. We found that bladder epithelial cells secrete interleukin-6 and interleukin-8 in response to non-pathogenic E. coli, whereas they failed to do so in response to uropathogenic E. coli. Uropathogenic E. coli prevented interleukin-6 secretion in response to non-pathogenic E. coli and a panel of Toll-like receptor agonists, as well as to interleukin-1beta, but not to tumor necrosis factor alpha. These results indicate that receptors with a Toll/interleukin-1 receptor domain are specifically targeted, and that suppression is not a consequence of toxicity. One candidate for mediating immune suppression is bacterial lipopolysaccharide. However, lipopolysaccharide isolated from either uropathogenic or non-pathogenic E. coli stimulated interleukin-6 secretion to similar levels. In addition, uropathogenic E. coli did not stimulate interleukin-6 secretion from cells expressing a dominant negative Toll-like receptor 4, and prevented cells lacking Toll-like receptor 4 from secreting interleukin-6 in response to synthetic lipoprotein. We conclude that uropathogenic E. coli suppress the innate immune response through a pathway partially independent of lipopolysaccharide and Toll-like receptor 4.
Collapse
Affiliation(s)
- David W Hilbert
- Research and Development Department, Medical Diagnostic Laboratories LLC, 2439 Kuser Rd., Hamilton, NJ 08690, USA
| | | | | | | | | | | |
Collapse
|
33
|
Griffith TS. Predicting bacillus Calmette-Guerin immunotherapy effectiveness. J Urol 2007; 178:2247-8. [PMID: 17936825 DOI: 10.1016/j.juro.2007.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Simons MP, Nauseef WM, Griffith TS. Neutrophils and TRAIL: insights into BCG immunotherapy for bladder cancer. Immunol Res 2007; 39:79-93. [DOI: 10.1007/s12026-007-0084-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
|
35
|
Sakai A, Akifusa S, Itano N, Kimata K, Kawamura T, Koseki T, Takehara T, Nishihara T. Potential role of high molecular weight hyaluronan in the anti-Candida activity of human oral epithelial cells. Med Mycol 2007; 45:73-9. [PMID: 17325947 DOI: 10.1080/13693780601039607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Candida albicans is both a commensal and a pathogen in the oral mucosa. Previous studies have indicated that epithelial cell-associated carbohydrate moiety can inhibit C. albicans growth. In the present study, the mechanisms by which epithelial cells inhibit Candida growth were studied by examining the effect of hyaluronan (HA). A coculture of C. albicans and KB cells or COS-7 cells inhibited in vitro growth of the fungus by 50-87% at an effector-to-target (E:T) ratio of 80:1. Removing extracellular HA by hyaluronidase caused a significant decrease in the anti-Candida activity of the cells. In addition anti-Candida activity was observed at 1 micro g/ml HA (2000 kDa). The antifungal activity of extracellular HA was further studied by transiently transfecting COS-7 cells with human HSA1, HSA2, or HSA3 in order to produce high levels of extracellular HA. All of the transfectants inhibited C. albicans growth in vitro by 51-65% compared to 38% inhibition by the vector control (P<0.05). These results suggest that the anti-Candida activity of epithelial-cells is mediated by extracellular HA.
Collapse
Affiliation(s)
- Akiyoshi Sakai
- Division of Community Oral Health Science, Department of Health Promotion, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Strömbeck L, Sandros J, Holst E, Madianos P, Nannmark U, Papapanou P, Mattsby-Baltzer I. Prevotella bivia can invade human cervix epithelial (HeLa) cells. APMIS 2007; 115:241-51. [PMID: 17367470 DOI: 10.1111/j.1600-0463.2007.apm_512.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prevotella bivia has been associated with female upper genital tract infections and an increased risk of preterm delivery. In this study, the adherence and invasion capacity of P. bivia was investigated using a cervix epithelial cell line. P. bivia was furthermore analysed for its ability to evoke a proinflammatory cytokine response in epithelial cells. The invasion capacity, defined as the number of bacteria recovered from lysed HeLa cells infected with P. bivia, varied considerably among five strains, all of which were isolates from women with bacterial vaginosis. One P. bivia strain (P47) gave rise to an approximately 120-fold higher number of intracellular bacteria (7 x 10(3) bacteria per 1 x 10(5) cells) compared with the least invasive strain. Three strains expressed an intermediate or low invasiveness, showing an approximately 3- to 40-fold higher number of intracellular bacteria per 1 x 10(5) cells compared with the least invasive strain. The intracellular localization of P47 in phagosome-like vesicles was confirmed by transmission electron microscopy. All P. bivia strains adhered to HeLa cells to the same extent (range 14-22 bacteria per cell) as analysed by interference microscopy. No correlation was found between adhesion and invasion capacity of the strains. Furthermore, no fimbriae-like structures were observed on P47 detected by scanning electron microscopy or negative staining. Analysis of TNF-alpha, IL-1alpha, IL-6, IL-8, and IL-18 in P. bivia-stimulated HeLa cells showed low levels of only IL-6 and IL-8 for the most invasive P. bivia strain P47. Thus, the induction of IL-6 or IL-8 secretion appeared to be associated with invasion capacity. This work provides evidence that some P. bivia isolates can invade human cervix epithelial. Thus, a strong capacity for invasion and a weak proinflammatory cytokine-inducing capacity in P. bivia are suggested to be virulence factors in establishing a low-grade upper genital tract infection.
Collapse
Affiliation(s)
- Louise Strömbeck
- Department of Clinical Bacteriology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Simons MP, Moore JM, Kemp TJ, Griffith TS. Identification of the mycobacterial subcomponents involved in the release of tumor necrosis factor-related apoptosis-inducing ligand from human neutrophils. Infect Immun 2006; 75:1265-71. [PMID: 17194806 PMCID: PMC1828584 DOI: 10.1128/iai.00938-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intravesical administration of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be a successful immunotherapy for superficial bladder cancer. Recently, workers in our laboratory observed expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on neutrophils in voided urine following BCG therapy. Neutrophils released a soluble and functional form of TRAIL when they were stimulated in vitro with BCG, and the activity was localized predominantly to the cell wall fraction. In this study, we examined the ability of individual mycobacterial components to stimulate TRAIL release from neutrophils. Our results demonstrated that cell wall-derived lipoarabinomannan (LAM), mycolyl arabinogalactan-peptidoglycan complex, and a Triton X-114 (Tx114)-solubilized protein pool were effective agonists of TRAIL release from neutrophils. Mycobacterial DNA was also an agonist of TRAIL release from neutrophils. Furthermore, purified antigen 85 ABC complex and alpha-crystallin (HspX), two major cell wall antigens present in the Tx114 pool, induced TRAIL release from neutrophils. The Tx114 pool stimulated HEK-293 cells expressing either Toll-like receptor 2/1 (TLR2/1) or TLR2/6, but only HspX was able to stimulate TLR2/6-expressing cells. TLR4/MD2/CD14-expressing cells responded only to LAM. Collectively, these results suggested that TRAIL release from neutrophils was induced through the recognition of multiple mycobacterial components by TLR2 and TLR4.
Collapse
Affiliation(s)
- Mark P Simons
- Department of Urology, 3204 MERF, University of Iowa, 375 Newton Road, Iowa City, IA 52242-1089, USA
| | | | | | | |
Collapse
|
38
|
Roelofs JJTH, Rouschop KMA, Teske GJD, Claessen N, Weening JJ, van der Poll T, Florquin S. The urokinase plasminogen activator receptor is crucially involved in host defense during acute pyelonephritis. Kidney Int 2006; 70:1942-7. [PMID: 17035942 DOI: 10.1038/sj.ki.5001947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The urokinase plasminogen activator receptor (uPAR) is expressed at the cell surface of inflammatory cells and plays an important role in neutrophil migration. To investigate the in vivo role of uPAR during urinary tract infection, acute pyelonephritis was induced in uPAR-/- and wild-type (WT) mice by intravesical inoculation with 1 x 10(9) colony-forming units (CFU) of uropathogenic Escherichia coli. Mice were killed after 24 and 48 h, after which bacterial outgrowth and cytokine levels in kidney homogenates were determined. Influx of neutrophils was quantified by myeloperoxidase-enzyme-linked immunosorbent assay. uPAR-/- kidneys had significantly higher numbers of E. coli CFU, accompanied by higher levels of interleukin-1beta (IL-1beta), IL-6, keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-alpha (TNF-alpha). However, the number of infiltrating neutrophils was similar in uPAR-/- and WT mice at both time points, suggesting that uPAR-/- neutrophils have a lower ability to eliminate E. coli. To further investigate this, neutrophil oxidative burst and phagocytosis was measured. The generation of reactive oxygen species upon stimulation with E. coli was not diminished in uPAR-/- neutrophils compared with WT. Interestingly, uPAR-/- neutrophils displayed significantly impaired phagocytosis of E. coli organisms compared with WT neutrophils. We conclude that uPAR is crucially involved in host defense through phagocytosis during E. coli induced acute pyelonephritis.
Collapse
Affiliation(s)
- J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lilly EA, Leigh JE, Joseph SH, Fidel PL. Candida-induced oral epithelial cell responses. Mycopathologia 2006; 162:25-32. [PMID: 16830188 DOI: 10.1007/s11046-006-0036-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Oropharyngeal candidiasis (OPC), caused by Candida albicans, is the most common oral infection in HIV(+) persons. Oral epithelial cells are considered important for innate host defense against OPC with production of cytokines in response to C. albicans and the ability to inhibit Candida growth in vitro. The purpose of this study was to determine if Candida similarly induces cytokines by oral epithelial cells from HIV(+) persons, including those with OPC, as well as to determine if cytokines can influence the oral epithelial cell anti-Candida activity. METHODS Supernatants from oral epithelial cells from HIV(+) persons with and without OPC cultured with Candida were evaluated for cytokines by ELISA, or cytokines were added to the standard growth inhibition assay using epithelial cells from HIV(-) persons. RESULTS Results showed low Candida-induced epithelial cell cytokine production from HIV(+) persons, but with some elevated proinflammatory cytokines (TNF-alpha, IL-6) in those with OPC compared to those without OPC. The addition of specific proinflammatory or Th cytokines had no effect on oral epithelial cell anti-Candida activity in healthy HIV(-) persons. CONCLUSION These results suggest that oral epithelial cells from HIV(+) persons can contribute at some level to the oral cytokine milieu in response to Candida during OPC, but that cytokines do not appear to influence oral epithelial cell anti-Candida activity.
Collapse
Affiliation(s)
- E A Lilly
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center and School of Dentistry, New Orleans, LA, USA
| | | | | | | |
Collapse
|
40
|
Jahnukainen T, Chen M, Celsi G. Mechanisms of renal damage owing to infection. Pediatr Nephrol 2005; 20:1043-53. [PMID: 15889280 DOI: 10.1007/s00467-005-1898-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 01/24/2005] [Accepted: 01/31/2005] [Indexed: 11/24/2022]
Abstract
Urinary tract infection (UTI) is a common bacterial illness in children. It is known to be associated with an increased risk of permanent renal cell damage and scarring which may lead to generation of pathological conditions such as hypertension, pre-eclampsia during pregnancy, renal insufficiency, and end-stage kidney disease. The pathophysiology of renal scarring is still obscure, which makes the prevention of renal damage difficult. During acute infection, there are numerous factors that may contribute to tissue damage. Inflammatory responses are activated by host defense mechanisms as well as by specific bacterial virulence factors. Understanding of these complex mechanisms would be helpful to better identify children at high risk of developing renal scarring following UTI.
Collapse
|
41
|
Poljakovic M, Svensson L, Persson K. THE INFLUENCE OF UROPATHOGENIC ESCHERICHIA COLI AND PROINFLAMMATORY CYTOKINES ON THE INDUCIBLE NITRIC OXIDE SYNTHASE RESPONSE IN HUMAN KIDNEY EPITHELIAL CELLS. J Urol 2005; 173:1000-3. [PMID: 15711365 DOI: 10.1097/01.ju.0000150711.69933.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Nitric oxide (NO) is an antibacterial factor that is produced by the enzyme inducible NO synthase (iNOS). Uroepithelial cells express iNOS in experimental models of urinary tract infection but the stimulatory and regulatory mechanisms are still unclear. We investigated the influence of uropathogenic Escherichia coli strains with different fimbrial expression and the effect of proinflammatory cytokines on the host iNOS response. MATERIALS AND METHODS A498 human kidney epithelial cells were stimulated with different uropathogenic E. coli strains, namely the P and type 1-fimbriated clinical isolate AD110, the recombinant P-fimbriated strain E. coli HB101(pPIL110-75) and the recombinant type 1-fimbriated strain E. coli AAEC191A(pPKL4). NO production was determined as nitrite production in cell culture medium. Studies of nuclear factor-kappaB (NF-kappaB) binding to the iNOS promoter and reverse transcriptase-polymerase chain reaction of iNOS mRNA were performed to investigate iNOS gene activation in response to uropathogenic E. coli. The effect of interleukin (IL)-6, IL-8 and transforming growth factor-beta on NO production was also examined. RESULTS E. coli per se failed to induce NO production and iNOS mRNA in A498 cells. However, in combination with interferon-gamma AD110 and the type 1-fimbriated strain caused a small increase in NO production and iNOS mRNA. AD110 stimulated A498 cells demonstrated weak binding of NF-kappaB to a human iNOS promoter sequence. IL-6, IL-8 and transforming growth factor-a did not affect NO production in A498 cells. CONCLUSIONS Uropathogenic bacteria are weak inducers of human uroepithelial iNOS, which may be related to insufficient binding of NF-kappaB to iNOS promoter. The uroepithelial iNOS response did not appear to be regulated by proinflammatory cytokines.
Collapse
Affiliation(s)
- Mirjana Poljakovic
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | |
Collapse
|
42
|
Ramirez K, Huerta R, Oswald E, Garcia-Tovar C, Hernandez JM, Navarro-Garcia F. Role of EspA and intimin in expression of proinflammatory cytokines from enterocytes and lymphocytes by rabbit enteropathogenic Escherichia coli-infected rabbits. Infect Immun 2005; 73:103-13. [PMID: 15618145 PMCID: PMC538993 DOI: 10.1128/iai.73.1.103-113.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) produces attaching and effacing (A/E) lesions and watery diarrhea, both of which are intimin and EspA dependent. In this work, we explored the mucosal immune response by detecting cytokine induction in rabbits with diarrhea caused by rabbit EPEC (REPEC). Orally inoculated rabbits exhibited weight loss and mucosal inflammation, developed watery diarrhea, and died (day 7). At day 6 postinoculation, animals were analyzed for the induction of proinflammatory cytokines in enterocytes. The role of lymphocyte-dependent immunity was determined through the expression of proinflammatory cytokines by lymphocytes from Peyer's patches (PP) and the spleen. EspA and intimin mutants were used to explore the role of A/E lesions in the expression of these cytokines. REPEC-infected rabbit enterocytes showed increased interleukin 1beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) mRNA expression, but that of anti-inflammatory IL-10 was increased only slightly. In contrast, intimin mutant-infected rabbits were unable to produce this proinflammatory cytokine profile but did produce a remarkable increase in IL-10 expression. Bacteria lacking EspA increased the expression of IL-8 and TNF-alpha, but that of IL-10 was increased only slightly. PP lymphocytes also produced proinflammatory cytokines, which were dependent on EspA (except for TNF-alpha) and intimin, while IL-10 was induced by EspA and intimin mutants. In contrast, spleen lymphocytes (systemic compartment) were unable to produce IL-1beta and TNF-alpha. These data show the importance of the proinflammatory cytokines secreted by enterocytes and those expressed locally by PP lymphocytes, which can activate effector mechanisms at the epithelium. Furthermore, this cytokine profile, including IL-6 and IL-1beta, which may be involved in the diarrhea produced by EPEC, depends on intimin.
Collapse
Affiliation(s)
- Karina Ramirez
- Department of Cell Biology, CINVESTAV-IPN, Ap. Postal 14-740, 07000 México City, Mexico
| | | | | | | | | | | |
Collapse
|
43
|
Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 2004; 72:3179-86. [PMID: 15155619 PMCID: PMC415697 DOI: 10.1128/iai.72.6.3179-3186.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal pathogens trigger a local innate host response by activating epithelial cells. Bacterial adherence and Toll-like receptor 4 (TLR4) signaling have been implicated as key events in this process. This study addressed the molecular basis of the epithelial response to gram-negative infection in the human urinary tract. Mucosal biopsies were obtained from kidneys, ureters, and bladders of patients undergoing urinary tract surgery, and epithelial TLR4 and CD14 expression was examined by immunohistochemistry. TLR4 was detected in epithelial cells lining the entire urinary tract and in the renal tubular epithelium. CD14, in contrast, was completely absent from the epithelial tissue. The response of the epithelial cells to infection was studied by in vitro challenge of the biopsies with uropathogenic Escherichia coli bacteria. A rapid cytokine response was observed, with production of interleukin-1beta (IL-1beta), IL-6, and IL-8 but not of IL-4 or gamma interferon. Adhering, P- or type 1-fimbriated E. coli activated IL-6 and IL-8 production more efficiently than the nonfimbriated control, as shown by cellular staining and analysis of secreted cytokines. The results demonstrate that human uroepithelial cells possess the molecular machinery needed to respond to uropathogenic E. coli. This includes recognition receptors for fimbriae and TLR4 for transmembrane signaling. We speculate that the lack of membrane-bound CD14 allows the epithelium to regulate its sensitivity to lipopolysaccharide and to discriminate between more-virulent and less-virulent strains.
Collapse
Affiliation(s)
- Patrik Samuelsson
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Johnson JR. Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect Dis Clin North Am 2003; 17:261-78, viii. [PMID: 12848470 DOI: 10.1016/s0891-5520(03)00027-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most frequent and best-studied agent of urinary tract infection (UTI) is Escherichia coli, which serves as a useful model pathogen for understanding microbial virulence in relation to UTI pathogenesis. The E. coli strains that cause most UTIs and other extraintestinal E. coli infections represent a highly specialized subset of the total E. coli population. The enhanced virulence potential of such strains, which collectively are known as uropathogenic E. coli or extraintestinal pathogenic E. coli (ExPEC), is thought to be caused mainly by their multiple virulence factors. These virulence factors include diverse adhesins, siderophores, toxins, polysaccharide coatings, and other properties that assist the bacteria in avoiding or subverting host defenses, injuring or invading host cells and tissues, and stimulating a noxious inflammatory response. Although the true evolutionary basis for ExPEC is unknown, the virulence factors of ExPEC serve as useful epidemiologic markers and in the future may provide effective targets for anti-UTI interventions.
Collapse
Affiliation(s)
- James R Johnson
- Infectious Diseases (111F), Veterans Affairs Medical Center, One Veteran's Drive, Minneapolis, MN 55417, USA.
| |
Collapse
|
45
|
Wullt B. Erratum to “The role of P fimbriae for Escherichia coli establishment and mucosal inflammation in the human urinary tract”. Int J Antimicrob Agents 2003; 21:605-21. [PMID: 13678032 DOI: 10.1016/s0924-8579(02)00328-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial adhesion to the bladder mucosa is a critical step for the establishment of Escherichia coli bacteriuria. The P-fimbriae, encoded by the pap gene cluster, are considered as virulence factors but the mechanisms have been debated. This study defined the roles for P fimbriation during the early colonization of the human urinary tract. Patients with recurrent UTI were first subjected to deliberate colonization with the non-fimbriated ABU strain E. coli 83972. Bacteriuria was established long term (1-4 years) in patients with dysfunctional bladders, but not in the patients with normal bladder function. Super-infections were transient and asymptomatic. P fimbriated transformants of the ABU strain (E. coli 83972pap+/prs+) reached 105 CFU/ml more rapidly than E. coli 83972 and the vector control. This was demonstrated by group wise and intra-individual analysis in patients colonized on different occasions with E. coli 83972 or the P fimbriated transformants. Higher neutrophil numbers and IL-8 and IL-6 concentrations in urine were obtained after colonization with the P fimbriated transformants. These results demonstrated that transformation of E. coli 83972 with the pap sequences is sufficient to convert it to a more potent host response inducer. The P fimbriae were shown to lower the significant bacteriuria threshold. The P fimbriated transformants needed lower bacterial numbers (103-4 CFU/ml) to predict a positive second urine culture with a >80% accuracy and to trigger a significant host response. These studies show that P fimbriae fulfil the Koch Henles molecular postulates for bacterial establishment and host response induction in the human urinary tract.
Collapse
Affiliation(s)
- Björn Wullt
- Division of Microbiology, Department of Laboratory Medicine, Lund University, Sweden.
| |
Collapse
|
46
|
Poljakovic M, Nygren JM, Persson K. Signalling pathways regulating inducible nitric oxide synthase expression in human kidney epithelial cells. Eur J Pharmacol 2003; 469:21-8. [PMID: 12782181 DOI: 10.1016/s0014-2999(03)01716-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to elucidate the signalling pathways involved in the cytokine-activated inducible nitric oxide synthase (iNOS) response in a human kidney epithelial cell line, A498. Unstimulated cells did not express iNOS. Exposure of A498 cells to a cytokine mixture consisting of interferon gamma, interleukin-1 beta and tumor necrosis factor-alpha (TNF-alpha) increased nitrite production, iNOS mRNA and protein expression. Pharmacological inhibition of tyrosine kinases, including janus kinase (JAK2), and protein kinase C (PKC) inhibited cytokine-mediated nitrite production and iNOS protein expression. The involvement of mitogen-activated protein kinases (MAPKs) was investigated. Inhibition of p38 MAPK, but not of an upstream activator of extracellular signal-regulated kinase (ERK), caused a decrease in iNOS expression and nitrite production in response to cytokines. Electrophoretic mobility shift assay of nuclear extract from cytokine-stimulated cells demonstrated a pronounced binding to a nuclear factor kappa B (NF-kappa B) sequence present in the human iNOS promoter. Furthermore, the NF-kappa B inhibitor pyrrolidinedithiocarbamate (PDTC) decreased cytokine-activated iNOS protein expression and nitrite production. The present study has demonstrated that cytokine-stimulated iNOS expression in human kidney epithelial cells involves activation of tyrosine kinases, including JAK2, PKC, p38 MAPK and NF-kappa B.
Collapse
Affiliation(s)
- Mirjana Poljakovic
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | |
Collapse
|
47
|
Pellegrino R, Galvalisi U, Scavone P, Sosa V, Zunino P. Evaluation of Proteus mirabilis structural fimbrial proteins as antigens against urinary tract infections. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 36:103-10. [PMID: 12727373 DOI: 10.1016/s0928-8244(03)00103-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteus mirabilis is a common cause of urinary tract infection (UTI) and produce several types of different fimbriae, including mannose-resistant/Proteus-like fimbriae, uroepithelial cell adhesin (UCA), and P. mirabilis fimbriae (PMF). Different authors have related these fimbriae with different aspects of P. mirabilis pathogenesis, although the precise role of fimbriae in UTI has not yet been elucidated. In this work we expressed and purified recombinant structural fimbrial proteins of these fimbriae (MrpA, UcaA, and PmfA) and assessed their role as protective antigens using an ascending and a haematogenous model of UTI in the mouse. MrpA protected subcutaneously immunised mice in both models, suggesting that it could be taken into account as a promising vaccine candidate against P. mirabilis UTI. UcaA could also be an interesting subunit to be studied although it only protected mice that were challenged intravenously. All subunits elicited a strong specific serum IgG response but there was no significant correlation between antibody levels and protection. Only PmfA-immunised mice elicited a significant urinary antibody response but this protein was unable to confer protection against P. mirabilis experimental challenges. These results may contribute to the development of vaccines against P. mirabilis, an important cause of complicated UTI.
Collapse
Affiliation(s)
- Rafael Pellegrino
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, P.O. Box 11600, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
48
|
Wullt B, Bergsten G, Samuelsson M, Svanborg C. The role of P fimbriae for Escherichia coli establishment and mucosal inflammation in the human urinary tract. Int J Antimicrob Agents 2002; 19:522-38. [PMID: 12135844 DOI: 10.1016/s0924-8579(02)00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Björn Wullt
- Division of Clinical Immunology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
49
|
Poljakovic M, Karpman D, Svanborg C, Persson K. Human renal epithelial cells express iNOS in response to cytokines but not bacteria. Kidney Int 2002; 61:444-55. [PMID: 11849384 DOI: 10.1046/j.1523-1755.2002.00138.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Epithelial cells form the mucosal barriers that prevent the entry of mucosal pathogens, and respond to bacterial infections by producing various host defense molecules. In this study, we examined the inducible nitric oxide synthase (iNOS) response of primary human renal tubular epithelial cells (HRTEC) following infection with uropathogenic Escherichia coli Hu734, or stimulation with lipopolysaccharide (LPS) or cytokines. METHODS Induction of iNOS was examined by RT-PCR, Western blot, immunohistochemistry and nitrite measurements. The effects of endogenously produced nitric oxide (NO), and exogenously applied DETA/NO, SIN-1 and H2O2 on cell viability were analyzed using a respiration assay. RESULTS HRTEC did not produce NO following infection with E. coli Hu734, LPS alone, or in combination with interferon-gamma (IFN-gamma), even though these agents caused a marked increase in iNOS expression by RAW 264.7, a macrophage cell line. In contrast, iNOS protein and mRNA expression by HRTEC increased after exposure to a cytokine mixture consisting of interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. This was due to the combination of IL-1beta and IFN-gamma, but the individual cytokines had no effect. Inducible NOS-expressing cell cultures showed reduced viability, and this effect was inhibited with the NOS inhibitor L-NMMA in RAW 264.7 cells, but not in HRTEC. HRTEC were more sensitive to oxidative stress induced by H2O2 than to nitrogen stress induced by DETA/NO. CONCLUSIONS We conclude that uropathogenic E. coli that attach to HRTEC fail to directly activate iNOS expression, and that iNOS expression during bacterial infection is more likely to result from stimulation by local cytokines such as IL-1beta and IFN-gamma.
Collapse
Affiliation(s)
- Mirjana Poljakovic
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
50
|
Steele C, Fidel PL. Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect Immun 2002; 70:577-83. [PMID: 11796585 PMCID: PMC127706 DOI: 10.1128/iai.70.2.577-583.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oropharyngeal and vaginal candidiases are the most common forms of mucosal fungal infections and are primarily caused by Candida albicans, a dimorphic fungal commensal organism of the gastrointestinal and lower female reproductive tracts. Clinical and experimental observations suggest that local immunity is important in host defense against candidiasis. Accordingly, cytokines and chemokines are present at the oral and vaginal mucosa during C. albicans infections. Since mucosal epithelial cells produce a variety of cytokines and chemokines in response to microorganisms and since C. albicans is closely associated with mucosal epithelial cells as a commensal, we sought to identify cytokines and/or chemokines produced by primary oral and vaginal epithelial cells and cell lines in response to C. albicans. The results showed that proinflammatory cytokines were produced by oral and/or vaginal epithelial cells at various levels constitutively with considerable interleukin-1alpha (IL-1alpha) and tumor necrosis factor alpha, but not IL-6, produced in response to C. albicans. In contrast, Th1-type (IL-12 and gamma interferon) and Th2-type-immunoregulatory (IL-10 and transforming growth factor beta) cytokines and the chemokines monocyte chemoattractant protein 1 and IL-8 were produced in low to undetectable concentrations with little additional production in response to C. albicans. Taken together, these results indicate that cytokines and chemokines are variably produced by oral and vaginal epithelial cells constitutively, as well as in response to C. albicans, and are predominated by proinflammatory cytokines.
Collapse
Affiliation(s)
- Chad Steele
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|