1
|
Jimenez-Vasquez V, Calvay-Sanchez KD, Zarate-Sulca Y, Mendoza-Mujica G. In-silico identification of linear B-cell epitopes in specific proteins of Bartonella bacilliformis for the serological diagnosis of Carrion's disease. PLoS Negl Trop Dis 2023; 17:e0011321. [PMID: 37228134 DOI: 10.1371/journal.pntd.0011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Carrion´s disease is caused by Bartonella bacilliformis, it is a Gram-negative pleomorphic bacterium. B. bacilliformis is transmitted by Lutzomyia verrucarum in endemic areas of the Peruvian Inter-Andean valleys. Additionally, the pathogenicity of B. bacilliformis involves an initial infection of erythrocytes and the further infection of endothelial cells, which mainly affects children and expectant women from extreme poverty rural areas. Therefore, the implementation of serological diagnostic methods and the development of candidate vaccines for the control of CD could be facilitated by the prediction of linear b-cell epitopes in specific proteins of B. bacilliformis by bioinformatics analysis. In this study, We used an in-silico analysis employing six web servers for the identification of epitopes in proteins of B. bacilliformis. The selection of B. bacilliformis-specific proteins and their analysis to identify epitopes allowed the selection of seven protein candidates that are expected to have high antigenic activity.
Collapse
Affiliation(s)
| | | | - Yanina Zarate-Sulca
- Laboratory of Vector-Borne Bacterial Diseases. National Institute of Health, Lima, Peru
| | | |
Collapse
|
2
|
Ma X, Wang Q, Li Y, Tan P, Wu H, Wang P, Dong X, Hong L, Meng G. How BamA recruits OMP substrates via poly-POTRAs domain. FASEB J 2019; 33:14690-14702. [PMID: 31702961 DOI: 10.1096/fj.201900681rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Almost all the outer membrane proteins (OMPs) fold into an invariant β-barrel fold via the polypeptide-transport-associated (POTRA) motif and β-barrel assembly machinery (BAM). However, whether and how poly-POTRAs interact with OMPs remain largely unknown. Here, we have characterized the structures of Haemophilus influenzae poly-POTRAs via X-ray crystallography, small angle X-ray scattering, and molecular dynamics simulation. Unexpectedly, crystal packing reveals a putative OMP travel pathway spiraled by the conserved α2-β2 edges in poly-POTRAs. Supportively, the structure-based mutations targeting the OMP binding sites significantly disrupt OMP biogenesis, resulting in severe cell growth defects. Another notable feature in H. influenzae POTRA structures is flexibility. As characterized by ELISA assays, poly-POTRAs could recruit OMP substrates in a step-wise manner. More importantly, the restriction of POTRA-POTRA linkage and flexibility significantly impairs the BamA function and causes cell growth defect. Altogether, these results suggest that the β-strand augmentations and intrinsic flexibility are important factors for BamA-OMP recruitment.-Ma, X., Wang, Q., Li, Y., Tan, P., Wu, H., Wang, P., Dong, X., Hong, L., Meng, G. How BamA recruits OMP substrates via poly-POTRAs domain.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pan Tan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Dong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Antenucci F, Magnowska Z, Nimtz M, Roesch C, Jänsch L, Bojesen AM. Immunoproteomic characterization of outer membrane vesicles from hyper-vesiculating Actinobacillus pleuropneumoniae. Vet Microbiol 2019; 235:188-194. [PMID: 31383301 DOI: 10.1016/j.vetmic.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
Outer membrane vesicles (OMVs) are produced and secreted virtually by every known Gram-negative bacterium. Despite their non-live nature, they share antigenic characteristics with the bacteria they originate from. This, together with their relative ease of purification, casts the OMVs as a very promising and flexible tool in both human and veterinary vaccinology. The aim of the current work was to get an insight into the antigenic pattern of OMVs from the pig pathogen Actinobacillus pleuropneumoniae in the context of vaccine development. Accordingly, we designed a protocol combining 2D Western Blotting and mass spectrometric identification to robustly characterize the antigenic protein pattern of the vesicles. Our analysis revealed that A. pleuropneumoniae OMVs carry several immunoreactive virulence factors. Some of these proteins, LpoA, OsmY and MIDG2331_02184, have never previously been documented as antigenic in A. pleuropneumoniae or other pathogenic bacteria. Additionally, we showed that despite their relative abundance, proteins such as FrpB and DegQ do not contribute to the antigenic profile of A. pleuropneumoniae OMVs.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| | - Zofia Magnowska
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| | - Manfred Nimtz
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| | - Camille Roesch
- Izon Science Ltd, Batiment Laennec, 60 Avenue Rockefeller, 69008, Lyon, France.
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Grassmann AA, Kremer FS, Dos Santos JC, Souza JD, Pinto LDS, McBride AJA. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front Immunol 2017; 8:463. [PMID: 28496441 PMCID: PMC5406399 DOI: 10.3389/fimmu.2017.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/04/2017] [Indexed: 12/03/2022] Open
Abstract
Leptospira spp. are diderm (two membranes) bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin) vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb) transmembrane proteins and outer membrane (OM) lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II) epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins identified included, e.g., TolC efflux pump proteins, a BamA-like OM component of the βb transmembrane protein assembly machinery, and the LptD-like LPS assembly protein. The structural mapping of the immunodominant epitopes identified the location of conserved, surface-exposed, immunogenic regions for each vaccine candidate. The proteins identified in this study are currently being evaluated for experimental evidence for their involvement in virulence, disease pathogenesis, and physiology, in addition to vaccine development.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Frederico Schmitt Kremer
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia Cougo Dos Santos
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Bahia, Brazil
| |
Collapse
|
5
|
Giebink GS, Bakaletz LO, Barenkamp SJ, Eskola J, Green B, Gu XX, Harada T, Heikkinen T, Karma P, Klein JO, Kurono Y, Mogi G, Murphy TF, Ogra PL, Patel JA, Suzuki M, Yamanaka N. 7. Vaccine. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894021110s310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Wang X, Peng L, Wang K, Wang J, He Y, Wang E, Chen D, Ouyang P, Geng Y, Huang X. The outer membrane proteins of Stenotrophomonas maltophilia are potential vaccine candidates for channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2016; 57:318-324. [PMID: 27574827 DOI: 10.1016/j.fsi.2016.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Stenotrophomonas maltophilia (S. maltophilia) infections in recent years, some of them severe. The outer membrane proteins (OMPs) of S. maltophilia are one of the most immunogenic and highly conserved candidates for vaccine development in aquaculture. The present study investigated OMPs of S. maltophilia as vaccine on immune response and disease resistance against S. maltophilia of channel catfish and investigated the enhancement effect of natural adjuvants Propolis (Pro), FIG polysaccharide (Fcps), Glycyrrhizine (Gly) to OMPs of S. maltophilia for further study. The results indicated that channel catfish injected intraperitoneally with OMPs showed better immune response including leukocytes phagocytosis activity, serum bactericidal activity, complement C3, IgM level and an increasement of resistance against S. maltophilia compared to the control group. Moreover, Pro, Fcps and Gly could enhance the immune response of OMPs. The relative percent of survival (RPS) was 73.33%, 66.67%, 63.33%, 60%, 0% in fish injected OMPs + Pro, OMPs + Fcps, OMPs + Gly, OMPs and 0.65% normal saline, respectively. These results suggested that OMPs used as vaccine could induce and stimulate immune response and enhance disease resistance in channel catfish, especially for Pro as immunoenhancer. Results revealed that OMPs were an effective vaccine against S. maltophilia in channel catfish.
Collapse
Affiliation(s)
- Xingli Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Lang Peng
- Department of Aquaculture, Sichuan Province Bureau of Aquatic Products, Chenghua District Donghong Road No. 60, Chengdu 610072, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China
| |
Collapse
|
7
|
Khan MN, Ren D, Kaur R, Basha S, Zagursky R, Pichichero ME. Developing a vaccine to prevent otitis media caused by nontypeable Haemophilus influenzae. Expert Rev Vaccines 2016; 15:863-78. [PMID: 26894630 DOI: 10.1586/14760584.2016.1156539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a predominant organism of the upper respiratory nasopharyngeal microbiota. Its disease spectrum includes otitis media, sinusitis, non-bacteremic pneumonia and invasive infections. Protein-based vaccines to prevent NTHi infections are needed to alleviate these infections in children and vulnerable populations such as the elderly and those with chronic obstructive pulmonary disease (COPD). One NTHi protein is included in a pneumococcal conjugate vaccine and has been shown to provide efficacy. Our lab has been interested in understanding the immunogenicity of NTHi vaccine candidates P6, protein D and OMP26 for preventing acute otitis media in young children. We expect that continued investigation and progress in the development of an efficacious protein based vaccine against NTHi infections is achievable in the near future.
Collapse
Affiliation(s)
- M Nadeem Khan
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Dabin Ren
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Ravinder Kaur
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Saleem Basha
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Robert Zagursky
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Michael E Pichichero
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| |
Collapse
|
8
|
Vaccines for Nontypeable Haemophilus influenzae: the Future Is Now. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:459-66. [PMID: 25787137 DOI: 10.1128/cvi.00089-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infections due to nontypeable Haemophilus influenzae result in enormous global morbidity in two clinical settings: otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). Recurrent otitis media affects up to 20% of children and results in hearing loss, delays in speech and language development and, in developing countries, chronic suppurative otitis media. Infections in people with COPD result in clinic and emergency room visits, hospital admissions, and respiratory failure. An effective vaccine would prevent morbidity, help control health care costs, and reduce antibiotic use, a major contributor to the global crisis in bacterial antibiotic resistance. The widespread use of the pneumococcal conjugate vaccines is causing a relative increase in H. influenzae otitis media. The partial protection against H. influenzae otitis media induced by the pneumococcal H. influenzae protein D conjugate vaccine represents a proof of principle of the feasibility of a vaccine for nontypeable H. influenzae. An ideal vaccine antigen should be conserved among strains, have abundant epitopes on the bacterial surface, be immunogenic, and induce protective immune responses. Several surface proteins of H. influenzae have been identified as potential vaccine candidates and are in various stages of development. With continued research, progress toward a broadly effective vaccine to prevent infections caused by nontypeable H. influenzae is expected over the next several years.
Collapse
|
9
|
Rana A, Rub A, Akhter Y. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach. J Mol Recognit 2015; 28:506-20. [PMID: 25727233 DOI: 10.1002/jmr.2458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an etiological agent of chronic inflammation of the intestine among ruminants and humans. Currently, there are no effective vaccines and sensitive diagnostic tests available for its control and detection. For this, it is of paramount importance to identify the MAP antigens, which may be immunologically recognized by the host immune system. To address this challenge, we performed identification of the immunogenic epitopes in the MAP outer membrane proteins (OMPs). We have previously identified 57 MAP proteins as OMPs [Rana A, Rub A, Akhter Y. 2014. Molecular BioSystems, 10:2329-2337] and have evaluated them for the epitope selection and analysis employing a computational approach. Thirty-five MAP OMPs are reported with nine-mer peptides showing high binding affinity to major histocompatibility complex (MHC) class I molecules and 28 MAP OMPs with 15-mer peptides of high binding affinity for MHC class II molecules. The presence of MHC binding epitopes indicates the potential cell-mediated immune response inducing capacity of these MAP OMPs in infected host. To further investigate the humoral response inducing properties of OMPs of MAP, we report potential B cell epitopes based on the sequences of peptide antigens and their molecular structures. We also report 10 proteins having epitopes for both B and T cells representing potential candidates which may invoke both humoral and cellular immune responses in the host. These findings will greatly accelerate and expedite the formulation of effective and cost-efficient vaccines and diagnostic tests against MAP infection.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Laboratory, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi,, 110025, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
10
|
Simmerman RF, Dave AM, Bruce BD. Structure and function of POTRA domains of Omp85/TPS superfamily. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:1-34. [PMID: 24411168 DOI: 10.1016/b978-0-12-800097-7.00001-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored.
Collapse
Affiliation(s)
- Richard F Simmerman
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Ashita M Dave
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
11
|
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S. A basis for vaccine development: Comparative characterization of Haemophilus influenzae outer membrane vesicles. Int J Med Microbiol 2014; 305:298-309. [PMID: 25592265 DOI: 10.1016/j.ijmm.2014.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022] Open
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections.
Collapse
Affiliation(s)
- Sandro Roier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Thomas Blume
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Gabriel E Wagner
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed-Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Wael Elhenawy
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed-Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Harrachgasse 21, A-8010 Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Mario F Feldman
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria.
| |
Collapse
|
12
|
Kumar A, Yogisharadhya R, Ramakrishnan MA, Viswas K, Shivachandra SB. Structural analysis and cross-protective efficacy of recombinant 87 kDa outer membrane protein (Omp87) of Pasteurella multocida serogroup B:2. Microb Pathog 2013; 65:48-56. [DOI: 10.1016/j.micpath.2013.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 01/10/2023]
|
13
|
Liu Y, Oshima SI, Kurohara K, Ohnishi K, Kawai K. Vaccine Efficacy of Recombinant GAPDH ofEdwardsiella tardaagainst Edwardsiellosis. Microbiol Immunol 2013; 49:605-12. [PMID: 16034203 DOI: 10.1111/j.1348-0421.2005.tb03652.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thirty-seven kilodalton glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Edwardsiella tarda was suggested to be an effective vaccine candidate against E. tarda infection in previous research. For developing a vaccine, obtaining GAPDH in large quantities is necessary. In this study, we determined the complete nucleotide sequence of the gene that encodes GAPDH of E. tarda, and overexpressed the GAPDH of E. tarda by using the Escherichia coli expression system. We immunized Japanese flounder with recombinant GAPDH (rGAPDH) and evaluated its vaccine efficacy. Our results showed that rGAPDH effectively protected Japanese flounder from experimental E. tarda infection, and will contribute to the development of a vaccine against E. tarda.
Collapse
Affiliation(s)
- Ying Liu
- Fish Disease Laboratory, Department of Aquaculture, Faculty of Agriculture, Kochi, Japan
| | | | | | | | | |
Collapse
|
14
|
Cai SH, Lu YS, Wu ZH, Jian JC. Cloning, expression of Vibrio alginolyticus outer membrane protein-OmpU gene and its potential application as vaccine in crimson snapper, Lutjanus erythropterus Bloch. JOURNAL OF FISH DISEASES 2013; 36:695-702. [PMID: 23383977 DOI: 10.1111/jfd.12036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 06/01/2023]
Abstract
The outer membrane proteins of the marine aquatic animal pathogen, Vibrio alginolyticus, play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In this study, the gene encoding an outer membrane protein-OmpU was cloned and expressed in Escherichia coli. Polyclonal antibodies were raised in rabbits against the purified recombinant OmpU, and the reaction of the antibody was confirmed by Western blotting using the isolated OmpU and the recombinant OmpU of V. alginolyticus. To analyze the immunogenicity of the recombinant OmpU, crimson snapper, Lutjanus erythropterus Bloch, were immunized by intraperitoneal injection, and antibody response was assessed by the enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the recombinant OmpU produced an observable antibody response in all sera of the vaccinated fish. The vaccinated fish were challenged by virulent V. alginolyticus and observed to have high resistance to infection. These results indicate that the recombinant OmpU is an effective vaccine candidate against V. alginolyticus in L. erythropterus.
Collapse
Affiliation(s)
- S H Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | | | | |
Collapse
|
15
|
Wedege E, Lie K, Bolstad K, Weynants VE, Halstensen A, Herstad TK, Kreutzberger J, Nome L, Naess LM, Aase A. Meningococcal omp85 in detergent-extracted outer membrane vesicle vaccines induces high levels of non-functional antibodies in mice. Scand J Immunol 2013; 77:452-9. [PMID: 23521186 DOI: 10.1111/sji.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/09/2013] [Indexed: 11/28/2022]
Abstract
The vaccine potential of meningococcal Omp85 was studied by comparing the immune responses of genetically modified deoxycholate-extracted outer membrane vesicles, expressing five-fold higher levels of Omp85, with wild-type vesicles. Groups (n = 6-12) of inbred and outbred mouse strains (Balb/c, C57BL/6, OFI and NMRI) were immunized with the two vaccines, and the induced antibody levels and bactericidal and opsonic activities measured. Except for Balb/c mice, which were low responders, the genetically modified vaccine raised high Omp85 antibody levels in all mouse strains. In comparison, the wild-type vaccine gave lower antibody levels, but NMRI mice responded to this vaccine with the same high levels as the modified vaccine in the other strains. Although the vaccines induced strain-dependent Omp85 antibody responses, the mouse strains showed high and similar serum bactericidal titres. Titres were negligible with heterologous or PorA-negative meningococcal target strains, demonstrating the presence of the dominant bactericidal PorA antibodies. The two vaccines induced the same opsonic titres. Thus, the genetically modified vaccine with high Omp85 antibody levels and the wild-type vaccine induced the same levels of functional activities related to protection against meningococcal disease, suggesting that meningococcal Omp85 is a less attractive vaccine antigen.
Collapse
Affiliation(s)
- E Wedege
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
See SB, Thomas WR. Protective anti-outer membrane protein immunity against Pasteurella pneumotropica infection of mice. Microbes Infect 2013; 15:470-9. [PMID: 23624107 DOI: 10.1016/j.micinf.2013.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/31/2012] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The ability of recombinant outer membrane proteins of Pasteurella pneumotropica to vaccinate against the infections of mice was studied. The proteins examined were the homologues of the P4, P6, P26, and D15 proteins of Haemophilus influenzae. Intranasal vaccination with P4 and P6 produced protection against pneumonia. P6 vaccination, which was most studied, reduced the peak bacteria load in lungs by 50-fold and caused a rapid resolution of an infection that lasted for at least 5 days in unvaccinated animals. Protection could be partially transferred with CD4(+) T cells and pulmonary challenge with the P6 antigen induced interferon-γ and the Th17 cytokine IL-21. This is the first demonstration of the ability of a recombinant P6 to mediate protective immunity to a pathogen in its natural host and it is proposed that it would not only have utility for mouse breeding but also for investigating how to improve the efficacy of vaccination with homologous proteins for related species.
Collapse
Affiliation(s)
- Sarah B See
- Division of Molecular Biotechnology, Centre for Child Health Research, Telethon Institute of Child Health Research, University of Western Australia, West Perth 6872, Australia.
| | | |
Collapse
|
17
|
Webb CT, Heinz E, Lithgow T. Evolution of the β-barrel assembly machinery. Trends Microbiol 2012; 20:612-20. [DOI: 10.1016/j.tim.2012.08.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
|
18
|
Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS One 2012; 7:e42664. [PMID: 22880074 PMCID: PMC3411803 DOI: 10.1371/journal.pone.0042664] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/10/2012] [Indexed: 01/29/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.
Collapse
|
19
|
Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. J Biomed Biotechnol 2012; 2012:760730. [PMID: 22719209 PMCID: PMC3376489 DOI: 10.1155/2012/760730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022] Open
Abstract
Flavobacterium columnare is a bacterial pathogen causing high mortality rates for many freshwater fish species. Fish vaccination with a safe and effective vaccine is a potential approach for prevention and control of fish disease. Here, in order to produce bacterial ghost vaccine, a specific Flavobacterium lysis plasmid pBV-E-cat was constructed by cloning PhiX174 lysis gene E and the cat gene with the promoter of F. columnare into the prokaryotic expression vector pBV220. The plasmid was successfully electroporated into the strain F. columnare G4cpN22 after curing of its endogenous plasmid. F. columnare G4cpN22 ghosts (FCGs) were generated for the first time by gene E-mediated lysis, and the vaccine potential of FCG was investigated in grass carp (Ctenopharyngodon idellus) by intraperitoneal route. Fish immunized with FCG showed significantly higher serum agglutination titers and bactericidal activity than fish immunized with FKC or PBS. Most importantly, after challenge with the parent strain G4, the relative percent survival (RPS) of fish in FCG group (70.9%) was significantly higher than FKC group (41.9%). These results showed that FCG could confer immune protection against F. columnare infection. As a nonliving whole cell envelope preparation, FCG may provide an ideal alternative to pathogen-based vaccines against columnaris in aquaculture.
Collapse
|
20
|
Zhang W, Shao J, Liu G, Tang F, Lu Y, Zhai Z, Wang Y, Wu Z, Yao H, Lu C. Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Sci 2011; 9:32. [PMID: 21703014 PMCID: PMC3148531 DOI: 10.1186/1477-5956-9-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae (APP) is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits. Results Proteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE). Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge. Conclusions We identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Shao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjin Liu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Zhai
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Wang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongfu Wu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Identification of an Edwardsiella tarda surface antigen and analysis of its immunoprotective potential as a purified recombinant subunit vaccine and a surface-anchored subunit vaccine expressed by a fish commensal strain. Vaccine 2010; 28:6603-8. [DOI: 10.1016/j.vaccine.2010.07.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/24/2010] [Accepted: 07/15/2010] [Indexed: 11/20/2022]
|
22
|
Su YC, Wan KL, Mohamed R, Nathan S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine 2010; 28:5005-11. [PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/16/2022]
Abstract
Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
Collapse
Affiliation(s)
- Yu-Ching Su
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
23
|
Ayalew S, Confer AW, Hartson SD, Shrestha B. Immunoproteomic analyses of outer membrane proteins of Mannheimia haemolytica and identification of potential vaccine candidates. Proteomics 2010; 10:2151-64. [DOI: 10.1002/pmic.200900557] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Yoder-Himes DR, Konstantinidis KT, Tiedje JM. Identification of potential therapeutic targets for Burkholderia cenocepacia by comparative transcriptomics. PLoS One 2010; 5:e8724. [PMID: 20090946 PMCID: PMC2806911 DOI: 10.1371/journal.pone.0008724] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/14/2009] [Indexed: 11/25/2022] Open
Abstract
Background Burkholderia cenocepacia is an endemic soil dweller and emerging opportunistic pathogen in patients with cystic fibrosis (CF). The identification of virulence factors and potential therapeutic targets has been hampered by the genomic diversity within the species as many factors are not shared among the pathogenic members of the species. Methodology/Principal Findings In this study, global identification of putative virulence factors was performed by analyzing the transcriptome of two related strains of B. cenocepacia (one clinical, one environmental) under conditions mimicking cystic fibrosis sputum versus soil. Soil is a natural reservoir for this species; hence, genes induced under CF conditions relative to soil may represent adaptations that have occurred in clinical strains. Under CF conditions, several genes encoding proteins thought to be involved in virulence were induced and many new ones were identified. Our analysis, in combination with previous studies, reveals 458 strain-specific genes, 126 clinical-isolate-specific, and at least four species-specific genes that are induced under CF conditions. The chromosomal distribution of the induced genes was disproportionate to the size of the chromosome as genes expressed under soil conditions by both strains were more frequent on the second chromosome and those differentially regulated between strains were more frequent on the third chromosome. Conservation of these induced genes was established using the 11 available Bcc genome sequences to indicate whether potential therapeutic targets would be species-wide. Conclusions/Significance Comparative transcriptomics is a useful way to identify new potential virulence factors and therapeutic targets for pathogenic bacteria. We identified eight genes induced under CF conditions that were also conserved in the Bcc and may constitute particularly attractive therapeutic targets due to their signal sequence, predicted cellular location, and homology to known therapeutic targets.
Collapse
Affiliation(s)
- Deborah R. Yoder-Himes
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tashiro Y, Sakai R, Toyofuku M, Sawada I, Nakajima-Kambe T, Uchiyama H, Nomura N. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J Bacteriol 2009; 191:7509-19. [PMID: 19837799 PMCID: PMC2786613 DOI: 10.1128/jb.00722-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
The opportunistic human bacterial pathogen Pseudomonas aeruginosa produces membrane vesicles (MVs) in its surrounding environment. Several features of the P. aeruginosa MV production mechanism are still unknown. We previously observed that depletion of Opr86, which has a role in outer membrane protein (OMP) assembly, resulted in hypervesiculation. In this study, we showed that the outer membrane machinery and alginate synthesis regulatory machinery are closely related to MV production in P. aeruginosa. Depletion of Opr86 resulted in increased expression of the periplasmic serine protease MucD, suggesting that the accumulation of misfolded OMPs in the periplasm is related to MV production. Indeed, the mucD mutant showed a mucoid phenotype and the mucD mutation caused increased MV production. Strains with the gene encoding alginate synthetic regulator AlgU, MucA, or MucB deleted also caused altered MV production. Overexpression of either MucD or AlgW serine proteases resulted in decreased MV production, suggesting that proteases localized in the periplasm repress MV production in P. aeruginosa. Deletion of mucD resulted in increased MV proteins, even in strains with mutations in the Pseudomonas quinolone signal (PQS), which serves as a positive regulator of MV production. This study suggests that misfolded OMPs may be important for MV production, in addition to PQS, and that these regulators act in independent pathways.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryosuke Sakai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Isao Sawada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Toshiaki Nakajima-Kambe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroo Uchiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiol 2009; 9:172. [PMID: 19695095 PMCID: PMC2741471 DOI: 10.1186/1471-2180-9-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 08/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Huazhong Agricultural University, Hubei, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gouré J, Findlay WA, Deslandes V, Bouevitch A, Foote SJ, MacInnes JI, Coulton JW, Nash JHE, Jacques M. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae. BMC Genomics 2009; 10:88. [PMID: 19239696 PMCID: PMC2653537 DOI: 10.1186/1471-2164-10-88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/24/2009] [Indexed: 11/12/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.
Collapse
Affiliation(s)
- Julien Gouré
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Highly conserved surface proteins of oral spirochetes as adhesins and potent inducers of proinflammatory and osteoclastogenic factors. Infect Immun 2008; 76:2428-38. [PMID: 18390996 DOI: 10.1128/iai.01128-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oral spirochetes include enormously heterogeneous Treponema species, and some have been implicated in the etiology of periodontitis. In this study, we characterized highly conserved surface proteins in four representative oral spirochetes (Treponema denticola, T. lecithinolyticum, T. maltophilum, and T. socranskii subsp. socranskii) that are homologs of T. pallidum Tp92, with opsonophagocytic potential and protective capacity against syphilis. Tp92 homologs of oral spirochetes had predicted signal peptides (20 to 31 amino acids) and molecular masses of 88 to 92 kDa for mature proteins. They showed amino acid sequence identities of 37.9 to 49.3% and similarities of 54.5 to 66.9% to Tp92. The sequence identities and similarities of Tp92 homologs of oral treponemes to one another were 41.6 to 71.6% and 59.9 to 85.6%, respectively. The tp92 gene homologs were successfully expressed in Escherichia coli, and the recombinant proteins were capable of binding to KB cells, an epithelial cell line, and inhibited the binding of the whole bacteria to the cells. Antiserum (the immunoglobulin G fraction) raised against a recombinant form of the T. denticola Tp92 homolog cross-reacted with homologs from three other species of treponemes. The Tp92 homologs stimulated various factors involved in inflammation and osteoclastogenesis, like interleukin-1beta (IL-1beta), tumor necrosis factor alpha, IL-6, prostaglandin E(2), and matrix metalloproteinase 9, in host cells like monocytes and fibroblasts. Our results demonstrate that Tp92 homologs of oral spirochetes are highly conserved and may play an important role in cell attachment, inflammation, and tissue destruction. The coexistence of various Treponema species in a single periodontal pocket and, therefore, the accumulation of multiple Tp92 homologs may amplify the pathological effect in periodontitis.
Collapse
|
29
|
Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa. J Bacteriol 2008; 190:3969-78. [PMID: 18390657 DOI: 10.1128/jb.02004-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is one of the most refractory to therapy when it forms biofilms in the airways of cystic fibrosis patients. To date, studies regarding the production of an immunogenic and protective antigen to inhibit biofilm formation by P. aeruginosa have been superficial. The previously uncharacterized outer membrane protein (OMP) Opr86 (PA3648) of P. aeruginosa is a member of the Omp85 family, of which homologs have been found in all gram-negative bacteria. Here we verify the availability of Opr86 as a protective antigen to inhibit biofilm formation by P. aeruginosa PAO1 and several other isolates. A mutant was constructed in which Opr86 expression could be switched on or off through a tac promoter-controlled opr86 gene. The result, consistent with previous Omp85 studies, showed that Opr86 is essential for viability and plays a role in OMP assembly. Depletion of Opr86 resulted in streptococci-like morphological changes and liberation of excess membrane vesicles. A polyclonal antibody against Opr86 which showed reactivity to PAO1 cells was obtained. The antibody inhibited biofilm formation by PAO1 and the other clinical strains tested. Closer examination of early attachment revealed that cells treated with the antibody were unable to attach to the surface. Our data suggest that Opr86 is a critical OMP and a potential candidate as a protective antigen against biofilm formation by P. aeruginosa.
Collapse
|
30
|
Zhang C, Yu L, Qian R. Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). J Appl Microbiol 2008; 103:1587-99. [PMID: 17953570 DOI: 10.1111/j.1365-2672.2007.03386.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the immunoprotection of three recombinant proteins derived from the Vibrio harveyi outer membrane proteins (OMPs) OmpK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and their fusion OmpK-GAPDH as vaccine candidates from vibriosis of large yellow croaker (Pseudosciaena crocea). METHODS The ompK gene, of which the leader sequence was omitted, was fused with the gapdh gene. Three recombinant proteins r-OmpK, r-GAPDH and r-OmpK-GAPDH were expressed and purified. Western blots were carried out to detect the specificity of the antibodies raised against the recombinant proteins; Fish were immunized with recombinant proteins and challenged by native V. harveyi. The immunoresponse to the recombinant proteins were determined by ELISA and phagocytic activity assay. CONCLUSIONS The fusion protein r-OmpK-GAPDH can afford greater protection against the wild V. harveyi than r-OmpK or r-GAPDH alone or their mixture in humoral and cellular immunity, indicating that OmpK and GAPDH could produce a synergistic immunoprotection against vibriosis of large yellow croaker (Pseudosciaena crocea) when fused into OmpK-GAPDH with a linker. SIGNIFICANCE AND IMPACT OF THE STUDY It has been realized that a multi-component OMP antigen can induce a higher frequency of immune effectors than a single OMP. The results presented here bring forth a good suggestion for the subunit vaccine design based on the OMPs of gram-negative pathogens.
Collapse
Affiliation(s)
- C Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
31
|
Glycosylation of the OMP85 homolog of Porphyromonas gingivalis and its involvement in biofilm formation. Biochem Biophys Res Commun 2008; 365:784-9. [DOI: 10.1016/j.bbrc.2007.11.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 01/18/2023]
|
32
|
Chung JW, Ng-Thow-Hing C, Budman LI, Gibbs BF, Nash JHE, Jacques M, Coulton JW. Outer membrane proteome ofActinobacillus pleuropneumoniae: LC-MS/MS analyses validatein silico predictions. Proteomics 2007; 7:1854-65. [PMID: 17476711 DOI: 10.1002/pmic.200600979] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Gram-negative bacterial pathogen Actinobacillus pleuropneumoniae causes porcine pneumonia, a highly infectious respiratory disease that contributes to major economic losses in the swine industry. Outer membrane (OM) proteins play key roles in infection and may be targets for drug and vaccine research. Exploiting the genome sequence of A. pleuropneumoniae serotype 5b, we scanned in silico for proteins predicted to be localized at the cell surface. Five genome scanning programs (Proteome Analyst, PSORT-b, BOMP, Lipo, and LipoP) were run to construct a consensus prediction list of 93 OM proteins in A. pleuropneumoniae. An inventory of predicted OM proteins was complemented by proteomic analyses utilizing gel- and solution-based methods, both coupled to LC-MS/MS. Different protocols were explored to enrich for OM proteins; the most rewarding required sucrose gradient centrifugation followed by membrane washes with sodium bromide and sodium carbonate. This protocol facilitated our identification of 47 OM proteins that represent 50% of the predicted OM proteome, most of which have not been characterized. Our study establishes the first OM proteome of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Omp85 is a protein found in Gram-negative bacteria where it serves to integrate proteins into the bacterial outer membrane. Members of the Omp85 family of proteins are defined by the presence of two domains: an N-terminal, periplasmic domain rich in POTRA repeats and a C-terminal beta-barrel domain embedded in the outer membrane. The widespread distribution of Omp85 family members together with their fundamental role in outer membrane assembly suggests the ancestral Omp85 arose early in the evolution of prokaryotic cells. Mitochondria, derived from an ancestral bacterial endosymbiont, also use a member of the Omp85 family to assemble proteins in their outer membranes. More distant relationships are seen between the Omp85 family and both the core proteins in two-partner secretion systems and the Toc75 family of protein translocases found in plastid outer envelopes. Aspects of the ancestry and molecular architecture of the Omp85 family of proteins is providing insight into the mechanism by which proteins might be integrated and assembled into bacterial outer membranes.
Collapse
Affiliation(s)
- Ian E Gentle
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Australia
| | | | | |
Collapse
|
34
|
Kawai K, Liu Y, Ohnishi K, Oshima SI. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 2004; 22:3411-8. [PMID: 15308366 DOI: 10.1016/j.vaccine.2004.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 02/24/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
An effective vaccine against Edwardsiella tarda has not been reported, one of main reasons is the variation in its serotypes. This study aimed to develop an effective vaccine against different serotypes of E. tarda. A conserved 37 kDa outer membrane protein (OMP) of E. tarda was obtained by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). It showed comprising several proteins by two-dimensional (2D) PAGE analysis and showed a high similarity to glyceraldehyde-3-phosphate dehydrogenase by N-terminal amino acid sequence analysis. Japanese flounder (Paralichthys olivaceus) vaccinated with the 37 kDa OMP was significantly protected against the infections by different serotypes of E. tarda. A specific antibody was also detected by using ELISA. This study suggests that the 37 kDa OMP is an effective potent vaccine candidate against different serotypes of E. tarda.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Aquaculture, Fish Disease Laboratory, Faculty of Agriculture, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
35
|
Banerji S, Flieger A. Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? MICROBIOLOGY-SGM 2004; 150:522-525. [PMID: 14993300 DOI: 10.1099/mic.0.26957-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Antje Flieger
- Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| |
Collapse
|
36
|
Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. ACTA ACUST UNITED AC 2003; 164:19-24. [PMID: 14699090 PMCID: PMC2171957 DOI: 10.1083/jcb.200310092] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Ian Gentle
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | |
Collapse
|
37
|
Kaur R, Sharma A, Majumdar S, Ganguly NK, Chakraborti A. Outer-membrane-protein subtypes of Haemophilus influenzae isolates from North India. J Med Microbiol 2003; 52:693-696. [PMID: 12867564 DOI: 10.1099/jmm.0.05080-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae serotype b and non-typable isolates from blood, cerebrospinal fluid, sputum and throat swabs of patients and carriers in North India were analysed by outer-membrane protein (OMP) profiling. OMP analysis could differentiate the samples into 18 different subtypes. The non-typable isolates were more variable than the serotype b samples. OMP subtypes 1-6 were found only among the serotype b isolates and subtypes 7-18 among the non-typable isolates, while subtypes 2 and 8 were exhibited by both. The OMP profiles of isolates from blood, cerebrospinal fluid and sputum are in complete agreement with their ribotypes and RAPD fingerprints. The present study demonstrates for the first time the subtyping of Indian H. influenzae isolates by an easy and less-expensive method that is applicable to developing countries like India.
Collapse
Affiliation(s)
- R Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh -160012, India
| | - A Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh -160012, India
| | - S Majumdar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh -160012, India
| | - N K Ganguly
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh -160012, India
| | - A Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh -160012, India
| |
Collapse
|
38
|
Ma Q, Zhai Y, Schneider JC, Ramseier TM, Saier MH. Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:223-33. [PMID: 12659964 DOI: 10.1016/s0005-2736(03)00059-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gram-negative bacteria have evolved numerous systems for the export of proteins across their dual-membrane envelopes. Three of these systems (types I, III and IV) secrete proteins across both membranes in a single energy-coupled step. Four systems (Sec, Tat, MscL and Holins) secrete only across the inner membrane, and four systems [the main terminal branch (MTB), fimbrial usher porin (FUP), autotransporter (AT) and two-partner secretion families (TPS)] secrete only across the outer membrane. We have examined the genome sequences of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens Pf0-1 for these systems. All systems except type IV were found in P. aeruginosa, and all except types III and IV were found in P. fluorescens. The numbers of each such system were variable depending on the system and species examined. Biochemical and physiological functions were assigned to these systems when possible, and the structural constituents were analyzed. Available information regarding the mechanisms of transport and energy coupling as well as physiological functions is summarized. This report serves to identify and characterize protein secretion systems in two divergent pseudomonads, one an opportunistic human pathogen, the other a plant symbiont.
Collapse
Affiliation(s)
- Qinhong Ma
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
39
|
Epton MJ, Hales BJ, Thompson PJ, Thomas WR. T cell cytokine responses to outer membrane proteins of Haemophilus influenzae and the house dust mite allergens Der p 1 in allergic and non-allergic subjects. Clin Exp Allergy 2002; 32:1589-95. [PMID: 12569979 DOI: 10.1046/j.1365-2222.2002.01523.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Haemophilus influenzae are ubiquitous colonizers of the nasopharynx, Little is known about the T cell cytokine responses to the antigens of these bacteria and whether or not the responses may interact with responses to aeroallergen. OBJECTIVE To measure the T cell cytokine responses to conserved outer membrane protein antigens of Haemophilus influenzae and to house dust mite allergen of subjects allergic to the house dust mite and of subjects without allergic sensitization. METHODS T cell responses were measured by in vitro proliferation and cytokine release from peripheral blood monocytes (PBMC). The allergen used was Der p 1 and outer membrane proteins were recombinant polypeptides representing the OMP6 and D15 antigens. RESULTS The PBMC of most subjects had proliferative responses to OMP6 and D15, which were highly correlated. The pattern of cytokine release was Th1 biased with high levels of IFN-gamma and usually little IL-5 or IL-13 although PBMC from a few subjects did release IL-5 independent of allergic status. IL-10 release was readily detected. There was no difference in the anti-OMP cytokine response of PBMC from subjects without any known allergy and the responses of PBMC from subjects who were highly allergic to house dust mite. The responses to the Der p 1 allergen showed the expected Th2 cytokine release. CONCLUSION The outer membrane protein antigens of the ubiquitous colonizing bacteria Haemophilus influenzae induce Th1 cytokine responses which are similar for PBMC from non-allergic individuals and subjects with a high degree of allergy to the perennial house dust mite allergen and strong Th2 responses to Der p 1.
Collapse
Affiliation(s)
- M J Epton
- Centre for Child Health Research, University of Western Australia, TVW Telethon Institute for Child Health Research, West Perth, Western Australia
| | | | | | | |
Collapse
|
40
|
van Ulsen P, van Schilfgaarde M, Dankert J, Jansen H, van Alphen L. Genes of non-typeable Haemophilus influenzae expressed during interaction with human epithelial cell lines. Mol Microbiol 2002; 45:485-500. [PMID: 12123458 DOI: 10.1046/j.1365-2958.2002.03025.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-typeable Haemophilus influenzae may infect the lower respiratory airways of chronic obstructive pulmonary disease patients. We characterized genes of non-typeable H. influenzae expressed during interaction with two human respiratory tract-derived epithelial cell lines. A library of 8000 clones was constructed in H. influenzae Rd (rec1) by cloning chromosomal fragments upstream of a promoterless cat gene. Exposure of this library to NCI-H292 epithelial cell layers in the presence of chloramphenicol (Cam) resulted in survival of bacteria expressing cat. A total of 52 clones were selected that were resistant to Cam in the presence of epithelial cells of cell line NCI-H292. These did not (n = 42) or hardly grow (n = 10) on sBHI plates containing Cam and were sensitive to Cam in cell culture medium alone. All clones, moreover, survived Cam in the presence of Hep2 epithelial cell layers. Sequence analysis showed that four clones contained sequences without homology to Rd or any other sequence, and therefore contained promoters and parts of open reading frames (ORFs) of novel genes. The other 48 clones were homologous to Rd, and characterization was based upon this genome. Six different functional classes were distinguished: (i) metabolic processes; (ii) stress response; (iii) gene expression; (iv) cell envelope biosynthesis; (v) DNA-related processes and cell division; and (vi) ORFs encoding proteins of unknown function. The contribution of identified genes to non-typeable H. influenzae adaptation to the epithelial cell environment is discussed.
Collapse
Affiliation(s)
- Peter van Ulsen
- Laboratory for Vaccine Research, National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Thomas KL, Leduc I, Olsen B, Thomas CE, Cameron DW, Elkins C. Cloning, overexpression, purification, and immunobiology of an 85-kilodalton outer membrane protein from Haemophilus ducreyi. Infect Immun 2001; 69:4438-46. [PMID: 11401984 PMCID: PMC98517 DOI: 10.1128/iai.69.7.4438-4446.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified an 85-kDa outer membrane protein that is expressed by all tested strains of Haemophilus ducreyi. Studies of related proteins from other pathogenic bacteria, including Haemophilus influenzae, Pasteurella multocida, Neisseria gonorrhoeae, Neisseria meningitidis, and Shigella dysenteriae, suggested a role for these proteins in pathogenesis and immunity. In keeping with the first such described protein from Haemophilus influenzae type B, we termed the H. ducreyi protein D15. The gene encoding the H. ducreyi D15 protein was cloned and sequenced, and the deduced amino acid sequence was found to be most similar to sequences of the D15-related proteins from other Pasteurella spp. The arrangement of the flanking genes was similar to that of H. influenzae Rd and suggested that D15 was part of a multigene operon. Attempts to make a null mutation of the D15 gene were unsuccessful, paralleling results in other D15 gene studies. Overexpression of H. ducreyi D15 in Escherichia coli resulted in a source of recombinant D15 (rD15) from which it was readily purified. rD15 was immunogenic, and it was found that immunization of rabbits with an rD15 vaccine preparation conferred partial protection against a virulent challenge infection. Antisera to an N-terminal peptide recognized all tested strains of H. ducreyi.
Collapse
Affiliation(s)
- K L Thomas
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Robb CW, Orihuela CJ, Ekkelenkamp MB, Niesel DW. Identification and characterization of an in vivo regulated D15/Oma87 homologue in Shigella flexneri using differential display polymerase chain reaction. Gene 2001; 262:169-77. [PMID: 11179681 DOI: 10.1016/s0378-1119(00)00537-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shigella genes expressed during infection likely contribute to adaptation and virulence in the host. Using differential display PCR (DDPCR), a cDNA fragment from Shigella flexneri serotype 5 that showed enhanced expression in a murine model was identified, cloned and sequenced. Enhanced expression was verified by RNA dot blot. The full-length gene was cloned using PCR and sequenced. The complete gene sequence was BLAST searched against GenBank, and exhibited strong homology to genes encoding Haemophilus influenzae D15 and Pasteurella multocida Oma87 protective outer membrane antigens. The S. flexneri gene putatively encodes a approximately 90-kDa protein and was termed oma90. The deduced amino acid sequence from oma90 was analyzed and compared to the D15/Oma87 antigens. Additionally, oma90 mapped to a cluster of orthologous groups, and probably contains an ancient conserved domain. The chromosomal organization of oma90 was similar to that for H. influenzae and P. multocida as well as for other known homologues. Northern blot revealed that the oma90 transcript encoded only oma90. This report represents the first description of a S. flexneri gene identified based on enhanced expression in the host. Furthermore, we report the first evidence demonstrating in vivo regulation of a member of the d15/oma87 gene family.
Collapse
Affiliation(s)
- C W Robb
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
43
|
Poolman JT, Bakaletz L, Cripps A, Denoel PA, Forsgren A, Kyd J, Lobet Y. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. Vaccine 2000; 19 Suppl 1:S108-15. [PMID: 11163473 DOI: 10.1016/s0264-410x(00)00288-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is a current high demand for nontypable Haemophilus influenzae (NTHi) vaccines. Various options for the composition of such vaccines are possible. Decisions about the vaccine composition have to take into account the antigenic variability of NTHi, so even complex immunogens such as whole bacteria would preferentially have a tailor-made antigenic composition. We will present a summary of NTHi vaccine development, describing research efforts from SmithKline Beecham and other laboratories. Currently, major (P1, P2, P4, P5) and minor (P6, D15, TbpA/B, ellipsis) outer membrane proteins, LPS, adhesins (HMW, Hia, pili, P5) are being studied. Preclinical results with LPD, P5 (LB1) and OMP26 from our laboratories will be described including the use of animal models of otitis and lung infection.
Collapse
Affiliation(s)
- J T Poolman
- SmithKline Beecham Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Erwin AL, Brewah YA, Couchenour DA, Barren PR, Burke SJ, Choi GH, Lathigra R, Hanson MS, Weiser JN. Role of lipopolysaccharide phase variation in susceptibility of Haemophilus influenzae to bactericidal immunoglobulin M antibodies in rabbit sera. Infect Immun 2000; 68:2804-7. [PMID: 10768976 PMCID: PMC97491 DOI: 10.1128/iai.68.5.2804-2807.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of phase variation of lipopolysaccharide (LPS) structure on the susceptibility of Haemophilus influenzae to complement-dependent killing by normal human sera and normal rat sera has been described previously. The phase-variable structure phosphorylcholine (ChoP) confers susceptibility to human serum, since ChoP on the bacterial cell surface binds to serum C-reactive protein and activates complement. In contrast, expression of galalpha1,4gal, a second phase-variable epitope that is also found on human glycoconjugates, confers resistance to human serum. We studied the role of phase variation of these structures in the susceptibilities of H. influenzae KW20 (Rd) and a clinical isolate of nontypeable H. influenzae to killing by rabbit sera, which often possess naturally acquired complement-dependent bactericidal activity for unencapsulated H. influenzae. Expression of ChoP increased the resistance of strain KW20 to killing by bactericidal rabbit sera. In contrast, the serum resistance of a clinical isolate, H233, was unaffected by ChoP expression but was reduced by galalpha1,4gal expression. The rabbit sera with bactericidal activity (but not the nonbactericidal sera) all contained immunoglobulin M (IgM) antibodies able to bind to the surface of H. influenzae bacteria, as detected by flow cytometry, and contained IgM antibodies to LPS purified from strain KW20. Preincubation of sera with LPS reduced their bactericidal activity. Bactericidal activity was recovered quantitatively in an IgM-enriched fraction of sera. It is concluded that naturally occurring bactericidal activity for unencapsulated H. influenzae is largely due to IgM antibodies directed against phase-variable structures of the LPS.
Collapse
Affiliation(s)
- A L Erwin
- MedImmune, Inc., Gaithersburg, Maryland 20878, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zagursky RJ, Ooi P, Jones KF, Fiske MJ, Smith RP, Green BA. Identification of a Haemophilus influenzae 5'-nucleotidase protein: cloning of the nucA gene and immunogenicity and characterization of the NucA protein. Infect Immun 2000; 68:2525-34. [PMID: 10768940 PMCID: PMC97455 DOI: 10.1128/iai.68.5.2525-2534.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification of a surface-exposed, highly conserved, immunogenic nontypeable Haemophilus influenzae (NTHi) protein, which elicits cross-reactive bactericidal antibodies against NTHi. The protein was extracted from NTHi strain P860295 with KSCN and purified; it migrated as a single band on a sodium dodecyl sulfate-polyacrylamide gel with an apparent molecular mass of 63 kDa. Mouse antiserum generated against the purified protein was reactive on whole-cell enzyme-linked immunosorbent assay (ELISA) with seven NTHi strains and type b Eagan and Whittier strains and exhibited bactericidal activity to homologous and heterologous NTHi strains. However, the protein is made in small amounts in NTHi as corroborated by immunoelectron microscopy. To further study this protein, we cloned, sequenced, and expressed it recombinantly in Escherichia coli. The recombinant protein is localized in the periplasm of E. coli and has been purified to homogeneity. Both the recombinant and native proteins possess 5'-nucleotidase activity; hence, the protein has been called NucA. Mouse antiserum directed against the recombinant NucA protein was reactive on Western immunoblots and whole-cell ELISA with all H. influenzae strains tested including Eagan and was bactericidal for two heterologous strains tested. The antiserum also resulted in a log reduction in bacteremia, in an infant-rat protection study with H. influenzae type b as the challenge strain. These features suggest that NucA is a potential subunit vaccine candidate against NTHi disease.
Collapse
Affiliation(s)
- R J Zagursky
- Wyeth-Lederle Vaccines, West Henrietta, New York 14586, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Kennedy BJ, Novotny LA, Jurcisek JA, Lobet Y, Bakaletz LO. Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge. Infect Immun 2000; 68:2756-65. [PMID: 10768970 PMCID: PMC97485 DOI: 10.1128/iai.68.5.2756-2765.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently determined that passive transfer of serum directed against a synthetic peptide called LB1 or a recombinant fusion protein immunogen [LPD-LB1(f)(2,1,3)] could prevent otitis media after challenge with a homologous nontypeable Haemophilus influenzae (NTHI) isolate. NTHI residing in the nasopharynx was rapidly cleared from this site, thus preventing it from ascending the eustachian tube and inducing otitis media in chinchillas compromised by an ongoing viral upper respiratory tract infection. While LB1 is based solely on one NTHI adhesin, the latter immunogen, LPD-LB1(f)(2,1,3), was designed to incorporate two NTHI antigens shown to play a role in the pathogenesis of otitis media; lipoprotein D (LPD) and the P5-homologous fimbrin adhesin. The design of LPD-LB1(f)(2,1,3) also accommodated for the recently demonstrated existence of three major groupings, based on amino acid sequence diversity, in the third surface-exposed region of P5-fimbrin. LPD-LB1(f)(2,1,3) was thus designed to potentially confer broader protection against challenge by diverse strains of NTHI. Chinchillas were passively immunized here with serum specific for either LB1 or for LPD-LB1(f)(2,1,3) prior to challenge with a member of all three groups of NTHI relative to diversity in region 3. The transferred serum pools were also analyzed for titer, specificity, and several functional activities. We found that both serum pools had equivalent ability to mediate C'-dependent killing and to inhibit adherence of NTHI strains to human oropharyngeal cells. When passively transferred, both serum pools significantly inhibited the signs and incidence of otitis media (P </= 0.01) induced by any of the three challenge isolates. Despite providing protection against disease, the ability of these antisera to induce total eradication of NTHI from the nasopharynx was not equivalent among NTHI groups. These data thus suggested that while early, complete eradication of NTHI from the nasopharynx was highly protective, reduction of the bacterial load to below a critical threshold level appeared to be similarly effective.
Collapse
Affiliation(s)
- B J Kennedy
- The Ohio State University College of Medicine and Public Health, Department of Pediatrics, Division of Molecular Medicine, Columbus, Ohio 43205-2696, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Elkins C, Yi K, Olsen B, Thomas C, Thomas K, Morse S. Development of a serological test for Haemophilus ducreyi for seroprevalence studies. J Clin Microbiol 2000; 38:1520-6. [PMID: 10747137 PMCID: PMC86480 DOI: 10.1128/jcm.38.4.1520-1526.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a new enzyme immunoassay (rpEIA) for use in determining the seroprevalence of chancroid. Three highly conserved outer membrane proteins from Haemophilus ducreyi strain 35000 were cloned, overexpressed, and purified from Escherichia coli for use as antigens in the rpEIA. Serum specimens from patients with and without chancroid were assayed to determine optimum sensitivity and specificity and to establish cutoff values. On the basis of these data, rpEIA was found to be both sensitive and specific when used to test a variety of serum specimens from patients with genital ulcers and urethritis and from healthy blood donors.
Collapse
Affiliation(s)
- C Elkins
- Departments of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pasteurella multocida is an important veterinary and opportunistic human pathogen. The species is diverse and complex with respect to antigenic variation, host predeliction and pathogenesis. Certain serological types are the aetiologic agents of severe pasteurellosis, such as fowl cholera in domestic and wild birds, bovine haemorrhagic septicaemia and porcine atrophic rhinitis. The recent application of molecular methods such as the polymerase chain reaction, restriction endonuclease analysis, ribotyping, pulsed-field gel electrophoresis, gene cloning, characterisation and recombinant protein expression, mutagenesis, plasmid and bacteriophage analysis and genomic mapping, have greatly increased our understanding of P. multocida and has provided researchers with a number of molecular tools to study pathogenesis and epidemiology at a molecular level.
Collapse
Affiliation(s)
- M L Hunt
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Clayton, Australia
| | | | | |
Collapse
|
50
|
Mitchison M, Wei L, Kwang J, Wilkie I, Adler B. Overexpression and immunogenicity of the Oma87 outer membrane protein of Pasteurella multocida. Vet Microbiol 2000; 72:91-6. [PMID: 10699506 DOI: 10.1016/s0378-1135(99)00190-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The outer membrane protein of Oma87 from Pasteurella multocida A:1 has significant similarity to the D15 protective antigen of Haemophilus influenzae (Ruffolo and Adler, 1996). Four fragments of Oma87 from a P. multocida serotype D strain were cloned into a pGEX expression vector and transformed into E. coli JM105. Western blot analysis revealed that convalescent chicken sera reacted with only GST-F1 fusion protein which contained amino acids 18 through to 130 of Oma87 fused to the GST protein. Vaccination with the GST-F1 protein failed to protect chickens against challenge with a virulent P. multocida serotype A.
Collapse
Affiliation(s)
- M Mitchison
- Department of Microbiology, Monash University, Clayton, Vic., Australia
| | | | | | | | | |
Collapse
|