1
|
Vassen V, Tanaka E, Moll K, Spoerry C, Synowsky S, Shirran SL, Schwarz-Linek U, Loh E, Svensson M, Norrby-Teglund A. Group A streptococcal SpeB modifies IgA through targeting regions other than the hinge. Microbiol Spectr 2025; 13:e0245024. [PMID: 40130864 PMCID: PMC12054102 DOI: 10.1128/spectrum.02450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/23/2025] [Indexed: 03/26/2025] Open
Abstract
Degradation of immunoglobulin (Ig) represents an important bacterial immune evasion strategy. For mucosal colonization, degradation of IgA is of particular importance, and many bacteria secrete specific IgA proteases that typically target the extended hinge region of IgA1. Such a specialized IgA protease has not yet been reported in Group A Streptococcus (GAS), despite its ability to successfully colonize human mucosal surfaces. In this study, we focused on the cysteine protease SpeB secreted by GAS and analyzed the interaction of SpeB with IgA. Assays using bacterial supernatants from wild-type and speB-deficient isogenic mutant strains, as well as recombinant SpeB, showed a SpeB-dependent IgA-modifying activity. SpeB resulted in the degradation of multimeric IgA, including the dimeric form, which was most notable in IgA2. The modification products were smaller in size than the heavy chain, suggesting a modification different from the classical hinge cleavage. Mass spectrometry analysis and glycosylation profiles indicated a putative cleavage in the C-terminal region, affecting the tailpiece and resulting in the loss of higher molecular weight multimeric/dimeric forms of IgA. Given the importance of dimeric IgA at mucosal surfaces, future studies are warranted to address whether IgA modification by SpeB represents a GAS immune evasion mechanism at this site.IMPORTANCEGroup A Streptococcus (GAS) is an important human pathogen with the ability to efficiently colonize mucosal surfaces and cause a wide spectrum of diseases ranging from pharyngotonsillitis to severe invasive infections or post-streptococcal sequelae. Immunoglobulins (Ig), in particular IgA, are critical effector molecules in the defense against pathogen colonization at mucosal surfaces. In this study, we focused on the cysteine protease SpeB, secreted by GAS, and investigated its interaction with human IgA. We report a SpeB-dependent IgA modification that involved the loss of multimeric/dimeric forms of IgA, predominantly affecting IgA2. The putative modification region is the C-terminus of IgA, which differs from the cleavage site of specialized IgA proteases targeting the hinge region. These findings suggest that IgA modification by SpeB might represent an immune evasion strategy utilized by GAS to colonize human mucosal tissue.
Collapse
Affiliation(s)
- Victoria Vassen
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm County, Sweden
| | - Emi Tanaka
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm County, Sweden
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm County, Sweden
| | - Christian Spoerry
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Silvia Synowsky
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, United Kingdom
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, United Kingdom
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, United Kingdom
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm County, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm County, Sweden
| |
Collapse
|
2
|
Trivedi K, LaRock CN. Pentamidine inhibition of streptopain attenuates Streptococcus pyogenes virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642885. [PMID: 40161583 PMCID: PMC11952426 DOI: 10.1101/2025.03.12.642885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The obligate human pathogen Group A Streptococcus (GAS; Streptococcus pyogenes) carries high morbidity and mortality, primarily in impoverished or resource-poor regions. The failure rate of monotherapy with conventional antibiotics is high, and invasive infections by this bacterium frequently require extensive supportive care and surgical intervention. Thus, it is important to find new compounds with adjunctive therapeutic benefits. The conserved secreted protease streptopain (Streptococcal pyrogenic exotoxin B; SpeB) directly contributes to disease pathogenesis by inducing pathological inflammation, degrading tissue, and promoting the evasion of antimicrobial host defense proteins. This study screened 400 diverse off-patent drug and drug-like compounds for inhibitors of streptopain proteolysis. Lead compounds were tested for activity at lower concentrations and anti-virulence activities during in vitro infection. Significant inhibition of streptopain was seen for pentamidine, an anti-protozoal drug approved for the treatment of pneumocystis pneumonia, leishmaniasis, and trypanosomiasis. Streptopain inhibition rendered GAS susceptible to killing by human innate immune cells. These studies identify unexploited molecules as new starting points for drug discovery and a potential for repurposing existing drugs for the treatment of infections by GAS.
Collapse
Affiliation(s)
- Keya Trivedi
- Department of Biology, Emory University, Atlanta, GA
| | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA
- Antimicrobial Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Brouwer S, Das S, Hayes AJ, Bertolla OM, Davies MR, Walker MJ, Whiley DM, Irwin AD, Tickner JA. A Rapid Molecular Detection Tool for Toxigenic M1UK Streptococcus pyogenes. J Infect Dis 2025; 231:e375-e384. [PMID: 39206960 PMCID: PMC11841628 DOI: 10.1093/infdis/jiae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The gradual replacement of the Streptococcus pyogenes M1global genotype by a newly emergent M1UK variant is a global public health threat warranting increased surveillance. M1UK differs from progenitor M1global genotype by 27 single-nucleotide polymorphisms and is characterized by increased speA superantigen expression in vitro. METHODS An allele-specific real-time polymerase chain reaction assay was developed for the rapid detection of M1UK strains. The assay was used in combination with whole genome sequencing to determine emm (sub)type distribution for 51 invasive (n = 9) and noninvasive (n = 42) S pyogenes clinical isolates. RESULTS Emm1 was the most prevalent S pyogenes emm serotype (n = 11) in this set of clinical isolates, with M1UK being the dominant emm1 genotype (4/5 invasive, 3/6 noninvasive isolates). The assay accurately detected M1UK strains. Whole genome sequencing revealed continued presence of Australian M1UK sublineages associated with epidemic scarlet fever-causing S pyogenes in Asia. CONCLUSIONS Our study establishes a suitable target for detection of the toxigenic M1UK and confirms the maintenance of M1UK strains in Queensland, Australia. This assay can be deployed in laboratories and provides a valuable, cost-effective tool to enhance surveillance of the expanding M1UK clone.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - Swairindhree Das
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - David M Whiley
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
| | - Adam D Irwin
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Australia
| | - Jacob A Tickner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
| |
Collapse
|
4
|
Yabrag A, Ullah N, Baryalai P, Ahmad I, Zlatkov N, Toh E, Lindbäck T, Uhlin BE, Wai SN, Nadeem A. A new understanding of Acanthamoeba castellanii: dispelling the role of bacterial pore-forming toxins in cyst formation and amoebicidal actions. Cell Death Discov 2025; 11:66. [PMID: 39971918 PMCID: PMC11839945 DOI: 10.1038/s41420-025-02345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Pore-forming toxins (PFTs) are recognized as major virulence factors produced by both Gram-positive and Gram-negative bacteria. While the effects of PFTs have been extensively investigated using mammalian cells as a model system, their interactions with the environmental host, Acanthamoeba castellanii remains less understood. This study employed high-throughput image screening (HTI), advanced microscopy, western blot analysis, and cytotoxicity assays to evaluate the impact of PFT-producing bacterial species on their virulence against A. castellanii. Our unbiased HTI data analysis reveals that the cyst induction of A. castellanii in response to various bacterial species does not correlate with the presence of PFT-producing bacteria. Moreover, A. castellanii demonstrates resistance to PFT-mediated cytotoxicity, in contrast to mammalian macrophages. Notably, Vibrio anguillarum and Ralstonia eutropha triggered a high frequency of cyst formation and cytotoxicity in infected A. castellanii. In summary, our findings reveal that A. castellanii exhibits a unique resistance to PFTs, unlike mammalian cells, suggesting its potential ecological role as a reservoir for diverse pathogenic species and its influence on their persistence and proliferation in the environment.
Collapse
Affiliation(s)
- Abdelbasset Yabrag
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Naeem Ullah
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Palwasha Baryalai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Eric Toh
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden.
| |
Collapse
|
5
|
Richter J, Cork AJ, Ong Y, Keller N, Hayes AJ, Schembri MA, Jennison AV, Davies MR, Schroder K, Walker MJ, Brouwer S. Characterization of a novel covS SNP identified in Australian group A Streptococcus isolates derived from the M1 UK lineage. mBio 2025; 16:e0336624. [PMID: 39688411 PMCID: PMC11796353 DOI: 10.1128/mbio.03366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the control of virulence two-component regulatory system (CovRS) that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1β-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonization and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterized a novel covS single nucleotide polymorphism detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterized covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.IMPORTANCEThe M1UK lineage of GAS has contributed to a recent global upsurge in scarlet fever and invasive infections. Understanding how GAS can become more virulent is critical for infection control and identifying new treatment approaches. The two-component CovRS system, comprising the sensor kinase CovS and transcription factor CovR, is a central regulator of GAS virulence genes. In the M1 serotype, covRS mutations are associated with an invasive phenotype. Such mutations have not been fully characterized in the M1UK lineage. This study identified a novel covS mutation in invasive Australian M1UK isolates that resulted in a more nuanced virulence gene regulation compared to previously characterized covS mutations. A representative isolate displayed upregulated SLO production and triggered amplified interleukin-1β secretion in infected human macrophages, indicating an enhanced inflammatory potential. These findings underscore the need for comprehensive analyses of covRS mutants to fully elucidate their contribution to M1UK virulence and persistence.
Collapse
Affiliation(s)
- Johanna Richter
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J. Cork
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Yvette Ong
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadia Keller
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J. Hayes
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy V. Jennison
- Public and Environmental Health, Pathology Queensland, Queensland Health, Coopers Plains, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J. Walker
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Brouwer
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Banerjee B, Thompson C, Nizet V, Bjånes E. Bactericidal efficacy of low dose gaseous ozone against clinically relevant multidrug-resistant bacteria. Front Microbiol 2024; 15:1480433. [PMID: 39723132 PMCID: PMC11668732 DOI: 10.3389/fmicb.2024.1480433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Healthcare-associated infections (HAIs) pose a significant challenge in acute care hospitals, particularly in intensive care units, due to persistent environmental contamination despite existing disinfection protocols and manual cleaning methods. Current disinfection methods are labor-intensive and often ineffective against multidrug-resistant (MDR) pathogens, highlighting the need for new, automated, hands-free approaches. Methods This study evaluates the bactericidal efficacy of low concentrations of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria under various concentrations, contact times, temperatures, and environmental conditions. Results We observed a 3 log10-fold reduction in Escherichia coli and Salmonella Typhimurium and a 1-2 log10-fold reduction in group A Streptococcus and methicillin-resistant Staphylococcus aureus upon ozone exposure. The bactericidal effect was dose-dependent, with no significant difference between single and repeated exposures. Environmental conditions such as temperature and humidity had minimal impact on low-dose ozone efficacy, with slightly improved bacterial killing at colder temperatures and higher humidity levels. Gaseous ozone also showed significant bactericidal activity against the broad range of Gram-positive and -negative MDR clinical isolates. Discussion These findings highlight the potential of low-dose gaseous ozone as a versatile, effective, and hands-free disinfectant for healthcare and other settings. Further research is needed to establish long-term safety and efficacy guidelines for its use in occupied spaces and to explore potential synergy with other contemporary disinfection strategies.
Collapse
Affiliation(s)
| | - Christine Thompson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elisabet Bjånes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Davis SE, Hart MT, Braza RED, Perry AA, Vega LA, Le Breton YS, McIver KS. The PdxR-PdxKU locus involved in vitamin B 6 salvage is important for group A streptococcal resistance to neutrophil killing and survival in human blood. Microbiol Spectr 2024; 12:e0160924. [PMID: 39530679 PMCID: PMC11619246 DOI: 10.1128/spectrum.01609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive bacterium that inflicts both superficial and life-threatening diseases on its human host. Analysis of fitness using a transposon mutant library revealed that genes predicted to be involved in vitamin B6 acquisition are associated with fitness in whole human blood. Vitamin B6 is essential for all life and is important for many cellular functions. In several streptococcal species, it has been shown that mutants in B6 acquisition exhibited reduced virulence phenotypes and were attenuated during infection. In GAS, B6 acquisition is believed to be controlled by the pdxR-pdxKU locus, where PdxR is a positive regulator of pdxKU, which encodes for a B6-substrate kinase and permease, respectively. Mutants in the regulator (ΔpdxR) and salvage machinery (ΔpdxKU) both exhibited modest growth defects when grown in oxygenated conditions with limited vitamin B6 precursors. ∆pdxR and ∆pdxKU mutants also exhibited an impaired ability to survive when challenged with whole human or mouse blood. This defect was characterized by reduced survival in the presence of human neutrophil-like HL60s, primary polymorphonuclear leukocytes, and antimicrobial peptide LL-37. Promoter analysis showed that PdxR is an autoregulator and activated pdxKU in the absence of B6. Interestingly, ∆pdxR and ∆pdxKU mutants were not attenuated in mouse models of infection, suggesting a species-specific impact on virulence. Overall, it appears that pdxR-pdxKU is associated with GAS vitamin B6 metabolism as well as pathogen survival during encounters with the human innate immune system.IMPORTANCEBacterial pathogens such as Streptococcus pyogenes (Group A Streptococcus, GAS) must be able to obtain needed nutrients in their human host. Vitamin B6 or pyridoxal 5' phosphate is essential for all life and is important for many cellular functions. In other streptococcal pathogens, B6 acquisition has been shown to be important for their ability to cause disease. Here, we show that loss of the putative vitamin B6 salvage pathway locus pdxR-pdxKU affects GAS pathogenesis when encountering innate immune responses from phagocytic neutrophils and antimicrobial peptides within the host. pdxR-pdxKU may contribute to oxygen tolerance through B6; however, there appear to be other mechanisms for salvaging vitamin B6. Overall, pdxR-pdxKU is associated with GAS resistance to the human innate immune response and oxygen tolerance and contributes modestly to B6 metabolism.
Collapse
Affiliation(s)
- Sarah E. Davis
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rezia Era D. Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Aolani A. Perry
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Luis A. Vega
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Yoann S. Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024; 9:e0043024. [PMID: 39360839 PMCID: PMC11520294 DOI: 10.1128/msphere.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Keller N, Boumasmoud M, Andreoni F, Tarnutzer A, von Matt M, Scheier TC, Epprecht J, Weller D, Gómez-Mejia A, Huemer M, von Reibnitz D, Fontein DBY, Marques-Maggio E, Schuepbach RA, Mairpady-Shambat S, Brugger SD, Zinkernagel AS. Investigating group A Streptococcus antibiotic tolerance in necrotizing fasciitis. mSphere 2024; 9:e0063424. [PMID: 39189777 PMCID: PMC11423592 DOI: 10.1128/msphere.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Group A Streptococcus (GAS) necrotizing fasciitis (NF) is a difficult-to-treat bacterial infection associated with high morbidity and mortality despite extensive surgery and targeted antibiotic treatment. Difficult-to-treat infections are often characterized by the presence of bacteria surviving prolonged antibiotic exposure without displaying genetic resistance, referred to as persisters. In the present study, we investigated the presence of GAS persisters in tissue freshly debrided from patients as well as in an in vivo mouse model of NF and examined the phenomenon of antibiotic tolerance. Time-lapse imaging of GAS plated directly upon isolation from NF debrided tissue and an antibiotic challenge-based persisters assay were used to assess the presence of persisters. We show for the first time that GAS recovered directly from freshly debrided NF tissue is characterized by heterogeneous and overall delayed colony appearance time, suggesting the presence of persisters. Acidic pH or nutrient stress exposure, mimicking the NF-like environment in vitro, led to a similar phenotypic heterogeneity and resulted in enhanced survival upon antibiotic challenge, confirming the presence of GAS persisters. GAS persisters might contribute to NF treatment failure, despite extensive surgery and adequate antibiotic treatment.IMPORTANCEDifficult-to-treat and recurrent infections are a global problem burdening society and the health care system alike. Unraveling the mechanisms by which bacteria can survive antibiotic treatment without developing genetic resistance is of utmost importance to lay the foundation for new, effective therapeutic approaches. For the first time, we describe the phenomenon of antibiotic tolerance in group A Streptococcus (GAS) isolated from necrotizing fasciitis (NF) patients. Dormant, non-replicating cells (persisters) are tolerant to antibiotics and their occurrence in vivo is reported in an increasing number of bacterial species. Tailored treatment options, including the use of persisters-targeting drugs, need to be developed to specifically target dormant bacteria causing difficult-to-treat and recurrent infections.
Collapse
Affiliation(s)
- Nadia Keller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuela von Matt
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jana Epprecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David Weller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Donata von Reibnitz
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Duveken B. Y. Fontein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ewerton Marques-Maggio
- Division of Clinical Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady-Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bjånes E, Stream A, Janssen AB, Gibson PS, Bravo AM, Dahesh S, Baker JL, Varble A, Nizet V, Veening JW. An efficient in vivo-inducible CRISPR interference system for group A Streptococcus genetic analysis and pathogenesis studies. mBio 2024; 15:e0084024. [PMID: 38953375 PMCID: PMC11323564 DOI: 10.1128/mbio.00840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
While genome-wide transposon mutagenesis screens have identified numerous essential genes in the significant human pathogen Streptococcus pyogenes (group A Streptococcus or GAS), many of their functions remain elusive. This knowledge gap is attributed in part to the limited molecular toolbox for controlling GAS gene expression and the bacterium's poor genetic transformability. CRISPR interference (CRISPRi), using catalytically inactive GAS Cas9 (dCas9), is a powerful approach to specifically repress gene expression in both bacteria and eukaryotes, but ironically, it has never been harnessed for controlled gene expression in GAS. In this study, we present a highly transformable and fully virulent serotype M1T1 GAS strain and introduce a doxycycline-inducible CRISPRi system for efficient repression of bacterial gene expression. We demonstrate highly efficient, oligo-based single guide RNA cloning directly to GAS, enabling the construction of a gene knockdown strain in just 2 days, in contrast to the several weeks typically required. The system is shown to be titratable and functional both in vitro and in vivo using a murine model of GAS infection. Furthermore, we provide direct in vivo evidence that the expression of the conserved cell division gene ftsZ is essential for GAS virulence, highlighting its promise as a target for emerging FtsZ inhibitors. Finally, we introduce SpyBrowse (https://veeninglab.com/SpyBrowse), a comprehensive and user-friendly online resource for visually inspecting and exploring GAS genetic features. The tools and methodologies described in this work are poised to facilitate fundamental research in GAS, contribute to vaccine development, and aid in the discovery of antibiotic targets. IMPORTANCE While group A Streptococcus (GAS) remains a predominant cause of bacterial infections worldwide, there are limited genetic tools available to study its basic cell biology. Here, we bridge this gap by creating a highly transformable, fully virulent M1T1 GAS strain. In addition, we established a tight and titratable doxycycline-inducible system and developed CRISPR interference (CRISPRi) for controlled gene expression in GAS. We show that CRISPRi is functional in vivo in a mouse infection model. Additionally, we present SpyBrowse, an intuitive and accessible genome browser (https://veeninglab.com/SpyBrowse). Overall, this work overcomes significant technical challenges of working with GAS and, together with SpyBrowse, represents a valuable resource for researchers in the GAS field.
Collapse
Affiliation(s)
- Elisabet Bjånes
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Alexandra Stream
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Axel B. Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afonso M. Bravo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jonathon L. Baker
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Andrew Varble
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Jan-Willem Veening
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Hart MT, Rom JS, Le Breton Y, Hause LL, Belew AT, El-Sayed NM, McIver KS. The Streptococcus pyogenes stand-alone regulator RofA exhibits characteristics of a PRD-containing virulence regulator. Infect Immun 2024; 92:e0008324. [PMID: 38712951 PMCID: PMC11237776 DOI: 10.1128/iai.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pyogenes [group A streptococcus (GAS)] is a human pathogen capable of infecting diverse tissues. To successfully infect these sites, GAS must detect available nutrients and adapt accordingly. The phosphoenolpyruvate transferase system (PTS) mediates carbohydrate uptake and metabolic gene regulation to adapt to the nutritional environment. Regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several PRD-containing stand-alone regulators with regulons encoding both metabolic genes and virulence factors [PRD-containing virulence regulators (PCVRs)]. One is RofA, which regulates the expression of virulence genes in multiple GAS serotypes. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate virulence gene expression. In this study, the RofA regulon of M1T1 strain 5448 was determined using RNA sequencing. Two operons were consistently differentially expressed across growth in the absence of RofA; the pilus operon was downregulated, and the capsule operon was upregulated. This correlated with increased capsule production and decreased adherence to keratinocytes. Purified RofA-His was phosphorylated in vitro by PTS proteins EI and HPr, and phosphorylated RofA-FLAG was detected in vivo when GAS was grown in low-glucose C medium. Phosphorylated RofA was not observed when C medium was supplemented 10-fold with glucose. Mutations of select histidine residues within the putative PRDs contributed to the in vivo phosphorylation of RofA, although phosphorylation of RofA was still observed, suggesting other phosphorylation sites exist in the protein. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar metabolism with virulence regulation.
Collapse
Affiliation(s)
- Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
| | - Joseph S. Rom
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
| | - Lara L. Hause
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA
| |
Collapse
|
13
|
Nishioka ST, Snipper J, Lee J, Schapiro J, Zhang RZ, Abe H, Till A, Okumura CYM. Group A Streptococcus induces lysosomal dysfunction in THP-1 macrophages. Infect Immun 2024; 92:e0014124. [PMID: 38722166 PMCID: PMC11237432 DOI: 10.1128/iai.00141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.
Collapse
Affiliation(s)
- Scott T. Nishioka
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Snipper
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Jimin Lee
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Schapiro
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Robert Z. Zhang
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Hyewon Abe
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Andreas Till
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- The San Diego Center for Systems Biology, University of California San Diego, La Jolla, California, USA
- University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
14
|
Nookala S, Mukundan S, Grove B, Combs C. Concurrent Brain Subregion Microgliosis in an HLA-II Mouse Model of Group A Streptococcal Skin Infection. Microorganisms 2023; 11:2356. [PMID: 37764200 PMCID: PMC10538044 DOI: 10.3390/microorganisms11092356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The broad range of clinical manifestations and life-threatening infections caused by the Gram-positive bacterium, Streptococcus pyogenes or Group A Streptococcus (GAS), remains a significant concern to public health, with a subset of individuals developing neurological complications. Here, we examined the concurrent neuroimmune effects of subcutaneous GAS infections in an HLA-Class II (HLA) transgenic mouse model of subcutaneous GAS infection. To investigate changes in the skin-brain axis, HLA-DQ8 (DQA1*0301/DQB1*0302) mice (DQ8) were randomly divided into three groups: uninfected controls (No Inf), GAS infected and untreated (No Tx), and GAS infected with a resolution by clindamycin (CLN) treatment (CLN Tx) (10 mg/kg/5 days) and were monitored for 16 days post-infection. While the skin GAS burden was significantly reduced by CLN, the cortical and hippocampal GAS burden in the male DQ8 mice was not significantly reduced with CLN. Immunoreactivity to anti-GAS antibody revealed the presence of GAS bacteria in the vicinity of the neuronal nucleus in the neocortex of both No Tx and CLN Tx male DQ8 mice. GAS infection-mediated cortical cytokine changes were modest; however, compared to No Inf or No Tx groups, a significant increase in IL-2, IL-13, IL-22, and IL-10 levels was observed in CLN Tx females despite the lack of GAS burden. Western blot analysis of cortical and hippocampal homogenates showed significantly higher ionized calcium-binding adaptor-1 (Iba-1, microglia marker) protein levels in No Tx females and males and CLN Tx males compared to the No Inf group. Immunohistochemical analysis showed that Iba-1 immunoreactivity in the hippocampal CA3 and CA1 subregions was significantly higher in the CLN Tx males compared to the No Tx group. Our data support the possibility that the subcutaneous GAS infection communicates to the brain and is characterized by intraneuronal GAS sequestration, brain cytokine changes, Iba-1 protein levels, and concurrent CA3 and CA1 subregion-specific microgliosis, even without bacteremia.
Collapse
Affiliation(s)
- Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.M.); (B.G.); (C.C.)
| | | | | | | |
Collapse
|
15
|
Alves J, Rand JD, Johnston ABE, Bowen C, Lynskey NN. Methylome-dependent transformation of emm1 group A streptococci. mBio 2023; 14:e0079823. [PMID: 37427929 PMCID: PMC10470502 DOI: 10.1128/mbio.00798-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Genetic intractability presents a fundamental barrier to the manipulation of bacteria, hindering advancements in microbiological research. Group A Streptococcus (GAS), a lethal human pathogen currently associated with an unprecedented surge of infections worldwide, exhibits poor genetic tractability attributed to the activity of a conserved type 1 restriction modification system (RMS). RMS detect and cleave specific target sequences in foreign DNA that are protected in host DNA by sequence-specific methylation. Overcoming this "restriction barrier" thus presents a major technical challenge. Here, we demonstrate for the first time that different RMS variants expressed by GAS give rise to genotype-specific and methylome-dependent variation in transformation efficiency. Furthermore, we show that the magnitude of impact of methylation on transformation efficiency elicited by RMS variant TRDAG, encoded by all sequenced strains of the dominant and upsurge-associated emm1 genotype, is 100-fold greater than for all other TRD tested and is responsible for the poor transformation efficiency associated with this lineage. In dissecting the underlying mechanism, we developed an improved GAS transformation protocol, whereby the restriction barrier is overcome by the addition of the phage anti-restriction protein Ocr. This protocol is highly effective for TRDAG strains including clinical isolates representing all emm1 lineages and will expedite critical research interrogating the genetics of emm1 GAS, negating the need to work in an RMS-negative background. These findings provide a striking example of the impact of RMS target sequence variation on bacterial transformation and the importance of defining lineage-specific mechanisms of genetic recalcitrance. IMPORTANCE Understanding the mechanisms by which bacterial pathogens are able to cause disease is essential to enable the targeted development of novel therapeutics. A key experimental approach to facilitate this research is the generation of bacterial mutants, through either specific gene deletions or sequence manipulation. This process relies on the ability to transform bacteria with exogenous DNA designed to generate the desired sequence changes. Bacteria have naturally developed protective mechanisms to detect and destroy invading DNA, and these systems severely impede the genetic manipulation of many important pathogens, including the lethal human pathogen group A Streptococcus (GAS). Many GAS lineages exist, of which emm1 is dominant among clinical isolates. Based on new experimental evidence, we identify the mechanism by which transformation is impaired in the emm1 lineage and establish an improved and highly efficient transformation protocol to expedite the generation of mutants.
Collapse
Affiliation(s)
- Joana Alves
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom
| | - Joshua D. Rand
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom
| | - Alix B. E. Johnston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom
| | - Connor Bowen
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom
| | - Nicola N. Lynskey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom
| |
Collapse
|
16
|
Alamiri F, André O, De S, Nordenfelt P, Hakansson AP. Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro. Front Cell Infect Microbiol 2023; 13:1146431. [PMID: 37234777 PMCID: PMC10206268 DOI: 10.3389/fcimb.2023.1146431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Streptococcus pyogenes causes a multitude of local and systemic infections, the most common being pharyngitis in children. Recurrent pharyngeal infections are common and are thought to be due to the re-emergence of intracellular GAS upon completion of antibiotic treatment. The role of colonizing biofilm bacteria in this process is not fully clear. Here, live respiratory epithelial cells were inoculated with broth-grown or biofilm bacteria of different M-types, as well as with isogenic mutants lacking common virulence factors. All M-types tested adhered to and were internalized into epithelial cells. Interestingly, internalization and persistence of planktonic bacteria varied significantly between strains, whereas biofilm bacteria were internalized in similar and higher numbers, and all strains persisted beyond 44 hours, showing a more homogenous phenotype. The M3 protein, but not the M1 or M5 proteins, was required for optimal uptake and persistence of both planktonic and biofilm bacteria inside cells. Moreover, the high expression of capsule and SLO inhibited cellular uptake and capsule expression was required for intracellular survival. Streptolysin S was required for optimal uptake and persistence of M3 planktonic bacteria, whereas SpeB improved intracellular survival of biofilm bacteria. Microscopy of internalized bacteria showed that planktonic bacteria were internalized in lower numbers as individual or small clumps of bacteria in the cytoplasm, whereas GAS biofilm bacteria displayed a pattern of perinuclear localization of bacterial aggregates that affected actin structure. Using inhibitors targeting cellular uptake pathways, we confirmed that planktonic GAS mainly uses a clathrin-mediated uptake pathway that also required actin and dynamin. Clathrin was not involved in biofilm internalization, but internalization required actin rearrangement and PI3 kinase activity, possibly suggesting macropinocytosis. Together these results provide a better understanding of the potential mechanisms of uptake and survival of various phenotypes of GAS bacteria relevant for colonization and recurrent infection.
Collapse
Affiliation(s)
- Feiruz Alamiri
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oscar André
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Supradipta De
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
17
|
Rom JS, Le Breton Y, Islam E, Belew AT, El-Sayed NM, McIver KS. Loss of rpoE Encoding the δ-Factor of RNA Polymerase Impacts Pathophysiology of the Streptococcus pyogenes M1T1 Strain 5448. Microorganisms 2022; 10:microorganisms10081686. [PMID: 36014103 PMCID: PMC9412562 DOI: 10.3390/microorganisms10081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes, also known as the Group A Streptococcus (GAS), is a Gram-positive bacterial pathogen of major clinical significance. Despite remaining relatively susceptible to conventional antimicrobial therapeutics, GAS still causes millions of infections and hundreds of thousands of deaths each year worldwide. Thus, a need for prophylactic and therapeutic interventions for GAS is in great demand. In this study, we investigated the importance of the gene encoding the delta (δ) subunit of the GAS RNA polymerase, rpoE, for its impact on virulence during skin and soft-tissue infection. A defined 5448 mutant with an insertionally-inactivated rpoE gene was defective for survival in whole human blood and was attenuated for both disseminated lethality and lesion size upon mono-culture infection in mouse soft tissue. Furthermore, the mutant had reduced competitive fitness when co-infected with wild type (WT) 5448 in the mouse model. We were unable to attribute this attenuation to any observable growth defect, although colony size and the ability to grow at higher temperatures were both affected when grown with nutrient-rich THY media. RNA-seq of GAS grown in THY to late log phase found that mutation of rpoE significantly impacted (>2-fold) the expression of 429 total genes (205 upregulated, 224 downregulated), including multiple virulence and “housekeeping” genes. The arc operon encoding the arginine deiminase (ADI) pathway was the most upregulated in the rpoE mutant and this could be confirmed phenotypically. Taken together, these findings demonstrate that the delta (δ) subunit of RNA polymerase is vital in GAS gene expression and virulence.
Collapse
|
18
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Chowdhury D, Gardner JC, Satpati A, Nookala S, Mukundan S, Porollo A, Landero Figueroa JA, Subramanian Vignesh K. Metallothionein 3-Zinc Axis Suppresses Caspase-11 Inflammasome Activation and Impairs Antibacterial Immunity. Front Immunol 2021; 12:755961. [PMID: 34867993 PMCID: PMC8633875 DOI: 10.3389/fimmu.2021.755961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Non-canonical inflammasome activation by mouse caspase-11 (or human CASPASE-4/5) is crucial for the clearance of certain gram-negative bacterial infections, but can lead to severe inflammatory damage. Factors that promote non-canonical inflammasome activation are well recognized, but less is known about the mechanisms underlying its negative regulation. Herein, we identify that the caspase-11 inflammasome in mouse and human macrophages (Mϕ) is negatively controlled by the zinc (Zn2+) regulating protein, metallothionein 3 (MT3). Upon challenge with intracellular lipopolysaccharide (iLPS), Mϕ increased MT3 expression that curtailed the activation of caspase-11 and its downstream targets caspase-1 and interleukin (IL)-1β. Mechanistically, MT3 increased intramacrophage Zn2+ to downmodulate the TRIF-IRF3-STAT1 axis that is prerequisite for caspase-11 effector function. In vivo, MT3 suppressed activation of the caspase-11 inflammasome, while caspase-11 and MT3 synergized in impairing antibacterial immunity. The present study identifies an important yin-yang relationship between the non-canonical inflammasome and MT3 in controlling inflammation and immunity to gram-negative bacteria.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jason C. Gardner
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Abhijit Satpati
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Santhosh Mukundan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Julio A. Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Kavitha Subramanian Vignesh
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
20
|
The Place of Group A Streptococci in Moroccan Children with Pharyngitis and Emm Type Distribution. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.111172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Streptococcus pyogenes is responsible for a wide variety of diseases, including noninvasive and severe invasive infections. The emm gene encodes the M protein that is the virulence factor and immunological determinant of group A streptococci. Emm typing is the group A Streptococci (GAS) standard molecular typing method based on the amplification of the N terminal hypervariable region of the emm gene. Objectives: The aim of the present study was to determine the prevalence of GAS in children with pharyngitis and determine different types of emm gene in the GAS isolates using emm typing. Methods: The study was carried out over a period of 14 months (from February 2017 to March 2018). Throat samples were collected from cases aged ≤ 18 years with pharyngitis referring to a primary health care center in Fez, Morocco. GAS isolates were subjected to conventional tests to confirm species identification. Antimicrobial susceptibility testing was performed using the standard disk diffusion method. We researched emm gene by a polymerase chain reaction (PCR). Emm types were determined by a sequence-based protocol. Demographic and clinical data were recorded from each patient. Results: From a total of 177 throat samples, 11 isolates (6.2%) were identified as GAS in children with pharyngitis. Antibiotic sensitivity testing revealed that all the GAS isolates were sensitive to penicillin. The sequencing of the PCR products of the emm gene revealed that emm90 was the most obtained emm type (30,77%); while emm75 was the least type observed (7.7%). Conclusions: The emm90 is the most prevalent type detected from patients with tonsillitis. Penicillin and erythromycin are still the foremost effective antibiotics to treat GAS pharyngitis.
Collapse
|
21
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Donders G, Greenhouse P, Donders F, Engel U, Paavonen J, Mendling W. Genital Tract GAS Infection ISIDOG Guidelines. J Clin Med 2021; 10:jcm10092043. [PMID: 34068785 PMCID: PMC8126195 DOI: 10.3390/jcm10092043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There has been an increasing worldwide incidence of invasive group A streptococcal (GAS) disease in pregnancy and in the puerperal period over the past 30 years. Postpartum Group A streptococci infection, and in particular streptococcal toxic shock syndrome (TSS) and necrotizing fasciitis, can be life threatening and difficult to treat. Despite antibiotics and supportive therapy, and in some cases advanced extensive surgery, mortality associated with invasive group A streptococcal postpartum endometritis, necrotizing fasciitis, and toxic shock syndrome remains high, up to 40% of postpartum septic deaths. It now accounts for more than 75,000 deaths worldwide every year. Postpartum women have a 20-fold increased incidence of GAS disease compared to non-pregnant women. Despite the high incidence, many invasive GAS infections are not diagnosed in a timely manner, resulting in potentially preventable maternal and neonatal deaths. In this paper the specific characteristics of GAS infection in the field of Ob/Gyn are brought to our attention, resulting in guidelines to improve our awareness, early recognition and timely treatment of the disease. New European prevalence data of vaginal GAS colonization are presented, alongside two original case histories. Additionally, aerobic vaginitis is proposed as a supplementary risk factor for invasive GAS diseases.
Collapse
Affiliation(s)
- Gilbert Donders
- Femicare, Clinical Research for Women, 3300 Tienen, Belgium;
- Department of Obstetrics and Gynecology, University Hospital Antwerp, 2000 Antwerp, Belgium
- Regional Hospital H Hart, 3300 Tienen, Belgium
- Correspondence: ; Tel.: +32-38-214413
| | | | | | - Ulrike Engel
- Department of Ob/Gyn Maternité, Centre Hospitalier, 1210 Luxembourg, Luxembourg;
| | - Jorma Paavonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, 00260 Helsinki, Finland;
| | - Werner Mendling
- German Centre for Infections in Gynaecology and Obstetrics, St. Anna Hospital, 42109 Wuppertal, Germany;
| |
Collapse
|
23
|
Hirose Y, Yamaguchi M, Sumitomo T, Nakata M, Hanada T, Okuzaki D, Motooka D, Mori Y, Kawasaki H, Coady A, Uchiyama S, Hiraoka M, Zurich RH, Amagai M, Nizet V, Kawabata S. Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the skin surface. Cell Rep 2021; 34:108924. [PMID: 33789094 PMCID: PMC9214650 DOI: 10.1016/j.celrep.2021.108924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
The arginine deiminase (ADI) pathway has been found in many kinds of bacteria and functions to supplement energy production and provide protection against acid stress. The Streptococcus pyogenes ADI pathway is upregulated upon exposure to various environmental stresses, including glucose starvation. However, there are several unclear points about the advantages to the organism for upregulating arginine catabolism. We show that the ADI pathway contributes to bacterial viability and pathogenesis under low-glucose conditions. S. pyogenes changes global gene expression, including upregulation of virulence genes, by catabolizing arginine. In a murine model of epicutaneous infection, S. pyogenes uses the ADI pathway to augment its pathogenicity by increasing the expression of virulence genes, including those encoding the exotoxins. We also find that arginine from stratum-corneum-derived filaggrin is a key substrate for the ADI pathway. In summary, arginine is a nutrient source that promotes the pathogenicity of S. pyogenes on the skin.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA.
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tomoki Hanada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Mori
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Immunology Data Integration Unit, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Alison Coady
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Masanobu Hiraoka
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan
| | - Raymond H Zurich
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA; Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Biswas D, Ambalavanan P, Ravins M, Anand A, Sharma A, Lim KXZ, Tan RYM, Lim HY, Sol A, Bachrach G, Angeli V, Hanski E. LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection. Cell Rep 2021; 34:108766. [PMID: 33657368 DOI: 10.1016/j.celrep.2021.108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Group A Streptococcus (GAS) causes diverse human diseases, including life-threatening soft-tissue infections. It is accepted that the human antimicrobial peptide LL-37 protects the host by killing GAS. Here, we show that GAS extracellular protease ScpC N-terminally cleaves LL-37 into two fragments of 8 and 29 amino acids, preserving its bactericidal activity. At sub-bactericidal concentrations, the cleavage inhibits LL-37-mediated neutrophil chemotaxis, shortens neutrophil lifespan, and eliminates P2X7 and EGF receptors' activation. Mutations at the LL-37 cleavage site protect the peptide from ScpC-mediated splitting, maintaining all its functions. The mouse LL-37 ortholog CRAMP is neither cleaved by ScpC nor does it activate P2X7 or EGF receptors. Treating wild-type or CRAMP-null mice with sub-bactericidal concentrations of the non-cleavable LL-37 analogs promotes GAS clearance that is abolished by the administration of either P2X7 or EGF receptor antagonists. We demonstrate that LL-37-mediated activation of host receptors is critical for defense against GAS soft-tissue infections.
Collapse
Affiliation(s)
- Debabrata Biswas
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| | - Poornima Ambalavanan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Kimberly Xuan Zhen Lim
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Rachel Ying Min Tan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Asaf Sol
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Veronique Angeli
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Emanuel Hanski
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
25
|
Williams JG, Ly D, Geraghty NJ, McArthur JD, Vyas HKN, Gorman J, Tsatsaronis JA, Sluyter R, Sanderson-Smith ML. Streptococcus pyogenes M1T1 Variants Induce an Inflammatory Neutrophil Phenotype Including Activation of Inflammatory Caspases. Front Cell Infect Microbiol 2021; 10:596023. [PMID: 33585270 PMCID: PMC7876443 DOI: 10.3389/fcimb.2020.596023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive infections due to group A Streptococcus (GAS) advance rapidly causing tissue degradation and unregulated inflammation. Neutrophils are the primary immune cells that respond to GAS. The neutrophil response to GAS was characterised in response to two M1T1 isolates; 5448 and animal passaged variant 5448AP. Co-incubation of neutrophils with 5448AP resulted in proliferation of GAS and lowered the production of reactive oxygen species when compared with 5448. Infection with both strains invoked neutrophil death, however apoptosis was reduced in response to 5448AP. Both strains induced neutrophil caspase-1 and caspase-4 expression in vitro, with inflammatory caspase activation detected in vitro and in vivo. GAS infections involving strains such as 5448AP that promote an inflammatory neutrophil phenotype may contribute to increased inflammation yet ineffective bacterial eradication, contributing to the severity of invasive GAS infections.
Collapse
Affiliation(s)
- Jonathan G. Williams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas J. Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Heema K. N. Vyas
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - James A. Tsatsaronis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
26
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
27
|
Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A Streptococcus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:3122-3129. [PMID: 33077643 DOI: 10.4049/jimmunol.1901482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse
Affiliation(s)
- Allen Washington
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
28
|
Wierzbicki IH, Campeau A, Dehaini D, Holay M, Wei X, Greene T, Ying M, Sands JS, Lamsa A, Zuniga E, Pogliano K, Fang RH, LaRock CN, Zhang L, Gonzalez DJ. Group A Streptococcal S Protein Utilizes Red Blood Cells as Immune Camouflage and Is a Critical Determinant for Immune Evasion. Cell Rep 2020; 29:2979-2989.e15. [PMID: 31801066 PMCID: PMC6951797 DOI: 10.1016/j.celrep.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 01/17/2023] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen that evades the host immune response through the elaboration of multiple virulence factors. Although many of these factors have been studied, numerous proteins encoded by the GAS genome are of unknown function. Herein, we characterize a biomimetic red blood cell (RBC)-captured protein of unknown function—annotated subsequently as S protein—in GAS pathophysiology. S protein maintains the hydrophobic properties of GAS, and its absence reduces survival in human blood. S protein facilitates GAS coating with lysed RBCs to promote molecular mimicry, which increases virulence in vitro and in vivo. Proteomic profiling reveals that the removal of S protein from GAS alters cellular and extracellular protein landscapes and is accompanied by a decrease in the abundance of several key GAS virulence determinants. In vivo, the absence of S protein results in a striking attenuation of virulence and promotes a robust immune response and immunological memory. Wierzbicki et al. show that S protein is a major group A Streptococcus (GAS) virulence factor that facilitates bacterial coating with lysed red blood cells to promote molecular mimicry, which increases virulence in vitro and in vivo. Removal of S protein reduces the abundance of multiple virulence factors and attenuates virulence.
Collapse
Affiliation(s)
- Igor H Wierzbicki
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Diana Dehaini
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trever Greene
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Man Ying
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenna S Sands
- Department of Microbiology and Immunology, Division of Infectious Diseases, and Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Anne Lamsa
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elina Zuniga
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kit Pogliano
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Division of Infectious Diseases, and Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
LaRock DL, Russell R, Johnson AF, Wilde S, LaRock CN. Group A Streptococcus Infection of the Nasopharynx Requires Proinflammatory Signaling through the Interleukin-1 Receptor. Infect Immun 2020; 88:e00356-20. [PMID: 32719155 PMCID: PMC7504964 DOI: 10.1128/iai.00356-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Group A Streptococcus (GAS) is the etiologic agent of numerous high-morbidity and high-mortality diseases. Infections are typically highly proinflammatory. During the invasive infection necrotizing fasciitis, this is in part due to the GAS protease SpeB directly activating interleukin-1β (IL-1β) independent of the canonical inflammasome pathway. The upper respiratory tract is the primary site for GAS colonization, infection, and transmission, but the host-pathogen interactions at this site are still largely unknown. We found that in the murine nasopharynx, SpeB enhanced IL-1β-mediated inflammation and the chemotaxis of neutrophils. However, neutrophilic inflammation did not restrict infection and instead promoted GAS replication and disease. Inhibiting IL-1β or depleting neutrophils, which both promote invasive infection, prevented GAS infection of the nasopharynx. Mice pretreated with penicillin became more susceptible to GAS challenge, and this reversed the attenuation from neutralization or depletion of IL-1β, neutrophils, or SpeB. Collectively, our results suggest that SpeB is essential to activate an IL-1β-driven neutrophil response. Unlike during invasive tissue infections, this is beneficial in the upper respiratory tract because it disrupts colonization resistance mediated by the microbiota. This provides experimental evidence that the notable inflammation of strep throat, which presents with significant swelling, pain, and neutrophil influx, is not an ineffectual immune response but rather is a GAS-directed remodeling of this niche for its pathogenic benefit.
Collapse
Affiliation(s)
- Doris L LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Raedeen Russell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
- Antimicrobial Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
30
|
A Role of Epithelial Cells and Virulence Factors in Biofilm Formation by Streptococcus pyogenes In Vitro. Infect Immun 2020; 88:IAI.00133-20. [PMID: 32661124 DOI: 10.1128/iai.00133-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Biofilm formation by Streptococcus pyogenes (group A streptococcus [GAS]) in model systems mimicking the respiratory tract is poorly documented. Most studies have been conducted on abiotic surfaces, which poorly represent human tissues. We have previously shown that GAS forms mature and antibiotic-resistant biofilms on physiologically relevant epithelial cells. However, the roles of the substratum, extracellular matrix (ECM) components, and GAS virulence factors in biofilm formation and structure are unclear. In this study, biofilm formation was measured on respiratory epithelial cells and keratinocytes by determining biomass and antibiotic resistance, and biofilm morphology was visualized using scanning electron microscopy. All GAS isolates tested formed biofilms that had similar, albeit not identical, biomass and antibiotic resistance for both cell types. Interestingly, functionally mature biofilms formed more rapidly on keratinocytes but were structurally denser and coated with more ECM on respiratory epithelial cells. The ECM was crucial for biofilm integrity, as protein- and DNA-degrading enzymes induced bacterial release from biofilms. Abiotic surfaces supported biofilm formation, but these biofilms were structurally less dense and organized. No major role for M protein, capsule, or streptolysin O was observed in biofilm formation on epithelial cells, although some morphological differences were detected. NAD-glycohydrolase was required for optimal biofilm formation, whereas streptolysin S and cysteine protease SpeB impaired this process. Finally, no correlation was found between cell adherence or autoaggregation and GAS biofilm formation. Combined, these results provide a better understanding of the role of biofilm formation in GAS pathogenesis and can potentially provide novel targets for future treatments against GAS infections.
Collapse
|
31
|
Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection. Infect Immun 2020; 88:IAI.00346-20. [PMID: 32719156 DOI: 10.1128/iai.00346-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated β-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-β-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the β-glucoside permease (bglP) and β-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the β-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the β-glucoside salicin; however, only bglP was necessary for growth in other non-β-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the β-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.
Collapse
|
32
|
Freiberg JA, Le Breton Y, Harro JM, Allison DL, McIver KS, Shirtliff ME. The Arginine Deiminase Pathway Impacts Antibiotic Tolerance during Biofilm-Mediated Streptococcus pyogenes Infections. mBio 2020; 11:e00919-20. [PMID: 32636245 PMCID: PMC7343988 DOI: 10.1128/mbio.00919-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are responsible for a variety of serious human infections and are notoriously difficult to treat due to their recalcitrance to antibiotics. Further work is necessary to elicit a full understanding of the mechanism of this antibiotic tolerance. The arginine deiminase (ADI) pathway is responsible for bacterial pH maintenance and is highly expressed during biofilm growth in multiple bacterial species. Using the group A Streptococcus (GAS) as a model human pathogen, the ADI pathway was demonstrated to contribute to biofilm growth. The inability of antibiotics to reduce GAS populations when in a biofilm was demonstrated by in vitro studies and a novel animal model of nasopharyngeal infection. However, disruption of the ADI pathway returned GAS biofilms to planktonic levels of antibiotic sensitivity, suggesting the ADI pathway is influential in biofilm-related antibiotic treatment failure and provides a new strategic target for the treatment of biofilm infections in GAS and potentially numerous other bacterial species.IMPORTANCE Biofilm-mediated bacterial infections are a major threat to human health because of their recalcitrance to antibiotic treatment. Through the study of Streptococcus pyogenes, a significant human pathogen that is known to form antibiotic-tolerant biofilms, we demonstrated the role that a bacterial pathway known for responding to acid stress plays in biofilm growth and antibiotic tolerance. This not only provides some insight into antibiotic treatment failure in S. pyogenes infections but also, given the widespread nature of this pathway, provides a potentially broad target for antibiofilm therapies. This discovery has the potential to impact the treatment of many different types of recalcitrant biofilm infections.
Collapse
Affiliation(s)
- Jeffrey A Freiberg
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Devon L Allison
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Live Cell Microscopy and Flow Cytometry to Study Streptolysin S-Mediated Erythrocyte Hemolysis. Methods Mol Biol 2020. [PMID: 32430826 DOI: 10.1007/978-1-0716-0467-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The ability to induce hemolysis, the rupturing of erythrocytes with the consequent release of their intracellular contents, is a phenotypic hallmark of a number of microbial toxins. Streptococcus pyogenes or Group A Streptococcus (GAS) is a human pathogen responsible for a wide range of diseases from mild pharyngitis to severe conditions such as toxic shock syndrome. GAS produces a powerful hemolytic toxin called streptolysin S (SLS). Herein, we describe a procedure for the preparation of SLS toxin and the use of two complementary approaches, live microscopy and flow cytometry, to study the effects of the SLS toxin on erythrocytes. In addition to providing insights into SLS-mediated hemolysis, these assays have the potential to be modified for the study of other hemolytic toxins and compounds.
Collapse
|
34
|
Dynamic Interactions of Group A Streptococcus with Host Macrophages. Methods Mol Biol 2020. [PMID: 32430823 DOI: 10.1007/978-1-0716-0467-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Macrophages play a critical role in Group A Streptococcus (GAS) recognition and the consequent activation of innate immunity and inflammatory responses against the pathogen. In parallel, GAS deploys several strategies for escaping detection and elimination by these efficient phagocytic cells. The events that take place in this GAS-macrophage battleground, the cellular consequences for the pathogen and for the immune cell, and the balance between the magnitude of infection and the efficiency of the host immune response can be investigated with a variety of assays presented in this chapter.
Collapse
|
35
|
Altun M, Mericli Yapıcı B. Detection of Group A Beta Hemolytic Streptococci Species, emm, and Exotoxin Genes Isolated from Patients with Tonsillopharyngitis. Curr Microbiol 2020; 77:2064-2070. [PMID: 32367278 PMCID: PMC7222056 DOI: 10.1007/s00284-020-01994-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/10/2020] [Indexed: 10/25/2022]
Abstract
Group A Beta Hemolytic Streptococci (GAS) is the most critical human pathogen that leads to tonsillopharyngitis. The aims of this study were to identify GAS isolates and to determine emm typing, the coverage rate of available vaccines, and the distribution of superantigen gene profiles. 15 GAS isolates were isolated from throat cultures of 200 patients with tonsillopharyngitis, who were admitted to Canakkale Health Application and Research Hospital between October 2017 and May 2018. Identification of the isolates was performed by conventional methods and 16S rRNA sequence analysis. emm typing and exotoxin profiling of the isolates were performed by polymerase chain reaction. 7.5% GAS was detected in 200 patients. All the GAS isolates were identified as S. pyogenes. emm typing can be carried out in 13 S. pyogenes isolates. emm89 (33.3%), emm44 (20%), emm6 (13.3%), emm84 (6.7%), emm1 (6.7%), and emm18.1 (6.7%) were found to be six emm types. The coverage rate of S. pyogenes strains for 26-valent vaccine was 61.5% and for the 30-valent vaccine 84.6%. The most common exotoxin was speB (86.7%), followed by speC (60%), speF (33.3%), ssa (26.7%), speA (20%), speM (20%), speJ (13.3%), speL (6.7%), and speI (6.7%). As a result of determining the emm types of S. pyogenes species in Canakkale, it was concluded that the potential of 30-valent vaccine should be considered in Turkey and development of vaccines containing exotoxin types may be beneficial.
Collapse
Affiliation(s)
- Mehzat Altun
- Vocational School of Health Services, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Binnur Mericli Yapıcı
- Department of Biology, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| |
Collapse
|
36
|
Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies. mBio 2020; 11:mBio.00122-20. [PMID: 32156809 PMCID: PMC7064752 DOI: 10.1128/mbio.00122-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens. Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.
Collapse
|
37
|
Rivera-Hernandez T, Walker MJ. Humanized Plasminogen Mouse Model to Study Group A Streptococcus Invasive Disease. Methods Mol Biol 2020; 2136:309-316. [PMID: 32430832 DOI: 10.1007/978-1-0716-0467-0_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This chapter presents the methodology to carry out infection of humanized plasminogen mice with Group A Streptococcus (GAS). This model of invasive disease has been widely used within the field to study the virulence of different GAS strains, host-pathogen interactions, the importance of particular virulence factors, and preclinical evaluation of novel treatments and vaccines. The model has shown to be highly reproducible and therefore represents an invaluable tool for GAS research.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, CDMX, Mexico.
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
38
|
Emgård J, Bergsten H, McCormick JK, Barrantes I, Skrede S, Sandberg JK, Norrby-Teglund A. MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock Syndrome. Proc Natl Acad Sci U S A 2019; 116:25923-25931. [PMID: 31772015 PMCID: PMC6926028 DOI: 10.1073/pnas.1910883116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vβ2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1β, IL-2, and TNFβ. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.
Collapse
Affiliation(s)
- Johanna Emgård
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Helena Bergsten
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Israel Barrantes
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 141 52 Huddinge, Sweden;
| |
Collapse
|
39
|
The scfCDE Operon Encodes a Predicted ABC Importer Required for Fitness and Virulence during Group A Streptococcus Invasive Infection. Infect Immun 2019; 87:IAI.00613-19. [PMID: 31591169 DOI: 10.1128/iai.00613-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
As a strict human pathogen, Streptococcus pyogenes (group A Streptococcus, or GAS) causes a wide range of infections, from superficial to life-threatening diseases, upon dissemination. Thus, it is necessary to gain a better understanding of how GAS successfully overcomes host-mediated challenges and infects various host niches. We previously identified subcutaneous fitness (scf) genes in the clinically relevant wild-type (WT) GAS M1T1 5448 strain that are critical for fitness during murine soft-tissue infection at both 24 h and 48 h postinfection. The uncharacterized locus scfCDE was transcribed as an operon and is predicted to encode an ABC importer for nutrient uptake (e.g., amino acids). Individual scfCDE deletion mutants grew comparably to WT 5448 in rich medium but exhibited reduced fitness during competitive growth in murine soft tissue and in nutrient-limiting chemically defined medium (CDM). A deletion of the permease gene scfD resulted in a monoculture growth defect in CDM that could be rescued by addition of excess peptides, suggesting a role as an amino acid importer. Interestingly, the ΔscfC substrate-binding and ΔscfD permease mutants, but not the ΔscfE ATPase mutant, were highly attenuated in murine soft tissue. Moreover, all three genes were required for GAS survival in human blood, indicating their impact is not limited to superficial infections. As such, scfCDE plays an integral role in enhancing GAS adaptation during localized infection as well as dissemination to deeper host environments. Since scfCDE is conserved throughout Firmicutes, this work may contribute to the development of therapeutic strategies against GAS and other Gram-positive pathogens.
Collapse
|
40
|
Gao NJ, Al-Bassam MM, Poudel S, Wozniak JM, Gonzalez DJ, Olson J, Zengler K, Nizet V, Valderrama JA. Functional and Proteomic Analysis of Streptococcus pyogenes Virulence Upon Loss of Its Native Cas9 Nuclease. Front Microbiol 2019; 10:1967. [PMID: 31507572 PMCID: PMC6714885 DOI: 10.3389/fmicb.2019.01967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The public health impact of Streptococcus pyogenes (group A Streptococcus, GAS) as a top 10 cause of infection-related mortality in humans contrasts with its benefit to biotechnology as the main natural source of Cas9 nuclease, the key component of the revolutionary CRISPR-Cas9 gene editing platform. Despite widespread knowledge acquired in the last decade on the molecular mechanisms by which GAS Cas9 achieves precise DNA targeting, the functions of Cas9 in the biology and pathogenesis of its native organism remain unknown. In this study, we generated an isogenic serotype M1 GAS mutant deficient in Cas9 protein and compared its behavior and phenotypes to the wild-type parent strain. Absence of Cas9 was linked to reduced GAS epithelial cell adherence, reduced growth in human whole blood ex vivo, and attenuation of virulence in a murine necrotizing skin infection model. Virulence defects of the GAS Δcas9 strain were explored through quantitative proteomic analysis, revealing a significant reduction in the abundance of key GAS virulence determinants. Similarly, deletion of cas9 affected the expression of several known virulence regulatory proteins, indicating that Cas9 impacts the global architecture of GAS gene regulation.
Collapse
Affiliation(s)
- Nina J Gao
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Saugat Poudel
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jacob M Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Karsten Zengler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - J Andrés Valderrama
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
41
|
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmström J, Collin M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 2019; 216:1615-1629. [PMID: 31092533 PMCID: PMC6605743 DOI: 10.1084/jem.20190293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
EndoS from Streptococcus pyogenes hydrolyzes the functionally important glycan on the Fc portion of IgG during infections in humans. In mice with IgG mediated immunity against the M1 protein on the bacteria, EndoS is a virulence factor. Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
Collapse
Affiliation(s)
- Andreas Naegeli
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Christofer Karlsson
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Raja Kalluru
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Rivera-Hernandez T, Carnathan DG, Jones S, Cork AJ, Davies MR, Moyle PM, Toth I, Batzloff MR, McCarthy J, Nizet V, Goldblatt D, Silvestri G, Walker MJ. An Experimental Group A Streptococcus Vaccine That Reduces Pharyngitis and Tonsillitis in a Nonhuman Primate Model. mBio 2019; 10:e00693-19. [PMID: 31040243 PMCID: PMC6495378 DOI: 10.1128/mbio.00693-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Group A Streptococcus (GAS) infections account for an estimated 500,000 deaths every year. This bacterial pathogen is responsible for a variety of mild and life-threatening infections and the triggering of chronic autoimmune sequelae. Pharyngitis caused by group A Streptococcus (GAS), but not asymptomatic GAS carriage, is a prerequisite for acute rheumatic fever (ARF). Repeated bouts of ARF may trigger rheumatic heart disease (RHD), a major cause of heart failure and stroke accounting for 275,000 deaths annually. A vaccine that prevents pharyngitis would markedly reduce morbidity and mortality from ARF and RHD. Nonhuman primates (NHPs) have been utilized to model GAS diseases, and experimentally infected rhesus macaques develop pharyngitis. Here we use an NHP model of GAS pharyngitis to evaluate the efficacy of an experimental vaccine, Combo5 (arginine deiminase [ADI], C5a peptidase [SCPA], streptolysin O [SLO], interleukin-8 [IL-8] protease [SpyCEP], and trigger factor [TF]), specifically designed to exclude GAS components potentially linked to autoimmune complications. Antibody responses against all Combo5 antigens were detected in NHP serum, and immunized NHPs showed a reduction in pharyngitis and tonsillitis compared to controls. Our work establishes the NHP model as a gold standard for the assessment of GAS vaccines.IMPORTANCE GAS-related diseases disproportionally affect disadvantaged populations (e.g., indigenous populations), and development of a vaccine has been neglected. A recent strong advocacy campaign driven by the World Health Organization and the International Vaccine Institute has highlighted the urgent need for a GAS vaccine. One significant obstacle in GAS vaccine development is the lack of a widely used animal model to assess vaccine efficacy. Researchers in the field use a wide range of murine models of infection and in vitro assays, sometimes yielding conflicting results. Here we present the nonhuman primate pharyngeal infection model as a tool to assess vaccine-induced protection against colonization and clinical symptoms of pharyngitis and tonsillitis. We have tested the efficacy of an experimental vaccine candidate with promising results. We believe that the utilization of this valuable tool by the GAS vaccine research community could significantly accelerate the realization of a safe and effective GAS vaccine for humans.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Diane G Carnathan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Scott Jones
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Peter Doherty Institute, University of Melbourne, Parkville, VIC, Australia
| | - Peter M Moyle
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - James McCarthy
- Australian Infectious Diseases Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla, California, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Guido Silvestri
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
43
|
Andreoni F, Ugolini F, Keller N, Neff A, Nizet V, Hollands A, Marques Maggio E, Zinkernagel AS, Schuepbach RA. Immunoglobulin Attenuates Streptokinase-Mediated Virulence in Streptococcus dysgalactiae Subspecies equisimilis Necrotizing Fasciitis. J Infect Dis 2019; 217:270-279. [PMID: 29099935 PMCID: PMC7263839 DOI: 10.1093/infdis/jix560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background Necrotizing fasciitis (NF) retains a very high mortality rate despite prompt and adequate antibiotic treatment and surgical debridement. Necrotizing fasciitis has recently been associated withStreptococcus dysgalactiae subspeciesequisimilis (SDSE). Methods We investigated the causes of a very severe clinical manifestation of SDSE-NF by assessing both host and pathogen factors. Results We found a lack of streptokinase-function blocking antibodies in the patient resulting in increased streptokinase-mediated fibrinolysis and bacterial spread. At the same time, the clinical SDSE isolate produced very high levels of streptokinase. Exogenous immunoglobulin Gs (ex-IgGs) efficiently blocked streptokinase-mediated fibrinolysis in vitro, indicating a protective role against the action of streptokinase. In vivo, SDSE infection severity was also attenuated by ex-IgGs in a NF mouse model. Conclusions These findings illustrate for the first time that the lack of specific antibodies against streptococcal virulence factors, such as streptokinase, may contribute to NF disease severity. This can be counteracted by ex-IgGs.
Collapse
Affiliation(s)
- Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Fabio Ugolini
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrina Neff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California.,Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California
| | - Andrew Hollands
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
44
|
Human polyspecific immunoglobulin attenuates group A streptococcal virulence factor activity and reduces disease severity in a murine necrotizing fasciitis model. Clin Microbiol Infect 2019; 25:512.e7-512.e13. [DOI: 10.1016/j.cmi.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
|
45
|
Group A Streptococcus co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 2019; 476:595-611. [PMID: 30670571 DOI: 10.1042/bcj20180902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.
Collapse
|
46
|
Osowicki J, Azzopardi KI, McIntyre L, Rivera-Hernandez T, Ong CLY, Baker C, Gillen CM, Walker MJ, Smeesters PR, Davies MR, Steer AC. A Controlled Human Infection Model of Group A Streptococcus Pharyngitis: Which Strain and Why? mSphere 2019; 4:e00647-18. [PMID: 30760615 PMCID: PMC6374595 DOI: 10.1128/msphere.00647-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Group A Streptococcus (GAS) is a major cause of global infection-related morbidity and mortality. A modern controlled human infection model (CHIM) of GAS pharyngitis can accelerate vaccine development and pathogenesis research. A robust rationale for strain selection is central to meeting ethical, scientific, and regulatory requirements. Multifaceted characterization studies were done to compare a preferred candidate emm75 (M75) GAS strain to three other strains: an alternative candidate emm12 (M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a representative (5448) of the globally disseminated M1T1 clone. A range of approaches were used to explore strain growth, adherence, invasion, delivery characteristics, short- and long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by human neutrophils, and lethality in a murine invasive model. The strains grew reliably in a medium without animal-derived components, were consistently transferred using a swab method simulating the CHIM protocol, remained viable at -80°C, and carried genes for most candidate vaccine antigens. Considering GAS molecular epidemiology, virulence factors, in vitro assays, and results from the murine model, the contemporary strains show a spectrum of virulence, with M75 appearing the least virulent and 5448 the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar to that of 5448 in the animal model and virulence gene carriage. The results of this multifaceted characterization confirm the M75 strain as an appropriate choice for initial deployment in the CHIM, with the aim of safely and successfully causing pharyngitis in healthy adult volunteers.IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accelerate vaccine development and drive pathogenesis research. Challenge strain selection is critical to the safety and success of any CHIM and especially so for an organism such as GAS, with its wide strain diversity and potential to cause severe life-threatening acute infections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious complications (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the findings of a broad characterization effort spanning molecular epidemiology, in vitro assays, whole-genome sequencing, and animal model studies.
Collapse
Affiliation(s)
- Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kristy I Azzopardi
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ciara Baker
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Pierre R Smeesters
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Paediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, Rosales SL, Anderson EL, LaRock CN, Vijayanand P, Seumois G, Layfield D, Cutress RI, Ottensmeier CH, Lindestam Arlehamn CS, Sette A, Nizet V, Bothwell M, Brigger M, Crotty S. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T FH cells. Sci Transl Med 2019; 11:eaau3776. [PMID: 30728285 PMCID: PMC6561727 DOI: 10.1126/scitranslmed.aau3776] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
"Strep throat" is highly prevalent among children, yet it is unknown why only some children develop recurrent tonsillitis (RT), a common indication for tonsillectomy. To gain insights into this classic childhood disease, we performed phenotypic, genotypic, and functional studies on pediatric group A Streptococcus (GAS) RT and non-RT tonsils from two independent cohorts. GAS RT tonsils had smaller germinal centers, with an underrepresentation of GAS-specific CD4+ germinal center T follicular helper (GC-TFH) cells. RT children exhibited reduced antibody responses to an important GAS virulence factor, streptococcal pyrogenic exotoxin A (SpeA). Risk and protective human leukocyte antigen (HLA) class II alleles for RT were identified. Lastly, SpeA induced granzyme B production in GC-TFH cells from RT tonsils with the capacity to kill B cells and the potential to hobble the germinal center response. These observations suggest that RT is a multifactorial disease and that contributors to RT susceptibility include HLA class II differences, aberrant SpeA-activated GC-TFH cells, and lower SpeA antibody titers.
Collapse
Affiliation(s)
- Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Rita Al-Kolla
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Ericka L Anderson
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Human Longevity Inc., San Diego, CA 92121, USA
| | - Christopher N LaRock
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - David Layfield
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | - Ramsey I Cutress
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
| | - Marcella Bothwell
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Matthew Brigger
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Uchiyama S, Dahesh S, Nizet V, Kessler J. Enhanced topical delivery of non-complexed molecular iodine for Methicillin-resistant Staphylococcus aureus decolonization. Int J Pharm 2018; 554:81-86. [PMID: 30395958 DOI: 10.1016/j.ijpharm.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus, a leading cause of serious human infections in both healthcare and community settings, is increasingly difficult to control due to expanding resistance to multiple antibiotic classes. Methicillin-resistant S. aureus (MRSA) strains have disseminated on a global scale and are associated with adverse patient outcomes, increased hospital stays, and significant economic costs to the healthcare system. A proximal step in S. aureus infection is colonization of the nasal mucosa, and effective strategies to decolonize high risk patients to reduce the risk of invasive infection and nosocomial spread represent an important clinical priority. With rising resistance to mupirocin, the most common antibiotic utilized for nasal MRSA decontamination, we are examining the use of pure molecular iodine (I2)-based formulations for this indication. Recently, an iodophor formulation of povidone-iodine (PVP-I) has shown significant promise for nasal MRSA decontamination by swabbing the anterior nares of patients in hospital settings, but the I2 concentration in this treatment is less than 0.01% of total iodine species present and like all providone-iodine formulations causes skin staining. Here we determine that a novel non-staining formulation of I2 combined with the safe organic emollient glycerin delivers high local concentrations of the active antimicrobial entity (I2) with minimal evaporative loss, exhibits activity at ∼1 part per million against MRSA and other important Gram-positive and -negative human pathogens. This formulation for I2 topical delivery produced similar reductions in mean bacterial burden and was associated with fewer treatment failures (<2-logfold reduction) than PVP-I in a murine model of MRSA nasal decontamination. Formulations of I2 in glycerin emollient merit further exploration as topical disinfectants for human medical indications.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA
| | - Samira Dahesh
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0760, USA.
| | | |
Collapse
|
49
|
Abstract
Streptococcus pyogenes (or Group A Streptococcus, GAS) is a Gram-positive human pathogen responsible for a diverse array of superficial, invasive and immune-related diseases. GAS infections have historically been diseases of poverty and overcrowding, and remain a significant problem in the developing world and in disadvantaged populations within developed countries. With improved living conditions and access to antibiotics, the rates of GAS diseases in developed societies have gradually declined during the 20th century. However, genetic changes in circulating GAS strains and/or changes in host susceptibility to infection can lead to dramatic increases in the rates of specific diseases. No situations exemplify this more than the global upsurge of invasive GAS disease that originated in the 1980s and the regional increases in scarlet fever in north-east Asia and the UK. In each case, increased disease rates have been associated with the emergence of new GAS strains with increased disease-causing capability. Global surveillance for new GAS strains with increased virulence is important and determining why certain populations suddenly become susceptible to circulating strains remains a research priority. Here, we overview the changing epidemiology of GAS infections and the genetic alterations that accompany the emergence of GAS strains with increased capacity to cause disease.
Collapse
|
50
|
Lapek JD, Mills RH, Wozniak JM, Campeau A, Fang RH, Wei X, van de Groep K, Perez-Lopez A, van Sorge NM, Raffatellu M, Knight R, Zhang L, Gonzalez DJ. Defining Host Responses during Systemic Bacterial Infection through Construction of a Murine Organ Proteome Atlas. Cell Syst 2018; 6:579-592.e4. [PMID: 29778837 PMCID: PMC7868092 DOI: 10.1016/j.cels.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/30/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022]
Abstract
Group A Streptococcus (GAS) remains one of the top 10 deadliest human pathogens worldwide despite its sensitivity to penicillin. Although the most common GAS infection is pharyngitis (strep throat), it also causes life-threatening systemic infections. A series of complex networks between host and pathogen drive invasive infections, which have not been comprehensively mapped. Attempting to map these interactions, we examined organ-level protein dynamics using a mouse model of systemic GAS infection. We quantified over 11,000 proteins, defining organ-specific markers for all analyzed tissues. From this analysis, an atlas of dynamically regulated proteins and pathways was constructed. Through statistical methods, we narrowed organ-specific markers of infection to 34 from the defined atlas. We show these markers are trackable in blood of infected mice, and a subset has been observed in plasma samples from GAS-infected clinical patients. This proteomics-based strategy provides insight into host defense responses, establishes potentially useful targets for therapeutic intervention, and presents biomarkers for determining affected organs during bacterial infection.
Collapse
Affiliation(s)
- John D Lapek
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xiaoli Wei
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kirsten van de Groep
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands
| | - Araceli Perez-Lopez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands
| | - Manuela Raffatellu
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|