1
|
Flitter BA, Greco SN, Lester CA, Neuhaus ED, Tedjakusuma SN, Shriver M, Cuevas-Juárez E, Gutierrez S, Braun MR, Pasetti MF, Tucker SN, Cummings JF. An oral norovirus vaccine tablet was safe and elicited mucosal immunity in older adults in a phase 1b clinical trial. Sci Transl Med 2025; 17:eads0556. [PMID: 40043138 DOI: 10.1126/scitranslmed.ads0556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 02/08/2025] [Indexed: 05/13/2025]
Abstract
Norovirus is a leading cause of acute gastroenteritis globally, with infections in older adults associated with heightened severity and increased risk of mortality. Currently, no licensed vaccines are available to prevent norovirus infection. We developed an orally administered vaccine tablet (VXA-G1.1-NN) that delivers a nonreplicating adenoviral vector expressing norovirus GI.1 major capsid protein VP1 to the small intestine. Here, we report safety and immunogenicity results of a randomized, double-blind, placebo-controlled clinical trial (NCT04854746) that investigated the oral administration of VXA-G1.1-NN in two groups of healthy older adults aged 55 to 65 and 66 to 80 years. VXA-G1.1-NN was administered orally at three dose levels by prime and boost, 28 days apart. Immunization was well tolerated regardless of dose, with mild to moderate reported solicited symptoms and no related serious or grade 3 adverse events. Oral delivery of VXA-G1.1-NN elicited VP1-specific serum immunoglobulin G (IgG) and IgA and functional antibodies in a dose-dependent manner 28 days postvaccination and remained above baseline for 210 days. Moreover, robust circulating VP1-specific IgA antibody-secreting cells were detected 1 week postvaccination along with IgA+ plasmablasts expressing the mucosal-homing marker α4β7. VP1-specific IgA increased in saliva and nasal lining fluid 28 days postvaccination in both age groups and remained above baseline concentrations through 210 days, demonstrating durable mucosal responses. This clinical trial established that oral administration of VXA-G1.1-NN is safe, well tolerated, and induces robust systemic and mucosal immune responses in adults up to 80 years old.
Collapse
Affiliation(s)
| | | | | | | | | | - Mallory Shriver
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
2
|
Park SC, Wiest MJ, Yan V, Wong PT, Schotsaert M. Induction of protective immune responses at respiratory mucosal sites. Hum Vaccin Immunother 2024; 20:2368288. [PMID: 38953250 PMCID: PMC11221474 DOI: 10.1080/21645515.2024.2368288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.
Collapse
Affiliation(s)
- Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Xu Y, Yan X, Wei T, Chen M, Zhu J, Gao J, Liu B, Zhu W, Liu Z. Transmucosal Delivery of Nasal Nanovaccines Enhancing Mucosal and Systemic Immunity. NANO LETTERS 2023; 23:10522-10531. [PMID: 37943583 DOI: 10.1021/acs.nanolett.3c03419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Intranasal vaccines can induce protective immune responses at the mucosa surface entrance, preventing the invasion of respiratory pathogens. However, the nasal barrier remains a major challenge in the development of intranasal vaccines. Herein, a transmucosal nanovaccine based on cationic fluorocarbon modified chitosan (FCS) is developed to induce mucosal immunity. In our system, FCS can self-assemble with the model antigen ovalbumin and TLR9 agonist CpG, effectively promoting the maturation and cross-presentation of dendritic cells. More importantly, it can enhance the production of secretory immunoglobin A (sIgA) at mucosal surfaces for those intranasally vaccinated mice, which in the meantime showed effective production of immunoglobulin G (IgG) systemically. As a proof-of-concept study, such a mucosal vaccine inhibits ovalbumin-expressing B16-OVA melanoma, especially its lung metastases. Our work presents a unique intranasal delivery system to deliver antigen across mucosal epithelia and promote mucosal and systemic immunity.
Collapse
Affiliation(s)
- Yuchun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaoying Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ting Wei
- Suzhou InnoBM Pharmaceutics Co. Ltd., Suzhou, Jiangsu 215213, China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Juxin Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Suzhou InnoBM Pharmaceutics Co. Ltd., Suzhou, Jiangsu 215213, China
| |
Collapse
|
4
|
Yoshino N, Yokoyama T, Sakai H, Sugiyama I, Odagiri T, Kimura M, Hojo W, Saino T, Muraki Y. Suitability of Polymyxin B as a Mucosal Adjuvant for Intranasal Influenza and COVID-19 Vaccines. Vaccines (Basel) 2023; 11:1727. [PMID: 38006059 PMCID: PMC10675063 DOI: 10.3390/vaccines11111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Polymyxin B (PMB) is an antibiotic that exhibits mucosal adjuvanticity for ovalbumin (OVA), which enhances the immune response in the mucosal compartments of mice. Frequent breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants indicate that the IgA antibody levels elicited by the mRNA vaccines in the mucosal tissues were insufficient for the prophylaxis of this infection. It remains unknown whether PMB exhibits mucosal adjuvanticity for antigens other than OVA. This study investigated the adjuvanticity of PMB for the virus proteins, hemagglutinin (HA) of influenza A virus, and the S1 subunit and S protein of SARS-CoV-2. BALB/c mice immunized either intranasally or subcutaneously with these antigens alone or in combination with PMB were examined, and the antigen-specific antibodies were quantified. PMB substantially increased the production of antigen-specific IgA antibodies in mucosal secretions and IgG antibodies in plasma, indicating its adjuvanticity for both HA and S proteins. This study also revealed that the PMB-virus antigen complex diameter is crucial for the induction of mucosal immunity. No detrimental effects were observed on the nasal mucosa or olfactory bulb. These findings highlight the potential of PMB as a safe candidate for intranasal vaccination to induce mucosal IgA antibodies for prophylaxis against mucosally transmitted infections.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Iwate, Japan
| | - Hironori Sakai
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Ikumi Sugiyama
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Science, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Masahiro Kimura
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Wataru Hojo
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
5
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Vazquez T, Torrieri-Damard L, Pitoiset F, Levacher B, Vigneron J, Mayr L, Brimaud F, Bonnet B, Moog C, Klatzmann D, Bellier B. Particulate antigens administrated by intranasal and intravaginal routes in a prime-boost strategy improve HIV-specific T FH generation, high-quality antibodies and long-lasting mucosal immunity. Eur J Pharm Biopharm 2023; 191:124-138. [PMID: 37634825 DOI: 10.1016/j.ejpb.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Mucosal surfaces serve as the primary entry points for pathogens such as SARS- CoV-2 coronavirus or HIV in the human body. Mucosal vaccination plays a crucial role to successfully induce long-lasting systemic and local immune responses to confer sterilizing immunity. However, antigen formulations and delivery methods must be properly selected since they are decisive for the quality and the magnitude of the elicited immune responses in mucosa. We investigated the significance of using particulate antigen forms for mucosal vaccination by comparing VLP- or protein- based vaccines in a mouse model. Based on a mucosal prime-boost immunization protocol combining (i) HIV- pseudotyped recombinant VLPs (HIV-VLPs) and (ii) plasmid DNA encoding HIV- VLPs (pVLPs), we demonstrated that combination of intranasal primes and intravaginal boosts is optimal to elicit both humoral and cellular memory responses in mucosa. Interestingly, our results show that in contrast to proteins, particulate antigens induce high-quality humoral responses characterized by a high breadth, long-term neutralizing activity and cross-clade reactivity, accompanying with high T follicular helper cell (TFH) response. These results underscore the potential of a VLP-based vaccine in effectively instigating long-lasting, HIV-specific immunity and point out the specific role of particulate antigen form in driving high-quality mucosal immune responses.
Collapse
Affiliation(s)
- Thomas Vazquez
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Léa Torrieri-Damard
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Fabien Pitoiset
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Béatrice Levacher
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - James Vigneron
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Luzia Mayr
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - Faustine Brimaud
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Benjamin Bonnet
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Christiane Moog
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - David Klatzmann
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Bertrand Bellier
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France.
| |
Collapse
|
7
|
Wang J, Li W, Li N, Wang B. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Vaccines (Basel) 2023; 11:1459. [PMID: 37766135 PMCID: PMC10535937 DOI: 10.3390/vaccines11091459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Group B streptococcus (GBS) commonly colonizes the vaginal tract and is a leading cause of life-threatening neonatal infections and adverse pregnancy outcomes. No effective vaccine is clinically available. Conserved bacterial virulence factors, including those of GBS, have been employed as vaccine components. We investigated serotype-independent protection against GBS by intranasal immunization with six conserved GBS virulence factors (GBSV6). GBSV6 induced systemic and vaginal antibodies and T cell responses in mice. The immunity reduced mouse mortality and vaginal colonization by various GBS serotypes and protected newborn mice of immunized dams against GBS challenge. Intranasal GBSV6 immunization also provided long-lasting protective immunity and had advantages over intramuscular GBSV6 immunization regarding restricting vaginal GBS colonization. Our findings indicate that intranasal immunization targeting multiple conserved GBS virulence factors induces serotype-independent immunity, which protects against GBS infection systemically and vaginally in dams and prevents newborn death. The study presents valuable strategies for GBS vaccine development.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Wenbo Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
9
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
10
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Bjarnarson SP, Brynjolfsson SF. The role of antigen availability during B cell induction and its effect on sustained memory and antibody production after infection and vaccination-lessons learned from the SARS-CoV-2 pandemic. Clin Exp Immunol 2022; 210:273-282. [PMID: 36480298 PMCID: PMC9985164 DOI: 10.1093/cei/uxac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The importance of antibodies, particularly neutralizing antibodies, has been known for decades. When examining the immune responses against a pathogen after a vaccination or infection it is easier to measure the levels of antigen-specific antibodies than the T-cell response, but it does not give the whole picture. The levels of neutralizing antibodies are harder to determine but give a better indication of the quality of the antibody response. The induction of long-lived antibody-secreting plasma cells is crucial for a persistent humoral immune response, which has been shown for example after vaccination with the vaccinia vaccine, where antibody levels have been shown to persist for decades. With the SARS-CoV-2 pandemic ravaging the world for the past years and the monumental effort in designing and releasing novel vaccines against the virus, much effort has been put into analysing the quantity, quality, and persistence of antibody responses.
Collapse
Affiliation(s)
- Stefania P Bjarnarson
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Siggeir F Brynjolfsson
- Correspondence: Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
12
|
Haeusler IL, Daniel O, Isitt C, Watts R, Cantrell L, Feng S, Cochet M, Salloum M, Ikram S, Hayter E, Lim S, Hall T, Athaide S, Cosgrove CA, Tregoning JS, Le Doare K. Group B Streptococcus (GBS) colonisation is dynamic over time, whilst GBS capsular polysaccharides-specific antibody remains stable. Clin Exp Immunol 2022; 209:188-200. [PMID: 35802786 PMCID: PMC9390841 DOI: 10.1093/cei/uxac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of adverse pregnancy outcomes due to invasive infection. This study investigated longitudinal variation in GBS rectovaginal colonization, serum and vaginal GBS capsular polysaccharide (CPS)-specific antibody levels. Non-pregnant women were recruited in the UK and were sampled every 2 weeks over a 12-week period. GBS isolates were taken from recto-vaginal swabs and serotyped by polymerase chain reaction. Serum and vaginal immunoglobulin G (IgG) and nasal immunoglobulin A (IgA) specific to CPS were measured by Luminex, and total IgG/A by ELISA. Seventy women were enrolled, of median age 26. Out of the 66 participants who completed at least three visits: 14/47 (29.8%) women that were GBS negative at screening became positive in follow-up visits and 16/19 (84.2%) women who were GBS positive at screening became negative. There was 50% probability of becoming negative 36 days after the first positive swab. The rate of detectable GBS carriage fluctuated over time, although serum, vaginal, and nasal CPS-specific antibody levels remained constant. Levels of CPS-specific antibodies were higher in the serum of individuals colonized with GBS than in non-colonized, but similar in the vaginal and nasal mucosa. We found correlations between antibody levels in serum and the vaginal and nasal mucosa. Our study demonstrates the feasibility of elution methods to retrieve vaginal and nasal antibodies, and the optimization of immunoassays to measure GBS-CPS-specific antibodies. The difference between the dynamics of colonization and antibody response is interesting and further investigation is required for vaccine development.
Collapse
Affiliation(s)
- I L Haeusler
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - O Daniel
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - C Isitt
- St George's University of London, The Vaccine Institute, London, United Kingdom
| | - R Watts
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - L Cantrell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - S Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - M Cochet
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - M Salloum
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom.,UnivLyon, Claude Bernard University Lyon I, France
| | - S Ikram
- St George's University of London, The Vaccine Institute, London, United Kingdom
| | - E Hayter
- St George's University of London, The Vaccine Institute, London, United Kingdom
| | - S Lim
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - T Hall
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom
| | - S Athaide
- St George's University of London, The Vaccine Institute, London, United Kingdom
| | - C A Cosgrove
- St George's University of London, The Vaccine Institute, London, United Kingdom
| | - J S Tregoning
- Imperial College London, Department of Infectious Disease, London, United Kingdom
| | - K Le Doare
- St George's University of London, Paediatric Infectious Diseases Research Group, London, United Kingdom.,Makerere University John Hopkins Research Collaboration, Kampala, Uganda.,Pathogen Immunology Group, United Kingdom Health Security Agency, Porton Down, United Kingdom
| |
Collapse
|
13
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Anggraeni R, Ana ID, Wihadmadyatami H. Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants. Clin Exp Vaccine Res 2022; 11:235-248. [DOI: 10.7774/cevr.2022.11.3.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rahmi Anggraeni
- PT Swayasa Prakarsa, Universitas Gadjah Mada Science Techno Campus, Division of Drugs, Medical Devices, and Functional Food, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
15
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
16
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Murtaza G. Recent strategies driving oral biologic administration. Expert Rev Vaccines 2021; 20:1587-1601. [PMID: 34612121 DOI: 10.1080/14760584.2021.1990044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION High patient compliance, noninvasiveness, and self-administration are the leading features of vaccine delivery through the oral route. The implementation of swift mass vaccination campaigns in pandemic outbreaks fascinates the use of oral vaccination. This approach can elicit both mucosal and systemic immune responses to protect against infection at the surface of the mucosa. AREA COVERED As pathogen entry and spread mainly occurs through the gastrointestinal tract (GIT) mucosal surfaces, oral vaccination may protect and limit disease spread. Oral vaccines target various potential mucosal inductive sites in the GIT, such as the oral cavity, gastric area, and small intestine. Orally delivered vaccines having subunit and nucleic acid pass through various GIT-associated risks, such as the biodegradation of biologics and their reduced absorption. This article presents a summarized review of the existing technologies and prospects for oral vaccination. EXPERT OPINION The intestinal mucosa focuses on current approaches, while future strategies target new mucosal sites, i.e. oral cavity and stomach. Recent developments in biologic delivery through the oral route and their potential use in future oral vaccination are mainly considered.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Lobaina Y, Urquiza D, Garay H, Perera Y, Yang K. Evaluation of Cell-Penetrating Peptides as Mucosal Immune Enhancers for Nasal Vaccination. Int J Pept Res Ther 2021; 27:2873-2882. [PMID: 34658688 PMCID: PMC8511864 DOI: 10.1007/s10989-021-10296-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Cell-penetrating peptides (CPPs) have been evaluated as enhancers in drug delivery, their addition in medical formulations favors drug absorption allowing obtaining the pharmacological effect with lower doses. In vaccine formulations their inclusion has been also explored with interesting results. Currently mucosal vaccination constitutes a promising alternative with the main advantage of inducing both systemic and mucosal immune responses, which are crucial for control tumors and infections at mucosal tissues. In the present work the nasal immune-enhancing effect of four CPPs was evaluated in Balb/c mice. Animals were intranasally immunized with CPP and the recombinant hepatitis B surface protein (HBsAg) as model antigen. The antibody response in sera and mucosal tissue was measured by ELISA. The IFN-γ secretion response at spleen was also evaluated by ELISPOT and ELISA. Among the CPPs studied one novel peptide stand out by its ability to potentiate the humoral and cellular immune response against the co-administered antigen. Considering that the use of mucosal routes is a promising strategy in vaccination, which are gaining special relevance nowadays in the development of novel candidates against SARS-CoV-2 and other potential emerging respiratory virus, the searching and development of safe mucosal adjuvants constitute a current need.
Collapse
Affiliation(s)
- Yadira Lobaina
- Biomedical Research Division, Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600 Havana, Cuba.,China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| | - Dioslaida Urquiza
- Animal Facilities, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Hilda Garay
- Biomedical Research Division, Peptide Synthesis Lab, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Yasser Perera
- Biomedical Research Division, Pharmaceutical Department, Molecular Oncology Group, Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba.,China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City, 425000 Hunan Province China
| |
Collapse
|
18
|
McGrath JJC, Thayaparan D, Cass SP, Mapletoft JP, Zeng PYF, Koenig JFE, Fantauzzi MF, Bagri P, Ly B, Heo R, Schenck LP, Shen P, Miller MS, Stämpfli MR. Cigarette smoke exposure attenuates the induction of antigen-specific IgA in the murine upper respiratory tract. Mucosal Immunol 2021; 14:1067-1076. [PMID: 34108594 DOI: 10.1038/s41385-021-00411-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/15/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023]
Abstract
The upper respiratory tract is highly exposed to airborne pathogens and serves as an important inductive site for protective antibody responses, including mucosal IgA and systemic IgG. However, it is currently unknown to what extent inhaled environmental toxins, such as a cigarette smoke, affect the ability to induce antibody-mediated immunity at this site. Using a murine model of intranasal lipopolysaccharide and ovalbumin (LPS/OVA) immunization, we show that cigarette smoke exposure compromises the induction of antigen-specific IgA in the upper airways and systemic circulation. Deficits in OVA-IgA were observed in conjunction with a reduced accumulation of OVA-specific IgA antibody-secreting cells (ASCs) in the nasal mucosa, inductive tissues (NALT, cervical lymph nodes, spleen) and the blood. Nasal OVA-IgA from smoke-exposed mice also demonstrated reduced avidity during the acute post-immunization period in association with an enhanced mutational burden in the cognate nasal Igha repertoire. Mechanistically, smoke exposure attenuated the ability of the nasal mucosa to upregulate VCAM-1 and pIgR, suggesting that cigarette smoke may inhibit both nasal ASC homing and IgA transepithelial transport. Overall, these findings demonstrate the immunosuppressive nature of tobacco smoke and illustrate the diversity of mechanisms through which this noxious stimulus can interfere with IgA-mediated immunity in the upper airways.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jonathan P Mapletoft
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Peter Y F Zeng
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Joshua F E Koenig
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Puja Bagri
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Bruce Ly
- Biomedical Discovery & Commercialization Program, McMaster University, Hamilton, ON, Canada
| | - Rachel Heo
- Health Sciences Undergraduate Program, McMaster University, Hamilton, ON, Canada
| | - L Patrick Schenck
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Biochemistry Graduate Program, McMaster University, Hamilton, ON, Canada.,Weston Family Foundation, Toronto, ON, Canada
| | - Pamela Shen
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Merck & Co., Inc., West Point, PA, USA
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada. .,Department of Medicine, McMaster University, Hamilton, ON, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China. .,CSL Biologics Research Center, Bern, Switzerland.
| |
Collapse
|
19
|
Velarde de la Cruz E, Wang L, Bose D, Gangadhara S, Wilson RL, Amara RR, Kozlowski PA, Aldovini A. Oral Vaccination Approaches for Anti-SHIV Immunity. Front Immunol 2021; 12:702705. [PMID: 34234789 PMCID: PMC8256843 DOI: 10.3389/fimmu.2021.702705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
We modified a Sabin Oral Poliovirus Vaccine (OPV) vector to permit secretion of the antigens of interest with the goal of improving anti-HIV Env humoral responses in a SHIV mucosal immunization composed of DNA and recombinant OPVs. We evaluated stimulation of systemic and mucosal cell-mediated and humoral immunity in Rhesus macaques by two regimens, both involving a prime with a SHIVBG505 DNA construct producing non-infectious particles formulated in lipid nanoparticles, administered in the oral cavity, and two different viral vector boostings, administered in the oral cavity and intestinally. Group 1 was boosted with rMVA-SHIVBG505, expressing SIV Gag/Pol and HIVBG505 Env. Group 2 was boosted with a SHIVBG505-OPV vaccine including a non-secreting SIVmac239CA-p6-OPV, expressing Gag CA, NC and p6 proteins, and a HIVBG505C1-V2-OPV, secreting the C1-V2 fragment of HIV EnvBG505, recognized by the broadly neutralizing antibody PG16. A time course analysis of anti-SHIV Gag and Env CD4+ and CD8+ T-cell responses in PBMC and in lymph node, rectal, and vaginal MNC was carried out. Both regimens stimulated significant cell-mediated responses in all compartments, with SHIVBG505-OPV immunization stimulating more significant levels of responses than rMVA- SHIVBG505. Boolean analysis of these responses revealed predominantly monofunctional responses with multifunctional responses also present in all tissues. Stimulation of antibody responses was disappointing in both groups with negative anti-SHIV IgG in plasma, and IgA in salivary, rectal and vaginal secretions being restricted to a few animals. After repeated rectal challenge with SHIVBG505, two Group 1 animals remained uninfected at challenge termination. No significant differences were observed in post-infection viral loads between groups. After the acute phase decline, CD4+ T cell percentages returned to normal levels in vaccinated as well as control animals. However, when compared to controls, vaccinate groups had more significant preservation of PBMC and rectal MNC Th17/Treg ratios, considered the strongest surrogate marker of progression to AIDS. We conclude that the vaccine platforms used in this study are insufficient to stimulate significant humoral immunity at the tested doses and schedule but sufficient to stimulate significant mucosal and systemic cell-mediated immunity, impacting the preservation of key Th17 CD4+ T cells in blood and rectal mucosa.
Collapse
Affiliation(s)
- Erandi Velarde de la Cruz
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lingyun Wang
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Deepanwita Bose
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Robert L. Wilson
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rama R. Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Anna Aldovini
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
21
|
Coffey JW, Gaiha GD, Traverso G. Oral Biologic Delivery: Advances Toward Oral Subunit, DNA, and mRNA Vaccines and the Potential for Mass Vaccination During Pandemics. Annu Rev Pharmacol Toxicol 2021; 61:517-540. [PMID: 32466690 PMCID: PMC8057107 DOI: 10.1146/annurev-pharmtox-030320-092348] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.
Collapse
Affiliation(s)
- Jacob William Coffey
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunology, University of Melbourne, Victoria, 3000, Australia
| | - Gaurav Das Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
22
|
Chaudhary O, Wang L, Bose D, Narayan V, Yeh MT, Carville A, Clements JD, Andino R, Kozlowski PA, Aldovini A. Comparative Evaluation of Prophylactic SIV Vaccination Modalities Administered to the Oral Cavity. AIDS Res Hum Retroviruses 2020; 36:984-997. [PMID: 32962398 PMCID: PMC7703093 DOI: 10.1089/aid.2020.0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Attempts to develop a protective human immunodeficiency virus (HIV) vaccine have had limited success, especially in terms of inducing protective antibodies capable of neutralizing different viral strains. As HIV transmission occurs mainly via mucosal surfaces, HIV replicates significantly in the gastrointestinal tract, and the oral route of vaccination is a very convenient one to implement worldwide, we explored three SIV vaccine modalities administered orally and composed of simian immunodeficiency virus (SIV) DNA priming with different boosting immunogens, with the goal of evaluating whether they could provide lasting humoral and cellular responses, including at mucosal surfaces that are sites of HIV entry. Twenty-four Cynomolgus macaques (CyM) were primed with replication-incompetent SIV DNA provirus and divided into three groups for the following booster vaccinations, all administered in the oral cavity: Group 1 with recombinant SIV gp140 and Escherichia coli heat-labile toxin adjuvant dmLT, Group 2 with recombinant SIV-Oral Poliovirus (SIV-OPV), and Group 3 with recombinant SIV-modified vaccinia ankara (SIV-MVA). Cell-mediated responses were measured using blood, lymph node, rectal and vaginal mononuclear cells. Significant levels of systemic and mucosal T-cell responses against Gag and Env were observed in all groups. Some SIV-specific plasma IgG, rectal and salivary IgA antibodies were generated, mainly in animals that received SIV DNA + SIV-MVA, but no vaginal IgA was detected. Susceptibility to infection after SIVmac251 challenge was similar in vaccinated and nonvaccinated animals, but acute infection viremia levels were lower in the group that received SIV DNA + SIV-MVA. Nonvaccinated CyM maintained central memory and total CD4+ T-cell levels in the normal range during the 5 months of postinfection follow-up as did the vaccinated animals, precluding evaluation of vaccine impact on disease progression. We conclude that the oral cavity vaccination tested in these regimens can stimulate cell-mediated immunity systemically and mucosally, but humoral response stimulation was limited with the doses and the vaccine platforms used.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Lingyun Wang
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepanwita Bose
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Narayan
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - John D. Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Anna Aldovini
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Efficacy of a Protein Vaccine and a Conjugate Vaccine Against Co-colonization with Vaccine-type and Non-vaccine Type Pneumococci in Mice. Pathogens 2020; 9:pathogens9040278. [PMID: 32290340 PMCID: PMC7238145 DOI: 10.3390/pathogens9040278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022] Open
Abstract
Widespread use of pneumococcal conjugate vaccines (PCVs) has led to substitution of vaccine-type (VT) strains by non-vaccine type (NVT) strains in nasopharyngeal carriage. We compared the efficacy of PCV13 and a nasal protein formulation containing pneumococcal surface protein A (PspA) adjuvanted with the whole-cell pertussis vaccine (wP) in the protection against co-colonization challenge models in mice with VT and NVT strains expressing different PspAs. Immunized mice were challenged with two different mixtures: i. VT4 (PspA3) + NVT33 (PspA1) and ii. VT23F (PspA2) + NVT15B/C (PspA4). Results from the first mixture showed a reduction in loads of VT4 strain in the nasopharynx of mice immunized with PCV13. A statistical difference between the loads of the VT and NVT strains was observed, indicating a competitive advantage for the NVT strain in PCV13-immunized animals. In the second mixture, no reduction was observed for the VT23F strain, probably due to low levels of anti-23F polysaccharide IgG induced by PCV13. Interestingly, a combination of the PspA formulation containing wP with PCV13 led to a reduction in colonization with both strains of the two mixtures tested, similar to the groups immunized nasally with wP or PspA plus wP. These results indicate that a combination of vaccines may be a useful strategy to overcome pneumococcal serotype replacement.
Collapse
|
24
|
Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm 2019; 572:118813. [PMID: 31678521 DOI: 10.1016/j.ijpharm.2019.118813] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023]
Abstract
Mucosal administration, and specifically nasal route, constitutes an alternative and promising strategy for drug and vaccine delivery. Mucosal routes have several advantages supporting their selective use for different pathologies. Currently, many efforts are being made to develop effective drug formulations and novel devices for nasal delivery. This review described the structure and main characteristics of the nasal cavity. The advantages, achievements and challenges of the nasal route use for medical purposes are discussed, with particular focus on vaccine delivery. Compelling evidences support the potentialities and safety of the nasal delivery of vaccines and drugs. This alternative route could become a solution for many unmet medical issues and also may facilitate and cheapen massive immunization campaigns or long-lasting chronic treatments. Nowadays, in spite of certain remaining skepticism, the field of nasal delivery of drugs and vaccines is growing fast, bolstered by current developments in nanotechnology, imaging and administration devices. A notable increase in the number of approved drugs for nasal administration is envisaged.
Collapse
|
25
|
Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat Med 2018; 24:1590-1598. [PMID: 30177821 DOI: 10.1038/s41591-018-0161-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022]
Abstract
Antibodies are the primary correlate of protection for most licensed vaccines; however, their mechanisms of protection may vary, ranging from physical blockade to clearance via the recruitment of innate immunity. Here, we uncover striking functional diversity in vaccine-induced antibodies that is driven by immunization site and is associated with reduced risk of SIV infection in nonhuman primates. While equivalent levels of protection were observed following intramuscular (IM) and aerosol (AE) immunization with an otherwise identical DNA prime-Ad5 boost regimen, reduced risk of infection was associated with IgG-driven antibody-dependent monocyte-mediated phagocytosis in the IM vaccinees, but with vaccine-elicited IgA-driven neutrophil-mediated phagocytosis in AE-immunized animals. Thus, although route-independent correlates indicate a critical role for phagocytic Fc-effector activity in protection from SIV, the site of immunization may drive this Fc activity via distinct innate effector cells and antibody isotypes. Moreover, the same correlates predicted protection from SHIV infection in a second nonhuman primate vaccine trial using a disparate IM canarypox prime-protein boost strategy, analogous to that used in the first moderately protective human HIV vaccine trial. These data identify orthogonal functional humoral mechanisms, initiated by distinct vaccination routes and immunization strategies, pointing to multiple, potentially complementary correlates of immunity that may support the rational design of a protective vaccine against HIV.
Collapse
|
26
|
ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol 2018; 41:42-51. [PMID: 29702466 DOI: 10.1016/j.coph.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
Abstract
Most infections are caused by pathogens that access the body at mucosal sites. Hence, development of mucosal vaccines to prevent local infection or invasion of pathogens appears highly warranted, especially since only mucosal immunization will stimulate strong local IgA responses and tissue resident memory CD4 and CD8 T cells. The most significant obstacle to developing such vaccines is the lack of approved adjuvants that can effectively and safely enhance relevant mucosal and systemic immune responses. The most potent mucosal adjuvants known today are the adenosine diphosphate (ADP)-ribosylating bacterial enterotoxins cholera toxin (CT) and Escherichia coli heat-labile toxins (LTs). Unfortunately, these molecules are also very toxic, which precludes their clinical use. However, much effort has been devoted to developing derivatives of these enterotoxins with low or no toxicity and retained adjuvant activity. Although it is fair to say that we know more about how these toxins affect the immune system than ever before, we still lack a detailed understanding of how and why these toxins are effective adjuvants. In the present review, we provide a state-of-the-art overview of the mechanism of action of the holotoxins and the strategies used for improving the toxin-based adjuvants.
Collapse
|
27
|
Zhang S, Huang S, Lu L, Song X, Li P, Wang F. Curdlan sulfate- O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int J Nanomedicine 2018; 13:2377-2394. [PMID: 29713168 PMCID: PMC5912618 DOI: 10.2147/ijn.s158536] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction The development of ideal vaccine adjuvants for intranasal vaccination can provide convenience for many vaccinations. As an ideal intranasal vaccine adjuvant, it should have the properties of assisting soluble antigens to pass the mucosal barrier and potentiating both systemic and mucosal immunity via nasal administration. Methods By using the advantages of polysaccharides, which can promote both T-helper 1 and 2 responses, curdlan sulfate (CS)–O-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride (O-HTCC) nanoparticles were prepared by interacting CS with O-HTCC, and the adjuvancy of the nanoparticles was investigated. Results The results showed that the polysaccharide-based nanoparticles induced the proliferation and activation of antigen-presenting cells. High protein-loading efficiency was obtained by testing with the model antigen ovalbumin (Ova), and the Ova adsorbed onto the cationic CS/O-HTCC complexes was taken up easily by the epithelium. To evaluate the capacity of the Ova/CS/O-HTCC nanoparticles for immune enhancement in vivo, we collected and analyzed immunocytes, serum, and mucosal lavage fluid from intranasally vaccinated mice. The results showed that Ova/CS/O-HTCC nanoparticles induced activation and maturation of antigen-presenting cells and provoked the proliferation and differentiation of lymphocytes more significantly compared to the immunization of Ova mixed with aluminum hydroxide gel. Furthermore, CS/O-HTCC evoked a significantly higher level of Ova-specific antibodies. Conclusion Therefore, these results suggest that CS/O-HTCC nanoparticles are ideal vaccine adjuvants for soluble antigens used in intranasal or mucosal vaccination.
Collapse
Affiliation(s)
- Shu Zhang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong
| | - Shengshi Huang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong
| | - Lu Lu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong
| | - Xinlei Song
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong
| | - Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong.,National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong
| |
Collapse
|
28
|
Intranasal immunization with dry powder vaccines. Eur J Pharm Biopharm 2017; 122:167-175. [PMID: 29122735 DOI: 10.1016/j.ejpb.2017.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Vaccination represents a cost-effective weapon for disease prevention and has proven to dramatically reduce the incidences of several diseases that once were responsible for significant mortality and morbidity worldwide. The nasal cavity constitutes the initial stage of the respiratory system and the first contact with inhaled pathogens. The intranasal (IN) route for vaccine administration is an attractive alternative to injection, due to the ease of administration as well as better patient compliance. Many published studies have demonstrated the safety and effectiveness of IN immunization with liquid vaccines. Currently, two liquid IN vaccines are available and both contain live attenuated influenza viruses. FluMist® was approved in 2003 in the United States, and Nasovac® H1N1 vaccine was approved in India in 2010. Preclinical studies showed that IN immunization with dry powder vaccines (DPVs) is feasible. Although there is not a commercially available DPV yet, DPVs have the inherent advantage of being relatively more stable than liquid vaccines. This review focuses on recent developments of DPVs as next-generation IN vaccines.
Collapse
|
29
|
Nakahashi-Ouchida R, Yuki Y, Kiyono H. Development of a nanogel-based nasal vaccine as a novel antigen delivery system. Expert Rev Vaccines 2017; 16:1231-1240. [PMID: 29053938 DOI: 10.1080/14760584.2017.1395702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Nasal vaccination is one of the most effective immunization methods because it can induce effective antigen-specific immune responses not only at the mucosal site of administration but also at distant mucosal surfaces, as well as in the systemic compartment. Based on this advantage, many nasal vaccines are being developed and some have been licensed and marketed for clinical use. However, some have been withdrawn because of unacceptable adverse events such as inactivated influenza vaccine administrated with a heat-labile enterotoxin of Escherichia coli as an adjuvant. Thus, it is important to consider both the efficacy and safety of nasal vaccines. Areas covered: This review describes the benefits of cholesteryl group-bearing pullulan (CHP) nanogels for nasal vaccine delivery and vaccine development identified on Pubmed database with the term 'Nanogel-based nasal vaccine'. Expert commentary: CHP nanogels have been developed as novel drug delivery system, and a cationic CHP nanogels have been demonstrated to induce effective immunity as a nasal vaccine antigen carrier. Since vaccine antigens incorporated into CHP nanogels have exhibited no brain deposition after nasal administration in mice and nonhuman primates, the vaccine seems safe, and could be a promising new delivery system.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan
| | - Yoshikazu Yuki
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan
| | - Hiroshi Kiyono
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan.,b International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science , The University of Tokyo , Tokyo , Japan.,c Department of Immunology, Graduate School of Medicine , Chiba University , Chiba , Japan
| |
Collapse
|
30
|
Mohan T, Deng L, Wang BZ. CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. Int Immunopharmacol 2017; 51:165-170. [PMID: 28843907 PMCID: PMC5755716 DOI: 10.1016/j.intimp.2017.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Chemokines are an extensive family of small proteins which, in conjunction with their receptors, guide the chemotactic activity of various immune cells throughout the body. CCL28, β- or CC chemokine, is involved in the host immunity at various epithelial and mucosal linings. The unique roles of CCL28 in several facets of immune responses have attracted considerable attention and may represent a promising approach to combat various infections. CCL28 displays a broad spectrum of antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi. Here, we will summarize various research findings regarding the antimicrobial activity of CCL28 and the relevant mechanisms behind it. We will explore how the structure of CCL28 is involved with this activity and how this function may have evolved. CCL28 displays strong homing capabilities for B and T cells at several mucosal and epithelial sites, and orchestrates the trafficking and functioning of lymphocytes. The chemotactic and immunomodulatory features of CCL28 through the interactions with its chemokine receptors, CCR10 and CCR3, will also be discussed in detail. Thus, in this review, we emphasize the dual properties of CCL28 and suggest its role as an anchoring point bridging the innate and adaptive immunity. Chemokines play a vital role in cell migration in response to a chemical gradient by a process known as chemotaxis. CCL28 is a β- or CC chemokine that is involved in host immunity through the interactions with its chemokine receptors, CCR10 and CCR3. CCL28 is constitutively expressed in a wide variety of tissues including exocrine glands and is inducible through inflammation and infections. CCL28 has been shown to exhibit broad spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and some fungi. CCL28 displays strong homing capabilities for B and T cells and orchestrates the trafficking and functioning of lymphocytes. In this review, we emphasize the antimicrobial and immunomodulatory feature of CCL28 and its role as bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA.
| |
Collapse
|
31
|
Gilliam BL, Redfield RR, Peters BS. HIV Vaccines. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Unique cellular and humoral immunogenicity profiles generated by aerosol, intranasal, or parenteral vaccination in rhesus macaques. Vaccine 2016; 35:639-646. [PMID: 28041780 DOI: 10.1016/j.vaccine.2016.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Respiratory mucosa immunization is capable of eliciting both local and distal mucosal immune responses; it is a potentially powerful yet largely unused modality for vaccination against respiratory diseases. Targeting the lower versus upper airways by aerosol delivery alters the immunogenicity profile of a vaccine, although the full extent of this impact is not well characterized. We set out to define the cellular and humoral response profiles elicited by immunization via intranasal, small aerosol droplets, and large aerosol droplets. We compared responses following adenovirus-vectored vaccination by these routes in macaques, either for the generation of primary immune responses or for the boosting of previously primed systemic responses. Aerosol delivery (4 or 10μm diameter droplets, addressing lower or upper airways, respectively) generated the highest magnitude lung CD4 and CD8 T-cell responses, reaching 10-30% vaccine-specific levels in bronchoalveolar lavage cells. In contrast, intranasal delivery was less immunogenic with >10-fold lower peak lung T-cell responses. Systemic (blood) T-cell responses were only observed following 4μm aerosol (and parenteral) immunization, while all delivery routes elicited similar humoral responses. These data demonstrate distinct immune response profiles with each respiratory tract vaccination modality and suggest that small droplet aerosol offers several immunological advantages over other respiratory routes.
Collapse
|
33
|
Yang Z, Zhao Q, Gao YA, Zhang W. Combined Oral and Intravenous Immunization Stimulates Strong IgA Responses in Both Systemic and Mucosal Compartments. PLoS One 2016; 11:e0168037. [PMID: 27936222 PMCID: PMC5148103 DOI: 10.1371/journal.pone.0168037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
To investigate the influence of immunization routes onIgG, IgA and IgM production in systemic and mucosal compartments, we immunized mice with keyhole limpet hemocyanin (KLH) via oral, intranasal (i.n.) or subcutaneous (s.c.) routes alone or combined with the intravenous (i.v.) route. We found that administering antigen intravenously could affect antibody production and formation of antibody secreting cells (ASCs) depending on the immunization route previously used. Combined oral/i.v. immunization but not s.c./i.v. immunization caused a great increase of IgA ASCs in the spleen and enhanced IgA production in the small intestine and serum. Combined i.n./i.v. immunization could also increase IgA ASCs in the spleen and enhance IgA production in serum but had no effect on IgA production in the small intestine. Oral/i.v. immunization caused increase of IgG ASCs in both the spleen and bone marrow. In comparison, combined i.n./i.v. and s.c./i.v. immunization could increase IgG ASCs in the spleen but not in bone marrow. Intravenous administration of KLH in mice that had been immunized via oral, i.n. or s.c. routes caused some increase of IgM ASCs in the spleen but not in bone marrow. In conclusion, combined oral and i.v. administration of an antigen can induce fast and strong immune responses, especially for IgA, in both systemic and mucosal compartments.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People’s Republic of China
| | - Qing Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People’s Republic of China
| | - Yun-An Gao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
35
|
Howe SE, Sowa G, Konjufca V. Systemic and Mucosal Antibody Responses to Soluble and Nanoparticle-Conjugated Antigens Administered Intranasally. Antibodies (Basel) 2016; 5:antib5040020. [PMID: 31558001 PMCID: PMC6698832 DOI: 10.3390/antib5040020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/16/2016] [Accepted: 09/18/2016] [Indexed: 02/03/2023] Open
Abstract
Nanoparticles (NPs) are increasingly being used for drug delivery, as well as antigen carriers and immunostimulants for the purpose of developing vaccines. In this work, we examined how intranasal (i.n.) priming followed by i.n. or subcutaneous (s.c.) boosting immunization affects the humoral immune response to chicken ovalbumin (Ova) and Ova conjugated to 20 nm NPs (NP-Ova). We show that i.n. priming with 20 mg of soluble Ova, a dose known to trigger oral tolerance when administered via gastric gavage, induced substantial systemic IgG1 and IgG2c, as well as mucosal antibodies. These responses were further boosted following a s.c. immunization with Ova and complete Freund’s adjuvant (Ova+CFA). In contrast, 100 µg of Ova delivered via NPs induced an IgG1-dominated systemic response, and primed the intestinal mucosa for secretion of IgA. Following a secondary s.c. or i.n. immunization with Ova+CFA or NP-Ova, systemic IgG1 titers significantly increased, and serum IgG2c and intestinal antibodies were induced in mice primed nasally with NP-Ova. Only Ova- and NP-Ova-primed mice that were s.c.-boosted exhibited substantial systemic and mucosal titers for up to 6 months after priming, whereas the antibodies of i.n.-boosted mice declined over time. Our results indicate that although the amount of Ova delivered by NPs was 1000-fold less than Ova delivered in soluble form, the antigen-specific antibody responses, both systemic and mucosal, are essentially identical by 6 months following the initial priming immunization. Additionally, both i.n.- and s.c.-boosting strategies for NP-Ova-primed mice were capable of inducing a polarized Th1/Th2 immune response, as well as intestinal antibodies; however, it is only by using a heterogeneous prime-boost strategy that long-lasting antibody responses were initiated. These results provide valuable insight for future mucosal vaccine development, as well as furthering our understanding of mucosal antibody responses.
Collapse
Affiliation(s)
- Savannah E Howe
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Gavin Sowa
- Department of Chemistry, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Vjollca Konjufca
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
36
|
Bobbala S, Hook S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm Res 2016; 33:2078-97. [DOI: 10.1007/s11095-016-1979-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
|
37
|
Díaz AG, Quinteros DA, Llabot JM, Palma SD, Allemandi DA, Ghersi G, Zylberman V, Goldbaum FA, Estein SM. Spray dried microspheres based on chitosan: A promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:489-96. [DOI: 10.1016/j.msec.2016.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
38
|
Intranasal Vaccination Affords Localization and Persistence of Antigen-Specific CD8⁺ T Lymphocytes in the Female Reproductive Tract. Vaccines (Basel) 2016; 4:vaccines4010007. [PMID: 26999228 PMCID: PMC4810059 DOI: 10.3390/vaccines4010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
Immunization strategies generating large numbers of antigen-specific T cells in the female reproductive tract (FRT) can provide barrier protection against sexually-transmitted pathogens, such as the human immunodeficiency virus (HIV) and human papillomaviruses (HPV). The kinetics and mechanisms of regulation of vaccine-induced adaptive T cell-mediated immune responses in FRT are less well defined. We present here evidence for intranasal delivery of the model antigen ovalbumin (OVA) along with alpha-galactosylceramide adjuvant as a protein vaccine to induce significantly higher levels of antigen-specific effector and memory CD8⁺ T cells in the FRT, relative to other systemic and mucosal tissues. Antibody blocking of the CXCR3 receptor significantly reduced antigen-specific CD8⁺ T cells subsequent to intranasal delivery of the protein vaccine suggesting an important role for the CXCR3 chemokine-receptor signaling for T cell trafficking. Further, intranasal vaccination with an adenoviral vector expressing OVA or HIV-1 envelope was as effective as intramuscular vaccination for generating OVA- or ENV-specific immunity in the FRT. These results support the application of the needle-free intranasal route as a practical approach to delivering protein as well as DNA/virus vector-based vaccines for efficient induction of effector and memory T cell immunity in the FRT.
Collapse
|
39
|
Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, Yeh MK. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother 2015; 11:650-6. [PMID: 25839217 PMCID: PMC4514183 DOI: 10.1080/21645515.2015.1009345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.
Collapse
Key Words
- APC,antigen-presenting cell
- DC, dendritic cell
- DEN-1–DEN-4, dengue virus serotypes 1–4
- DT or TD, diphtheria + tetanus vaccine
- DT, diphtheria toxoid
- DTP, diphtheria + tetanus + pertussis vaccine
- NS1, nonstructural protein 1
- PEG, poly (ethylene glycol)
- PLA, poly (lactide)
- PLGA, Poly (lactic-co-glycolic acid)
- TT, tetanus-toxoid
- VC, Vibrio cholera
- WHO, World Health Organization
- biodegradable
- immunization
- infectious diseases
- polymeric microspheres
- vaccines
Collapse
Affiliation(s)
- Chi-Ying Lin
- a Food and Drug Administration ; Ministry of Health and Welfare ; Taiwan (R.O.C.)
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE The human pathogen Chlamydia trachomatis is worldwide the leading cause of bacterial sexually transmitted disease. Nasal or vaginal nucleic acid vaccination is a promising strategy for controlling genital Chlamydia trachomatis infections. Since naked nucleic acids are generally not efficiently taken up by cells, they are often complexed with carriers that facilitate their intracellular delivery. METHODS In the current study, we screened a variety of commonly used non-viral gene delivery carriers for their ability to transfect newborn pig tracheal cells. The effect of aerosolization on the physicochemical properties and transfection efficiency of the complexes was also evaluated in vitro. Subsequently, a pilot experiment was performed in which the selected complexes were aerosolized in the vaginal tract of pigs. RESULTS Both mRNA and pDNA containing lipofectamine and ADM70 complexes showed promise for protein expression in vitro, before and after aerosolization. In vivo, only lipofectamine/pDNA complexes resulted in high protein expression levels 24 h following aerosolization. This correlates to the unexpected observation that the presence of vaginal mucus increases the efficiency of lipofectamine/pDNA complexes 3-fold, while the efficiency of lipofectamine/mRNA complexes and ADM70/mRNA and ADM70/pDNA complexes decreased. CONCLUSIONS As aerosolization was an easy and effective method to deliver complexes to the vaginal tract of pigs, we believe this application technique has future potential for both vaginal and perhaps nasal vaccination using non-viral gene delivery vectors.
Collapse
|
41
|
Remaut K, De Clercq E, Andries O, Rombouts K, Van Gils M, Cicchelero L, Vandenbussche I, Van Praet S, Benito JM, Fernandéz JMG, Sanders N, Vanrompay D. Aerosolized Non-viral Nucleic Acid Delivery in the Vaginal Tract of Pigs. Pharm Res 2015; 33:384-94. [DOI: 10.1007/s11095-015-1796-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
|
42
|
Poteet E, Lewis P, Li F, Zhang S, Gu J, Chen C, Ho SO, Do T, Chiang S, Fujii G, Yao Q. A Novel Prime and Boost Regimen of HIV Virus-Like Particles with TLR4 Adjuvant MPLA Induces Th1 Oriented Immune Responses against HIV. PLoS One 2015; 10:e0136862. [PMID: 26312747 PMCID: PMC4552547 DOI: 10.1371/journal.pone.0136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/10/2015] [Indexed: 01/11/2023] Open
Abstract
HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses.
Collapse
Affiliation(s)
- Ethan Poteet
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Phoebe Lewis
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Feng Li
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Sheng Zhang
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Jianhua Gu
- Houston Methodist Research Institute, Houston, TX, 77030, United States of America
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Sam On Ho
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Thai Do
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - SuMing Chiang
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Gary Fujii
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
43
|
|
44
|
The mucosal immune system for vaccine development. Vaccine 2014; 32:6711-23. [DOI: 10.1016/j.vaccine.2014.08.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
|
45
|
Klein K, Mann JFS, Rogers P, Shattock RJ. Polymeric penetration enhancers promote humoral immune responses to mucosal vaccines. J Control Release 2014; 183:43-50. [PMID: 24657807 DOI: 10.1016/j.jconrel.2014.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/26/2022]
Abstract
Protective mucosal immune responses are thought best induced by trans-mucosal vaccination, providing greater potential to generate potent local immune responses than conventional parenteral vaccination. However, poor trans-mucosal permeability of large macromolecular antigens limits bioavailability to local inductive immune cells. This study explores the utility of polymeric penetration enhancers to promote trans-mucosal bioavailability of insulin, as a biomarker of mucosal absorption, and two vaccine candidates: recombinant HIV-1 envelope glycoprotein (CN54gp140) and tetanus toxoid (TT). Responses to vaccinating antigens were assessed by measurement of serum and the vaginal humoral responses. Polyethyleneimine (PEI), Dimethyl-β-cyclodextrin (DM-β-CD) and Chitosan enhanced the bioavailability of insulin following intranasal (IN), sublingual (SL), intravaginal (I.Vag) and intrarectal (IR) administration. The same penetration enhancers also increased antigen-specific IgG and IgA antibody responses to the model vaccine antigens in serum and vaginal secretions following IN and SL application. Co-delivery of both antigens with PEI or Chitosan showed the highest increase in systemic IgG and IgA responses following IN or SL administration. However the highest IgA titres in vaginal secretions were achieved after IN immunisations with PEI and Chitosan. None of the penetration enhancers were able to increase antibody responses to gp140 after I.Vag immunisations, while in contrast PEI and Chitosan were able to induce TT-specific systemic IgG levels following I.Vag administration. In summary, we present supporting data that suggest appropriate co-formulation of vaccine antigens with excipients known to influence mucosal barrier functions can increase the bioavailability of mucosally applied antigens promoting the induction of mucosal and systemic antibody responses.
Collapse
Affiliation(s)
- Katja Klein
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Jamie F S Mann
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Paul Rogers
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Robin J Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
46
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges. Vaccine 2013; 32:1579-87. [PMID: 24016806 DOI: 10.1016/j.vaccine.2013.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Gonorrhea occurs at high incidence throughout the world and significantly impacts reproductive health and the spread of human immunodeficiency virus. Current control measures are inadequate and seriously threatened by the rapid emergence of antibiotic resistance. Progress on gonorrhea vaccines has been slow; however, recent advances justify significant effort in this area. Conserved vaccine antigens have been identified that elicit bactericidal antibodies and, or play key roles in pathogenesis that could be targeted by a vaccine-induced response. A murine genital tract infection model is available for systematic testing of antigens, immunization routes and adjuvants, and transgenic mice exist to relieve some host restrictions. Furthermore, mechanisms by which Neisseria gonorrhoeae avoids inducing a protective adaptive response are being elucidated using human cells and the mouse model. Induction of a Th1 response in mice clears infection and induces a memory response, which suggests Th1-inducing adjuvants may be key in vaccine-induced protection. Continued research in this area should include human testing and clinical studies to confirm or negate findings from experimental systems and to define protective host factors.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebért School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1400 Rockville Pike, Bethesda, MD 20814, USA.
| | - Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
48
|
Vacher G, Kaeser MD, Moser C, Gurny R, Borchard G. Recent Advances in Mucosal Immunization Using Virus-like Particles. Mol Pharm 2013; 10:1596-609. [DOI: 10.1021/mp300597g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Gaëlle Vacher
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| | | | | | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| |
Collapse
|
49
|
Pittrof R, Sully E, Bass DC, Kelsey SF, Ness RB, Haggerty CL. Stimulating an immune response? Oral sex is associated with less endometritis. Int J STD AIDS 2013; 23:775-80. [PMID: 23155096 DOI: 10.1258/ijsa.2012.011407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Secondary analysis of the PID Evaluation and Clinical Health (PEACH) data suggests that among women presenting with signs and symptoms of pelvic inflammatory disease (PID), those who reported oral sex were less likely to have endometritis (adjusted odds ratio [OR] 0.5 [0.3-0.8]) than those who did not report oral sex. Adaptive immunity requires antigenic priming of the lymphatic system. As lymphatic tissue is abundant in the oropharynx, oral sex could lead to effective immune stimulation and prevent PID. To determine whether oral sex could be a protective factor for PID the relationship between self-reported oral sex and endometritis was analysed among 619 women with clinically suspected PID who participated in the PEACH study. Nearly one quarter of participants reported oral sex in the past four weeks. These women also reported a higher number of sexual partners, a new partner within the past four weeks and a higher frequency of sexual intercourse (all P < 0.03). They were more likely to smoke (P < 0.0001), drink alcohol (P < 0.004) and use recreational drugs (P < 0.02). Participants reporting oral sex were significantly less likely to be black or to have a positive test for Neisseria gonorrhoeae (7.8% versus 21.6%, P = 0.001). Women who disclosed oral sex were significantly less likely to have endometritis after adjusting for race, number of partners, recent new partner, smoking, alcohol use and drug use (adjusted OR 0.5 [0.3-0.8]). This is the first paper showing a negative association between oral sex and endometritis. This may be mediated by a protective immune response in the genital tract following priming in the oropharynx. This hypothesis needs to be tested in further studies.
Collapse
Affiliation(s)
- R Pittrof
- Guy's and St Thomas' NHS Foundation Trust, Wandsworth Road, London SW8 2LZ, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Leroux-Roels G, Maes C, Clement F, van Engelenburg F, van den Dobbelsteen M, Adler M, Amacker M, Lopalco L, Bomsel M, Chalifour A, Fleury S. Randomized Phase I: Safety, Immunogenicity and Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes. PLoS One 2013; 8:e55438. [PMID: 23437055 PMCID: PMC3577797 DOI: 10.1371/journal.pone.0055438] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/21/2012] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101). Participants received placebo or MYM-V101 vaccine at 10 μg/dose or 50 μg/dose intramuscularly at week 0 and 8, and intranasally at week 16 and 24. MYM-V101 was safe and well-tolerated at both doses administered by the intramuscular and intranasal routes, with the majority of subjects remaining free of local and general symptoms. P1-specific serum IgGs and IgAs were induced in all high dose recipients after the first injection. After the last vaccination, vaginal and rectal P1-specific IgGs could be detected in all high dose recipients. Approximately 63% and 43% of the low and high dose recipients were respectively tested positive for vaginal P1-IgAs, while 29% of the subjects from the high dose group tested positive for rectal IgAs. Serum samples had total specific IgG and IgA antibody concentrations ≥ 0.4 μg/mL, while mucosal samples were usually below 0.01 μg/mL. Vaginal secretions from MYM-V101 vaccinated subjects were inhibiting HIV-1 transcytosis but had no detectable neutralizing activity. P1-specific Th1 responses could not be detected on PBMC. This study demonstrates the excellent safety and tolerability of MYM-V101, eliciting systemic and mucosal antibodies in the majority of subjects. Vaccine-induced mucosal anti-gp41 antibodies toward conserved gp41 motifs were harboring HIV-1 transcytosis inhibition activity and may contribute to reduce sexually-transmitted HIV-1. TRIAL REGISTRATION ClinicalTrials.gov NCT01084343.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Morgane Bomsel
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, Université Paris Descartes, Paris, France
- CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
| | | | | |
Collapse
|